§1 TESTOUT LICENSE 1

1. License.
Gened date: January 30, 2015
Copyright (© 1998-2015 Dave Bone

This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the
MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

2 COMMENTS TESTOUT §2

2. Comments.
There are 3 principle reasons for this program:
1) To verify that Oy parses a Ir(1) grammar, and its parse tables accepts the language expessed
2) To give a glimpse into what the compiler writer “will do” in creating a translator/compiler
3) An example for your own learning
This “will do” activity prepares the Terminal vocabulary, and shows a simple way to fetch the input file to
parse, and use the built in “error reporting” facilities within your own compiler/translator context.

The development cycle one needs to create a compiler/translator is:

1) write/compile your grammar(s) using O3

2) using an editor, create your compiler’s fsc file for Oslinker’s consumption

3) write/compile your compiler and any other external functions

4) link your compiler/translator
Have a look at /usr/local/yacco2/grammar-testsuite/makefile_testout _APPLE bash script detailing
the documentation generation and compiling/linking activities. This example is in “literate programming”
genre and u can read the “testout™.w” files. If u prefer or u do not have Cweb installed, u can write raw
Ct+code instead. The gened Ct+ files *.h and *.cpp are also in ../grammar-testsuite to model from.

The grammar used is from David Pager — “The Lane Table Method Of Constructing LR(1) Parsers”
discussing Ir(1) resolution page 61. To testout pager_1.lex grammar, u can input one of the following files to
testout:

1) ./grammar-testsuite/testout_1.dat

2) ./grammar-testsuite/testout_2.dat

3) x — mno file

4) ./grammar-testsuite/testout_error.dat
An example of running the program:

cd /usr/local/yacco2/yacco2/grammar-testsuite

./testout testout_1.dat
Various Yacp0o tracings are turned on to demo their activity. Please read wlibrary’s pdf document for
more details on their capabilities and meaning or “o2book.pdf” reference manual. Added to the tracing
are file/line number source coordinates. At least u can go back to Yacgos's library code when things need
adjusting. “llrtracings.log” contains the dynamic tracings when running the program.

General routines to get things going:
1) get file-to-parse and put into holding file
2) parse the command line containing the file to parse
3) use pager_1 grammar to parse input file’s contents

(accrue testout code 2) =
(Include files 3);

See also sections 5, 7, 8, and 9.

This code is used in section 14.

83 TESTOUT INCLUDE FILES 3

3. Include files.
To start things off, these are the Standard Template Library (STL) containers needed by Yacco2’s parse
library definitions.

(Include files 3) =
#include "testout.h"

This code is used in section 2.

4. Create header file for testout environment.
The include files format is:

1) system related definitions

2) the grammar vocabulary framework

3) grammars used

4) namespace use for convenience in your Ct+ code
Note the namespace turn-ons for Error and Meta-terminal vocabularies. Your own language will define your
vocabularies with their own namespaces. Have a look at their definition files: testout_err_symbols. T and
testout_terminals. T and possibly re-read “o2book.pdf” for a refresher on their Ws. This example is skeletal
for teaching purposes whereas your own vocabulary will be meater. Also note the 2 grammar headers:
pager_1.h and the error handler testout_err_hdlr.h.

(testout.h 4)=
(Preprocessor definitions)

#ifndef testout__

#define testout__ 1

#include <stdarg.h>

#include <stdlib.h>

#include <string.h>

#include <limits.h>

#include "yacco2.h"

#include "testout_T_enumeration.h"

#include "yacco2_characters.h"

#include "yacco2_k_symbols.h"

#include "testout_terminals.h"

#include "testout_err_symbols.h"

#include "pager_1.h"

#include "testout_err_hdlr.h"
using namespace std;
using namespace NS_testout_T_enum;
using namespace NS_yacco2_k_symbols;
using namespace NS_testout_terminals;
using namespace NS_testout_err_symbols;
using namespace yacco2;

#endif

4 DEFINE VARIABLES TESTOUT §5

5. Define variables.
1) Holding file to start things off — command line data is put into this file
2) Define the Oy’s tracing variable by macro
3) O2’s token containers needed

(accrue testout code 2) +=

#define Maz_buf_size2 % 1024
std :: string Holding_file ("testout_holding_file.cmd");
std :: string To_parse_file;
YACCOZ2_define_trace_variables();
yacco2 :: TOKEN_GAGGLE JUNK _tokens;
yacco?2 :: TOKEN_GAGGLEIP_tokens;
yacco2 :: TOKEN_GAGGLE Error_queue;

86 TESTOUT LOCAL ROUTINES 5

6. Local Routines.

GET_CMD_LINE is a basic copy of 02’s command line routine. It is changed as it just fetches the file to process.
There are no other parameters to deal with. Have a read and compare 02’s routine against this one to see
the variances. Oy’s routines are written up in common_externs.pdf in the “./docs” folder.

DUMP_ERROR_QUEUE ditto’s 02’s error processing routine. Testout’s difference to O is the use of its own
error handler grammar. This is due to the different T vocabulary defined over Os’s vocabulary. This was
done to show u what u’ll be doing for your own compiler development as your T vocabulary will definitely
be different from Oy. Have a look at the testout_err_hdir grammar and see how it resolves the external
file associated with the error T. The Error T processing is basicly a template using your specific grammar
relative to its own language/Terminal Vocabulary.

As O2’s o2_error_hdlr.lex grammar deals with its own specific errors, this is why there is not a generic
error template grammar that uses only the |+| to trace all the T errors as anonymous entities. One could
do this but u’ll find that this is not too creative. Look at 02_error_hdlr.lex’s subrule with tandom errors —
“file-inclusion” “bad filename” as an example.

Your own error reporting is open to your own code and style to format and notification. U
might want to compare testout_terminals. T and testout_err_symbols.T definitions against Os’s vocabulary:
yacco2_terminals. T and yacco2_err_symbols.T to get a feel on the range of Tes within O,. What they stand
for, and the different definition templates used: canned to full C++ definition / implementation.

6

7.

GET_CMD_LINE — GO FETCH THE FODDER

GET_CMD_LINE — go fetch the fodder.

TESTOUT

§7

To note: the “File_to_parse” parameter is passed in as a reference which gets filled with the command line
input. The file’s existence check is done and if it exists, downstream parsing uses it passed in reference
variable for the input tok_can container to parse its contents.

(accrue testout code 2) +=
void GET_CMD_LINE(int argc,char xargu]]
,const char xHolding
,std :: string & File_to_parse
,yacco2 :: TOKEN_GAGGLE & E'rrors)

{

using namespace std;
using namespace NS_testout_err_symbols;
using namespace yacco?2;

ofstream ofile;
ofile.open(Holding , ios_base :: out | ios :: trunc);
if (—ofile) {
CAbs_lrl_sym * sym = new Err_bad_filename (Holding);
sym~set_external_file_id (1);
sym~set_line_no(1);
sym~set_pos_in_line(1);
Errors.push_back (xsym);
return;

if (argc =1) {
char cmd_line[Maz_buf_size];
cout < "Please enter ,Command, line to process: ";
cin.get(emd_line, Maz_buf_size, > \n’);
ofile < cmd_line;
File_to_parse += cmd_line;
ofile.close();

else {
for (int x = 1; x < arge; ++x) {
ofile < argv|x];
File_to_parse += argv|x];

ofile.close();

tok_can < std::ifstream > Cmd1_tokens(Holding);

/*sets the table of files controlled by yacco2 for parsing T gpsing */

ifstreamifile;
ifile.open (File_to_parse.c_str());
if (—ifile) {

CAbs_lr1_sym x sym = new Err_bad_filename (File_to_parse.c_str());

sym~set_external_file_id (1);
sym~set_line_no(1);
sym~set_pos_in_line (1);
Errors.push_back (xsym);
return;

}
ifile.close();

87 TESTOUT GET_CMD_LINE — GO FETCH THE FODDER 7

return;

}

8 DUMP_ERROR_QUEUE — THE TELLER OF HORROR TESTOUT 68

8. DUMP_ERROR_QUEUE — the teller of horror.
The 2 yacco2:: PTR_LRI1 eog__ added to the end-of-the-container allows the grammar’s start_rule to be
accepted.

(accrue testout code 2) +=
void DUMP_ERROR_QUEUE(yacco2 :: TOKEN_GAGGLE & Errors)
{
using namespace NS_yacco2_k_symbols;
using namespace yacco2;

Errors.push_back (xyacco2:: PTR_LR1 eog_);
Errors.push_back (xyacco2:: PTR_LR1_eog__);

using namespace NS_testout_err_hdlr;

Ctestout_err_hdlr fsm;

Parserpass_errors(fsm, &Errors, 0);
pass_errors.parse();

yacco2 :: Parallel_threads_shutdown (pass_errors);

89 TESTOUT MAINLINE 9

9. Mainline.
The mainline code demonstrates various ways to do “literate programming: a mixture of Literate program-
ming code modules and standard “c” code.

Note: I checked the returned code from the parser Parser::erred as to whether a parse error occurred.
This is the proper way to do things but u’ll see my lazyness in O3’s program listing to just check the “Error
queue”. If u misused the RSVP_FSM macro from a monolithic grammar’s failed directive to do this, the
parser did abort, the failed directive fired but the “Error queue” is empty as the error T is placed within the
“Accept queue” which is the context for a threaded grammar to return a result back to a calling grammar.

To see that failed works within the monolithic context, use “testout_error.dat” file as input.

So be forwarned. I guess this should be checked for by Oy and to thrown an error when compiling the
grammar but for the moment it does not.

(accrue testout code 2) +=
int main(int argc, char xargv|])

{

std :: cout < "testout start" < std::endl;
using namespace yacco2;
(turn on some Oy’s tracing 11);
(get command line, parse it, and place contents into a holding file 12);
using namespace NS_pager_1;
tok_can < std::ifstream > emd_line(To_parse_file.c_str());
Cpager_1 pager_1_fsm;
Parsertestout_parse (pager_1_fsm, &cemd_line, &IP_tokens, 0, & Error_queue , & JUNK _tokens, 0);
if (testout_parse.parse() = Parser::erred) {
std :: cout < " >ERROR_,0CCURRED" < std ::endl;
(if error queue not empty then deal with posted errors 13);

}

exit:
std :: cout < "Exiting testout" < std:: endl;
return 0;

}

10 SOME PROGRAMMING SECTIONS TESTOUT 810

10. Some Programming sections.

11. Turn on some of Oy’s dynamic tracing variables.
Tracings:
T - terminals
TH - threads if their fsm-debug options turned on
MSG - messages between grammars
MU - trace mutex activity
Notice that MU was turned off but kept as a comment. Due to how Cweb deals with comments, the
underscore “.” must be escaped. Have a look in the “testout_prog.w” file where 1’ll see this.
You will not see any “MSG” or “TH” tracings as there was not a threaded grammar called. So why do u

include them? Just to pique your interest to Os’s delights.

(turn on some Os’s tracing 11) =
yacco2::YACCO2_T__ = 1;

yacco2::YACCO2_TH__ = 1;
yacco2::YACCO2_MSG__ = 1; /xyacco2: YACCO2_ MU_TRACING__ = 1; %/

This code is used in section 9.

12. Get command line, parse it, and place contents into a holding file.

(get command line, parse it, and place contents into a holding file 12) =
GET_CMD_LINE(argce, argv, Holding_file.c_str (), To-parse_file, Error_queue);
(if error queue not empty then deal with posted errors 13);

This code is used in section 9.

13. Do we have errors?.
Check that error queue for those errors. Note, DUMP_ERROR_QUEUE will also flush out any launched threads
for the good housekeeping or is it housetrained seal award? Trying to do my best in the realm of short lived
winddowns.
(if error queue not empty then deal with posted errors 13) =
if (Error_queue.empty () # true) {
DUMP_ERROR_QUEUE (Error_queue);
return 1;

}

This code is used in sections 9 and 12.

814 TESTOUT TESTOUT IMPLEMENTATION 11

14. Testout implementation.
Start the code output to testout.cpp by appending its include file.

(testout.cpp 14)=
(accrue testout code 2);

12 INDEX

15. Index.

arge: 7, 9, 12.

argv: 7,9, 12.

cstr: 7,9, 12.
CAbs_lri_sym: 7.

cin: 7.

close: 7.

cmd_line: 7, 9.
Cmd1_tokens: 7.
common_externs: 0.
cout: 7, 9.

Cpager_1: 9.

cpp: 14,
Ctestout_err_hdlr: 8.
Cweb: 11.
DUMP_ERROR_QUEUE: 6, 8, 13.
empty: 13.

endl: 9.
Err_bad_filename: 7.
erred: 9.

Error_queue: 5, 9, 12, 13.
Errors: 7, 8.

exit: 9.

failed: 9.
File_to_parse: 7.

fsm: 8.

get: 7.

GET_CMD_LINE: 6, 7, 12.
Holding: 7.
Holding_file: 5, 12.
ifile: 7.

ifstream: 7, 9.

10s: 7.

ios_base: 7.

IP_tokens: 5, 9.

JUNK tokens: 5, 9.
lex: 6.

main: 9.

Maz_buf_size: 5, 7.
NS_pager_1: 9.
NS_testout_err_hdlr: 8.

NS_testout_err_symbols: 4, 7.

NS_testout_T_enum: 4.
NS_testout_terminals: 4.
NS_yacco2_k_symbols: 4, 8.
ofile: 7.

ofstream: 7.

open: 7.

out: 7.

02: G.

o2_error_hdlr: 6.

pager_1: 4.

TESTOUT

pager_1_fsm: 9.
Parallel_threads_shutdown: 8.
parse: 8, 9.

Parser: 8, 9.
pass_errors: 8.

pdf: 6.

PTR_LR1 eog-_: 8.
push_back: 7, 8.
RSVP_FSM: 0.
set_external_file_id: 7.
set_line_no: 7.
set_pos_in_line: 7.
start_rule: 8.

std: 4, 5, 7, 9.
string: 5, 7.

sym: 7.
testout: 14.
testout__: 4.

testout_err_hdlr: 4, 6.
testout_err_symbols: 4
testout_parse: 9.
testout_terminals: 4, 6.
To_parse_file: 5, 9, 12.

tok_can: 7, 9.

TOKEN_GAGGLE: 5, 7, 8.

true: 13.

trunc: 7.

x: 1.

yacco2: 4,5, 7,8, 9, 11.
YACCO2_define_trace_variables: 5.
yacco2_err_symbols: 0.
YACCO2_MSG__: 11.

YACCO2_T__: 11.
yaccol_terminals: 6.
YACCO2_TH__: 11.

, 6.

§15

TESTOUT NAMES OF THE SECTIONS 13

(Include files 3> Used in section 2.

(accrue testout code 2, 5,7,8,9) Used in section 14.

(get command line, parse it, and place contents into a holding file 12) Used in section 9.
(if error queue not empty then deal with posted errors 13) Used in sections 9 and 12.
(testout.cpp 14)

(testout.h 4)

(turn on some Oy’s tracing 11) Used in section 9.

TESTOUT

Section Page

Licemse 1
CoOmMINEIIES . ..o 2
Include files 3
Create header file for testout environment 4

Define variables 5
Local Routines 6
GET_CMD_LINE — go fetch the fodder i, 7
DUMP_ERROR_QUEUE — the teller of horror 8
Mainline 9
Some Programming SeCtiONSttt e 10
Turn on some of Os’s dynamic tracing variables 11

Get command line, parse it, and place contents into a holding file 12

Do we have errors? ... 13

Testout implementation 14

Ind e 15

O O U = W whNh =

e e
_ 0 O O O O

—
\}

	License
	Comments
	Include files
	Create header file for testout environment

	Define variables
	Local Routines
	GET_CMD_LINE --- go fetch the fodder
	DUMP_ERROR_QUEUE --- the teller of horror
	Mainline
	Some Programming sections
	Turn on some of O2's dynamic tracing variables
	Get command line, parse it, and place contents into a holding file
	Do we have errors?

	Testout implementation
	Index
	Names of the sections
	Include files
	accrue testout code
	get command line, parse it, and place contents into a holding file
	if error queue not empty then deal with posted errors
	testout.cpp
	testout.h
	turn on some O2's tracing

