§1 O2LINKER LICENSE 1

1. License.
Gened date: January 30, 2015
Copyright (© 1998-2015 Dave Bone

This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the
MPL was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

2 SUMMARY OF YACCO2’S LINKER — THREADS AND THEIR BIT MAPS O2LINKER 82

2. Summary of Yacco2’s Linker — threads and their bit maps.

Okinkerproduces “thread bit maps” for each terminal and a global table of to-run threads, and a linker
document describing all the processed grammars extracted from their grammar’s “fsm-comments” and their
called threads. Standalone grammars: monolithic y, are also traversed to add their thread booty to the global
bit maps. As Linker is a companion program of Yacco2, please see Yacco2’s documentation for appropriate
development of data structures that are germain to both.

Linker receives its input either interactively or as a command line. The file to compile contains a list of
grammar first set control files generated by Yacco2. Each grammar’s “first set” file generated by Yacco2 uses
a naming convention of the “thread name” supplied by the grammar’s fsm — filename with an extension of
“fsc” indicating a “first set” control file. At present, Linker’s inputted file is handcrafted by the grammar
writer due to Yacco2 not having a generation database of compiled grammars. The below diagram shows
OsLinker’s manufacturing assembly line for the “bit maps” object file within an Unix context where the
“Id” linker program resolves the globals described in the following section. The “pdf” generated document
provides an overview description of all the grammars in use. “CC” is the c+4 compiler on my Sun Solaris

work station.
yyy.fsc

|yyy,tracings.1og|< -+ - |Oqlinker |- - - »yyy_errors.log
|

|yyyisc.cpp ﬁle| Oslinker_doc.w Oslinker_doc.tex
@EI pdf@
threads’s bit maps object Oslinker_doc.pdf file

The “O2linker_doc.pdf” document provides an index of all grammars compiled with comments about their
claim-to-fame. It is a nice overview document of your language software when debugging or just getting a
feel for all those defined grammars. It demarks the threaded grammars from their monolithic brethren.

83 O2LINKER GLOBALS — THOSE UNRESOLVED STATIC VARIABLES USED BY YACCO2’S LIBRARY 3

3. Globals — those unresolved static variables used by Yacco2’s library.
The following variables are made global for Yacco2’s parse library usuage and placed within yacco2 names-
pace:

1) THDS_STABLE__ - vector of threads for the running

2) T_ARRAY_HAVING_THD_IDS__ - terminals’ thread sets

3) BIT_MAPS_FOR_SALE__ - block of 32 bit words for bit map manufacture

4) BIT_MAP_IDX__ - index used to dispense bit maps

5) TOTAL_NO_BIT_WORDS__ - total number of words for sale

To speed things up and not be involved with the malloc issues of new / delete, BIT_MAPS_FOR_SALE__ is
a constant size of bit map words. Its size is controlled by the TOTAL_NO_BIT_WORDS macro and indicated
at run-time by the TOTAL_NO_BIT_WORDS__ global. Why not use c++ template containers? Depending on
the context, they are not very efficient and in some cases they are not robust depending on whose compiler
one uses. So “roll your own” is my mode of operandi. At least I can bark at myself instead of dealing with
charades of good-citizenship a la Microsoft and their bug reporting - fixes: their stated policy of 24 hours
response after submitting the bug report and now its 2 weeks and I'm still waiting for an acknowledgement.
Have you seen their latest website for bug reporting? No direct button to send the report, only the platitude
of how wastefull it is at their cost to deal with bug reports so make sure that you review their stated digest
of bugs before submitting. How does democracy come into play when bugs are bugs: Fix them! Ranking
bugs by developer votes is just (you substitute one of the following adjectives: stupid, senseless, witless, dull,
brainless, weak-brained, muddle-headed, beef-witted, unentertaining). You get my sentiment.
Each global will be developed in their appropriate sections.

4 SOME DEFINITIONS WITHIN LINKER’S CONTEXT O2LINKER 84

4. Some definitions within Linker’s context.

What is a “first set” within the linker’s context?

It is the terminals within the Start state configuration (aka “Closure only” state) of an automaton. There is
some subtlety to this statement as an epsilon rule (empty right-hand-side), special terminals | 4+ | and |.|, and
threads being called from within the “Closure only” state require special treatment as their terminals are
outside of this state. These situations require going into other state configurations to determine the termi-
nals. Possibly an epsilon rule and special terminals but definitely threads presents a more difficult problem
as the grammar being parsed does not have access to the called thread’s first set. Why? A called thread is
another grammar requiring compilation. This is why Linker is required to post process all grammars in a
global context to calculate the first sets for grammars calling threads out of their “Closure only” state.

Why first sets anyway?

Originally this was not programmed. I wanted to prove my concepts first before optimizing for speed. Re-
ality demands that a good idea be also practical. What good is parsing with threads when they are orders
of magnitude slower than the current crop of parsing paradigns? So to overcome slowness, first sets provide
the potential of whether a thread should run. How? If the current token to be parsed is in the first set of
the thread then launch it from the running parse context. This optimization prevents false thread starts.

Why the name OY™*¢"instead of for example “first setter” or jet?

I checked to the current name of tools required to prepare a program as an executable. In a sense Linker in
my mind’s eye was a concept that brought together the loose ends of the grammars and made it ready to
parse. First setter is also appropriate.

How are first sets generated?

The basic problem solved by Linker is the following: within a grammar, threads can be called. If threads
called are within the Start state of a grammar, the grammar’s first set now has a dependence on another
thread’s first set. Of course this call sequence is transitive: thread A can call thread B can call thread C.
Both threads B and C can have a call thread dependency within their first sets. It is this thread dependency
that the Linker resolves by applying the transitive closure operation across a graph of thread nodes to out-
come the explicit first set of terminals per dependent thread. The output from Linker is a global vector of
threads to be run, and their global first set bit maps optimized against all terminals. That is, what threads
can be run by this current terminal.

5. Overview of OY"**"’s generated components.

Threads are just your normal procedures that get launched under the guidance of the threading facility
native to the operating system instead of being called directly. Yacco2’s parse library documentation goes
into the detail between each run-time advantages threads versus procedure calls: After experimenting with a
stop watch, the winner is the threads approach due to c++’s overhead of object birth-run-destructor cycle.

Now the issue becomes “how to determine and provide a thread id?” that can be referenced globally and
locally. Why the distinction between global and local contexts? Local contexts are the individual grammars
that can reference other threads who are defined globally outside of its domain. As raised before, Linker’s
raison-d’étre is post-processing in a global context all the compiled threads. As the Oy compiler / compiler
processes the grammar in a local parsing context, references to threads within the grammar must be delayed
thru indirection in its generated tables. This indirection comes from objects whose references are globally
defined via the “extern” c(++) language facility and resolved by the appropriate language linker.

An entente between the global and local contexts was signed in 1066 whereby the charter of thread rights
defined the Thread_entry structure. Each Thread_entry uses a naming convention of: Ixxx where xxx is
the thread name without its namespace drawn from the grammar. O, generates references to these thread
entries whilst Linker creates the actual thread entry entities. The Thread_entry contains a pointer to the
literal thread name used in Os’s tracings, the address to its called procedure, and its thread id that is a key
to appropriate tables and thread maps. Thread ids are positive whole numbers starting from 0. The thread
names are sorted in ascending sequence. Each thread’s id is its relative position within this sorted sequence.

86 O2LINKER THREAD BIT MAPS 5

6. Thread bit maps.

To give speed and economy of space, 32 bit words are used whereby each bit within a word represents the
presence or absence of a specific thread. Why 32 bit words? This falls nicely in the current crop of CPUs.
As 64 bit envy becomes mainstream, the number of bits per word can be changed by cweb’s macro facility.
The mapping of a thread id into its bit map, uses modulo 32 on the thread id. The quotient indicates which
word to access and the remainder indicates which specific bit within the word represents the thread. Due to
the open number of threads being defined, the total number of words making up a thread map is specific to
each parsing environment. For example, the current number of threads for Os is under 50. So, each thread
map is 2 words long.

Use of bit maps allows set processing with its operators like intersection to take place. Due to other
optimizations to be discussed later, the number of words per bit map for Yaco05’s parsing library is calculated
at runtime from the global THDS_STABLE__ structure that carries the total number of threads being supported
for the current parse environment. The globals TOTAL_NO_OF_BIT_WORDS__, BIT_MAPS_FOR_SALE and
BIT_MAP_IDX__ are used to manufacture bit maps. Why not manufacture bit maps at time of Os running?
Neither the local grammar or Oy has any notion to what its or other threads ids are. Also, I did not want to
impose on the grammar writer an unique thread id assignment within each grammar nor an approximation
of the total number of threads being developed.

Now, Yacg02’s runtime library has a just-in-time thread map manufacture process. Each parsing thread’s
state keeps a list of threads to possibly run but list processing to launch threads is too slow. So when a
parsing thread arrives at a state configuration needing thread bit maps, Yacyoo’s library will manufacture
it using the globals BIT_MAPS_FOR_SALE__ and BIT_MAP_IDX__. BIT_MAP_IDX__ controls the current index
into BIT_MAPS_FOR_SALE__ that houses the words for the bit maps. This newly minted thread map is
now available throughout the balance of the parsing of the thread by storing the map address in the state
configuration.

The below diagram depicts a partial bit map configuration:

-

word-0
1000000010000000100000001000000

Thread-ids:
gl
23
15
7
0

The word 0 above is in “big endian” sequence composed of 4 bytes: byte 0 is the first covering the most
significant bit 31 thru to bit 24 while byte 3 contains the least significant bit 0 where its bits range from
7 thru to 0. It illustrates threads 31, 23, 15, 7, and 0 as being available for the running as their bits are
“turned on” represented by “1”. Word 1 would have the thread id range of 63 thru to 32. Each thread id
in a word is just a replay of the modulo: Q is the word map no * 32 + the R the remainder indicating the
specific bit from 0..31.

7. Linker’s languages.
There are 3 separate languages to be parsed by Linker:
1) Terminal alphabet — literal names of each terminal
2) Each grammar’s first set control file generated by Oy — xxx.fsc
3) Linker’s input control file
These languages are simplistic but requires proper parsing that, of course, will use Yacco2’s parse library.

6 TERMINAL ALPHABET O2LINKER 68

8. Terminal alphabet.

This is your terminal vocabulary defined by the 4 classes of terminals: LR constants, raw characters, errors,
and “user created” terminals. Its content provides the literal description per terminal used for annotated
comments in the emitted file. Their input order is also their enumeration. This file is outputted by Oz when
one requests the terminals to be compiled using one of its gen options: “-t” for user terminals or “-err” for
errors. It uses the filename provided by the grammar’s T-enumeration’s file-name construct with a “fsc”
extension (aka first set control). For the Oy grammars, it looks like this:

T-enumeration (file-name yacco2_T_enumeration,name-space NS_yacco2_T_enum) {}

The outputted vocabulary file is “yacco2-T-enumeration.fsc” from this above example.

The language uses a bracketing construct “T-alphabet” ... “end-T-alphabet” to contain the list of ter-
minals by their name defined by the grammar’s “terminals” constructs: Lrk, raw characters, errors, and
terminals. Below is an example:

T-alphabet
LR1_questionable_shift_operator
LR1_eog
LR1_eolr

T_file_of_T_alphabet
end-T-alphabet

9. Terminal enumeration.

As the inputted terminals are by name, to be more efficient, an enumeration scheme is used whereby each
terminal’s relative position within this list starting at 0 becomes their assigned number working out along the
positive whole numbers. From the example above, the LR1_questionable_shift_operator terminal is assigned
0, LRI eog terminal is assigned 1 and so on. In Yac0s’s documentation you’ll find “how it applies” this
enumeration to the shifting and reducing sets within the automaton tables. The storage for these sets favors
space economy over speed.

810 O2LINKER FIRST SET DECLARATIONS 7

10. First set declarations.
O, outputs per grammar their first set files having a file naming convention of the grammar name with an
extension of “fsc”. Below is “subrule_def.fsc” first set control file outputted by the subrule_def.lex grammar.

1: /%

2: File: subrule_def.fsc

3: Date and Time: Fri Dec 7 16:28:47 2007
4: */

5: transitive y

6: grammar-name "subrule_def"

7: name-space "NS_subrule_def"

8: thread-name "TH_subrule_def"

9: monolithic n

10: file-name "subrule_def.fsc"

11: no-of-T 567

12: 1list-of-native-first-set-terminals O
13: end-list-of-native-first-set-terminals
14: 1list-of-transitive-threads 1

15: NS_subrule_vector: :TH_subrule_vector
16: end-list-of-transitive-threads

17: 1list-of-used-threads 10

18: NS_cweb_marker: :TH_cweb_marker

19: NS_dbl_colon::TH_dbl_colon
20: NS_identifier::TH_identifier
21: NS_lint_balls::TH_lint_balls
22: NS_o2_sdc: :TH_o2_sdc
23: NS_parallel_oper::TH_parallel_oper
24: NS_rhs_bnd: :TH_rhs_bnd
25: NS_rhs_component : : TH_rhs_component
26: NS_rtn_component: :TH_rtn_component
27: NS_subrule_vector: :TH_subrule_vector
28: end-list-of-used-threads
29: fsm-comments
30: "Parse a subrule: into the valley of sin..."
31:

This is a summary of what was found within the grammar. I included line numbers each delimited by a
“” to the left of the language’s individual source lines as reference points for the discussion that follows.
Lines 5 — 11 above are the prelude declarations of the compiled grammar. The 2 items of interest within
the prelude are the keywords “transitive” and “monolithic”. Both use a boolean declaration of “y” or “n”.
The “transitive” keyword indicates whether this grammar needs transitive processing. The “monolithic”
keyword indicates whether the grammar is stand alone or threaded.

The 3 components following the prelude indicate the intent by their names. Lines 12 — 13 houses the “list-
of-native-first-set-terminals” component: the grammar’s explicitly used terminals within its first set where
there this example has none. The “list-of-transitive-threads” component: lines 14 — 16 indicates the directly
called threads from their first set. This list is recursively called by assessing their called threads’s “fsc” files:
the transitive adjective is a memory jog to recursion. Please see first_set_for_threads grammar on how the
thread’s first set is calculated as there is a subtle difference caused by the | . |in its first set calculation versus
the regular first set calcaluation of a rule or Ir state. Lines 17 — 28 is a cross reference list of used threads
throughout the grammar and not just the first set. Lines 29 — 30 is the extracted fsm-comments from the
grammar. It is used in generating the Linker’s document indexing all the grammars with their comments,
and their called thread graph with highlighting of nested grammars.

8 LINKER’S CONTROL LANGUAGE O2LINKER 811

11. Linker’s control language.

There is not much to this control file. It provides the terminal vocabulary file, the file to output by Linker,
a preamble that allows the grammar writer to insert code ahead of the “to be emitted” code, and finally the
list of grammars’ “fsc” files to process. Here is a sample of a handcrafted Linker control file drawn from the
O4 parsing environment.

file-of-T-alphabet "c:/yacco2/compiler/grammars/yacco2_T_enumeration.fsc"

emitfile
preamble
#include
#include
#include
#include
#include
#include

"/yacco2/compiler/grammars/yacco2_fsc.cpp"

<yacco2.h>
<yacco2_T_enumeration.h>
<yacco2_err_symbols.h>
<yacco2_k_symbols.h>
<yacco2_terminals.h>
<yacco2_characters.h>

using namespace NS_yacco2_T_enum;
using namespace NS_yacco2_err_symbols;
using namespace NS_yacco2_k_symbols;
using namespace NS_yacco2_terminals;

using namespace NS_yacco2_characters;

end-preamble
"/yacco2/compiler/grammars/error_symbols_phrase.fsc"
"/yacco2/compiler/grammars/error_symbols_phrase_th.fsc"
"/yacco2/compiler/grammars/angled_string.fsc"
"/yacco2/compiler/grammars/bad_char_set.fsc"
"/yacco2/compiler/grammars/c_comments.fsc"

Basicly, Linker builds a graph by grammar and does its transitive moves to produce concrete first sets for
each unresolved grammar or thread. To improve performance, a global thread map per terminal will be
created indicating the potential threads that can be run.

§12 O2LINKER CATALOGUE OF LINKER’S FILES

12. Catalogue of Linker’s files.

Linker’s Input files to cweb:
1) o2linker.w — master Linker file that starts things off
2) intro.w — inroduction

prog.w — linker cweb code

o2linker_externs.w — external procedures

pms.w — running comments of life

bugs.w — yep i do them

3)
4)
)
)
7) testsuites.w — self proof of code
)
)
0

5

(=)

8) sampleoutput.w
9) types.w — provides a way around burping output formats
10) includes.w — C++ include code
11) /usr/local/yacco2/externals/common_defs.w — external procedures
12) o2linker_defs.w — external procedures

cweb generated files:
1) o2linker.h — linker definitions
2) o2linker.cpp — linker program
3) xxz.cpp — first sets for grammars provided by the input file

Yaco0s library memorabilia:
1) yacco2 — library namespace
2) “/usr/local/yacco2/library” — Yacgos’s library directory
3) < yacco2.h > — Yacco2’s library header file
4) “/usr/local/yacco2/library/lib/xxxx” - xxxx is the Debug or Release of the object library
5) “yacco2build.a” - static Yacgos’s library

Dependency files from other Yacco2 sub-systems:
yacco2.h - basic definitions used by Yacco2
yacco2_T_enumeration.h - terminal enumeration for Yaco0o’s terminal grammar alphabet
yacco2_err_symbols.h - error terminal definitions from Yacs02’s grammar alphabet
yacco2_characters.h - raw character definitions from Yaco0o’s grammar alphabet
yacco2_k_symbols.h - constant terminal definitions from Yacs0s’s grammar alphabet
yacco2_terminals.h - regular terminal definitions from Yacg09’s grammar alphabet
x. h - assorted grammar definitions from Yacs05 to parse
o2linker_externs.h - external support routines common for O4m*er

Dictionaries
T_DICTIONARY — terminals
GRAMMAR_DICTIONARY
YACCO2_STBL — symbol table
USED_THREADS_LIST
THREAD_ID_FIRST_SET
T_THREAD_ID_LIST

Grammars
T_alphabet .lex
linker_pass3 .lex — control file parser
link_cleanser .lex — lexical grammar stripping off comments etc
fsc_file.lex — syntactic grammar of fsc file
Document

o2linker_doc.w — overall index describing the grammars processed: cweave / pdftex

10 GLOBAL MACRO DEFINITIONS O2LINKER 813

13. Global macro definitions.

#define SPECULATIVE_NO_BIT_WORDS 20
#define LR1_QUESTIONABLE_SHIFT_OPERATOR 0
#define LR1_E0OG 1

#define LR1_EQOLR 2

#define LR1_PARALLEL_OPERATOR 3
#define LR1_REDUCE_OPERATOR 4

#define LR1_PROCEDURE_CALL_OPERATOR 7
#define LR1_INVISIBLE_SHIFT_OPERATOR 5
#define LR1_ALL_SHIFT_OPERATOR 6
#define LR1_FSET_TRANSIENCE_OPERATOR 7
#define SMALL_BUFFER_4K 1024 x4
#define BITS_PER_WORD 32

#define TOTAL_NO_BIT_WORDS 1024 %2 % 100

14. External routines and globals.
General routines to get things going:
1) get control file and put into Linker’s holding file
2) parse the command line
3) format errors
These are defined by including 02_externs.h.
The globals are:
1) Error_queue — global container of errors passed across all parsings
2) GRAMMAR_DICTIONARY — thread container whose contents point into the symbol table
3) T_DICTIONARY — terminal container whose contents point into the symbol table
4) T_THREAD_ID_LIST — thread id list per terminal
5) NO_OF_THREADS — found number of threads
6) NO_WORDS_FOR_BIT_MAP — calculated number of words per thread bit map
7) THREAD_ID_FS — first set per thread id
(External rtns and variables 14) =
extern int NO_OF_THREADS;
extern int NO_WORDS_FOR_BIT_MAP;
See also section 28.

This code is used in section 88.

15. Do we have errors?. Check that error queue for those errors. Note, DUMP_ERROR_QUEUE will also flush
out any launched threads for the good housekeeping or is it housetrained seal award? Trying to do my best
in the realm of short lived winddowns.
(if error queue not empty then deal with posted errors 15) =
if (Error_queue.empty() # true) {
DUMP_ERROR_QUEUE (Error_queue);
return 1;

}

This code is used in sections 17, 18, 19, 21, and 66.

816 O2LINKER LOCAL ROUTINES 11

16. Local routines.

17. Parse linker control file.
Handcrafted file that gathers all the grammar control files together for the processing. Note the use of
tok_can < std ::ifstream > to read raw characters and produce tokens in just-in-time.

(parse linker control file 17) =
cout < "Parse linker control file " < endl;

using namespace NS_linker_pass3;

tok_can < std ::ifstream > cntl_file_tokens (cntl_file_name.c_str());

TOKEN_GAGGLE P3_tokens;

Clinker_pass3 linker_cntl_file_fsm;

Parserlinker_cntl_file (linker_cntl_file_fsm, & entl_file_tokens , & P3-tokens, 0, & Error_queue, 0, 0);
linker_cntl_file.parse();

(if error queue not empty then deal with posted errors 15);

This code is used in section 66.

18. Parse T alphabet.
Ahh the terminal vocabulary. The symbol’s position within the list is also its enumerate value starting from
0. The T_alphabet grammar places the terminal symbols into the symbol table as a 1:1 mapping, into the
T_DICTIONARY as a consolidated repository and into the T_THREAD_ID_LIST which is the terminal to thread
list relationship used to quickly determine if the current token has the potential to run as a thread. Each
thread contains its first set list squirreled away in thread_attributes’s list_of_-T's_.
(parse T alphabet 18) =

cout < "Parse alphabet" < endl;

using namespace NS_link_cleanser;

tok_can < std ::ifstream > T_file_tokens (linker_cntl_file_fsm.t_alphabet_filename_.c_str());

TOKEN_GAGGLE cleanser_tokens;

Clink_cleanser cleanser_fsm;

Parser cleanser (cleanser_fsm, & T_file_tokens, & cleanser_tokens, 0, & Error_queue, 0, 0);

cleanser .parse();

using namespace NS_t_alphabet;

TOKEN_GAGGLE T_tokens;

Ct_alphabet T_fsm;

Parser T_pass3 (T_fsm, &cleanser_tokens, & T_tokens, 0, & Error_queue, 0,0);
T_pass3 .parse();

(if error queue not empty then deal with posted errors 15);

This code is used in section 66.

12 PARSE FSC FILES O2LINKER 819

19. Parse fsc files.

Digest those fsc files. Burp. Better that than the other end. Now for a chiro for the stretched stomach
muscles. The fsc_file grammar puts the digested grammar’s fsc content into the symbol table of thread
attribute’s object and its reference into the GRAMMAR_DICTIONARY.

(parse fsc files 19) =
cout < "Parse_ fsc files" < endl;
TOKEN_GAGGLE cleanser_fsc_tokens;
TOKEN_GAGGLE fsc_file_output_tokens;
std ::vector < std ::string > :iteratorii = linker_cntl_file_fsm.grammars_fsc_files_.begin ();
std ::vector < std ::string > ::iteratoriie = linker_cntl_file_fsm.grammars_fsc_files_.end ();
for (; @ # die; ++ii) {
tok_can < std ::ifstream > T_fsc_file_tokens (ii~c_str());
Clink_cleanser cleanser_fsc;
Parser fsc_cleanser (cleanser_fsc, & T-fsc_file_tokens, &cleanser_fsc_tokens, 0, & Error_queue, 0, 0);
fsc_cleanser.parse();
(if error queue not empty then deal with posted errors 15);

using namespace NS_fsc_file;
Cfsc_file fsc_file_fsm;
Parser fsc_file_pass (fsc_file_fsm, &cleanser_fsc_tokens, &fsc_file_output_tokens, 0, & Error_queue, 0,0);
fsc_file_pass.parse();
(if error queue not empty then deal with posted errors 15);
cleanser_fsc_tokens.clear();
fsc-file_output_tokens.clear();
}
(if error queue not empty then deal with posted errors 15);

This code is used in section 66.

§20 O2LINKER LOAD_LINKKW_INTO_.TBL 13

20. load_linkkw_into_tbl.

These are the keywords from all the languages to be parsed. So why the loading up of keywords? Speed.
linker_id does a symbol table lookup for OY™*¢". So where ever appropriate like the “first set control” files,
normal boundary parsing can take place. There is your lexical grammar that discriminates characters into
tokens like keywords, comments followed by a separate syntax grammar to process the language structure.
See comments in Yacco2’s external document regarding the reason for the kludge.

(accrue linker code 20) =
void load_linkkw_into_tbl (yacco2 :: CAbs_lri_sym * Kw)

{

using namespace yacco2_stbl;

T_sym_tbl_report_card report_card;

KCHARPkwkey = Kw~id();

if (xkwkey = #’) ++kwkey; /* kludge: bypass 1st char eg 7 #fsm” x/
kw_in_stbl x kw = new kw_in_stbl (Kw);

add_sym_to_stbl (report_card , xkwkey, xkw , table_entry :: defed , table_entry :: keyword);
kw=stblidz (report_card.pos.);

}

void load_linkkws_into_tbl ()

{
cout < "Load, linker’s_keywords, " < endl;
load_linkkw_into_tbl (new T_transitive);
load_linkkw_into_tbl (new T_grammar_name);
load_linkkw_into_tbl (n T_name_space);
load_linkkw_into_tbl (n T_thread_name);
load_linkkw_into_tbl (n T_fsm_comments);
load_linkkw_into_tbl (new T_monolithic);
load_linkkw_into_tbl (new T_file_name);
load_linkkw_into_tbl (n T-no-of-T);

}

load_linkkw_into_tbl (n
load_linkkw_into_tbl (n

(
(
(
(
(
(
(
(
(
load_linkkw_into_tbl (n
(
(
(
(
(
(
(
(
(

load_linkkw_into_tbl (n
load_linkkw_into_tbl (n
load_linkkw_into_tbl (n
load_linkkw_into_tbl (n
load_linkkw_into_tbl (n
load_linkkw_into_tbl (n
load_linkkw_into_tbl (n
load_linkkw_into_tbl (n

ew
ew
ew
ew
ew
ew
ew
ew
ew
load_linkkw_into_tbl (new
ew
ew
ew
ew
ew
ew
ew
ew

T_list_of-native_first_set_terminals);
T_end_list_of-native_first_set_terminals);
T_list_of_transitive_threads);
T_end_list_of_transitive_threads);
T_list_of_used_threads);
T_end_list_of-used_threads);
T_T_alphabet);

T_end_T-alphabet);
T_file_of-T_alphabet);

T_emitfile);

T_preamble);

T_end_preamble);

See also sections 22, 33, 38, 39, 40, 52, 53, 54, 55, 56, 60, and 66.

This code is used in section 89.

14 VERIFY THAT ALL THREADS USED ARE DEFINED O2LINKER §21

21. Verify that all threads used are defined.

Simple check! Just sequentially read the GRAMMAR_DICTIONARY whose elements are pointers to their symbol
table registry where the entry is not “defined” but referenced by some transitive call list. The loop just
pours the rogues into the error queue and uses the token co-ordinates that created the entry as “used” for
the error message. This allows the error dump to pinpoint the source file and specific line that referenced
the rogue thread. Correction is to add the missing grammar to the control file list or correct the grammar
that issued the thread call.

(post verify that there are no threads “used” and not “defined” 21) =
std ::vector < table_entry x> ::iteratorth_i = GRAMMAR_DICTIONARY.begin ();
std ::vector < table_entry x> ::iteratorth_ie = GRAMMAR_DICTIONARY.end();
for (; thi # thie; ++thi) {
table_entry x tbl_entry = xth_i;
if (tbl_entry~defined- = true) continue;
CAbs_lri_sym * sym = new Err_bad_th_in_list;
sym~set_who_created ("linker.w", __LINE__);
’thread_attributes*th_goodies=|_,((th_in_stbl*)tbl_entry->symbol_)->thread_in_stbl();
sym~set_rc(xth_goodies);
Error_queue.push_back (xsym);

}

(if error queue not empty then deal with posted errors 15);

This code is used in section 66.

§22 O2LINKER SORT THREAD DICTIONARY 15

22. Sort thread dictionary.
The grammars are divided into 2 types:

1) monolithic — stand alone grammars

2) called threads

To facilitate the emitted code, the following partial order is imposed on the fully qualified name

(FQN) of the grammar composed of the grammar’s namespace and name separated by “:”: for exam-
ple, NS_eol:: TH_eol. This is the calling handle of the thread when used with the ||| statement. The partial
order is divided into 2 parts — threads followed by standalone grammars:

thread vs thread — lexicographical order on “thread name” only

thread vs mono — thread less than mono grammar

mono vs thread — thread less than mono grammar

mono vs mono — lexicographical order on FQN
The order defines explicitly the enumerate value assigned to each thread starting from 0. The standalone
grammars (monolithic) are not part of the thread stable that gets emitted.

(accrue linker code 20) +=
bool sort_threads_criteria(const table_entry+P1, const table_entry*P2)

{

th_in_stbl*th_tbll=,(th_in_stbl*)P1->symbol_;
th_in_stbl*th_tbl2=_,(th_in_stbl*)P2->symbol_;
thread_attributes * p1 = th_tbl1~thread_in_stbl();
thread_attributes * p2 = th_tbl2~thread_in_stbl();
int len_a = p1-thread_name_~c_string()~size();
int len_b = p2-thread_name_~c_string ()~size();

stringucase_a;
for (int x =0; x < len-a; ++z) {
ucase-a += toupper ((xp1-thread_name_—c_string())[z]);
}
stringucase_b;
for (int x =0; = < len.b; ++x) {
ucase_b += toupper ((xp2-thread_name_~c_string())[z]);
}
if (len.a <len-b) {
for (int x = len_a + 1; x < len_b; ++z) ucase-a += ’;
}
else {
for (int x = len-b + 1; © < len-a; ++x) ucaseb +=.;

}

int result;

if (p1-monolithic. = ’n’) { /x athread =/
if (p2-monolithic. = ’n’) { /x a:thread b:thread */
result = stremp (ucase-a.c_str (), ucase_b.c_str());
if (result < 0) return true; /% aless b x/
return false; /x agthb x/

}

return true; /* a:thread b:mono; a less b */

}

if (p2-monolithic. = ’n’) { /* a:mono b:thread =/
return false; /x agth x/
} /* a:mono b:mono changed to the thread name instead of fqn */

int len_fgna = p1-thread_name_~c_string()~size();

16 SORT THREAD DICTIONARY O2LINKER

int len_fgnb = p2-thread_name_~c_string()~size();

string ucase_fqna;
for (int © = 0; z < len_fqna; ++z) {
ucase_fqna += toupper ((xp1-thread_name_~c_string())[z]);

}

string ucase_fqnb;
for (int x = 0; x < len_fqnb; ++x) {
ucase_fqnb += toupper ((xp2-thread_name_~c_string())|[x]);

if (len_fqna < len_fqnb) {

for (int x = len_fqna + 1; x < len_fqnb; ++x) ucase_fqna +=’;
}
else {

for (int « = len_fgnb + 1; = < len_fqna; ++x) ucase_fgnb +=’.";

result = stremp (ucase-fgna.c_str (), ucase_fqnb.c_str());
if (result < 0) return true; /x alessb x/
return false; /x agtb x/

}

23. Sort uses template algorithm.
(sort thread dictionary 23) =
cout < "Sortthread dictionary" < endl;
stable_sort (GRAMMAR_DICTIONARY.begin(), GRAMMAR_DICTIONARY.end(), sort_threads_criteria);

This code is used in section 66.

24. Dump sorted dictionary.
Not another reality show? Yupp.
(dump sorted dictionary 24) =
yacco2 ::lrclog < "Sorted thread dictionary" < GRAMMAR_DICTIONARY.size() < std::endl;
std ::vector < table_entry > ::iterator dth-i = GRAMMAR_DICTIONARY.begin ();
std ::vector < table_entry x> ::iterator dth_ie = GRAMMAR_DICTIONARY.end();
int pos(—1);
for (; dth-i # dth_ie; ++dth_i) {
++pos;
table_entry x tbl_entry = xdth_1;

’thread_attributes*th_goodies=|_,((th_in_stbl*)tbl_entry->symbol_)->thread_in_stbl();

yacco2 ::lrclog < "tblentry*: " < tblentry < ", th_goodies*: " <K th_goodies < "," <K
pos K ":" &K th_goodies~th_enum_ < " mono: " < th_goodies~monolithic. <
" thread name: " < th_goodies~thread_name_—c_string()-c.str() <
"UFQN: " < thgoodies~fully_qualified_th-name_.c_str() < "_K:," <
th_goodies~fsm_comments_~c_string ()~c_str() < std :: endl;

}

This code is used in section 66.

§22

§25 O2LINKER COUNT AND RE-ALIGN THREADS ENUMERATE VALUES TO SORTED POSITION 17

25. Count and re-align threads enumerate values to sorted position.
The NO_OF_THREADS is calculated at the same time. It is used to indicate thread presence and the numbers
of threads to emit.

(count and re-align threads enumerate values to sorted position 25) =

std ::vector < table_entry x> ::iteratorri = GRAMMAR_DICTIONARY.begin();

std ::vector < table_entry x> ::iteratorrie = GRAMMAR_DICTIONARY.end();

for (int p = —1; ri # rie; ++ri) {
++p;
table_entry x tbl_entry = xri;
’thread_attributes*th_goodies=|_,((th_in_stbl*)tbl_entry->symbol_)->thread_in_stbl();
th_goodies—~th_enum_ = p;
if (th_goodies~monolithic. = ’n’) ++NO_OF_THREADS;

}

This code is used in section 66.

26. Check whether Linker has enough space to generate the thread bit maps.
See Passover on code for my comments.

(check whether Linker has enough space to gen thread bit maps: no throw up 26) =
int maz_thds_supported = SPECULATIVE_NO_BIT_WORDS * BITS_PER_WORD;

if (NO_OF_THREADS > maz_thds_supported) {
char a[SMALL_BUFFER_4K|;

KCHARPmsg = "Error: not enough space for thread bit,\
map manufacture!"" #_ threads: %i, Linker’s maximum no of threads supported: %\
i.,\n"" _Please expand, SPECULATIVE_NO_BIT_WORDS";
sprintf (a, msg,NO_OF _THREADS, maz_thds_supported);
Yacco?2_faulty_precondition(msg, __FILE__, __LINE__);
exit (1);
}

This code is used in section 66.

18 THREAD GRAPHS: FIRST SET GENERATION O2LINKER 827

27. Thread graphs: first set generation.

28. Visit_graph.

(External rtns and variables 14) +=
extern char Visit_graph|[RESERVE_FIXED_NO_THREADS];

29. Probagate |+ |.
Not much to it. The “all shift” operator indicates all terminals. It is a wild token facility that eases the pain
in using grammars. So, all terminals except some meta operators must be placed into the first set and the
thread id against each terminal.

To lower the OY™*¢"document, the |+|meta terminal representing all terminals substitutes “eolr” in the
thread’s first set. It certainly makes for a cleaner document without the slug fest.
(probagate | +] 29) =

INT_SET_ITER typet_listi = Root_thread.fs_.find (LR1_EOLR); /x substitute eolr =/

if (t.listi = Root_thread.fs_.end()) {

Root_thread.fs_.insert (LR1_EOLR);

}

int no_of-T = T_DICTIONARY.size(); /* rel 1 instead of 0 */
for (int x =0; x < no_of-T; ++x) {
switch (z) {
case LR1_QUESTIONABLE_SHIFT_OPERATOR: break;
case LR1_E0G: break;
case LR1_EOLR: continue;
case LR1_PARALLEL_OPERATOR: continue;
case LR1_REDUCE_OPERATOR: continue;
case LR1_INVISIBLE_SHIFT_OPERATOR: continue;
case LR1_ALL_SHIFT_OPERATOR: continue;
case LR1_FSET_TRANSIENCE_OPERATOR: continue;
default: break;
}
if (Visited_th.monolithic. = ’n’) {
INT_SET type & th_list = T_THREAD_ID_LIST[.%’];
if (th.-list.find(Visited_th.th-enum_) = th_list.end()) {
th_list .insert (Visited_th.th_enum_);
}
if (th_list.find (Root_thread-id) = th_list.end()) {
th_list.insert (Root_thread_id);

}
}
}

This code is used in section 31.

830 O2LINKER DEAL WITH THREADS HAVING T IN FIRST SET 19

30. Deal with threads having T in first set.
Please note that threads only are dealt with and not their standalone brethren. The root grammar is still
traversed so that its called threads can be added to the list.

Though the monolithic grammar is not launched by its first set, I included its first set calculations to
verify my work.

(deal with threads having T in first set 30) =
INT_SET_ITER_ typet_listi = Root_thread.fs_.find (t_enum);
if (t_listi = Root_thread.fs_.end()) {

Root_thread.fs_.insert (t_enum);

if (Visited_th.monolithic. = ’n’) {
INT_SET type & th_list = T_THREAD_ID_LIST[{_enum];
if (th-list.find (Visited_th.th_enum_) = th_list.end()) {
th_list .insert (Visited_th.th_enum_);

}
if (th_list.find (Root_thread_id) = th_list.end()) {
th_list .insert (Root_thread_id);
}
}

This code is used in section 31.

31. Associate native terminals with called thread.

For the moment until i can refine the thread’s first set algorithm in Oy that generates the Tes for “list-of-
native-first-set-terminals”, i force “attempting to run” the threads having the |t|in their first set across all
Tes. There will be thread stutters in firing them up and then shuting them down when their true first set is
outside of the current token. Remember these threads are fired up when they are in the being run grammar’s
current Ir parse state. So the speed bump shouldn’t be too big.

(associate native terminals with called thread 31) =
std ::vector < int > ::iteratorfi = Visited_th.list_of-Ts_.begin();
std ::vector < int > ::iteratorfie = Visited_th.list_of-Ts_.end();
for (; fi # fie; ++fi) {
int t_enum = xfi;
if (t_enum = LRl_ALL_SHIFT_DPERATOR) {
(probagate |+ | 29);

(deal with threads having T in first set 30);

}

This code is used in section 33.

32. Process called thread’s list.
Walk the list and recursively call that graph.

(process called thread’s list 32) =

std ::vector < thread_attributes x> ::iteratorli = Visited_th.list_of_transitive_threads_.begin ();

std ::vector < thread_attributes x> ::iteratorlie = Visited_th.list_of_transitive_threads_.end();

for (; li # lie; ++1i) {
thread_attributes * th_att = xli;
lrclog <« "=————-—- >process;called thread’s list thd: " <

th_att-thread_name_~c_string ()~c-str() < "Lfor root,thd, id: " < Root_thread_-id < endl;

crt_fset_of_thread (xth_att, Root_thread_id , Root_thread);

}

This code is used in section 33.

20 CRT_FSET_OF_-THREAD O2LINKER 8§33

33. crt_fset_of thread.
Recursive procedure that chews gum, pats its stomach, and belches fire.
It traverses the called threads recursively to continue the association of the inherited terminals into their
thread bit maps. Uses the Visit_graph to prevent self looping: whichever way u call it left or right recursion
depending on your context — cheers or bottoms-up.

The Root_thread_id associates the starting thread id to the traversed called threads’ first sets’ terminals.
Each thread is processed individually to associate itself with their called brethern’s first sets.

(accrue linker code 20) +=
void crit_fset_of-thread (thread_attributes & Visited_th,int Root_thread_id, thread_attributes & Root_thread)

if (Visit_graph|Visited_th.th_enum_] = ’y’) return;
Visit_graph [Visited_th.th_enum_] = ’y’;

(associate native terminals with called thread 31);
(process called thread’s list 32);

}

34. Allocation space for Visit_graph.
Before, reserve allocated its space, now MS throws an error as push_back not done.
(allocation space for Visit_graph 34) =
for (int vi = 0; vi < NO_OF_THREADS; ++wvi) {
Visit_graph[vi] = ’n’;
}

This code is used in section 36.

35. Initialize Visit_graph to “not visited”.
Each new thread having its final fist set’s gened presets the graph.
(initialize Visit_graph to not visited 35) =
for (int vi = 0; vi < NO_OF_THREADS; ++wvi) {
Visit_graph[vi] = *n’;
}

This code is used in sections 36 and 40.

836 O2LINKER GENERATE THOSE FIRST SETS 21

36. Generate those first sets.
Walk the what? u threads fulfull your first set destinies. Not very complex. A visit graph is built having its
nodes equal in number to the threads in the GRAMMAR_DICTIONARY. Each node is initialized to “not visited”.
From here, it’s just process each thread and visit its called threads to inherit their native terminals: Of
course this is a transitive process. Sorry for the let down but there ain’t much to it.
A secondary graph of called threads per grammar is built so that an overall linker document can be emitted

with:

1) index of threads sorted by their name with its fsm’s comments

2) followed by the monolithic grammars

3)) each grammar will have its called threads

(generate threads final first sets 36) =
(allocation space for Visit_graph 34);
std ::vector < table_entry x> ::iteratorthi = GRAMMAR_DICTIONARY.begin();
std ::vector < table_entry > ::iteratorthie = GRAMMAR_DICTIONARY.end();
for (; thi # thie; ++thi) { /* individually process each thread x/
’th_in_stbl*th_tbl=|_, (th_in_stblx) (*thi)->symbol_;
thread_attributes * th_att = th_tbl-thread_in_stbl();
if (th_att-monolithic. = ’n’) {
yacco? ::lrclog < "thread being walked: " < th_att~thread_name_~c_string()-c_str() <
"Lid: " < thoatt-th_enum_ < std :: endl;
(initialize Visit_graph to not visited 35);
crt_fset_of_thread (xth_att, th_att~th_enum._, xth_att);

}
}

thi = GRAMMAR_DICTIONARY.begin();

thie = GRAMMAR_DICTIONARY.end ();

for (; thi # thie; ++thi) { /x individually process each thread =/
[th_in_stbl¥th_tbl=_(th_in_stbl#) (¥thi)->symbol_;
thread_attributes * th_att = th_tbl-thread_in_stbl();
(initialize Visit_graph to not visited 35);
crt_called_thread_graph (xth_att);

}

This code is used in section 66.

22 GENERATE DOCUMENT FOR EACH GRAMMAR’S CALLED THREADS O2LINKER

37. Generate document for each grammar’s called threads.

38. crt_called_thread_list and walk_called_thread_list.
Generate the call graph per thread for reporting purposes.

(accrue linker code 20) +=
void walk_called_thread_list (std :: vector < thread_attributes x> & Thd_list, AST x Mother_thd_t)
{
if (Thd_list.begin() = Thd_list.end()) return;
std ::vector < thread_attributes x> ::iteratorli = Thd_list.begin();
std ::vector < thread_attributes x> ::iteratorlie = Thd_ list.end();
for (; li # lie; ++1Ui) {
thread_attributes * th_att = xli;
if (Visit_graph[th_att-th_enum_] = ’y’) continue;
Visit_graph[th_att-th_enum_] = >y’ ;
AST x called_t = new AST(xth_att);
AST:: add_child_at_end (x Mother_thd_t , x called_t);
walk_called_thread_list (th_att-list_of_transitive_threads., called_t);

}
}

39. crt_called_thread_graph.

(accrue linker code 20) +=

void crt_called_thread_graph (thread_attributes & Visited_th)

{
if (Visit_graph|Visited_th.th_enum_] = >y’) return;
Visit_graph| Visited_th.th_enum_] = ’y’;
AST x mother_thd_t = new AST(Visited_th);
Visited_th .called_thread_graph_ = mother_thd_t;
walk_called_thread_list (Visited_th .list_of_transitive_threads_, mother_thd_t);

}

40. gen_each_thread_s_referenced_threads.

(accrue linker code 20) +=
void gen_each_grammar_s_referenced_threads ()
{
std ::vector < table_entry > ::iteratorthi = GRAMMAR_DICTIONARY.begin ();
std ::vector < table_entry %> ::iterator thie = GRAMMAR_DICTIONARY.end();
for (; thi # thie; ++thi) { /* individually process each thread =/
’th_in_stbl*th_tb1=._|(th_in_stbl*) (*thi)->symbol_;
thread_attributes x th_att = th_tbl-thread_in_stbl();
(initialize Visit_graph to not visited 35);
crt_called_thread_graph (xth_att);

}

§37

841 O2LINKER GENERATE LINKER’S DOCUMENT 23

41. Generate Linker’s document.
A secondary graph of called threads per grammar is built so that an overall linker document can be emitted
with:

1) index of threads sorted by their name with its fsm’s comments

2) followed by the monolithic grammars

3)) each grammar will have its “called threads” graph

42. Make grammar’s contents cweaveable and output.

(make grammar’s contents cweaveable and output 42) =
XLATE_SYMBOLS_FOR_cweave (th-att-thread_name_c_string ()~c_str (), zlate_gfile);
XLATE_SYMBOLS_FOR_cweave (th-att-fsm_comments_~c_string ()~c_str (), rebuild_comment);
streat (fandk , xlate_gfile);
streat (fandk, " ,=—-4");
streat (fandk , rebuild_comment);

int fandk_len = strien(fandk);

if (fandk_len < CWEAVE_TITLE_LIMIT) {
if (fandk[fandk-len —1] #£°.7) {
streat (fandk, " .");
}
}

else {
if (fandk_len = CWEAVE_TITLE_LIMIT) {
if (fandk[CWEAVE_TITLE_LIMIT — 1] #>.°) {
streat (fandk,".");
}

}

else {
fandk [CWEAVE_TITLE_LIMIT] = (char) 0;
streat (fandk, "$\\1dots$,.");

}
¥
int x = sprintf (big_buf_, w_grammar, fandk);
ow_linker_file_.write (big_buf_, x);
ow_linker_file_ < std :: endl;
x = sprintf (big-buf-, w_comments, rebuild_comment);
ow_linker_file_.write (big_buf-, x);
ow_linker_file_ < std :: endl;
x = sprintf (big_buf_, w_called_threads," ");
ow_linker_file_.write (big_buf-, x);
ow_linker_file_ < std :: endl;

This code is used in section 47.

43. Output grammar’s called threads list.
(output grammar’s called threads list 43) =
prit_called_thread_list_ast_functor prt_functr (&PRINT_CALLED_THREAD_LIST);
pri_functr.o_file(& ow_linker_file_);
ast_prefix pre (xth_att~called_thread_graph_, &prt_functr);
while (pre.base_stk_.cur_stk_rec() # 0) {
pre.ezec();

This code is used in section 47.

24 OUTPUT GRAMMAR’S USED THREADS O2LINKER §44

44. Output grammar’s used threads.

(output grammar’s used threads 44) =
std::map < std::string, std ::vector < std::string >> :iteratorti =
USED_THREADS_LIST.find (th_att~thread_name_—c_string ()~c_str());
ow_linker_file < "{\\parindent=6pc" < endl;
ow_linker_file. < "\\item{Used jthreads:}" < std:: endl;
KCHARPused_threads = "%s\n""@.%s@>"; /* xref entry =/
std ::vector < std ::string > &tt = ti~second,;
std ::vector < std ::string > ::iteratortti = tt.begin();
std ::vector < std::string > ::iteratorttie = tt.end();

char zlate_thnm[Maz_cweb_item_size];
for (; tti # ttie; ++tti) {
XLATE_SYMBOLS_FOR_cweave (tti~c_str(), zlate_thnm);

int x = sprintf (big_buf_, used_threads, zlate_thnm , zlate_thnm);

ow_linker_file_.write (big_buf-, x);

ow_linker_file_ < std :: endl;
}
if (ti=second.empty() = YES) ow_linker_file- < " none" < endl;
ow_linker_file. < "}" < endl;

This code is used in section 47.

45. Output grammar’s first set.

Go thru the set and map the T enum into its literal value.

(output grammar’s first set 45) =
ow_linker_file. < "{\\parindent=6pc" < endl;
ow_linker_file. < "\\item{First_set:}" < std::endl;
KCHARPfs = "%s\n""Q.%s@>"; /x xref entry */
INT_SET_ITER_type fsi = th_att~fs_.begin();
INT_SET_ITER_ typefsie = th_att-fs_.end();

char zlate_tnm[Maz_cweb_item_size|; for (; fsi # fsie; ++fsi) { int tenum = xfsi;

table_entry * t_entry = T_DICTIONARY [tenum]; tth_in_stbl x t_in_stbl = (tth_in_stbl x) t_entry-symbol_;
T_attributes x t_alt = t_in_stbl~t_in_stbl();

XLATE_SYMBOLS_FOR_cweave (t_att~fully_qualified_T_-name_.c_str (), zlate_tnm);

int x = sprintf (big-buf-, fs, zlate_tnm, zlate_tnm);

ow_linker_file_.write (big_buf_, x);

ow_linker_file_ < std :: endl; }

This code is used in section 47.

846 O2LINKER OUTPUT PREAMBLE OF DOCUMENT 25

46. Output preamble of document.
(output preamble of document 46) =

KCHARPw_doc_index = "\\input,\"supp-pdf\"\n" "\\input, \"/usr/local/yacco2/diagrams/o2\
mac.tex\"\n""\\IDX1linkerdoctitle{)%s}t{/%s}{%s}";

char zlate_file[Max_cweb_item_size];

zlate_file[0] = (char) 0;

char zlate_fscfile[Maz_cweb_item_size);

zlate_fscfile[0] = (char) 0;

XLATE_SYMBOLS_FOR_cweave (w_linker_filename_.c_str (), zlate_file);

XLATE_SYMBOLS_FOR_cweave (centl_file_name.c_str(), zlate_fscfile);

int « = sprintf (big-buf-, w_doc_indez , xlate_file, zlate_file, tlate_fscfile);

ow_linker_file_.write (big_buf-, x);

ow_linker_file_ < std :: endl;

KCHARPw_doc_comments = "@x* 021inker Index of Grammars.\\fbreak\n""The grammars are so\
rted lexicographically,into,,2 parts:\n" "threads followed by, the stand alone gra\
mmars.\n" "Each_ grammar’s called, threads graph is determined from thei\

r,\n"" ¢ ‘list-of-transitive-threads’’\n""derived, from this construct.%s";

x = sprintf (big-buf-, w_doc_comments, ",");

ow_linker_file_.write (big_buf-, x);

ow_linker_file_ < std :: endl;

This code is used in section 50.

47. Loop thru grammars to gen their local linker doc info.

(loop thru grammars to gen their local linker doc info 47) =
KCHARPw_grammar = "@*2_,/s";
KCHARP w_comments = "\\Linkeridxentryk{/s}";
KCHARP w_called_threads = "\\Linkercalledthreadstitle%s";

char zlate_gfile[Maz_cweb_item_size];

char rebuild_comment | Max_cweb_item._size];
char fandk|[Max_cweb_item_size];

char zlate_thnm[Maz_cweb_item_size];

char zlate_tnm[Max_cweb_item_size];

std ::vector < table_entry x> ::iteratorithi = GRAMMAR_DICTIONARY.begin ();

std ::vector < table_entry x> ::iteratorithie = GRAMMAR_DICTIONARY.end ();

for (; ithi # ithie; ++ithi) { /* individually process each thread =/

zlate_gfile[0] = (char) 0;

rebuild_comment[0] = (char) 0;

fandk[0] = (char) 0;

zlate_thnm[0] = (char) 0;

zlate_tnm[0] = (char) 0;

table_entry = tbl_entry = xithi;
’thread_attributes*th_att=|_,((th_in_stbl*)tbl_entry—>symbol_) ->thread_in_stbl();

(make grammar’s contents cweaveable and output 42);

(output grammar’s called threads list 43);

(

(

output grammar’s first set 45);
output grammar’s used threads 44);

}

This code is used in section 50.

26 OUTPUT FIRST SET OF LINKER

48. Output First set of linker.

(output First set of linker 48) =
KCHARP w_fsc_file_listing = "@x*_First_ set_control file_ (fsc) listin\
g.\\fbreak\n""File_:,‘ ‘%s’’\\fbreak\n""\\let\\setuplisting\
hook, = \\relax\n""\\listing{\"%s\"}\n";
char zlated_filename | Max_cweb_item._size];

XLATE_SYMBOLS_FOR_cweave (entl_file_name.c_str(), zlated_filename);

x = sprintf (big-buf-, w_fsc_file_listing , zlated_filename, cntl_file_name.c_str());
ow_linker_file_.write (big_buf-, x);

ow_linker_file_ < std :: endl;

This code is used in section 50.

49. Output Index of linker.

(output Index of linker 49) =
KCHARPw_index = "@+**_ Index.%s";
x = sprintf (big-buf-, w_index,",");
ow_linker_file_.write (big_buf-, x);
ow_linker_file_ < std :: endl;

This code is used in section 50.

50. Output driver of the linker document.

(generate linker document 50) =
gen_each_grammar_s_referenced_threads ();

char big_buf [BIG_BUFFER_32K];

std :: stringw_linker_filename_("021linker_doc.w");

std :: ofstream ow_linker_file_;

ow_linker_file_.open (w_linker_filename_.c_str (), ios_base :: out | i0s :: trunc);
(output preamble of document 46);

(loop thru grammars to gen their local linker doc info 47);
(output First set of linker 48);

(output Index of linker 49);

ow_linker_file_.close ();

This code is used in section 66.

O2LINKER

§48

851 O2LINKER EMIT CODE

51. Emit code.

There is not too much to emit.
1) cpp preamble code — time of day, and the grammar writer’s preamble
2) threads include files and their namespace statement
3) global bit maps
4) global thread stable
5) global terminals and their thread bit maps

As an afterthought, the situation of having no threads to emit has been added.

(emit code 51) =
cout < "Emit_ file mname:," < linker_cntl_file_fsm.emitfile_filename_.c_str() < endl;
ofstream ofile (linker_cntl_file_fsm.emitfile_filename_.c_str (), ios :: out);

if (—ofile) {

27

cout < "Error - can’t open emit file: " < linker_cntl_file_fsm.emitfile_filename_.c_str() < endl;

return 1;
}
emit_cpp_preamble (ofile, linker_cntl_file_fsm.emitfile_filename_.c_str (),
linker_cntl_file_fsm.preamble_srce_~syntaz_code ()~c_str());
emit_global_thread_include_files (ofile);
emit_global_bit_maps (ofile);
if (NO_OF_THREADS =0) {
emit_no_threads (ofile);
¥
else {
emit_global_thread_stable(ofile);
emit_T_fs_of_potential_threads (ofile);

}
ofile.close();

This code is used in section 66.

52. Emit no threads.

A situation where the grammar writer has only standalone grammars; there are no parallel statements used

within the grammars: ||| "returned token” called ”thread”.

(accrue linker code 20) +=
void emit_no_threads(ofstream & ofile)
{
ofile < "//_ There are NO_THREADS emitted" < endl;
ofile < "void*_ yacco2::THDS_STABLE__ =,0;" < endl;
ofile < "voidx jyacco2::T_ARRAY_HAVING_THD_IDS__, =0;" < endl;

}

28

53.

EMIT CPP PREAMBLE O2LINKER 853

Emit cpp preamble.

(accrue linker code 20) +=
void emit_cpp_preamble (ofstream & ofile, const char xOFile, const char xPreamble)

{

}

54.

ofile < "//" < endl;

ofile < "// File:)" < OFile < endl;

ofile < "// Generated by linker.exe" < endl;

ofile < "// Date_and, Time:," < DATE_AND_TIME() < endl;
ofile < "//" < endl;

ofile < endl;

ofile < "// Preamble code" < endl;

ofile < Preamble < endl;

Emit thread include files.

Unfortunately, a lot of verbage to resolve the thread’s procedure. OhHum.
Note, standalone grammars are not emitted. Why process them anyway? They provide thread calls that
are added to the terminal’s thread bit map.

(accrue linker code 20) +=
void emit_global_thread_include_files (ofstream & ofile)

{

}

55.

ofile < "//thread, include and namespace" < std: endl;
char a[SMALL_BUFFER_4K];

KCHARP thread_include_ns = "#include \"%s.h\"";
std ::vector < table_entry x> ::iteratorthi = GRAMMAR_DICTIONARY.begin();
std ::vector < table_entry x> ::iteratorthie = GRAMMAR_DICTIONARY.end ();
for (; thi # thie; ++thi) {
’th_in_stbl*th_tb1=._,(th_in_stbl*) (*thi)->symbol_;
thread_attributes * th_att = th_tbl~thread_in_stbl();
if (th_att-monolithic. = ’y’) break;

int x = sprintf (a, thread_include_ns, th_att~grammar_file_name_~c_string ()~c_str());

ofile .write(a, x);
ofile < std ::endl;

}

Emit global bit maps.

(accrue linker code 20) +=
void emit_global_bit_maps (ofstream & ofile)

{

ofile < "//_BIT_MAPS" < std::endl;

ofile < "#define TOTAL_NO_BIT_WORDS ,2*x1024*50" < std ::endl;

ofile < "intyacco2::TOTAL_NO_BIT_WORDS__(TOTAL_NO_BIT_WORDS);" < std::endl;
ofile < "yacco2: :ULINT_ bit_maps[TOTAL_NO_BIT_WORDS];" < std::endl;

ofile < "voidx yacco2::BIT_MAPS_FOR_SALE__ = (void*)&bit_maps;" < std:: endl;
ofile < "int yacco2::BIT_MAP_IDX__(0);" < std::endl;

856 O2LINKER EMIT GLOBAL THREAD STABLE THDS_STABLE__ 29

56. Emit global thread stable THDS_STABLE__.
Read the GRAMMAR_DICTIONARY and emit a sorted Thread_entry list where each thread (excluded are the
standalone grammars) has a global naming convention of Ixxx where the xxx is the thread name. The
Thread_entry provides its literate name, the thread function to be spawned, and its enumerate value used
as an index into the array of threads.

THDS_STABLE__ is a global referenced by Yacco2’s runtime library. It is a structure indicating the number
of threads within its array and the array of addresses to each just-gened thread’s Thread_entry. HoHum —
is this better than fe-fi-foe-fum I smell the blood of an ...7

(accrue linker code 20) +=
void emit_global_thread_stable (ofstream & ofile)

{

ofile < "//_ THREAD_STABLE" < std ::endl;
char a[BIG_BUFFER_32K];

KCHARP thread_entry = "yacco2: : Thread_entry I%s =.{%s,%s,%i,%s: :PROC_%s};";
string quoted_name;

(gen thread list 57);

(gen global thread array 58);

}

57. The threading stew.
(gen thread list 57) =
std ::vector < table_entry x> ::iteratorthi = GRAMMAR_DICTIONARY.begin();
std ::vector < table_entry %> ::iteratorthie = GRAMMAR_DICTIONARY.end();
for (; thi # thie; ++thi) {
’th_in_stbl*th_tbl=._, (th_in_stblx) (*thi)->symbol_;
thread_attributes * th_att = th_tbl-thread_in_stbl();
if (th-att-monolithic. = ’y’) break;
quoted_name.clear();

const char xth_name = th_att~thread_-name_~c_string ()~c_str();

quoted_name += """

quoted_name += th_name;

quoted_name += ’"";

int = = sprintf (a, thread_entry, th-name, quoted_name.c_str (), th-att-fully_qualified_th-name_.c_str(),
th_att-th_enum_, th_att-name_space_-name_~c_string ()~c_str(),
th_att-thread_name_~c_string ()~c-str());

ofile.write(a, x);

ofile < std ::endl;

}

This code is used in section 56.

30 THE TABLE HOTE O2LINKER §58

58. The table hote.
The thoroughbreds waiting for the “and they’rrrre off”.

(gen global thread array 58) =

div_t ¢ = div(NO_OF _THREADS, BITS_PER_WORD);

if (c.rem #0) ++c.quot;

NO_WORDS_FOR_BIT_MAP = c.quot;

KCHARP thread_array = "struct thd_array_type,{\n"", yacco2: :USINT no_\
entries__;\n"" yacco2: :Thread_entry* first_entry__[%i];""};\n""thd_array_type, thd_\
arrayu=u{\nu "u%i\n" ||u’ \Il" "l_JI_J{\n";

int x = sprintf (a, thread_array,NO_OF_THREADS, NO_OF _THREADS);

ofile .write(a, x);

ofile < std ::endl;

bool first_entry (true);

thi = GRAMMAR_DICTIONARY.begin();
thie = GRAMMAR_DICTIONARY.end();
KCHARP thread_entry_-name = "&I%s";
for (; thi # thie; ++thi) {
’th_in_stbl*th_tb1=u (th_in_stblx) (*thi)->symbol_;
thread_attributes * th_att = th_tbl-thread_in_stbl();
if (th_att-monolithic. = ’y’) break;
if (first_entry = true) {
first_entry = false;
ofile < "Luuu";
}

else {
oﬁle < "|_||_||_|, ";
}

int x = sprintf (a, thread_entry-name, th_att-thread_name_~c_string ()~c_str());

ofile.write(a, x);
ofile < std ::endl;

}
ofile < ", H\n};" < endl;
(announce the stable to the world 59);

This code is used in section 56.

59. Announce the stable to the world.

(announce the stable to the world 59) =
ofile < "void*_yacco2::THDS_STABLE__ = ,(void*)&thd_array;" < endl;

This code is used in section 58.

860 O2LINKER EMIT GLOBAL TERMINALS’ THREAD BIT MAPS 31

60. Emit global Terminals’ thread bit maps.
This is the inverse to first sets: these are the threads that can run from the specific terminal.

This global optimization determines whether the finite state table has the potential to run a thread. How
so? Firstly, the local grammar determines whether threading is taking place in its current state configuration.
If so, the current token is checked to see whether there are threads to possibly run using the global thread
bit map specific to itself. With these potental threads the local state configuration is measured for activity.
Then and only then will the just-in-time dynamics of building the grammar’s local thread map occur and
the found threads launched.

This optimization stops stuttering: how so? Only threads having the current token in their first set get
launched. The jiggles now are only real potential prefixes to parse by each launched thread. Remember,
common prefixes get resolved by arbitration within the launching grammar specific to the current finite state
configuration.

Why the output to another file? The flatulence of Microsoft’s compiler: an INTERNAL COMPILER
ERROR “C1001” message. Well I found the typo that causes this draconian behavior: “endl::endl” instead
of “std::endl”. This congers up speculative thoughts on how Microsoft’s compiler is written. Enough of my
racket: Back to appending to the same file.

(accrue linker code 20) +=
void emit_T_fs_of-potential_threads (ofstream & ofile)
{
ofile < "//_ Terminal thread sets" < std:: endl;
int no_of-T = T_DICTIONARY.size();
char a[SMALL_BUFFER_4K];

KCHARP T'_list_to_thd_list_type = "struct T_%i_type{\n""_yacco2: :ULINT_ firs\
t_entry__[%il;\n""};\n";

KCHARP T_list_to_thd_list_var = "T_%hi_typeuT_%hio=u{//Lfor T: %s";

KCHARP thd_id_in_list = "//%hi: %s";

INT_SET_LIST_ITER typei = T_THREAD_ID_LIST.begin();

INT_SET_LIST_ITER_typeie = T_THREAD_ID_LIST.end():

int terminal_id(—1);
for (; i #ie; ++i) {
++terminal_id;
INT_SET _type & th_list = xi;
if (th_-list.empty() = true) continue;
int x = sprintf (a, T_list_to_thd_list_type , terminal_id , NO_WORDS_FOR_BIT_MAP);
ofile .write(a, x);
ofile < std ::endl;
(create terminal’s thread bit map 61);

}

(emit array of Terminals’ thread bit maps 64);

}

32 CREATE TERMINAL’S THREAD BIT MAP O2LINKER 861

61. Create terminal’s thread bit map.
As the number of threads are unknown, I use SPECULATIVE_NO_BIT_WORDS to reserve the space to manufac-
ture the thread maps. See my comments in Passover on code.

(create terminal’s thread bit map 61) =
int no_thds_ids = th_list.size();

table_entry * t_entry = T_DICTIONARY [terminal_id|; tth-in_stbl * t_in_stbl = (tth_in_stbl =) t_entry-symbol_;
T_attributes = t_att = t_in_stbl~t_in_stbl();

x = sprintf (a, Tlist_to_thd_list_var, terminal_id , terminal_id , t_att=fully_qualified_T_-name_.c_str());

ofile write(a, x);

ofile < std ::endl;

ULINT word-map [SPECULATIVE_NO_BIT_WORDS] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
INT_SET_ITER_typej = th_list.begin();

INT_SET_ITER_ typeje = th_list.end();

(calculate terminal’s thread bit map 62);

(emit terminal’s thread bit map 63);

This code is used in section 60.

62. Calculate terminal’s thread bit map. And print out their contents as comments.
(calculate terminal’s thread bit map 62) =
for (; j # je; ++j) {
int th_id = xj;
table_entry * tbl_entry = GRAMMAR_DICTIONARY [th_id];
’th_in_stbl*th_tb1=|_,(th_in_stbl*)tbl_entry—>symbol_;
thread_attributes * th_att = th_tbl-thread_in_stbl();
div_t bb = div(th_id, BITS_PER_WORD);

ULINTbit_pos_value = 1 < bb.rem;
word_map [bb.quot] |= bit_pos_value;

int x = sprintf (a, thd_id_in_list, th_id , th_att-thread-name_~c_string ()~c_str());
ofile.write(a, x);
ofile < std::endl;

}

This code is used in section 61.

63. Emit terminal’s thread bit map.

(emit terminal’s thread bit map 63) =

for (int dd = 1; dd < NO_WORDS_FOR_BIT_MAP; ++dd) {
if (dd =1) ofile < " {";
else ofile < " ,,";
ofile < word-map[dd — 1] < endl;

}

ofile € " }" < endl,;

ofile € "};" < endl,;

This code is used in section 61.

864 O2LINKER EMIT TERMINALS’ THREAD BIT MAPS AND GLOBAL T_ARRAY_HAVING_THD_IDS__

64. Emit Terminals’ thread bit maps and global T_ARRAY_HAVING_THD_IDS__.
Go tell it to the 7 or is it Yacco2?

(emit array of Terminals’ thread bit maps 64) =
KCHARP T_array-type = "struct t_array_type {\n""_ yacco2::USINT no_\
entries__;\n"" yacco2::thd_ids_having T* first_entry__[%i];\n""};";
int x = sprintf (a, T-array-type, no_of-T);
ofile write(a, x);
ofile < std ::endl;
KCHARP T_array = "t_array_typeyt_array =.,{\n" ", %i\n" "L, {";
x = sprintf (a, T_array, no_of-T);
ofile .write(a, x);
ofile < std ::endl;
i = T_THREAD_ID_LIST.begin();
e = T_THREAD_ID_LIST.end();
(print out each thread set 65);
ofile < "LLut\n};" < endl;
ofile < "void* yacco2::T_ARRAY_HAVING_THD_IDS__ =, (void*)&t_array;" < endl;

This code is used in section 60.

65. Print each entry.
More coughing. Oh well.

(print out each thread set 65) =

bool first_item (true); /* regulates if a comma should be emitted */

for (int tid = —1; i # ie; ++i) { ++t.id;

table_entry * t_entry = T_DICTIONARY [¢_id];

tth_in_stbl * t_in_stbl = (tth_in_stbl x) t_entry-symbol_;

T_attributes x t_att = t_in_stbl~t_in_stbl();

INT_SET type & th_list = xi;

if (th list.empty() = true) { /* no thds with this T as first set */
if (first_item = true) first_item = false;
else ofile < "Luuu,";
KCHARP T_array_entries = "%s// hs";

int x = sprintf (a, T_array_entries, "0", t_att~fully_qualified_T_name_.c_str());
ofile.write(a, x);
ofile < std::endl;
continue;
¥
else {
if (first_item = true) first_item = false;
else Oﬁle < "|_u_||_n_|, ";
KCHARP T'_list_to_thd_list_var = " (yacco2: :thd_ids_having T*)&T_%i,//L%s";
int x = sprintf (a, T list_to_thd_list_var, t_id, t_att=fully_qualified_T_-name_.c_str());
ofile.write(a, x);
ofile < std ::endl;
¥
¥

This code is used in section 64.

33

34 MAIN LINE OF LINKER

66. Main line of Linker.

(accrue linker code 20) +=
YACCO2_define_trace_variables();
yacco? :: TOKEN_GAGGLE Error_queue;
STBL_T_ITEMS_type STBL_T_ITEMS;
std ::vector < NS_yacco2_terminals :: table_entry «> GRAMMAR_DICTIONARY;
std ::map < std :: string, std :: vector < std ::string >> USED_THREADS_LIST;
std ::vector < NS_yacco2_terminals :: table_entry x> T_DICTIONARY;
INT_SET_LIST_typeT_THREAD_ID_LIST;

int NO_OF_THREADS (0);
int NO_WORDS_FOR_BIT_MAP(0);
char Visit_graph|[RESERVE_FIXED_NO_THREADS];

O2LINKER

extern void XLATE_SYMBOLS_FOR_cweave (const char «Sym_to_zlate, char xXlated_sym);

extern void PRINT_CALLED_THREAD_LIST(yacco2 ::AST % Node, std :: ofstream x Ow_linker_file, int

Recursion_level);

string cnitl_file_name;
yacco2 :: CHARPRT_SW(’n’);
int main(int argce, char xargv|])

{
cout < yacco2 :: O2linker_.VERSION < std ::endl;

using namespace yacco?2;
using namespace std;

load_linkkws_into_tbl();

cout < "Getcommand line and jparse it," < endl;
GET_CMD_LINE(argc, argu, Linker_holding_file, Error_queue);

(if error queue not empty then deal with posted errors 15);
LINKER_PARSE_CMD_LINE(Linker_holding_file, cntl_file_name, Error_queue);
(if error queue not empty then deal with posted errors 15);

lrclog < yacco?2 :: O2linker_.VERSION < std::endl;

(parse linker control file 17);

parse T alphabet 18);

parse fsc files 19);

post verify that there are no threads “used” and not “defined” 21);
sort thread dictionary 23);

dump sorted dictionary 24);

count and re-align threads enumerate values to sorted position 25);

generate threads final first sets 36);
emit code 51);

o~~~ o~~~ o~~~

return 0;

check whether Linker has enough space to gen thread bit maps: no throw up 26);

generate linker document 50); /* yacco? :: Parallel_threads_shutdown (linker_cntl_file); =/

§66

867 O2LINKER STRUCTURE IMPLEMENTATION 35

67. Structure implementation.

68. pri_called_thread_list_ast_functor implementation.

(Structure implementations 68) =
extern void PRINT_CALLED_THREAD_LIST(AST x Node,std :: ofstream x Ow_linker_file,int Idz){ char
big_buf_[BIG_BUFFER_32K|; thread_attributes x ta = (thread_attributes *) AST:: content(xNode);
KCHARPw_called_threads = "\\Linkercalledthreads{%s}{%i}";
char zlate_gfile[Maz_cweb_item_size];
XLATE_SYMBOLS_FOR_cweave (ta~thread_name_~c_string ()~c_str (), zlate_gfile);
int x = sprintf (big-buf-, w_called_threads, zlate_gfile, Idz);
(x Ow_linker_file).write (big_buf-, x);
(xOw_linker_file) < endl;
KCHARP w_called_threads_index = "@.%s@>";
x = sprintf (big-buf-, w_called_threads_indez , xlate_gfile);
(x Ow_linker_file).write (big_buf-, x);
(x Ow_linker_file) < endl; }
yacco?2 :: functor_result_type
prt_called_thread_list_ast_functor ::operator () (yacco2 :: ast_base_stack * Stk_env)
{
stk_env_ = Stk_env;
srec. = stk_env_~cur_stk_rec_;
idx_ = stk_env_~idzx_;
yacco2 :: INTpidr = idz- — 1;
cnode_ = srec_~node_;
if (pide <0) goto prt_prefix;
{
ast_base_stack :: s_rec x psrec = stk_env_~stk_rec(pidz);
}
pri_prefix:
(acquire trace mu 69);
yacco2 :: INTno_lt(0);
for (yacco2::INTz = 0; x < idr_; ++x)
if (stk_env_stk_rec(x)~act. = ast-base_stack ::left) ++no_lt;
(release trace mu 70);
call_prt_func:
(xprt_funct_)(cnode_, ow_linker_file_, no_lt + 1);
return accept_node; /* continue looping thru ast */

}
prit_called_thread_list_ast_functor :: prt_called_thread_list_ast_functor (PFF Func):
prt_funct_(Func), cnt_(0), ow_linker_file_(0)
{}

void prt_called_thread_list_ast_functor :: reset_cnt ()

{

cnt- = 0;

¥
void prt_called_thread_list_ast_functor :: o_file (std :: ofstream * Ow_linker_file)

{
ow_linker_file. = Ow_linker_file;

}

This code is used in section 71.

36 ACQUIRE TRACE MU

69. Acquire trace mu.

O2LINKER 8§69

Used to serialize trace output. Sometimes the traced output is skewed due to the threading. The output to
a global container is not thread safe, so make it by use of a mutex.

(acquire trace mu 69) =
LOCK_MUTEX (yacco2 :: TRACE_MU);
if (yacco2::YACCO2_MU_TRACING__) {

}

This code is used in section 68.

yacco?2 ::lrclog < "YACCO2_MU_TRACING_

70. Release trace mu.
Used to serialize trace output.

(release trace mu 70) =
if (yacco2::YACCO2_MU_TRACING__) {

}

UNLOCK_MUTEX (yacco2 :: TRACE_MU);

This code is used in section 68.

yacco?2 ::lrclog < "YACCO2_MU_TRACING_

::Acquired, trace mu" < std::endl;

::Releasing trace mu" < std::endl;

§71 O2LINKER WRITE OUT O2LINKER_DEFS.CPP STRUCTURE IMPLEMENTATIONS 37

71. Write out o2linker_defs.cpp Structure implementations.

(o2linker_defs.cpp 71)=
#include "o2linker.h"
(Structure implementations 68);

38 PMS — POST META SYNDROME O2LINKER 872

72. PMS — Post meta syndrome.
Post thoughts of improvement before using Linker.

73. What happens when there are no threads to produce?.
Deal with iT?7 Sorry for the yelling...haha This is a legitimate situation.

So THDS_STABLE__ and T_ARRAY_HAVING_THD_IDS__ have NULL pointers emitted. This situation does
not have to be checked for in Yacco2 parse library as there are no threads in the local state configuration to
be tried. Yacco2 parsing checks to see if the ||| symbol is present in the current state configuration before

trying to parallel parse.
22 April 2005

74. Passover on code.

Spring cleaning so put in those last gasp constraints. I know C+-+’s containers could be used to generate
bit maps but... Enough of my rantings and mistrust on others software. So there’s a hardcoded number
of threads supported. The number of threads supported is SPECULATIVE_NO_BIT_WORDS * BITS_PER_WORD.
Under current definitions this works out to 20*32 threads that can be gened. A bit of overkill but u never
know who’s out there. Now u can rant at me if this limit is surpassed. I would really like to know what u’re
doing to exceed this speed bump: Could be an interesting conversation.

24 Apr. 2005

75. Add test suites.
25 Apr. 2005

876 O2LINKER BUGS — UGH 39

76. Bugs — ugh. Do imake them? Sure do! They have all the makings of Darwinism with sloppiness
due to work overload and not enough self evaluation ... Forget the platitudes Dude. Hey it’s Dave. The
testsuite raised 3 basic programming misconceptions that should enlighten u the reader in your use of Yacco2.

1) posting of errors within a thread versus a standalone grammar

2) off by xxx in error token co-ordinates

3) refining of lookahead expression for common prefix recognition

77. Posting of errors within a grammar.
There are 2 ways to post an error within a grammar:

1) ADD_TOKEN_TO_ERROR_QUEUE macro or parser’s add_token_to_error_queue procedure

2) RSVP macro to post the error or parser’s add_token_to_producer procedure
The ADD_TOKEN_TO_ERROR_QUEUE route should be used only within a standalone grammar. Why? Due to
parallelism (nondeterminism), threads can misfire but the overall parsing is fine because some thread will
accept its parse or the calling grammar that set things in motion also uses the conditional parsing features
of shifting over reduce.

Putting an error token into the acceptqueue via RSVP allows the calling grammar to discriminate by
arbitration as to what token to accept. Then within the grammar’s subrule that handles the error token, the
syntax-directed code would post the accepted error as an error and possbily shutdown the parse by parser’s
set_stop_parse (true) routine. This allows the grammar writer more flexibitity in error handling.

So the moral of this story is “know your parsing run context” when posting of errors. So where’s my
mistake? I used the RSVP facility within a standalone grammar. This just shunts the error token into the
output token queue instead of the error queue.

78. Off by xxx in error token co-ordinates.

When posting an error, the newly created error token needs to be associated with the source file position.
So how is this accomplished? Typically one uses a previous token with established co-ordinates to set the
error token’s co-ordinates via the parser’s set_rc routine.

So why the off by xxx syndrone? What co-ordinate do u associate an error with when the grammar’s
subrule uses the wild card facility |+ | to catch an error. Is it the current_token routine? Not really.
Depending on the syntax-directed code context, this can be the lookahead token after the shift operation.
That is, it is one past the currently shifted token on the parse stack represented symbolicly by |+ |. So use
the appropriate Sub_rule_zzz.pl__ parameter in the syntax-directed procedure to reference the stacked token
where xxx is the subrule number of this subrule. pI__ is the first component of the subrule’s right-hand-side
expression. If there are other components that are to be referenced, pz__ will have the appropriate component
number replacing x.

There are other facilities open to the grammar writer like the start_token routine that provides the starting
token passed to the thread for parsing for co-ordinate references. Ome can also store token references
within the grammar rules as parsing takes place so that a “roll your own” fiddling within contexts can be
programmed: To each their own.

79. Refining of lookahead expression for keyword recognition.

I describe this problem using a concrete example but the problem is generic when there are competing threads
that can have common prefixes. If a keyword is “emitfile” then should it accept “emitfilex” when the balance
“x” follows? No it should not. This is the common prefix problem where the lookahead boundary to accept
or abort the parse was wrongly programmed. As theads can fine tune their lookahead expression by the
grammar’s “parallel-la-boundary” statement, the correction is to properly program this expression. See the
yaccol_linker_keywords.lex grammar for the proper lookahead expression to abort such a parse.

40 BUGS — UGH O2LINKER §80

80. Take 2: Teaching the teacher — why off by xxx in error co-ordinates?.

In testing linker’s grammars, the following came up. What co-ordinate does one associate with an error
token when the “eog” token produces the error? Remember, the meta-terminals like eog, |.|, | + | have no
co-ordinates associated with them as they are shared across all token containers.

Quick review of co-ordinates: There are 4 parts to a token’s co-ordinates:

1) a file number kept by Yacco2 giving the filename source of token

2) line number within the file

3) character position on the line

4) character position within the physical file returned by the I/O routine
Points 1 — 3 are used for now to print out errors.

Well T had to check the source code of set_rc procedure. It was programmed properly and had comments
to boot describing the problem. set_rc marches back thru the token container looking for a token having
physical co-ordinates. Call the number of moves thru the container the displacement. This displacement is
summed with the character position of the referenced token to point to a spot on the source line. The other co-
ordinate attributes are just copied. Depending on the token’s length in display characters, the displacement
will be xxx moves to the right of the referenced token’s co-ordinates. This is why the error token graphic 1
is offset within the error message displaying against the source line and character spot. Depending on the
length of the token in display characters, the offset could be within the interior of the token or to the right of
it. This offset shows that a potential overflow was prevented when the “eog” token halts the parse. Have a
look at testsuite’s “no end-T-alphabet keyword” or the last test ”end-list-of-transitive-threads keyword not
present ” illustrating this type of situation.

What about the other meta-terminals? This is a rool-your-own-laddie. Grab whatever context u want to
associate the co-ordinates against the error token. In the case of the |.|, the meta-epsilon token, u can use
the current_token() as its co-ordinate context.

Well go tell it to the Yacco2 parse library. See set_rc writeup. The moral of this tidbit? A user manual
must be written. I know but this will be my next venture.

4 May 2005.

681 O2LINKER BUGS — UGH 41

81. Missed associating the root node thread to its called threads’ terminals.

This shows how the forest and the trees (pun intended) got blurred. The scoping of a screen just does not
allow one to view well a general perspective: batteries not required nor a camel to carry paper and a café
au lait.

Now the 2 errors:

The visit_graph reserved the right amount of space but I mistakenly thought that the container’s size
procedure gave the number of elements reserved — nope. So the wvisit_graph’s check on visited became
true immediately.

2nd mistake had a compound logic error: the root node thread was not associated with the called threads’
first sets — which is the raison d’étre for all this recursion. The more subtle error was checking in the
global terminal’s set for the called thread existance. If it was present, the root node thread was bypassed
in checking whether it should be entered into the global terminal set. Boy sometimes you’re dump Dave —
spelling correct at the time: haha.

This error should have been caught in the test suites. It requires a proper set of faked grammars to test
out transitive closure: i.e., what about nested calling grammars?, various flavors of epsilon: a complete pass
thru grammar, |.| to boundary detection, etc.

Plain and simple I was procastinating as real work on other things is building. The scaffolding for these
other suites requires a bit more thought and much more effort. Ahhh self analysis watching the watched
watching — I leave this to Freud but it still cost 3 hours of time lost to ferret out these bloopers.

Okay I'm crafting more test suites to cruise-control these esoteric conditions. It demonstrates the re-
quirement of well calibrated test suites as a necessary dimension to programming along with comments as
in literate programming, and pre / post constraint declarations within code to catch realtime strange-ites.
Without these tested dimensions, what assurances or confidence does one have to say that the code is cor-
rect? Not much but hand wavings and hot ... Let’s hear it for QA and its exercising regime to come out
and strut itself.

11 May 2005.

82. Dynamic reserve space for Visit_graph.

The std :: vector < char > Visit_graph(); was originally calculating the number of threads before reserving
space via “reserve(xxx)” procedure. This is a simple way to associate a visited node for my recursive graph
walks: stop those revisits. Somehow this space was getting reallocated and destroying my trees. So out
damm dynamics and in with static array no template please...

Nov. 2007

42 TEST SUITES: CHECK OUT THOSE FLABBY GRAMMAR MUSCLES O2LINKER 683

83. Test suites: Check out those flabby grammar muscles.
Exercise, exercise, excerise, perhaps to ... Linker’s languages. Microsoft’s batch facility is used to do the
sweating. The test suites are inputted via the command line option on Linker.

The batch file linker_testsuite.bat contains the all the test suites. Here are the test results with some
editorial liberties:

C:\yacco2\linker>rem file: testsuite.bat
C:\yacco2\linker>rem test suite for Linker
C:\yacco2\linker>cd "c:\yacco2\linker\release\"

######## Command line edits #######

######## perfect score: compile linker and yacco2 first set
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/compiler/grammars/yacco2.fsc"
Load linker’s keywords

Get command line and parse it

Parse linker control file

Parse alphabet

Parse fsc files

Sort thread dictionary

Emit file name: c:/yacco2/compiler/grammars/yacco2_fsc.cpp

######## Command line error: bad file name inputted
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/compiler/grammars/yacco2.fscc"
Load linker’s keywords
Get command line and parse it
Error in file#: 1 "linkercmd.tmp"
c:/yacco2/compiler/grammars/yacco2.fscc
fpos: O line#: 1 cpos: 1
bad-filename filename: "c:/yacco2/compiler/grammars/yacco2.fscc" does not exist

######## File control file error: no preamble construct
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_1.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Error in file#: 2 "c:/yacco2/linker/TS_1.fsc"
emitfile "TS_1_fsc.tmp"
fpos: 121 line#: 7 cpos: 25
preamble keyword not present

######## File control file error: no end-preamble present
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_2.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Error in file#: 2 "c:/yacco2/linker/TS_2.fsc"
#include <yacco2.h>
fpos: 151 line#: 9 cpos: 20
end-preamble keyword not present

683 O2LINKER TEST SUITES: CHECK OUT THOSE FLABBY GRAMMAR MUSCLES

######## File control file error: no preamble code present
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_3.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Error in file#: 2 "c:/yacco2/linker/TS_3.fsc"
preamble
fpos: 131 line#: 8 cpos: 9
preamble source code not present

######## File control file error: no file-of-T-alphabet keyword present
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_4.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Error in file#: 2 "c:/yacco2/linker/TS_4.fsc"
file-of-T-alphabe "c:/yacco2/linker/TS_4.fsc"
fpos: 57 line#: 6 cpos: 1
file-of-T-alphabet keyword not present

######## File control file error: no file-of-T-alphabet file present
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_5.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Error in file#: 2 "c:/yacco2/linker/TS_5.fsc"
emitfile "TS_5_fsc.tmp"
fpos: 82 line#: 7 cpos: 1
T-alphabet file not present

######## File control file error: no emitfile keyword present
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_6.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Error in file#: 2 "c:/yacco2/linker/TS_6.fsc"
emitfilee "TS_6_fsc.tmp"
fpos: 102 line#: 7 cpos: 1
emitfile keyword not present

######## File control file error: no emitfile file present
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_7.fsc"
Load linker’s keywords

Get command line and parse it

Parse linker control file

Error in file#: 2 "c:/yacco2/linker/TS_7.fsc"

preamble

43

44 TEST SUITES: CHECK OUT THOSE FLABBY GRAMMAR MUSCLES O2LINKER 683

fpos: 108 line#: 8 cpos: 1
emitfile file not present

######## File control file error: no fsc file present
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_8.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Error in file#: 2 "c:/yacco2/linker/TS_8.fsc"
end-preamble
fpos: 175 line#: 10 cpos: 13
fsc control file not present

######## File control file error: bad fsc filename
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_9.fsc"
Load linker’s keywords

Get command line and parse it

Parse linker control file

Error in file#: 2 "c:/yacco2/linker/TS_9.fsc"
"c:/yacco2/linker/TS_9xx.fsc"

fpos: 174 line#: 11 cpos: 1
fsc control file does not exist

######## T-alphabet edits #######

######## T-alphabet: no T-alphabet keyword
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_10.fsc"
Load linker’s keywords

Get command line and parse it

Parse linker control file

Parse alphabet

Error in file#: 3 "c:/yacco2/linker/TS_10t1.fsc"

T-alphabett

fpos: 75 line#: 5 cpos: 1
T-alphabet keyword not present

######## T-alphabet: no end-T-alphabet keyword
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_11.fsc"
Load linker’s keywords

Get command line and parse it

Parse linker control file

Parse alphabet

Error in file#: 3 "c:/yacco2/linker/TS_11t1.fsc"
end-T-alphabett

fpos: 125 line#: 10 cpos: 3
end-T-alphabet keyword not present

######## T-alphabet: duplicate t definition
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_12.fsc"

683 O2LINKER TEST SUITES: CHECK OUT THOSE FLABBY GRAMMAR MUSCLES

Load linker’s keywords

Get command line and parse it

Parse linker control file

Parse alphabet

Error in file#: 3 "c:/yacco2/linker/TS_12t1.fsc"
LR1_eof

fpos: 122 line#: 10 cpos: 1
dup-entry-in-sym-table

######## T-alphabet: no t definition
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_13.fsc"
Load linker’s keywords

Get command line and parse it

Parse linker control file

Parse alphabet

Error in file#: 3 "c:/yacco2/linker/TS_13t1.fsc"
end-T-alphabet

fpos: 68 line#: 6 cpos: 1
no terminals in T-alphabet list

######## T-alphabet: comment overrun
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_14.fsc"
Load linker’s keywords

Get command line and parse it

Parse linker control file

Error in file#: 2 "c:/yacco2/linker/TS_14.fsc"

/*

fpos: O line#: 1 cpos: 1
comment-overrun

######## £fsc control files #######
######## fsc control files: not defined terminal used in fsc control file

C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_15.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Parse alphabet
Parse fsc files
Error in file#: 4 "c:/yacco2/compiler/grammars/error_symbols_phrase.FSC"
no-of-T 513
fpos: 195 line#: 7 cpos: 14
T-alphabet list vs no. of T not eq. re-compile grammar
Error in file#: 4 "c:/yacco2/compiler/grammars/error_symbols_phrase.FSC"
LR1_fset_transience_operator
fpos: 239 line#: 9 cpos: 4
bad terminal in list, not defined in T-alphabet

45

46 TEST SUITES: CHECK OUT THOSE FLABBY GRAMMAR MUSCLES O2LINKER 683

######## fsc control files: thread used but not defined in fsc control file

C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_16.fsc"

Load linker’s keywords

Get command line and parse it

Parse linker control file

Parse alphabet

Parse fsc files

Error in file#: 4 "c:/yacco2/linker/TS_16t1.fsc"
NS_bad_char_set::TH_bad_char_set

fpos: 378 line#: 18 cpos: 3
bad thread in transitive list, not defined by fsc files
Error in file#: 4 "c:/yacco2/linker/TS_16t1.fsc"
NS_c_comments: :TH_c_comments
fpos: 413 line#: 19 cpos: 3
bad thread in transitive list, not defined by fsc files
Error in file#: 4 "c:/yacco2/linker/TS_16t1.fsc"
NS_c_literal::TH_c_literal
fpos: 444 line#: 20 cpos: 3
bad thread in transitive list, not defined by fsc files
Error in file#: 4 "c:/yacco2/linker/TS_16t1.fsc"
NS_c_string::TH_c_string
fpos: 473 line#: 21 cpos: 3
bad thread in transitive list, not defined by fsc files
Error in file#: 4 "c:/yacco2/linker/TS_16t1.fsc"
NS_eol::TH_eol
fpos: 500 line#: 22 cpos: 3
bad thread in transitive list, not defined by fsc files
Error in file#: 4 "c:/yacco2/linker/TS_16t1.fsc"
NS_identifier::TH_identifier
fpos: 517 line#: 23 cpos: 3
bad thread in transitive list, not defined by fsc files
Error in file#: 4 "c:/yacco2/linker/TS_16t1.fsc"
NS_ws::TH_ws
fpos: 548 line#: 24 cpos: 3
bad thread in transitive list, not defined by fsc files

##HHH### fsc control files: bad native first set number
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_17.fsc"
Load linker’s keywords

Get command line and parse it

Parse linker control file

Parse alphabet

Parse fsc files

Error in file#: 4 "c:/yacco2/linker/TS_17t1.fsc"

683 O2LINKER TEST SUITES: CHECK OUT THOSE FLABBY GRAMMAR MUSCLES

no-of-T 502

fpos: 205 line#: 11 cpos: 14

T-alphabet list vs no. of T not eq. re-compile grammar
Error in file#: 4 "c:/yacco2/linker/TS_17t1.fsc"
list-of-native-first-set-terminals -3

fpos: 244 line#: 12 cpos: 36

list-of-native-terminals... number not present

######## £sc control files: native first set number mismatch to no in list
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_18.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Parse alphabet
Parse fsc files
Error in file#: 4 "c:/yacco2/linker/TS_18t1.fsc"
no-of-T 502

fpos: 229 line#: 11 cpos: 14

T-alphabet list vs no. of T not eq. re-compile grammar
Error in file#: 4 "c:/yacco2/linker/TS_18t1.fsc"
list-of-native-first-set-terminals 2

fpos: 268 line#: 12 cpos: 36

no terminals in list not equal, chk items in list

######## fsc control files: thread list number mismatch to no in list
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_19.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Parse alphabet
Parse fsc files
Error in file#: 4 "c:/yacco2/linker/TS_19t1.fsc"
no-of-T 502

fpos: 224 line#: 11 cpos: 14

T-alphabet list vs no. of T not eq. re-compile grammar
Error in file#: 4 "c:/yacco2/linker/TS_19t1.fsc"
list-of-transitive-threads 2

fpos: 383 line#: 17 cpos: 28

no threads in list not equal, chk items in list

######## £sc control files: bad thread list number
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_20.fsc"
Load linker’s keywords

Get command line and parse it

Parse linker control file

Parse alphabet

47

48 TEST SUITES: CHECK OUT THOSE FLABBY GRAMMAR MUSCLES O2LINKER 683

Parse fsc files
Error in file#: 4 "c:/yacco2/linker/TS_20t1.fsc"
no-of-T 502
fpos: 205 line#: 11 cpos: 14
T-alphabet list vs no. of T not eq. re-compile grammar
Error in file#: 4 "c:/yacco2/linker/TS_20t1.fsc"
list-of-transitive-threads -7
fpos: 364 line#: 17 cpos: 28
list-of-transitive-threads... number not present

######## fsc control files: no thread list number present
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_21.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Parse alphabet
Parse fsc files
Error in file#: 4 "c:/yacco2/linker/TS_21t1.fsc"
no-of-T 502
fpos: 212 line#: 11 cpos: 14
T-alphabet list vs no. of T not eq. re-compile grammar
Error in file#: 4 "c:/yacco2/linker/TS_21t1.fsc"
NS_bad_char_set::TH_bad_char_set

fpos: 374 line#: 18 cpos: 3
list-of-transitive-threads... number not present

######## £sc control files: no native first set number present
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_22.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Parse alphabet
Parse fsc files
Error in file#: 4 "c:/yacco2/linker/TS_22t1.fsc"
no-of-T 502

fpos: 222 line#: 11 cpos: 14

T-alphabet list vs no. of T not eq. re-compile grammar
Error in file#: 3 "c:/yacco2/compiler/grammars/yacco2_T_enumeration.fsc"
raw_at_sign

fpos: 746 line#: 74 cpos: 1

list-of-native-terminals... number not present

######## fsc control files: no-of-T # not matched against T-alphabet
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_23.fsc"

Load linker’s keywords

Get command line and parse it

683 O2LINKER TEST SUITES: CHECK OUT THOSE FLABBY GRAMMAR MUSCLES

Parse linker control file

Parse alphabet

Parse fsc files

Error in file#: 4 "c:/yacco2/linker/TS_23t1.fsc"
no-of-T 1502

fpos: 223 line#: 11 cpos: 14
T-alphabet list vs no. of T not eq. re-compile grammar

######## £sc control files: no tramsitive keyword
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_24.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Parse alphabet
Parse fsc files
Error in file#: 4 "c:/yacco2/linker/TS_24t1.fsc"
transitivee y

fpos: 69 line#: 5 cpos: 1

transitive keyword not present

##HHH### fsc control files: bad transitive value
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_25.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Parse alphabet
Parse fsc files
Error in file#: 4 "c:/yacco2/linker/TS_25t1.fsc"
transitive X

fpos: 81 line#: 5 cpos: 14

linker’s transitive value not n or y

######## £sc control files: bad grammar-name keyword
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_26.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Parse alphabet
Parse fsc files
Error in file#: 4 "c:/yacco2/linker/TS_26t1.fsc"
grammar-namee '"pass3"

fpos: 87 line#: 6 cpos: 1

grammar-name keyword not present

######## fsc control files: bad grammar-name value
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_27.fsc"
Load linker’s keywords

Get command line and parse it

49

50 TEST SUITES: CHECK OUT THOSE FLABBY GRAMMAR MUSCLES O2LINKER 683

Parse linker control file
Parse alphabet
Parse fsc files
Error in file#: 4 "c:/yacco2/linker/TS_27t1.fsc"
grammar-name pass3
fpos: 98 line#: 6 cpos: 14
grammar-name value not present or quoted value

######## £sc control files: bad name-space keyword
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_28.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Parse alphabet
Parse fsc files
Error in file#: 4 "c:/yacco2/linker/TS_28t1.fsc"
name-spacee "NS_pass3"

fpos: 106 line#: 7 cpos: 1

name-space keyword not present

######## fsc control files: bad name-space value
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_29.fsc"
Load linker’s keywords

Get command line and parse it

Parse linker control file

Parse alphabet

Parse fsc files

Error in file#: 4 "c:/yacco2/linker/TS_29t1.fsc"

name-space NS_pass3

fpos: 117 line#: 7 cpos: 14
name-space value not present or quoted value

######## £sc control files: bad thread-name keyword
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_30.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Parse alphabet
Parse fsc files
Error in file#: 4 "c:/yacco2/linker/TS_30t1.fsc"
thread—-namee "Cpass3"

fpos: 131 line#: 8 cpos: 1

thread-name keyword not present

######## fsc control files: bad thread-name value
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_31.fsc"
Load linker’s keywords

Get command line and parse it

683 O2LINKER TEST SUITES: CHECK OUT THOSE FLABBY GRAMMAR MUSCLES

Parse linker control file

Parse alphabet

Parse fsc files

Error in file#: 4 "c:/yacco2/linker/TS_31t1.fsc"
thread—-name Cpass3

fpos: 142 line#: 8 cpos: 14
thread—name value not present or quoted value

######## £sc control files: bad monolithic keyword
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_32.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Parse alphabet
Parse fsc files
Error in file#: 4 "c:/yacco2/linker/TS_32t1.fsc"
monolithicc y

fpos: 1562 line#: 9 cpos: 1

monolithic keyword not present

######## fsc control files: bad monolithic value
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_33.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Parse alphabet
Parse fsc files
Error in file#: 4 "c:/yacco2/linker/TS_33t1.fsc"
monolithic Y

fpos: 163 line#: 9 cpos: 14

linker’s monolithic value not n or y

######## £sc control files: bad file-name keyword
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_34.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Parse alphabet
Parse fsc files
Error in file#: 4 "c:/yacco2/linker/TS_34t1.fsc"
file-namee "pass3.fsc"

fpos: 166 line#: 10 cpos: 1

file-name keyword not present

######## fsc control files: bad file-name value
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_35.fsc"
Load linker’s keywords

Get command line and parse it

o1

52 TEST SUITES: CHECK OUT THOSE FLABBY GRAMMAR MUSCLES O2LINKER 683

Parse linker control file
Parse alphabet
Parse fsc files
Error in file#: 4 "c:/yacco2/linker/TS_35t1.fsc"
file-name monolithic.fsc
fpos: 177 line#: 10 cpos: 14
file-name value not present or quoted value

######## £sc control files: bad no-of-T keyword
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_36.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Parse alphabet
Parse fsc files
Error in file#: 4 "c:/yacco2/linker/TS_36t1.fsc"
no-of-Tt 504

fpos: 189 line#: 11 cpos: 1

no-of-T keyword not present

##HHH### fsc control files: bad no-of-T value
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_37.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Parse alphabet
Parse fsc files
Error in file#: 4 "c:/yacco2/linker/TS_37t1.fsc"
no-of-T +504

fpos: 200 line#: 11 cpos: 14

no-of-T value not present

######## £sc control files: bad list-of-native-first-set-terminals keyword
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_38.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Parse alphabet
Parse fsc files
Error in file#: 4 "c:/yacco2/linker/TS_38t1.fsc"
no-of-T 504
fpos: 229 line#: 11 cpos: 14
T-alphabet list vs no. of T not eq. re-compile grammar
Error in file#: 4 "c:/yacco2/linker/TS_38t1.fsc"
transitive 3
fpos: 233 line#: 12 cpos: 1
list-of-native-terminals keyword not present

683 O2LINKER TEST SUITES: CHECK OUT THOSE FLABBY GRAMMAR MUSCLES

######## fsc control files: bad end-list-of-native-first-set-terminals keyword
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_39.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Parse alphabet
Parse fsc files
Error in file#: 4 "c:/yacco2/linker/TS_39t1.fsc"
no-of-T 504

fpos: 233 line#: 11 cpos: 14

T-alphabet list vs no. of T not eq. re-compile grammar
Error in file#: 4 "c:/yacco2/linker/TS_39t1.fsc"
end-list-of-native-first-set-terminalss

fpos: 326 line#: 16 cpos: 1

bad terminal in list, not defined in T-alphabet

######## £sc control files: bad list-of-transitive-threads keyword
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_40.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Parse alphabet
Parse fsc files
Error in file#: 4 "c:/yacco2/linker/TS_40t1.fsc"
no-of-T 504

fpos: 221 line#: 11 cpos: 14

T-alphabet list vs no. of T not eq. re-compile grammar
Error in file#: 4 "c:/yacco2/linker/TS_40t1.fsc"
list-of-transitive-threadss 0

fpos: 353 line#: 17 cpos: 1

list-of-transitive-threads keyword not present

######## £sc control files: bad end-list-of-transitive-threads keyword
C:\yacco2\linker\Release>lnk.exe "c:/yacco2/linker/TS_41.fsc"
Load linker’s keywords
Get command line and parse it
Parse linker control file
Parse alphabet
Parse fsc files
Error in file#: 4 "c:/yacco2/linker/TS_41t1.fsc"
no-of-T 504

fpos: 225 line#: 11 cpos: 14

T-alphabet list vs no. of T not eq. re-compile grammar
Error in file#: 4 "c:/yacco2/linker/TS_41t1.fsc"
end-list-of-transitive-threadss

93

54 TEST SUITES: CHECK OUT THOSE FLABBY GRAMMAR MUSCLES O2LINKER 683

fpos: 387 line#: 18 cpos: 3
end-list-of-transitive-threads keyword not present

C:\yacco2\linker\Release>del c:\yacco2\linker\ts*.tmp

684 O2LINKER SAMPLE OUTPUT FROM LINKER 55

84. Sample output from Linker.
A sampling from Yacco2’s grammars. Have a look in the source code below where the following external
variables are defined at line references 41, 43, 44, 72, and 193:
yacco2::TOTAL_NO_BIT_WORDS__
yacco2::BIT_MAPS_FOR_SALE__
yacco2::BIT_MAP_IDX__
yacco2 ::THDS_STABLE__
yacco2 ::T_ARRAY_HAVING_THD_IDS__
Yacoo2’s parse library references them and they get resolved by the language linker.

1: //

2: // File: c:/yacco2/compiler/grammars/yacco2_fsc.cpp
3: // Generated by linker.exe

4: // Date and Time: Fri May 06 16:30:11 2005
5: //

6:

7: // Preamble code

8: #include <yacco2.h>

9: #include <yacco2_T_enumeration.h>

10: #include <yacco2_err_symbols.h>

11: #include <yacco2_k_symbols.h>

12: #include <yacco2_terminals.h>

13: #include <yacco2_characters.h>

14: using namespace NS_yacco2_T_enum;

15: using namespace NS_yacco2_err_symbols;

16: using namespace NS_yacco2_k_symbols;

17: using namespace NS_yacco2_terminals;

18: using namespace NS_yacco2_characters;

19: // thread include and namespace

20: #include <T_enum_phrase_th.h>

21: wusing namespace NS_T_enum_phrase_th;

22: #include <angled_string.h>

23: using namespace NS_angled_string;

24: #include <bad_char_set.h>

25: using namespace NS_bad_char_set;

26: #include <c_comments.h>

27: using namespace NS_c_comments;

28: #include <c_literal.h>

29: using namespace NS_c_literal;

30: R

31: #include <yacco2_code_end.h>

32: using namespace NS_yacco2_code_end;

33: #include <yacco2_lcl_option.h>

34: wusing namespace NS_yacco2_lcl_option;

35: #include <yacco2_linker_keywords.h>

36: using namespace NS_yacco2_linker_keywords;
37: #include <yacco2_syntax_code.h>

38: wusing namespace NS_yacco2_syntax_code;

39:

40: // BIT MAPS

41: #define TOTAL_NO_BIT_WORDS 2+%1024%50

42: 1int yacco2::TOTAL_NO_BIT_WORDS__(TOTAL_NO_BIT_WORDS) ;
43: yacco2::ULINT bit_maps[TOTAL_NO_BIT_WORDS];

56 SAMPLE OUTPUT FROM LINKER O2LINKER
44: void* yacco2::BIT_MAPS_FOR_SALE__ = (voidx)&bit_maps;
45: int yacco2::BIT_MAP_IDX__(0);

46: // THREAD STABLE

47: yacco2::Thread_entry ITH_T_enum_phrase_th =

48: {"TH_T_enum_phrase_th",NS_T_enum_phrase_th::TH_T_enum_phrase_th,0
49: ,NS_T_enum_phrase_th: :PROC_TH_T_enum_phrase_th};
50: yacco2::Thread_entry ITH_ angled_string =

51: {"TH_angled_string" ,NS_angled_string: :PROC_TH_angled_string,1
52: ,NS_angled_string: :TH_angled_string};

53: ..

54: yacco2::Thread_entry ITH_yacco2_syntax_code =

55: {"TH_yacco2_syntax_code" ,NS_yacco2_syntax_code: :TH_yacco2_syntax_code
56: ,52,NS_yacco2_syntax_code: :PROC_TH_yacco2_syntax_codel};
57: struct thd_array_type {

58: yacco2: :USINT no_entries__;

59: yacco2: :Thread_entry* first_entry__[53];

60: };

61: thd_array_type thd_array = {

62: 53

63: s

64: {

65: &ITH_T_enum_phrase_th

66: ,&ITH_angled_string

67: ,&ITH_bad_char_set

68: ,&ITH_c_comments

69: R

70: ,&ITH_yacco2_code_end

71: ,&ITH _yacco2_lcl_option

72: ,&ITH_yacco2_linker_keywords

73: ,&ITH_yacco2_syntax_code

74: }

75: 3}

76: void* yacco2::THDS_STABLE__ = (void*)&thd_array;

77: // Terminal thread sets

78: struct T_O_type{

79: yacco2::ULINT first_entry__[2];

80: 1;

81: T_O_type T_0 = {// for T: LR1_eof

82: //20: TH_linker_preamble_code

83: //31: TH_rhs_bnd

84: //32: TH_rhs_component

85: //47: TH_unquoted_string

86: //52: TH_yacco2_syntax_code

87: {2148532224

88: ,1081345

89: }

90: I;

91: struct T_1_type{

92: yacco2::ULINT first_entry__[2];

93: };

94: T_1_type T_1 = {// for T: LR1_eog

95: //20: TH_linker_preamble_code

§84

684 O2LINKER SAMPLE OUTPUT FROM LINKER 57

96: //31: TH_rhs_bnd

97: //32: TH_rhs_component

98: //47: TH_unquoted_string

99: //52: TH_yacco2_syntax_code

100: {2148532224

101: ,1081345

102: }

103: };

104: struct T_6_type{

105: yacco2::ULINT first_entry__[2];
106: };

107: T_6_type T_6 = {// for T: LR1_all_shift_operator
108: //20: TH_linker_preamble_code
109: //32: TH_rhs_component

110: //47: TH_unquoted_string

111: //52: TH_yacco2_syntax_code

112: {1048576

113: ,1081345

114: }

115: };

116: struct T_7_type{

117: yacco2::ULINT first_entry__[2];
118: };

119: T_7_type T_7 = {// for T: LR1_fset_transience_operator
120: //0: TH_T_enum_phrase_th

121: //9: TH_error_symbols_phrase_th
122: //14: TH_fsm_class_phrase_th
123: //15: TH_fsm_phrase_th

124: //21: TH_lrl_k_phrase_th

125: //24: TH_parallel_control

126: //28: TH_parallel_parser_phrase_th
127: //29: TH_prefile_include

128: //30: TH_rc_phrase_th

129: //33: TH_rule_def_phrase

130: //35: TH_rules_phrase_th

131: //39: TH_subrules_phrase

132: //42: TH_terminal_def_phrase
133: //44: TH_terminals_phrase_th
134: {1897972225

135: ,5258

136: }

137: };

138: R

139: struct T_510_type{

140: yacco2::ULINT first_entry__[2];
141: };

142: T_510_type T_510 = {// for T: thread_attributes
143: //20: TH_linker_preamble_code
144: //32: TH_rhs_component

145: //47: TH_unquoted_string

146: //52: TH_yacco2_syntax_code

147: {1048576

58 SAMPLE OUTPUT FROM LINKER O2LINKER
148: ,1081345
149: }
150: 1}
151: struct T_511_type{
162: yacco2::ULINT first_entry__[2];
163: };
164: T_511_type T_511 = {// for T: th_in_stbl
165: //20: TH_linker_preamble_code
166: //32: TH_rhs_component
167: //47: TH_unquoted_string
168: //52: TH_yacco2_syntax_code
159: {1048576
160: ,1081345
161: }
162: };
163: struct T_512_type{
164: yacco2::ULINT first_entry__[2];
165: };
166: T_512_type T_512 = {// for T: kw_in_stbl
167: //20: TH_linker_preamble_code
168: //32: TH_rhs_component
169: //47: TH_unquoted_string
170: //52: TH_yacco2_syntax_code
171: {1048576
172: , 1081345
173: }
174: 3};
175: struct t_array_type {
176: yacco2::USINT no_entries__;
177: yacco2: :thd_ids_having_T* first_entry__[513];
178: };
179: t_array_type t_array = {
180: 513
181: ,{(yacco2::thd_ids_having_T*)&T_0O // LR1_eof
182: , (yacco2: :thd_ids_having_T*)&T_1 // LR1_eog
183: ,0// LR1_eolr
184: ,0// LR1_parallel_operator
185: ,0// LR1_parallel_procedure_call_operator
186: ,0// LR1_invisible_shift_operator
187: , (yacco2: :thd_ids_having T*)&T_6 // LR1_all_shift_operator
188: , (yacco2: :thd_ids_having_T*)&T_7 // LR1_fset_transience_operator
189: , (yacco2::thd_ids_having T*)&T_8 // raw_nul
190: R
191: , (yacco2::thd_ids_having T*)&T_509 // T_attributes
192: , (yacco2: :thd_ids_having_T*)&T_510 // thread_attributes
193: , (yacco2: :thd_ids_having_T*)&T_511 // th_in_stbl
194: , (yacco2::thd_ids_having T*)&T_512 // kw_in_stbl
195: }
196: };
197: wvoid* yacco2::T_ARRAY_HAVING_THD_IDS__ = (voidx)&t_array;

198:

§84

885 O2LINKER SAMPLE 2: NO THREADS OUTPUTTED JUST A STAND ALONE GRAMMAR 59

85. Sample 2: No threads outputted just a stand alone grammar.
//

// File: c:/yacco2/linker/ts_0O_fsc.cpp

// Generated by linker.exe

// Date and Time: Wed May 11 16:06:43 2005

//

// Preamble code
#include <yacco2.h>

© 00 N O O W N -

#include <yacco2_T_enumeration.h>

#include <yacco2_err_symbols.h>

#include <yacco2_k_symbols.h>

12: #include <yacco2_terminals.h>

13: #include <yacco2_characters.h>

14: using namespace NS_yacco2_T_enum;

15: using namespace NS_yacco2_err_symbols;

16: using namespace NS_yacco2_k_symbols;

17: using namespace NS_yacco2_terminals;

18: wusing namespace NS_yacco2_characters;

19: // thread include and namespace

20: // BIT MAPS

21: #define TOTAL_NO_BIT_WORDS 2+%1024+*50

22: int yacco2::TOTAL_NO_BIT_WORDS__(TOTAL_NO_BIT_WORDS);
23: yacco2::ULINT bit_maps[TOTAL_NO_BIT_WORDS];

24: void* yacco2::BIT_MAPS_FOR_SALE__ = (void*)&bit_maps;
25: int yacco2::BIT_MAP_IDX__(0);

26: // There are NO THREADS emitted

=
= O

27: void* yacco2::THDS_STABLE__ = 0;
28: void* yacco2::T_ARRAY_HAVING_THD_IDS__ = O;
29:

86. Include files. To start things off, these are the Standard Template Library (STL) containers needed
by Linker, Yacco2’s parse library definitions, and the specific grammar definitions needed by Linker.

(Include files 86) =
#include "globals.h"
#include "yacco2_stbl.h"

using namespace yacco2_stbl;
#include "o2linker_externs.h"
#include "link_cleanser.h"
#include "t_alphabet.h"
#include "fsc_file.h"

This code is used in section 88.

87. Include Of"*¢"header.
(102 87) =
#include "o2linker.h"

This code is used in section 89.

60 CREATE HEADER FILE FOR O5LINKER ENVIRONMENT O2LINKER 688

88. Create header file for O;linker environment.
Note, the “include search” directories for the c4++ compiler has to be supplied to the compiler environment
used. This must include Yaco0:’s library.

(02linker.h 88)=
(Preprocessor definitions)
#ifndef o2linker__
#define o2linker__ 1
(Include files 86);
(External rtns and variables 14);
#endif

89. Ojlinker implementation.
Start the code output to o2linker.cpp by appending its include file.
(02linker.cpp 89) =

(102 87);

(accrue linker code 20);

890 O2LINKER

90. Index.

__FILE__: 20.

__LINE__: 21, 26.

a: 26, 54, 56, 60.

accept: T7.

accept_node: 068.

act_: G8.

add_child_at_end: 38.

add_sym_to_stbl: 20.

add_token_to_error_queue: 77.

ADD_TOKEN_TO_ERROR_QUEUE: 77.

add_token_to_producer: 77.

arge: 606.

argv: 066.

AST: 38, 39, 66, 68.

ast_base_stack: 08.

ast_prefiz: 43.

base_stk_: 43.

bat: 83.

bb: 62.

begin: 19, 21, 23, 24, 25, 31, 32, 36, 38, 40, 44,
45, 47, 54, 57, 58, 60, 61, 64.

big-buf_: 42, 44, 45, 46, 48, 49, 50, 68.

BIG_BUFFER_32K: 50, 56, 68.

BIT_MAP_IDX__: 3, 6, 4.

BIT_MAPS_FOR_SALE__: 3, 6, 84.

bit_pos_value: 62.

BITS_PER_WORD: 13, 26, 58, 62, 74.

bugs: 12.

c: 58.

c.str: 17,18, 19, 22, 24, 32, 36, 42, 44, 45, 46, 48
50, 51, 54, 57, 58, 61, 62, 65, 68.

c_string: 22, 24, 32, 36, 42, 44, 54, 57, 58, 62, 68.

CAbs_lri_sym: 20, 21.

call_prt_func: 068.

called_t: 38.

called_thread_graph_: 39, 43.

Cfsc_file: 19.

CHAR: 66.

cleanser: 18.

cleanser_fsc: 19.

cleanser_fsc_tokens: 19.

cleanser_fsm: 18.

cleanser_tokens: 18.

clear: 19, 57.

Clink_cleanser: 18, 19.

Clinker_pass3: 17.

close: 50, 51.

cnode_: 68.

cnt_: 68.

entl_file_name: 17, 46, 48, 66.

cntl_file_tokens: 17.

code

. 26, 61.

content: 068.

cout:

Ccpp:

crt_called_thread_graph:

12, 71, 89.

crt_called_thread_list: 38.

crt_fset_of_thread: 32, 33,
Ct_alphabet: 18.
cur_stk_rec: 43.
cur_stk_rec_: 68.
current_token: 78, 80.

INDEX

17, 18, 19, 20, 23, 51, 66

36, 39, 40.

36.

CWEAVE_TITLE_LIMIT: 42.

cweb

1 6, 12.

DATE_AND_TIME:

dd:

63.

defed:_ 20.
defined_: 21.

div:

58, 62.

dth_i: 24.
dth_ie: 24.
DUMP_ERROR_QUEUE: 15.

emit_cpp_preamble:

emit_global_bit_maps: 51,
emit_global_thread_include_files: 51, 54.
emit_global_thread_stable:
emit_no_threads:
emit_T_fs_of_potential_threads: 51, 60.
emitfile_filename_:

empty:

end:

endl

Err_

Error: not enough space for thread bit map manufacture!:

FErro

exit:
false

51, 52.

ol.

15, 44, 60, 65.

51, 53.
99.

51, 56.

61

19, 21, 23, 24, 25, 29, 30, 31, 32, 36, 38, 40,
44, 45, 47, 54, 57, 58, 60, 61, 64
: 17, 18, 19, 20, 23, 24, 32, 36, 42, 44, 45, 46
48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,

61, 62, 63, 64, 65, 66, 68, 69, 70.

bad_th_in_list:

21.

r_queue: 14, 15, 17, 18, 19, 21, 66.
exec: 43.

26.
. 22, 58, 65.

fandk: 42, A7.
fandk_len: 42.

fi:
fie:

31.
31.

filename: 2.

find:

29, 30, 44.

first_entry: 58.
first_item: 65.

first_set_for_threads: 10.

fs:
fs_:

45.
29, 30, 45.

62 INDEX
fsc: 8.
fsc_cleanser: 19.
fsc_file: 12, 19.

fsc_file_fsm: 19.
fsc_file_output_tokens: 19.
fsc_file_pass: 19.

fsi: 45,
fsie: 45,
fsm: 2.

fsm_comments_: 24, 42.

fully_qualified_T_name_:

fully_qualified_th_name_:

Func: 68.

functor_result_type: 068.

gen_each_grammar_s_referenced_threads:

gen_each_thread_s_referenced_threads: 40.

GET_CMD_LINE: G6.

GRAMMAR_DICTIONARY:
36, 40, 47, 54, 56, 57, 58, 62, 66.

grammar_file_name_: 54.

grammars_fsc_files_: 19.

id: 20.

Idx: G8.

idr_: 68.

ie: 60, 64, 65.

ifstream: 17, 18, 19.

e 19.

se: 19,

includes: 12.

insert: 29, 30.

INT: G8.

INT_SET_ITER type: 29, 30, 45, 61.

INT_SET_LIST_ITER type: 60.

INT_SET_LIST type: 66.

INT_SET type: 29, 30, 60, 65.

intro: 12.

t0s: 50, H1.

1os_base: 50.

iterator: 19, 21, 24, 25, 31, 32, 36, 38, 40, 44,
47, 54, 57.

ithi: A7.

ithie: A7.

je: 61, 62.

KCHARP: 20, 26, 44, 45, 46, 47, 48, 49, 54, 56,
58, 60, 64, 65, 68.

keyword: 20.

kw: 20.

Kw: 20.

kw_in_stbl: 20.

kwkey: 20.

left: 68.

len_a: 22.

45, 61, 65.
24, 57.

40, 50.

12, 14, 19, 21, 23, 24, 25,

O2LINKER

len_b: 22.
len_fqna: 22.

len_fqnb: 22.

lex: 12, 79.

li: 32, 38.

lie: 32, 38.
link_cleanser: 12.
linker_cntl_file: 17, 66.
linker_cntl_file_fsm: 17, 18, 19, 51.
Linker_holding_file: 66.

linker_id: 20.
LINKER_PARSE_CMD_LINE: 66.
linker_pass3: 12.
linker_testsuite: 83.
list_of_transitive_threads_:
list_of-Ts_: 18, 31.
load_linkkw_into_tbl: 20.
load_linkkws_into_tbl: 20, 66.
LOCK_MUTEX: (9.

lrclog: 24, 32, 36, 66, 69, 70.
LR1_ALL_SHIFT_OPERATOR: 13, 29, 31.
LR1_EOG: 13, 29.

LR1_eog: 9.

LR1_EOLR: 13, 29.
LR1_FSET_TRANSIENCE_OPERATOR:
LR1_INVISIBLE_SHIFT_OPERATOR:
LR1_PARALLEL_OPERATOR: 13, 29.
LR1_PROCEDURE_CALL_OPERATOR: 13.
LR1_QUESTIONABLE_SHIFT_OPERATOR:
LR1_questionable_shift_operator: 9.
LR1_REDUCE_QOPERATOR: 13, 29.
main: 0606.

malloc: 3.

map: 44, 66.

Max_cweb_item_size: 44, 45, 46, 47, 48, 68.
maz_thds_supported: 206.

monolithic_: 22, 24, 25, 29, 30, 36, 54, 57, 58.
mother_thd_t: 39.

Mother_thd_t: 38.

msg: 20.

name_space_name_: 57.

no_lt: 68.
no_of-T'
NO_OF_THREADS:
no_thds_ids: 061.
NO_WORDS_FOR_BIT_MAP:

32, 38, 39.

13, 29.
13, 29.

13, 29.

29, 60, 64.
14, 25, 26, 34, 35, 51, 58, 66.

14, 58, 60, 63, 66.

Node: 66, 68.
node_: 068.
NS_eol: 22.

NS_fsc_file: 19.
NS_link_cleanser: 18.
NS_linker_pass3: 17.

§90

890 O2LINKER

NS_t_alphabet: 18.

NS_yacco2_terminals: 66.

o_file: 43, 68.

OFile: 53.

ofile: 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65.

ofstream: 50, 51, 52, 53, 54, 55, 56, 60, 66, 68.

on: 206, 61.

open: 50.

out: 50, 51.

Ow_linker_file: 66, 68.

ow_linker_file_: 42, 43, 44, 45, 46, 48, 49, 50, 68.

02_externs: 14.

o2linker: 12, 89.

o2linker__: 88.

o2linker_defs: 12, 71.

o2linker_doc: 12.

o2linker_externs: 12.

O2linker_VERSION : 66.

p: 25.

Parallel_threads_shutdown: 66.

parse: 17, 18, 19.

Parser: 17, 18, 19.

Passover: 26, 61.

PFF: 068.
pidr: 68.
pms: 12.
pos: 24.
pos_: 20.
pre: 43,

Preamble: 53.
preamble_srce_: 51.
PRINT_CALLED_THREAD_LIST: 43, 66, G8.
prog: 12.
pri_called_thread_list_ast_functor: 43, G8.
pri_funct_: G8.
pri_functr: 43.
pri_prefiz: 8.

PRT_SW: 66.

psrec: 68.

push_back: 21, 34.

pr__: 78.

pl: 22.

P1: 22.

pl__: T78.

p2: 22.

P2: 22.

P3_tokens: 17.

queue: T7T.

quot: 58, 62.
quoted_name: 56, 57.
rebuild_comment: 42, A7.

INDEX 63

Recursion_level: 66.

rem: 58, 62.

report_card: 20.

RESERVE_FIXED_NO_THREADS: 28, 66.

reset_cnt: 08.

result: 22.

ri: 25,

rie: 25.

Root_thread: 29, 30, 32, 33.

Root_thread_id: 29, 30, 32, 33.

RSVP: 77.

s_rec: 068.

sampleoutput: 12.

second: 44,

set_re: 21, 78, 80.

set_stop_parse: T7.

set_who_created: 21.

size: 22, 24, 29, 60, 61.

SMALL_BUFFER_4K: 13, 26, 54, 60.

sort_threads_criteria: 22, 23.

SPECULATIVE_NO_BIT_WORDS: 13, 26, 61, 74.

sprintf: 26, 42, 44, 45, 46, 48, 49, 54, 57, 58,
60, 61, 62, 64, 65, 68.

srec_: 08.

stable_sort: 23.

start_token: 78.

stbl_idz: 20.

STBL_T_ITEMS: (6.

STBL_T_ITEMS type: 66.

std: 17, 18, 19, 21, 24, 25, 31, 32, 36, 38, 40, 42,
44, 45, 46, 47, 48, 49, 50, 54, 55, 56, 57, 58,
60, 61, 62, 64, 65, 66, 68, 69, 70, 82.

Stk_env: 68.

stk_env_: 068.

stk_rec: 68.

streat: 42.

stremp: 22.

string: 19, 22, 44, 50, 56, 66.

strien: 42.

Sub_rule_zxx: T8.

sym: 21.

Sym_to_xlate: 60.

symbol_: 45, 61, 65.

syntaz_code: 51.

T_alphabet: 12, 18.

t_alphabet_filename_: 18.

T array: 64.

T_array_entries: 65.

T_ARRAY_HAVING_THD_IDS__: 3, 64, 73, 84.

T_array_type: 64.

t_att: 45, 61, 65.

T_attributes: 45, 61, 65.

64 INDEX

T_DICTIONARY:

T_emitfile: 20.

T_end_list_of_native_first_set_terminals: 20.

T_end_list_of_transitive_threads: 20.

T_end_list_of used_threads: 20.

T_end_preamble: 20.

T_end_T_alphabet: 20.

t_entry: 45, 61, 65.

t_enum: 30, 31.

T_file_name: 20.

T_file_of-T_alphabet: 20.

T_file_tokens: 18.

T _fsc_file_tokens: 19.

T fsm: 18.

T_fsm_comments: 20.

T_grammar_name: 20.

tiid: 65.

tiin_stbl: 45, 61, 65.

T_list_of native_first_set_terminals: 20.

T_list_of transitive_threads: 20.

T list_of used_threads: 20.

T_list_to_thd_list_type: 60.

T_list_to_thd_list_var: 60, 61, 65.

tlisti: 29, 30.

T_monolithic: 20.

T _name_space: 20.

T no_of-T: 20.

T_pass3: 18.

T_preamble: 20.

T_sym_tbl_report_card: 20.

T_T_alphabet: 20.

T_THREAD_ID_LIST:

T_thread_name: 20.

T tokens: 18.

T_transitive: 20.

ta: 68.

table_entry: 20, 21, 22, 24, 25, 36, 40, 45, 47,
54, 57, 61, 62, 65, 66.

thl_entry: 21, 24, 25, A7, 62.

tenum: 45.

terminal_id: 60, 61.

testsuites: 12.

12, 14, 18, 29, 45, 60, 61, 65, 66.

thoatt: 32, 36, 38, 40, 42, 43, 44, 45, 54, 57, 58, 62.
57.

th_enum_: 24, 25, 29, 30, 33, 36, 38, 39,
TH_eol: 22.
th_goodies: 21, 24, 25.

thi: 21.
th_id: 62.
th_ie: 21.

th_list: 29, 30, 60, 61, 65.
th-name: 57.
th_tbl: 36, 40, 54, 57, 58, 62.

12, 14, 18, 29, 30, 60, 64, 66.

O2LINKER 8§90

th_tbll: 22.

th_tbl2: 22.

thd_id_in_list: 60, 62.

Thd_list: 38.

THDS_STABLE__: 3, 6, 56, 73, 84.

thi: 36, 40, 54, 57, 58.

thie: 36, 40, 54, 57, 58.

thread_array: 58.

thread_attributes: 22, 32, 33, 36, 38, 39, 40, 54,
57, 58, 62, 68.

Thread_entry: 5, 56.

thread_entry: 56, 57.

thread_entry_name: 58.

THREAD_ID_FIRST_SET: 12.

THREAD_ID_FS: 14.

thread_in_stbl: 22, 36, 40, 54, 57, 58, 62.

thread_include_ns: 54.

thread_name_: 22, 24, 32, 36, 42, 44, 57, 58, 62, 68.

ti: 44,

tok_can: 17, 18, 19.

TOKEN_GAGGLE: 17, 18, 19, 66.

TOTAL_NO_BIT_WORDS: 3, 13.

TOTAL_NO_BIT_WORDS__: 3, 84.

TOTAL_NO_OF_BIT_WORDS__: ©.

toupper: 22.

TRACE_MU: 69, 70.

true: 15, 21, 22, 58, 60, 65, 77.

trunc: 50.

tt: 44,

tth_in_stbl: 45, 61, 65.

tte: A4,

ttie: A4,

types: 12.

ucase_a: 22.

ucase_b: 22.

ucase_fqna: 22.

ucase_fqnb: 22.

ULINT: 61, 62.

UNLOCK_MUTEX: 70.

used_threads: 44.

USED_THREADS_LIST: 12, 44, G6.

vector: 19, 21, 24, 25, 31, 32, 36, 38, 40, 44,
47, 54, 57, 66, 82.

vi: 34, 35.

visit_graph: 81.

Visit_graph: 28, 33, 34, 35, 38, 39, 66, 82.

Visited_th: 29, 30, 31, 32, 33, 39.

w_called_threads: 42, 47, 68.

w_called_threads_index: 068.

w_comments: 42, AT.

w_doc_comments: 46.

w_doc_indez: 46.

890 O2LINKER

w_fsc_file_listing: 48.

w_grammar: 42, A7.

w_index: 49.

w_linker_filename_: 46, 50.

walk_called_thread_list: 38, 39.

word-map: 61, 62, 63.

write: 42, 44, 45, 46, 48, 49, b4, 57, 58, 60,
61, 62, 64, 65, 68.

z: 22, 29, 42, 44, 45, 46, 54, 57, 58, 60, 62,
64, 65, 68.

zlate_file: 46.

zlate_fscfile: 46.

zlate_gfile: 42, A7, 68.

XLATE_SYMBOLS_FOR_cweave: 42, 44, 45,
46, 48, 66, 68.

zlate_thnm: 44, 47.

zlate_tnm: 45, 47.

zlated_filename: 48.

Xlated_sym: 66.

zxxr: 12.

yacco2: 3, 12, 20, 24, 36, 66, 68, 69, 70, 84.

yacco2_characters: 12.

YACCO2_define_trace_variables: 66.

yaccoZ_err_symbols: 12.

Yacco2_faulty_precondition: 26.

yaccol_k_symbols: 12.

yaccol linker_keywords: 79.

YACCO2_MU_TRACING__: 69, 70.

yacco2_stbl: 20, 86.

YACCO2_STBL: 12.

yaccol_T_enumeration: 8, 12.

yaccol_-terminals: 12,

YES: 44.

INDEX

65

66 NAMES OF THE SECTIONS O2LINKER

(External rtns and variables 14, 28) Used in section 88.

(Include files 86) Used in section 88.

(Structure implementations 68) Used in section 71.

(accrue linker code 20, 22, 33, 38, 39, 40, 52, 53, 54, 55, 56, 60, 66) Used in section 89.
(acquire trace mu 69) Used in section 68.

(allocation space for Visit_graph 34) Used in section 36.

(announce the stable to the world 59) Used in section 58.

(associate native terminals with called thread 31) Used in section 33.

(calculate terminal’s thread bit map 62) Used in section 61.

(check whether Linker has enough space to gen thread bit maps: no throw up 26) Used in section 66.
(count and re-align threads enumerate values to sorted position 25) Used in section 66.
(create terminal’s thread bit map 61) Used in section 60.

(deal with threads having T in first set 30) Used in section 31.

(dump sorted dictionary 24) Used in section 66.

(emit array of Terminals’ thread bit maps 64) Used in section 60.

(emit code 51) Used in section 66.

(emit terminal’s thread bit map 63) Used in section 61.

(gen global thread array 58) Used in section 56.

(gen thread list 57) Used in section 56.

(generate linker document 50) Used in section 66.

(generate threads final first sets 36) Used in section 66.

(if error queue not empty then deal with posted errors 15) Used in sections 17, 18, 19, 21, and 66.
(initialize Visit_graph to not visited 35) Used in sections 36 and 40.

(102 87) Used in section 89.

(loop thru grammars to gen their local linker doc info 47) Used in section 50.
(make grammar’s contents cweaveable and output 42) Used in section 47.
(o2linker.cpp 89)

(o2linker.h 88)

(o2linker_defs.cpp 71)

(output First set of linker 48) Used in section 50.

(output Index of linker 49) Used in section 50.

(output grammar’s called threads list 43) Used in section 47.

(output grammar’s first set 45) Used in section 47.

(output grammar’s used threads 44) Used in section 47.

(output preamble of document 46) Used in section 50.

(parse T alphabet 18) Used in section 66.

(parse fsc files 19) Used in section 66.

(parse linker control file 17) Used in section 66.

(post verify that there are no threads “used” and not “defined” 21) Used in section 66.
(print out each thread set 65) Used in section 64.

(probagate |+] 29) Used in section 31.

(process called thread’s list 32) Used in section 33.

(release trace mu 70) Used in section 68.

(sort thread dictionary 23) Used in section 66.

O2LINKER

Section Page

License ... 1
Summary of Yacco2’s Linker — threads and their bit maps 2
Globals — those unresolved static variables used by Yacco2’s library 3

Some definitions within Linker’s context 4
Overview of O5"F¢"’s generated COMPONENES\ o'ttt ettt 5

Thread Dit MaPSot 6

Linker’s Janguagesot 7
Terminal alphabet 8
Terminal enumeration 9

First set declarations 10

Linker’s control language 11
Catalogue of Linker’s files 12

Global macro definitions e 13
External routines and globals 14

Local routines 16
Parse linker control file 17

Parse T alphabet 18

Parse fsc files 19
load_linkkw_into_thl 20

Verify that all threads used are defined i . 21

Sort thread dictionary i 22
Sort uses template algorithm 23

Dump sorted dictionary 24

Count and re-align threads enumerate values to sorted position 25

Thread graphs: first set generation 27
VAstt_graph . . . oo 28
Probagate | | oo 29

Deal with threads having T in first set i . 30

Associate native terminals with called thread 31

Process called thread’s list i 32

Crt_fset_of thread 33
Allocation space for Visit_graph 34
Initialize Visit_graph to “not visited” 35

Generate those first SetsS o 36

0 O O UL U W

— =
o O ©

e e el e
W N —

— = =
N O O Ut

[T N I N I N R O T e S
_ O OO O O WO o o

O2LINKER TABLE OF CONTENTS
Generate document for each grammar’s called threads 37
crt_called_thread_list and walk_called_thread_list 38
crt_called_thread_graph e 39
gen_each_thread_s_referenced_threads i 40
Generate Linker’s document 41
Make grammar’s contents cweaveable and output 42
Output grammar’s called threads list 43
Output grammar’s used threads i 44
Output grammar’s first set 45
Output preamble of document 46
Loop thru grammars to gen their local linker doc info 47
Output First set of linker 48
Output Index of linker 49
Output driver of the linker document 50
Emit code 51
Emit no threads 52
Emit cpp preamble 53
Emit thread include files 54
Emit global bit maps 55
Emit global thread stable THDS_STABLE__ttt 56
The threading Stew 57
The table hote 58
Announce the stable to the world 59
Emit global Terminals’ thread bit maps 60
Create terminal’s thread bit map i 61
Calculate terminal’s thread bit map i 62
Emit terminal’s thread bit map 63
Emit Terminals’ thread bit maps and global T_ARRAY_HAVING_THD_IDS__ 64
Print each entryo 65
Main line of Linker 66
Structure implementation 67
pri_called_thread_list_ast_functor implementation 68
ACQUITE TTACE TN « . vttt e e e e e e e 69
Release trace mu 70
Write out o2linker_defs.cpp Structure implementations 71
PMS — Post meta syndrome 72
Bugs — ugh .. 76
Test suites: Check out those flabby grammar muscles 83
Sample output from Linker 84
Sample 2: No threads outputted just a stand alone grammar 85
Include files 86
Create header file for Oslinker environment 88
Oolinker implementation 89

IndeX . 90

1

22
22
22
22
23
23
23
24
24
25
25
26
26
26

27
27
28
28
28
29
29
30
30
31
32
32
32
33
33
34
35
35
36
36

37
38
39
42

%)
59
59
60
60

61

	License
	Summary of Yacco2's Linker --- threads and their bit maps
	Globals --- those unresolved static variables used by Yacco2's library
	Some definitions within Linker's context
	Overview of 's generated components
	Thread bit maps
	Linker's languages
	Terminal alphabet
	Terminal enumeration
	First set declarations

	Linker's control language
	Catalogue of Linker's files
	Global macro definitions
	External routines and globals
	Local routines
	Parse linker control file
	Parse T alphabet
	Parse fsc files
	load_linkkw_into_tbl
	Verify that all threads used are defined
	Sort thread dictionary
	Sort uses template algorithm
	Dump sorted dictionary
	Count and re-align threads enumerate values to sorted position
	Thread graphs: first set generation
	Visit_graph
	Probagate +
	Deal with threads having T in first set
	Associate native terminals with called thread
	Process called thread's list

	crt_fset_of_thread
	Allocation space for Visit_graph
	Initialize Visit_graph to ``not visited''
	Generate those first sets
	Generate document for each grammar's called threads
	crt_called_thread_list and walk_called_thread_list
	crt_called_thread_graph
	gen_each_thread_s_referenced_threads
	Generate Linker's document
	Make grammar's contents cweaveable and output
	Output grammar's called threads list
	Output grammar's used threads
	Output grammar's first set
	Output preamble of document
	Loop thru grammars to gen their local linker doc info
	Output First set of linker
	Output Index of linker
	Output driver of the linker document
	Emit code
	Emit no threads
	Emit cpp preamble
	Emit thread include files
	Emit global bit maps
	Emit global thread stable THDS_STABLE__

	The threading stew
	The table h^ote
	Announce the stable to the world

	Emit global Terminals' thread bit maps
	Create terminal's thread bit map
	Calculate terminal's thread bit map

	Emit terminal's thread bit map
	Emit Terminals' thread bit maps and global T_ARRAY_HAVING_THD_IDS__
	Print each entry
	Main line of Linker
	Structure implementation
	prt_called_thread_list_ast_functor implementation
	Acquire trace mu
	Release trace mu
	Write out o2linker_defs.cpp Structure implementations
	PMS --- Post meta syndrome
	Bugs --- ugh
	Test suites: Check out those flabby grammar muscles

	Sample output from Linker
	Sample 2: No threads outputted just a stand alone grammar
	Include files
	Create header file for O2linker environment
	O2linker implementation
	Index
	Names of the sections
	External rtns and variables
	Include files
	Structure implementations
	accrue linker code
	acquire trace mu
	allocation space for Visit_graph
	announce the stable to the world
	associate native terminals with called thread
	calculate terminal's thread bit map
	check whether Linker has enough space to gen thread bit maps: no throw up
	count and re-align threads enumerate values to sorted position
	create terminal's thread bit map
	deal with threads having T in first set
	dump sorted dictionary
	emit array of Terminals' thread bit maps
	emit code
	emit terminal's thread bit map
	gen global thread array
	gen thread list
	generate linker document
	generate threads final first sets
	if error queue not empty then deal with posted errors
	initialize Visit_graph to not visited
	io2
	loop thru grammars to gen their local linker doc info
	make grammar's contents cweaveable and output
	o2linker.cpp
	o2linker.h
	o2linker_defs.cpp
	output First set of linker
	output Index of linker
	output grammar's called threads list
	output grammar's first set
	output grammar's used threads
	output preamble of document
	parse T alphabet
	parse fsc files
	parse linker control file
	post verify that there are no threads ``used'' and not ``defined''
	print out each thread set
	probagate +
	process called thread's list
	release trace mu
	sort thread dictionary

