
O2˙TYPES CWEB OUTPUT 1

O

2 GLOBAL DEFINITIONS AND FILES O2˙TYPES §1

1. Global definitions and files.
Basic preamble include files used by all others.

〈 globals.h 1 〉 ≡ /∗ file: globals.h ∗/ /∗ prelude files using yacco2: for o2, o2linker utilities ∗/
#ifndef globals h
#define globals h 1
#include <stdarg.h>

#include <stdlib.h>

#include <string.h>

#include <limits.h>

#include "yacco2.h"

#include "yacco2_T_enumeration.h"

#include "yacco2_err_symbols.h"

#include "yacco2_characters.h"

#include "yacco2_k_symbols.h"

#include "yacco2_terminals.h"

using namespace std;
using namespace NS yacco2 T enum;
using namespace NS yacco2 k symbols;
using namespace NS yacco2 terminals;
using namespace yacco2;

#endif

2. “o2 types” header file of common set of definitions and structures.
“o2 types.h” file is a common set of definitions and structures used by “o2externs.w” external routines.
Contains definitions and type-defs.

〈 o2_types.h 2 〉 ≡
#ifndef o2 types
#define o2 types 1
〈defines 3 〉;
〈Type defs 4 〉;
〈Structure defs 82 〉;

#endif

§3 O2˙TYPES “O2 TYPES” HEADER FILE OF COMMON SET OF DEFINITIONS AND STRUCTURES 3

3. Definitions for O2 and my external routines — “o2externs.w”.
As i’m writing directly out to a file, the use of the ctangle macro directive displays its displeasure so i’m
using the direct c code route.

〈defines 3 〉 ≡
#define NO_BITS_PER_SET_PARTITION 8
#define CODE_PRESENCE_IN_ARBITRATOR_CODE "pp_accept_queue__"

#define ACCEPT_FILTER true
#define BYPASS_FILTER false
#define Success true
#define Failure false
#define Nested file cnt limit 15
#define O2 library file "yacco2.h"

#define Yacco2 holding file "yacco2cmd.tmp"

#define Linker holding file "linkercmd.tmp"

#define Max cweb item size10 ∗ 1024
#define Max buf size2 ∗ 1024
#define Max no subrules8 ∗ 1024
#define EPSILON_YES 0
#define EPSILON_NO 1
#define EPSILON_DONT_KNOW 2
#define EPSILON_MAYBE 3
#define SDC user imp sym "#user−imp−sym"

#define SDC user imp tbl "#user−imp−tbl"

#define SDC user prefix declaration "#user−prefix−declaration"

#define SDC user suffix declaration "#user−suffix−declaration"

#define SDC user declaration "#user−declaration"

#define SDC constructor "#constructor"

#define SDC destructor "#destructor"

#define SDC op "#op"

#define SDC failed "#failed"

#define SDC user implementation "#user−implementation"

#define SDC user imp implementation "#user−imp−sym"

#define SDC user tbl implementation "#user−tbl−tbl"

#define SDC arbitrator code "#arbitrator−code"

#define PP thread name "#parallel−thread−function"

#define Suffix fsmheader ".h"

#define Suffix fsmimp ".cpp"

#define Suffix fsmsym "sym.cpp"

#define Suffix fsmtbl "tbl.cpp"

#define Suffix enumeration hdr ".h"

#define Suffix t alphabet ".fsc"

#define Suffix Errors hdr ".h"

#define Suffix Errors imp ".cpp"

#define Suffix T hdr ".h"

#define Suffix T imp ".cpp"

#define Suffix RC hdr ".h"

#define Suffix RC imp ".cpp"

#define Suffix LRK hdr ".h"

#define Suffix LRK imp ".cpp"

#define Suffix fsc ".fsc"

#define LR1_COMPATIBLE true
#define NOT_LR1_COMPATIBLE false

4 “O2 TYPES” HEADER FILE OF COMMON SET OF DEFINITIONS AND STRUCTURES O2˙TYPES §3

#define MERGED true
#define NOT_MERGED false
#define ABORT_GENING_STATES 2
#define START_STATE_ENUMERATE − 1
#define LR1_QUESTIONABLE_SHIFT_OPERATOR 0
#define LR1_QUESTIONABLE_SHIFT_OPERATOR_LITERAL "|?|"

#define LR1_EOG 1
#define LR1_EOLR 2
#define LR1_EOLR_LITERAL "eolr"

#define LR1_PARALLEL_OPERATOR 3
#define LR1_REDUCE_OPERATOR 4
#define LR1_REDUCE_OPERATOR_LITERAL "|r|"

#define LR1_INVISIBLE_SHIFT_OPERATOR 5
#define LR1_ALL_SHIFT_OPERATOR 6
#define LR1_FSET_TRANSIENCE_OPERATOR 7
#define LR1_FSET_TRANSIENCE_OPERATOR_LITERAL "LR1_fset_transience_operator"

#define LR1_PROCEDURE_CALL_OPERATOR 7
#define LR1_PROCEDURE_CALL_OPERATOR_LITERAL "|p|"

#define END_OF_LR1_DEFS 7
#define SMALL_BUFFER_4K1024 ∗ 4
#define BIG_BUFFER_32K1024 ∗ 32
#define THREAD_CALL 0
#define PROCEDURE_CALL 1
#define MICROSOFT_THREAD_LIBRARY 1
#define PTHREAD_LIBRARY 0

This code is used in section 2.

4. Typedef definitions.

〈Type defs 4 〉 ≡
typedef int Voc ENO;
typedef int RULE ENO;
struct state;
struct state element;
struct follow element;

See also sections 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, and 80.

This code is used in section 2.

5. 〈Type defs 4 〉 +≡
typedef std ::map < std ::string ,yacco2 ::CAbs lr1 sym ∗> SDC MAP type ;

6. 〈Type defs 4 〉 +≡
typedef SDC MAP type :: iteratorSDC MAP ITER type ;

7. 〈Type defs 4 〉 +≡
typedef std ::vector < NS yacco2 terminals ::T in stbl ∗> STBL T ITEMS type ;

8. 〈Type defs 4 〉 +≡
typedef std ::set < NS yacco2 terminals ::T in stbl ∗> T IN STBL SET type ;

§9 O2˙TYPES “O2 TYPES” HEADER FILE OF COMMON SET OF DEFINITIONS AND STRUCTURES 5

9. 〈Type defs 4 〉 +≡
typedef T IN STBL SET type :: iterator T IN STBL SET ITER type;

10. 〈Type defs 4 〉 +≡
typedef std ::vector 〈 NS yacco2 terminals ::T in stbl ∗> T IN STBL SORTED SET type ;

11. 〈Type defs 4 〉 +≡
typedef T IN STBL SORTED SET type :: iterator T IN STBL SORTED SET ITER type;

12. 〈Type defs 4 〉 +≡
typedef std ::set 〈 NS yacco2 terminals ::rule in stbl ∗> RULE IN STBL SET type ;

13. 〈Type defs 4 〉 +≡
typedef RULE IN STBL SET type :: iterator RULE IN STBL SET ITER type;

14. 〈Type defs 4 〉 +≡
typedef std ::vector 〈 yacco2 ::CAbs lr1 sym ∗> O2 PHRASE TBL type ;

15. 〈Type defs 4 〉 +≡
typedef O2 PHRASE TBL type :: iterator O2 PHRASE TBL ITER type;

16. 〈Type defs 4 〉 +≡
typedef std ::set 〈 NS yacco2 terminals ::rule in stbl ∗> RULES IN FS SET type ;

17. 〈Type defs 4 〉 +≡
typedef RULES IN FS SET type :: iterator RULES IN FS SET ITER type;

18. 〈Type defs 4 〉 +≡
typedef std ::vector 〈 NS yacco2 terminals ::rule def ∗> RULE DEFS TBL type ;

19. 〈Type defs 4 〉 +≡
typedef RULE DEFS TBL type :: iterator RULE DEFS TBL ITER type;

20. 〈Type defs 4 〉 +≡
typedef std ::vector 〈 NS yacco2 terminals ::T subrule def ∗> SUBRULE DEFS type ;

21. 〈Type defs 4 〉 +≡
typedef SUBRULE DEFS type :: iterator SUBRULE DEFS ITER type;

22. 〈Type defs 4 〉 +≡
typedef std ::map 〈std ::string , NS yacco2 terminals ::T terminal def ∗> T DEF MAP type ;

23. 〈Type defs 4 〉 +≡
typedef T DEF MAP type :: iterator T DEF MAP ITER type;

24. 〈Type defs 4 〉 +≡
typedef std ::set〈int〉 INT SET type;

25. 〈Type defs 4 〉 +≡
typedef INT SET type :: iterator INT SET ITER type;

26. 〈Type defs 4 〉 +≡
typedef std ::map〈int, std ::string 〉 INT STR MAP type;

6 “O2 TYPES” HEADER FILE OF COMMON SET OF DEFINITIONS AND STRUCTURES O2˙TYPES §27

27. 〈Type defs 4 〉 +≡
typedef INT STR MAP type :: iterator INT STR MAP ITER type;

28. 〈Type defs 4 〉 +≡
typedef std ::set 〈 std ::string ∗> STR SET type ;

29. 〈Type defs 4 〉 +≡
typedef STR SET type :: iterator STR SET ITER type;

30. 〈Type defs 4 〉 +≡
typedef std ::map 〈 NS yacco2 terminals ::T in stbl ∗ , STR SET type >

T IN STBL SET STR MAP type ;

31. 〈Type defs 4 〉 +≡
typedef T IN STBL SET STR MAP type :: iterator

T IN STBL SET STR MAP ITER type;

32. 〈Type defs 4 〉 +≡
typedef std :: list < state ∗ > STATES type ;

33. 〈Type defs 4 〉 +≡
typedef STATES type :: iterator STATES ITER type;

34. 〈Type defs 4 〉 +≡
typedef int Voc ENO;

35. 〈Type defs 4 〉 +≡
typedef int RULE ENO;

36. 〈Type defs 4 〉 +≡
typedef int T ENO;

37.

〈Type defs 4 〉 +≡
typedef std ::set〈RULE ENO〉 RULE NOS SET type;

38.

〈Type defs 4 〉 +≡
typedef RULE NOS SET type :: iterator RULE NOS SET ITER type;

39.

〈Type defs 4 〉 +≡
typedef std ::set〈state ∗〉 STATES SET type;

40.

〈Type defs 4 〉 +≡
typedef STATES SET type :: iterator STATES SET ITER type;

41. Map of lr1 states used for potential state merge.

〈Type defs 4 〉 +≡
typedef std ::map〈Voc ENO,STATES type〉 LR1 STATES type;

§42 O2˙TYPES “O2 TYPES” HEADER FILE OF COMMON SET OF DEFINITIONS AND STRUCTURES 7

42.

〈Type defs 4 〉 +≡
typedef LR1 STATES type :: iterator LR1 STATES ITER type;

43.

〈Type defs 4 〉 +≡
typedef std :: list〈state element ∗〉 S VECTOR ELEMS type;

44.

〈Type defs 4 〉 +≡
typedef S VECTOR ELEMS type :: iterator S VECTOR ELEMS ITER type;

45. This supplies all GPS positions within each subrule string of symbols to generate the lr states for the
state and it also supplies all the follow set GPS contributors for each referenced rules. All strings to the
right of these referenced rules become the follow set strings of symbols to calculate the follow set.

〈Type defs 4 〉 +≡
typedef std ::map〈Voc ENO,S VECTOR ELEMS type〉 S VECTORS type;

46. 〈Type defs 4 〉 +≡
typedef S VECTORS type :: iterator S VECTORS ITER type;

47. 〈Type defs 4 〉 +≡
typedef std ::set 〈 T in stbl ∗> FOLLOW SETS type ;

48. 〈Type defs 4 〉 +≡
typedef FOLLOW SETS type :: iterator FOLLOW SETS ITER type;

49. 〈Type defs 4 〉 +≡
typedef std ::set 〈 T in stbl ∗> LA SET type ;

50. 〈Type defs 4 〉 +≡
typedef LA SET type :: iterator LA SET ITER type;

51. 〈Type defs 4 〉 +≡
typedef std ::set 〈 T in stbl ∗> SHIFT SET type ;

52. 〈Type defs 4 〉 +≡
typedef SHIFT SET type :: iterator SHIFT SET ITER type;

53. 〈Type defs 4 〉 +≡
typedef std :: list〈follow element ∗〉 TRANSITIONS type;

54. 〈Type defs 4 〉 +≡
typedef TRANSITIONS type :: iterator TRANSITIONS ITER type;

55. 〈Type defs 4 〉 +≡
typedef std :: list〈state ∗〉 MERGES type;

56. 〈Type defs 4 〉 +≡
typedef MERGES type :: iterator MERGES ITER type;

8 “O2 TYPES” HEADER FILE OF COMMON SET OF DEFINITIONS AND STRUCTURES O2˙TYPES §57

57. List of subrules elements that require follow set calculation. This is the contributors list that allows
me to debug my code. A contributor is the grammar node of the subrule element.

〈Type defs 4 〉 +≡
typedef std :: list 〈 AST ∗> SR ELEMENTS type ;

58. State’s follow sets of referenced rules making up its “closure-only” core. The rule definition enumerate
value is the map’s key.

〈Type defs 4 〉 +≡
typedef std ::map〈RULE ENO, follow element ∗〉 S FOLLOW SETS type;

59.

〈Type defs 4 〉 +≡
typedef S FOLLOW SETS type :: iterator S FOLLOW SETS ITER type;

60. Closure state’s conflict list from its “closure-part” gened state network. These are the lr1 states
that have a reduce configuration (subrule’s string of symbols consumed or epsilon) with other reduce or
shift subrule configurations that are checked for lr1 compatibility. The list allows one to pretest the merge
potential of a newly being gened state into an already gened lr1 state network.

〈Type defs 4 〉 +≡
typedef std :: list〈state ∗〉 S CONFLICT STATES type;

61.

〈Type defs 4 〉 +≡
typedef S CONFLICT STATES type :: iterator S CONFLICT STATES ITER type;

62.

〈Type defs 4 〉 +≡
typedef std ::set 〈 rule in stbl ∗> CLOSURE RULES type ;

63.

〈Type defs 4 〉 +≡
typedef CLOSURE RULES type :: iterator CLOSURE RULES ITER type;

64.

〈Type defs 4 〉 +≡
typedef std ::set〈T ENO〉 FOLLOW RULES type;

65.

〈Type defs 4 〉 +≡
typedef FOLLOW RULES type :: iterator FOLLOW RULES ITER type;

66.

〈Type defs 4 〉 +≡
typedef std ::set 〈 T in stbl ∗> FIRST SET type ;

67.

〈Type defs 4 〉 +≡
typedef FIRST SET type :: iterator FIRST SET ITER type;

§68 O2˙TYPES “O2 TYPES” HEADER FILE OF COMMON SET OF DEFINITIONS AND STRUCTURES 9

68. 〈Type defs 4 〉 +≡
typedef vector〈T ENO〉 T COUNT type;

69. 〈Type defs 4 〉 +≡
typedef T COUNT type :: iterator T COUNT ITER type;

70. 〈Type defs 4 〉 +≡
typedef vector 〈 T in stbl ∗> STBL T ITEMS type ;

71. 〈Type defs 4 〉 +≡
typedef STBL T ITEMS type :: iterator STBL T ITEMS ITER type;

72. 〈Type defs 4 〉 +≡
typedef std ::set 〈 rule def ∗> RULES HAVING AR type ;

73. 〈Type defs 4 〉 +≡
typedef RULES HAVING AR type :: iterator RULES HAVING AR ITER type;

74. 〈Type defs 4 〉 +≡
typedef std ::vector〈LA SET type ∗〉 COMMON LA SETS type;

75. 〈Type defs 4 〉 +≡
typedef COMMON LA SETS type :: iterator COMMON LA SETS ITER type;

76. 〈Type defs 4 〉 +≡
typedef std ::map〈int, int〉 BIT MAP type;

77. 〈Type defs 4 〉 +≡
typedef BIT MAP type :: iterator BIT MAP ITER type;

78. 〈Type defs 4 〉 +≡
struct use cnt type {

rule def ∗ for rule use cnt ;
rule def ∗ against rule ;

int use cnt ;

use cnt type(rule def ∗R, rule def ∗ S): for rule use cnt (R), against rule (S), use cnt (0)
{ }
;

use cnt type(const use cnt type &C)
: for rule use cnt (C.for rule use cnt), against rule (C.against rule), use cnt (C.use cnt) { }
;
};
typedef std ::map〈int,use cnt type〉 CYCLIC USE TBL type;
typedef CYCLIC USE TBL type :: iterator CYCLIC USE TBL ITER type;

79. 〈Type defs 4 〉 +≡
typedef std ::set〈int〉 SET FILTER type;

80. 〈Type defs 4 〉 +≡
typedef tok can < AST ∗> TOK CAN TREE type ;

10 LR1 DEFINITIONS O2˙TYPES §81

81. LR1 definitions.

State

Vectors map Follow set map Entry symbol Conflict states list

vectors map[eno]: symbol’s enumerate

• state’s element list
• state element ↑
• grammar tree node ↑
• closure state ↑
• go to state ↑
• previous state ↑
• reduced state ↑
• previous state element

• next state element
• LA set ↑
• Common LA set index

follow set map[eno]: rule’s enumerate

• follow set element ↑
• rule no • rule def tree ↑
• state element ↑ • it’s state ↑
• follow set of T−in−stbl ↑
• transitions: follow set element ↑
• merges:

Let’s review what makes up a state:
1) subrules’s specific element — state’s to gen vectors
2) rules’s follow set
3) state’s entry symbol — Start state has no entry symbol
4) state’s list of conflict states

A state is a set of productions (subrules) where each production’s current symbol being worked on is some
position along its string. A state from the arithmetic grammar discussed earlier could be represented by the
following example where the “.” indicates the position within the production’s string being worked on in
the state:

S → E . ⊥
E → E . + T

The above state has 2 productions where each symbol being worked on is in position 2 of their respective
strings. These are items in the state having their production configuration of subrule ⊗ string position.
Sometimes I shall call each entry a state element rather than an item. A rule’s follow set gets created
when it is present in point 1: ie, the state’s element is a rule and its follow set is the string to its right that
generates teminals. Please see at the beginning of this document the “follow set” definition. Point 3’s entry
symbol identifies the symbol used to gen the state and to quickly help in determining whether two states are
equivalent for potential state merging. Point 4 is a requirement to support merging of states from 2 different
closured-part state networks. It supplies the lr1 states that have reduce / reduce or shift conditions that
require the lr1 compatibility check. When there is a proposed merger from 2 different closured-part contexts,
it is the union of their follow sets that gives the reducing subrules their lookahead sets. Consequently the
lr1 conflict states of the “merged into context” must be evaluated for lr1 compatibility.

Parts of a state:
1) Closured
2) Transitive

A closured part are all the state’s items whose elements start their strings. They have been brought into
the state by the “closure” operation caused by a state’s element being a rule. A transitive part are those
productions whose elements are to the right of the start element. Items used to generate a new state are
called “core items”.

§81 O2˙TYPES LR1 DEFINITIONS 11

State generation:
All states are generated from a closured part of a state. Its productions are walked along their strings
producing transitive states until their strings are completely consumed. This holds for the “Start state”
that starts things off by generating all it transitive children. Thereafter each transitive state is visited and
assessed for its closured components that then generates its own transitive states. This goes on until all the
generated states have been visited.

Contexts:
1) follow sets
2) production’s reduced lookahead set

A production’s reduction occurs when all its string has been recognized. For it to reduce, it depends on
the context of its follow set within its birthing closured state: This is the lr1 compatibility context that is
refered to as lookahead. When there is no conflict of interest between competing productions (reduces with
possibly shifts) within the state, this becomes a lr(0) situation. Without regard for the lookahead context
this now shifts the error detection to the state that must deal with the lookahead as the current terminal
for shifting. This strategy is used when state merges takes place. Instead of exploding the number of states
sensitive to only its own lookahead context, mergers combine the follow set contexts as long as there is no
state incompatibilities created. 2 or more competing reducing productions requires their follow set contexts
to resolve the reducing conflict: reduce / reduce or reduce / shift. Shifts of symbols are local to the reducing
state.

Of course lookaheads are context sensitive according to each productions birthing states. In LR(1) terms,
the lookahead is deterministic and provided by the follow sets having only 1 symbol string as lookahead.

Follow set and right bounded condition:
This condition is where a rule is the last symbol in its production string. Its closured productions inherit
the follow set of the production string(s) that closured it. These follow sets are found in the gening closured
state environment. Consequently right bounded closured productions must be gened in case it could produce
a conflict state. Why? Merges taking place above this to-be-gened production from a different closured state
generation could produce a conflict as the merger is not aware that one of its transitive states has a future
conflict condition dependent on these merged follow set contexts.
As an example please see David Spector from “SIGPLAN VOL 23 DEC/88” where my gened “lr1 sp5.lex”
grammar illustrates this condition.

Epsilon rules and right bounded condition:
If the last symbol is a rule and is epsilonable, then the right bounded condition moves left inwards from the
end of the symbol string to the next right-to-left symbol. Now if that symbol is a rule it is considered a right
bounded requiring generation within the current closured state environment. This is a recursive definition:
right bounded condition gens closures having the right bounded condition that also requires immediate gen-
eration. When it comes time to gen the closured-part state of the right bounded components, they will have
been already gened and their conflict states entered against their gening closured-part state environment.

Significance of right bounded condition:
It demands that its future closured state generation be associated with the generating closured state that
created it. Restated: It must be generated prematurely by its spawning closured state. This way any of its
transitive states that have the lr1 conflict condition will get placed in the conflict state list of the generating
closured state so that a proposed merger relative to the original closured state is aware of the potential
conflict and checked accordingly.

Some synonyms:
“Closure-only” state:
A state where all its state elements are configurations with their start symbol. This is your one and only
Start state.

12 LR1 DEFINITIONS O2˙TYPES §81

“Transitive” state:
A state where at least one state element is not the starting symbol of a production’s string.

“Closured-only-part” of a state:
All state’s elements whose symbols start the subrule string. Synonym: “closured state”.

“Closured-only-subrules” of a state:
Productions’s symbol strings brought into the state by the closure operation caused by a state’s element being
a rule. The “closured-only” part are those subrules birthed within this state to generate all its “closured-
only” subrules transitive states.

“Conflict state”:
A state having at least 2 items where at least one of the productions is reducing.

Building a state core:
There are only 2 contexts that provide the generation fodder for a state:

1) Start (closure-only) state — Start rule’s grammar tree definition
2) Transitive states — generated from a closured state

The “closured-part” of a state generates all its transitive states from its closure subrules regardless of the
type of state — Start or transitive. Point 1 starts things off. It generates all its transitive states. Point 2
deals with transitive states from point 1 that have closured-only residues that need generating. Of course
these newly generated transitive states could be merged into the existing lr1 state network if they meet the
lr1 compatibility criteria. Eventually the newly added transitive states will be assessed for their “closured-
part” generation.

Some Merge points:
First, only conflict states are tested. They are supplied by their associated closured generating state. When a
merge takes place, the state being absorbed by the older closured network deposits its follow set info against
the merged into state.

Second, the conflict states of the “merged into” state network must also be added to the gening closured
state’s conflict state list. Why? If the state was not merged, eventually all its gened states would have the
equivalent conflict states as the proposed merger. The only refinement to this is conflict states should only
be added that are eventually generated from the “merged into” state. Now if future mergers are proposed
into this newly closured state’s network, the conflict states of the absorbing network will also be there for
the testing.

In summary, Lr1 state generation is discrete in its generation passes. Pass one: generate all the states
for the start state from its “closured-only” subrules. Pass two and greater deals with “closured-only” parts
of transitive states that have not been completely gened. Remember a subrule is associated with its birth
state that brought it into existance. These transitive states are of previous passes. Each transitive pass looks
for the next transitive state to generate until all its lr state network have been built. The “transitive state
pass” generates all its “closured-only” subrules independently of the past generations.

Now the state implementation bedevils this definition as does Goethic churches — one usually does not
see the infrastructure required to build it unless the project ran out of money and stands unfinished but
open to its engineering secrets. So here’s the scaffolding for my sanity. A note on the following type defs
sections: to make “cweave” behave in formatting its the document — a slight ahem until i debug / correct
“cweave”. The cause is templates that came after the original program was written.

§82 O2˙TYPES GEN CONTEXT DEFINITION 13

82. gen context definition.
The context identifying the closure state and vector combo gening its states. This context is needed to
prevent same closure state merges whose vectors are different but generate common states having different
follow sets. If merged the contributing contexts could make it non lr1. See David Spector’s paper “Efficicent
Full Lr1 Parser Generators”: G2 example. The context is maintained per state that gened it and per state’s
subrules vectors: state element.

〈Structure defs 82 〉 ≡
struct gen context {

state ∗for closure state ;
Voc ENO gen vector ;

gen context(state ∗S,Voc ENO Ve);
};

See also sections 83, 84, and 85.

This code is used in section 2.

83. state element definition.
Basic building block of a state’s set of subrules’ string symbols. Laced throughout state element are
linkages between the past, present, and future of its lr1 state generation. This is the scaffolding to build the
state network. sr def element is for tracing purposes only. I could have gone the long way by getting
the tree node’s content and then fetch its definition but this makes life easier when truth telling takes place
— terminal-def or rule-def.

The la set only gets created at the end-of-string point. It’s a fast way to scratch-pad potential merges
and the lr1 breathalyzer test.

〈Structure defs 82 〉 +≡
struct state element {

gen context cs vector combo gening it ;
LA SET type ∗la set ;
state ∗closure state ;
state ∗goto state ;
state ∗reduced state ;
state ∗previous state ;
state ∗self state ;
state ∗closured state gening it ;
state element ∗previous state element ;
state element ∗next state element ;

AST ∗ sr element ; /∗ grammar tree node ∗/
CAbs lr1 sym ∗ sr def element ; /∗ 1 of terminal-def or rule-def ∗/
T subrule def ∗ subrule def ;

int common la set idx ;
int its enum id ; /∗ grammar’s enumerated value of terminal-def or rule-def ∗/
state element(AST ∗ Elem);
∼state element();

void fill la from merge (state element &La to fill in ,MERGES type &Merge ,RULE ENO
Rule no);

void fill la from transition (state element &La to fill in ,TRANSITIONS type &Transition);
bool calc la (state element &La to fill in);
void add fs setA to LA(follow element &Fe ,LA SET type &La to fill in);
RULE ENO find state element s rule no();
};

14 FOLLOW ELEMENT FOLLOW SET DEFINITION FOR A RULE O2˙TYPES §84

84. follow element Follow set definition for a rule.
The input set of strings for the rule’s follow set are provided by the state’s S VECTORS type that is a
map of 3 generic enumerate types — “rule-defs”, “T-defs”, and “eosubrule” variants. Of particular interest in
this map are the “rule-def”s. The state elements associated with the rule are the GPS into each subrule’s
symbol string. One can view this as the state’s contributors list to generate both its lr states and the
referenced rules’ follow sets for this state. Now these input follow set strings are the strings to its right of
its GPS. This is supplied thru the symbol’s grammar next brother tree node.

〈Structure defs 82 〉 +≡
struct follow element {

RULE ENO rule no ;

AST ∗ rule def t ;

state ∗its state ;
FOLLOW SETS type follow set ;
TRANSITIONS type transitions ;
MERGES type merges ;

SR ELEMENTS typesr elements ;

void add T to follow set (AST ∗ T element);
void add follow set contributor (AST ∗ SR element);
void add follow set transition (state element &State elem ,T eosubrule & Eos);
void add follow set transition (state element &State elem ,T called thread eosubrule & Eos);
void add follow set transition (state element &State elem ,T null call thread eosubrule & Eos);

AST ∗ rule def t ();

state ∗its state ();

follow element(RULE ENO Rule no , state element &State elem , AST & Rule def t);
follow element(state ∗State);

void remove merge closure info();
void add merge closure info(state &To merge closure state);
};

§85 O2˙TYPES STATE DEFINITION 15

85. state definition.
vectored into by elem is the goto element from the spawning state that enters this state. The “xxx-def”
symbol is provided by vectored into by elem sym that is used for tracing purposes. It is one of the elements
in determining whether 2 states are equal. I use the symbol’s defining enumerate value which was enumerated
across all the Grammar’s vocabulary: Rules and Terminals. START_STATE_ENUMERATE symbol representing
-1 is used to accommodate a “closure only” state where there is no symbol entering the start state as a
Grammar’s vocabulary enumeration begins at 0.

closure rule list provides referenced rules in the state to complete the state’s elements. follow rule list
is a fast way to deal with building follow sets for the state as it is a list of rule numbers that are keys into
state s to vector that indirectly supplies the follow string contexts.

To support rules recycling optimization, a quasi closure state for any rule of the grammar has been added.
Why the addition? Recycling of rules requires a use count derived from recursion and subrules references to
the rule. My first attempt was wrong as i did not take into account that a rhs subrule could have a referenced
rule that could be indirectly referenced by (derived by) a suffixed referenced rule. So i need to derive the
state containing the closured items and them analyse its content to see whether indirect referencing is taking
place. So create ctor of state with no tree and a closure only derives method.

〈Structure defs 82 〉 +≡
struct state {

gen context cs vector combo gening it ;
Voc ENO vectored into by elem ;
/∗ enumerate from N or T vocabulary: -1= closure-only state ∗/

CAbs lr1 sym ∗ vectored into by elem sym ; /∗ rule def ,T def ,0=closure-only state ∗/
int state no ;
CLOSURE RULES type closure rule list ;
CLOSURE RULES type derives closure rule list ; /∗ only for: rule recycling optimization ∗/
FOLLOW RULES type follow rule list ;
void add closure rules subrules to state (gen context &Possible gen context , state &Closure state);
void add rule s subrules to state (AST & Start Rule def t ,gen context &Possible gen context , state

&Closure state associate with);
bool crt core items of state (S VECTOR ELEMS ITER type &Iter begin ,

S VECTOR ELEMS ITER type &Iter end ,gen context &Gening context);
S VECTORS type state s vector ;
S FOLLOW SETS type state s follow set map ;
S CONFLICT STATES type state s conflict state list ;
void add element to state vector (Voc ENO Elem id , state element &Elem);
void add rule to closure list (rule in stbl ∗ Rule in stbl);
void add rule to follow list (RULE ENO Refered rule);
void create follow sets of state ();
void create start state (AST & Start rule t);
bool gen transitive states for closure context (gen context &For gening context , state

&For closure state , state &State);
bool gen transitive states balance for closure vector (gen context &Gen context , state

&For closure state , state &Goto state);

state(Voc ENO Eno ,CAbs lr1 sym ∗ Entry sym);
state(AST ∗ Start rule t);

bool gen a state (gen context &For gening context , state &For closure state , state
&Requesting state ,S VECTORS ITER type &Elem iter);

const char ∗entry symbol literal ();
void add state to gbl lr1 state tbls (state ∗State);
void add state to conflict states list if (gen context &Gening context , state &State);
state ∗closure state birthing it ;

16 STATE’S MAP OF “TO VECTOR” ELEMENTS O2˙TYPES §86

bool is state lr1 compatible (state &State to eval);
int are 2 states compatible yes merge (state &To merge into state , state &State for merging);
void merge state (state &To merge into state , state &State for merging);
int find 2 states compatible and merge (state &State for merging);
bool are states equivalent (state &Merge into state , state &To merge state);
bool are gened states lr1 compatible ();
bool is str rt bnded (AST ∗ Str);
bool is str epsilonable (AST ∗ Str);
void crt start rule s follow set (AST & Str);

state(); /∗ for closure only derives ∗/
void closure only derives (AST ∗ Rule tree);
int determine reduced state type (state ∗S);
int state type ;

string ∗ arbitrator name ;
};

86. State’s map of “to vector” elements.
S VECTORS type is the state’s map of “to vector” elements of “rule-ref”, “T-ref”, and eosubrule . These
elements produce the “goto” state eminating out of the lr1 state. This is a white lie as the eosubrule eminates
nothing. It represents either the epsilon condition if its the first element of a subrule or a fully consumed
subrule: its string of symbols has been consumed and so to be reduced. “rule-ref”, “T-ref” are proxies to
their definitions whereby their enumerated values are unique.

The second part of the map is the list of same state elements having identical enumerated keys. These
vectors are the fodder to generate the next set of states eminating from this state and all the “closured-only
part” states progeny. The list is sorted by the AST address inside the state’s emlement so that state equiv-
alences can be determined. U might raise the point: doesn’t it matter what order the elements are placed
inside the state to generate the lr1 state network: FIFO? NO! Let’s review why.

1) “closured only” state composed of 1st position only subrules’ elements.
2) this state’s follow sets are static: first set from strings to rt of refered rules.
3) only the closured-only subrules are fully generated at the same time.
4) transitive states only continue gening their subrules from the closured state.
5) the resulting lr1 states are evaluated for lr1 conflicts.
6) apply the logic above to gened states having incomplete gened closured-only parts.

It is point 2 that is interesting: the birthing closured states of its reducing subrules supplies their lookahead.
This means the closured state is generated completely before an assessment needs to take place. The lr1
assessment determines whether the gened states are lr(1) compatible. This check goes only against states
that have reducing subrules so that the reduce / reduce and shift / reduce conditions can be verified.

How is the lr1 condition evaluated? Easy, the reducing subrule’s rule within its birthing closured state
contains its follow set: ie its lookahead terminals. All it takes is to make sure that the intersection of all
the reducing subrules’ follow sets is empty and that the state’s shift terminals are not in any of the reducing
subrules’ follow sets. This shift set can be considered an invisible follow set that is applied at the same time
to the other reducing follow sets. Keeping a list of conflicting states within the “closure-only or part” state
when a state merge is proposed allows one to apply this lr1 condition for compatibility against the potential
merged follow sets. Remember a gened state is produced out of its closured state. Thus mergers mean use
the follow sets of each closure state. The “state to merge into” already has it list of lr1 conflict states in its
associated gening closured state that need checking before Mr. Goodwrench nods.

Key: element’s enumerate: “rule-def”, “T-def”, and “eosubrule”
Elements in list: state’s elements that contain a grammar’s tree node address

ABORT_GENING_STATES: 3. ACCEPT_FILTER: 3.

§86 O2˙TYPES STATE’S MAP OF “TO VECTOR” ELEMENTS 17

add closure rules subrules to state : 85.
add element to state vector : 85.
add follow set contributor : 84.
add follow set transition : 84.
add fs setA to LA: 83.
add merge closure info : 84.
add rule s subrules to state : 85.
add rule to closure list : 85.
add rule to follow list : 85.
add state to conflict states list if : 85.
add state to gbl lr1 state tbls : 85.
add T to follow set : 84.
against rule : 78.
arbitrator name : 85.
are gened states lr1 compatible : 85.
are states equivalent : 85.
are 2 states compatible yes merge : 85.
AST: 57, 80, 83, 84, 85.
BIG_BUFFER_32K: 3.
BIT MAP ITER type: 77.
BIT MAP type: 76, 77.
BYPASS_FILTER: 3.
C: 78.
CAbs lr1 sym : 5, 14, 83, 85.
calc la : 83.
closure only derives : 85.
closure rule list : 85.
CLOSURE RULES ITER type: 63.
CLOSURE RULES type: 62, 63, 85.
Closure state : 85.
closure state : 83.
Closure state associate with : 85.
closure state birthing it : 85.
closured state gening it : 83.
CODE_PRESENCE_IN_ARBITRATOR_CODE: 3.
common la set idx : 83.
COMMON LA SETS ITER type: 75.
COMMON LA SETS type: 74, 75.
create follow sets of state : 85.
create start state : 85.
crt core items of state : 85.
crt start rule s follow set : 85.
cs vector combo gening it : 83, 85.
CYCLIC USE TBL ITER type: 78.
CYCLIC USE TBL type: 78.
derives closure rule list : 85.
determine reduced state type : 85.
Elem : 83, 85.
Elem id : 85.
Elem iter : 85.
END_OF_LR1_DEFS: 3.
Eno : 85.

Entry sym : 85.
entry symbol literal : 85.
Eos : 84.
eosubrule : 86.
EPSILON_DONT_KNOW: 3.
EPSILON_MAYBE: 3.
EPSILON_NO: 3.
EPSILON_YES: 3.
Failure : 3.
false : 3.
Fe : 83.
fill la from merge : 83.
fill la from transition : 83.
find state element s rule no : 83.
find 2 states compatible and merge : 85.
FIRST SET ITER type: 67.
FIRST SET type: 66, 67.
follow element: 4, 53, 58, 83, 84.
follow rule list : 85.
FOLLOW RULES ITER type: 65.
FOLLOW RULES type: 64, 65, 85.
follow set : 84.
FOLLOW SETS ITER type: 48.
FOLLOW SETS type: 47, 48, 84.
For closure state : 85.
for closure state : 82.
For gening context : 85.
for rule use cnt : 78.
gen a state : 85.
gen context: 82, 83, 85.
Gen context : 85.
gen transitive states balance for closure vector : 85.
gen transitive states for closure context : 85.
gen vector : 82.
Gening context : 85.
globals h : 1.
Goto state : 85.
goto state : 83.
INT SET ITER type: 25.
INT SET type: 24, 25.
INT STR MAP ITER type: 27.
INT STR MAP type: 26, 27.
is state lr1 compatible : 85.
is str epsilonable : 85.
is str rt bnded : 85.
Iter begin : 85.
Iter end : 85.
iterator: 6, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27,

29, 31, 33, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56,
59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 78.

its enum id : 83.
its state : 84.

18 STATE’S MAP OF “TO VECTOR” ELEMENTS O2˙TYPES §86

its state : 84.
la set : 83.
LA SET ITER type: 50.
LA SET type: 49, 50, 74, 83.
La to fill in : 83.
Linker holding file : 3.
list: 32, 43, 53, 55, 57, 60.
LR1_ALL_SHIFT_OPERATOR: 3.
LR1_COMPATIBLE: 3.
LR1_EOG: 3.
LR1_EOLR: 3.
LR1_EOLR_LITERAL: 3.
LR1_FSET_TRANSIENCE_OPERATOR: 3.
LR1_FSET_TRANSIENCE_OPERATOR_LITERAL: 3.
LR1_INVISIBLE_SHIFT_OPERATOR: 3.
LR1_PARALLEL_OPERATOR: 3.
LR1_PROCEDURE_CALL_OPERATOR: 3.
LR1_PROCEDURE_CALL_OPERATOR_LITERAL: 3.
LR1_QUESTIONABLE_SHIFT_OPERATOR: 3.
LR1_QUESTIONABLE_SHIFT_OPERATOR_LITERAL: 3.
LR1_REDUCE_OPERATOR: 3.
LR1_REDUCE_OPERATOR_LITERAL: 3.
LR1 STATES ITER type: 42.
LR1 STATES type: 41, 42.
map: 5, 22, 26, 30, 41, 45, 58, 76, 78.
Max buf size : 3.
Max cweb item size : 3.
Max no subrules : 3.
Merge : 83.
Merge into state : 85.
merge state : 85.
MERGED: 3.
merges : 84.
MERGES ITER type: 56.
MERGES type: 55, 56, 83, 84.
MICROSOFT_THREAD_LIBRARY: 3.
Nested file cnt limit : 3.
next state element : 83.
NO_BITS_PER_SET_PARTITION: 3.
NOT_LR1_COMPATIBLE: 3.
NOT_MERGED: 3.
NS yacco2 k symbols: 1.
NS yacco2 T enum: 1.
NS yacco2 terminals: 1, 7, 8, 10, 12, 16,

18, 20, 22, 30.
O2 library file : 3.
O2 PHRASE TBL ITER type: 15.
O2 PHRASE TBL type: 14, 15.
o2 types : 2.
Possible gen context : 85.
PP thread name : 3.
previous state : 83.

previous state element : 83.
PROCEDURE_CALL: 3.
PTHREAD_LIBRARY: 3.
reduced state : 83.
Refered rule : 85.
remove merge closure info : 84.
Requesting state : 85.
rule def : 18, 72, 78, 85.
Rule def t : 84.
rule def t : 84.
rule def t : 84.
RULE DEFS TBL ITER type: 19.
RULE DEFS TBL type: 18, 19.
RULE ENO: 4, 35, 37, 58, 83, 84, 85.
Rule in stbl : 85.
rule in stbl : 12, 16, 62, 85.
RULE IN STBL SET ITER type: 13.
RULE IN STBL SET type: 12, 13.
Rule no : 83, 84.
rule no : 84.
RULE NOS SET ITER type: 38.
RULE NOS SET type: 37, 38.
Rule tree : 85.
RULES HAVING AR ITER type: 73.
RULES HAVING AR type: 72, 73.
RULES IN FS SET ITER type: 17.
RULES IN FS SET type: 16, 17.
S: 82, 85.
S CONFLICT STATES ITER type: 61.
S CONFLICT STATES type: 60, 61, 85.
S FOLLOW SETS ITER type: 59.
S FOLLOW SETS type: 58, 59, 85.
S VECTOR ELEMS ITER type: 44, 85.
S VECTOR ELEMS type: 43, 44, 45.
S VECTORS ITER type: 46, 85.
S VECTORS type: 45, 46, 84, 85, 86.
SDC arbitrator code : 3.
SDC constructor : 3.
SDC destructor : 3.
SDC failed : 3.
SDC MAP ITER type : 6.
SDC MAP type: 5, 6.
SDC op : 3.
SDC user declaration : 3.
SDC user imp implementation : 3.
SDC user imp sym : 3.
SDC user imp tbl : 3.
SDC user implementation : 3.
SDC user prefix declaration : 3.
SDC user suffix declaration : 3.
SDC user tbl implementation : 3.
self state : 83.

§86 O2˙TYPES STATE’S MAP OF “TO VECTOR” ELEMENTS 19

set: 8, 12, 16, 24, 28, 37, 39, 47, 49, 51, 62,
64, 66, 72, 79.

SET FILTER type: 79.
SHIFT SET ITER type: 52.
SHIFT SET type: 51, 52.
SMALL_BUFFER_4K: 3.
sr def element : 83.
SR element : 84.
sr element : 83.
sr elements : 84.
SR ELEMENTS type : 57, 84.
Start Rule def t : 85.
Start rule t : 85.
START_STATE_ENUMERATE: 3, 85.
State : 84, 85.
state: 4, 32, 39, 55, 60, 82, 83, 84, 85.
State elem : 84.
state element: 4, 43, 82, 83, 84, 85.
State for merging : 85.
state no : 85.
state s conflict state list : 85.
state s follow set map : 85.
state s to vector : 85.
state s vector : 85.
State to eval : 85.
state type : 85.
STATES ITER type: 33.
STATES SET ITER type: 40.
STATES SET type: 39, 40.
STATES type: 32, 33, 41.
STBL T ITEMS ITER type: 71.
STBL T ITEMS type: 7, 70, 71.
std: 1, 5, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26,

28, 30, 32, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55,
57, 58, 60, 62, 64, 66, 72, 74, 76, 78, 79.

Str : 85.
STR SET ITER type: 29.
STR SET type: 28, 29, 30.
string : 5, 22, 26, 28, 85.
subrule def : 83.
SUBRULE DEFS ITER type: 21.
SUBRULE DEFS type: 20, 21.
Success : 3.
Suffix enumeration hdr : 3.
Suffix Errors hdr : 3.
Suffix Errors imp : 3.
Suffix fsc : 3.
Suffix fsmheader : 3.
Suffix fsmimp : 3.
Suffix fsmsym : 3.
Suffix fsmtbl : 3.
Suffix LRK hdr : 3.

Suffix LRK imp : 3.
Suffix RC hdr : 3.
Suffix RC imp : 3.
Suffix t alphabet : 3.
Suffix T hdr : 3.
Suffix T imp : 3.
T called thread eosubrule : 84.
T COUNT ITER type: 69.
T COUNT type: 68, 69.
T def : 85.
T DEF MAP ITER type: 23.
T DEF MAP type: 22, 23.
T element : 84.
T ENO: 36, 64, 68.
T eosubrule : 84.
T in stbl : 7, 8, 10, 30, 47, 49, 51, 66, 70.
T IN STBL SET ITER type: 9.
T IN STBL SET STR MAP ITER type: 31.
T IN STBL SET STR MAP type: 30, 31.
T IN STBL SET type: 8, 9.
T IN STBL SORTED SET ITER type: 11.
T IN STBL SORTED SET type: 10, 11.
T null call thread eosubrule : 84.
T subrule def : 20, 83.
T terminal def : 22.
THREAD_CALL: 3.
To merge closure state : 84.
To merge into state : 85.
To merge state : 85.
tok can: 80.
TOK CAN TREE type : 80.
Transition : 83.
transitions : 84.
TRANSITIONS ITER type: 54.
TRANSITIONS type: 53, 54, 83, 84.
true : 3.
use cnt : 78.
use cnt type: 78.
Ve : 82.
vector: 7, 10, 14, 18, 20, 68, 70, 74.
vectored into by elem : 85.
vectored into by elem sym : 85.
Voc ENO: 4, 34, 41, 45, 82, 85.
yacco2: 1, 5, 14.
Yacco2 holding file : 3.

20 NAMES OF THE SECTIONS O2˙TYPES

〈Structure defs 82, 83, 84, 85 〉 Used in section 2.

〈Type defs 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,

69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 〉 Used in section 2.

〈defines 3 〉 Used in section 2.

〈 globals.h 1 〉
〈 o2_types.h 2 〉

O2˙TYPES

Section Page
Global definitions and files . 1 2

“o2 types” header file of common set of definitions and structures 2 2
LR1 definitions . 81 10

gen context definition . 82 13
state element definition . 83 13
follow element Follow set definition for a rule . 84 14
state definition . 85 15

State’s map of “to vector” elements . 86 16

	Global definitions and files
	``o2_types'' header file of common set of definitions and structures
	LR1 definitions
	gen_context definition
	state_element definition
	follow_element Follow set definition for a rule
	state definition
	State's map of ``to vector'' elements

	Names of the sections
	Structure defs
	Type defs
	defines
	globals.h
	o2_types.h

