CLiP - C ode from Li terate P rograms

Provisional User Manual

Disclaimer:

This document is meant for programmers who are already familiar with the literate pro-
gramming paradigm. It pretends in no way to be acomplete user manual in the real meaning of
the word. But the document should supply sufficient hints to experiment successfully with the
CLiP system.

You are assumed to be familiar with the ideas and design goals of the CLiP system as
explained in [Ammers and Kramer 1993]. Also you should have read READ ME. TXT or
READ_ME. PSwhich comewiththe executablesand understand themeaning of the INI-filewhich
guides the extraction process.

The DOS and VMS versions of CLiP consist of two independent programs, CLIP_1 and
CLIP_2. CLIP_1 is purely to create an INI-file for CLIP_2, which performs the actual work.
The Unix version consists of only one program, CLIP (which isidentical to CLIP_2), and an
INI-file should be made using the supplied scripts or an editor. This manual only dealswith the
second program.

1 Introduction

In short the idea behind CLIP is to define a style of programming sufficiently formal to be
recognized by a literate programming automaton. This syntax (which we will refer to as the
CLiP-syntax) should not obstruct a natural way of programming. Ideally the system should be
smart enough to "see" stubs, slots and the like by "inspecting” the documentation and simply
"understanding” the refinements the programmer has made. Alas, thisis far beyond the current
potential of artificial intelligence and we will have to reach the automaton a helping hand by
defining a special syntax.

So we want the "look and feel" of a documentation to be as "natural” as possible, but with
CLiP features that can be recognized by an automaton. On the other hand should the reader be
burdened as little as possible with the fact that additional processing is needed to extract the
modules. In systems like VAMP [Ammers 1984] and WEB [Knuth 1984] - which use batch
formatters - thisis achieved by adding explicit commandsin the source-filesthat are suppressed
in the formatted documentation. But this technique does not work if the documentation envi-

CLiP provisiona user manual (version 2.100)

2 Syntax (programming style)

ronment isan interactive word-processor (Word Perfect, L otus Manuscript, MS-Word, Ami Pro,
etc.). So CLiP uses either the ASCII-export from a word-processors or the ASCII input of a
formatter and extracts modules from there. In these files CLiP recognizes the important sections
by a particular programming-style rather than by explicit commands.

The first section describes the syntax that CLiP "sees’. The next section gives a couple of
useful examples. In section 4 we describe the options that may be used to customize the process
of module generation. In section 5 we give some hints on how to organize your working with
CLiPefficiently. Stubsand slots my remaining sectionsillustrate the style of documentation and
programsthat would result. CLiPisin development and we compilethe known bugsin section 6.

2 Syntax (programming style)

CLiP-lines — that is lines which have a special meaning to CLiP — start with a CLIP-left-
parenthesis (CLIP-lIpar) and end with a CLIP-right-parenthesis (CLIP-rpar). Both tokens are
constructed as extensions of the tokens encapsulating comments which we will refer to as
COVM START and COMMt END. If we program in Pascal then everything between"(*" and "*) "
IS seen as comment, thus we have the convention:

COVM START ="(*"
COWM END ="+)"

Extension of thecomment token isby acharacter with aspecial meaningtoclip, theCLI P- CHAR.
In our case we assume

CLI P- CHAR="*"
Thus CLiP-lines are enclosed by
CLIP-lpar of theform"(**"
and
CLIP-rpar of theform "**)"

Theparameters COMM+ START, COMM ENDand CLI P- CHARareset by thelNI-fileanditisevident
that the convention can be adjusted.

CLiP distinguishes six source line categories:

(******************* <arb|trary Strlng> **********************)
(**************** End Of <arb|trary Strlng> ******************)
(** <arbitrary string> *%)

(***)

<the enpty string>
<any string not falling in one of the above categories>

OO WNPE

Wewill refer to alinefrom the second category asan "L 2" and so on and investigate the meaning
isof the various categories for CLiP.

Thestring "End of " of an L2 has a special meaning that distinguishesan L2 from an L1.
Again this specia string is defined by a parameter in the INI-file

END- STRI NG = "ENDOF"

CLiP provisiona user manual (version 2.100)

2.1 Stub blocks and documentation blocks 3

Observethat CLiP does not distinguish between upper and lower case and forgets about spaces.
In fact CLiP reduces the <arbitrary string> internally to a sequence of the characters "A"-"z",
"0"-"9" and". "

Note that for an L3 the character immediately following the CLI P- CHAR on the left side
and the character preceding the CLI P- CHAR on the right side may be anything apart from the
CLI P- CHAR itself.

2.1 Stub blocks and documentation blocks

From CLiP spoint of view the source-filesare divided in documentation blocks and stub-blocks.
A stub-block startswith an L1 and usually ends with an L2. A special kind of stub, a so called
quick stub (see sect. 3.3 and 4), isended by an L5 or an <EOF>. Everything outside a stub-block
is a documentation block and ignored by CLiP. For this reason we say that CLiP isin active
mode during the processing of a stub-block and in passive mode otherwise. The only way to
change CLiP from passive to active modeis by an L1 and the usual way from active to passive
isthrough an L2. An L2 in passive mode is presumably an error and will be ignored.

2.2 Segments

A stub-block contains one and only one stub-segment, which starts the stub-block. The
stub-segment may be followed by any number of slot-segments and/or code-segments.

AnL1awaysstartsanew stub- or slot-segment and the segment continueswith any number
of lines of type L3 or L4. A segment is a slot-segment if and only if it is not the first one of a
stub-block. A code-segment consists of any number of contiguous lines of type L5. Stub- and
slot-segments have an identification or name which is constructed somehow from the <ar -
bitrary string>sinsidethe segment.

L3 and L4 are continuations of stub- and slot-segments, but with aslightly different status.
An L3 that cannot be pasted to a segment is flagged as an error. But an L4 under the same
conditionsis interpreted as belonging to the current code-segment.

2.3 Options

The module extraction process can be tuned by means of options. Stub-segments as well as
slot-segments may have options. An option starts with a keyword signalled by a special
OPTI ON- MARKER. The option keyword may be abbreviated to a unique headerstring for that
option. We will assume "#" for OPTI ON- MARKER, but of course this again is a parameter set by
the INI-file. The argument(s) following an option continue till the next option-keyword or till
the end of the segment. Therefore the name of a segment must precede the options.

In general options operate on theinside of the stub only, sincethat isthe part of the program
that the programmer of this particular refinement hasin his or her mind. In addition options can
beinherited. The meaning of the various optionsisexplained in section 4. Some frequently used
options show up in the examples of section 3.

CLiP provisiona user manual (version 2.100)

4 Examples

3 Examples

In the examples we will illustrate the most important features of CLiP by making remarks on
excerpts drawn from the documentation of CLiPs predecessor, VAMP.

3.1 Example 1: Defining a module

The module VAMP:
Starting from nowhere, the empty program will do.

1| (**** #File "VAWP. PAS". #l ndent on. kxR k)
2

3 (***)
4| (* Routi ne: VAMP - Mai n nodul e of the VAWMP system *)
5| (* Purpose: Mai n nodul e and uni que entry point to the *)
6| (* VAMP- syst em *)
71 (* Interface: TTY - Al'l communication with the user *)
8| (* proceeds via the termnal. *)
9| (* Author/Date: VAMP project managenent, Sept. 12, 1983. *)

10 (***)

12 (********************** VANP (body) **************************)
13
14 (*********************** End Of VANP *************************)
15
16

18 (********* VANP (body) #def ***********)
19| PROGRAM VAVP (I NPUT, OUTPUT);

20 BEG N
21 WRI TELN (' !!! VAWP was here !11’);
22 END (* VAMP*) .

23 (********** End Of VANP (body) *********)

Remarks:

There are two stubs in this section. Line 1-14 and line 18-23. Both stub-blocks have a
stub-segment of one line only (lines 1 and 18 respectively).

The first stub-segment has no identification. It specifies the start of a new output module
by the FILE option and thus is not meant to be referenced (see also example 5).

Line 2 (an L5) separates line 3 (an L4) from the stub-segment and makes it belong to the
code-segment which expands over lines 2-11.

There resides only one dlot inside the first stub (line 12) and this dot is identified as
"VAMPBODY". The second stub has no slots at all.

Linel3isatrivial code-segment and line 14 marksthe end of thefirst stub-block. The string
following the "End of" is optional and does not have to match the stub name in any way.

CLiP provisiona user manual (version 2.100)

3.2 Example 2: Multiple slots

3.2 Example 2: Multiple slots

O©CoO~NOUILE, WNPE

Environment module:

In the past there have been made several changesin the VAMP program. These changes have
been made in the extracted modul es rather then in the VAMP source. To make source files consistent

with the modules, the source files have been updated in march 1990 by Jeroen Reef.
Furthermore, the updated source files contain two additional modules, VAMP.MSG and

DECLAR_MOD. The module VAMP.MSG contains the error messages of VAMP and the module
DECLAR_MOD contains the types and constants used by several modules of VAMP. This module

uses the ENVIRONMENT, which directs the compiler to generate an environment file

5

DECLAR.PEN. Other modules can reference the identifiers declared in DECLAR_MOD by inheriting

the environment with the INHERIT attribute.

(FrrEEE #Fi | e "DECLAR_MOD. PAS". #l ndent ON. FRokkxx)

(***)

(* Module to contain all parameters and gl obal decl arations *)
(* of the VAMP system *)

(***)

[ENVI RONMVENT (’ DECLAR. PEN)] MODULE DECLARS;
(***x*x*x*x%x Pgrameters of the VAMP-system (#nmul) (*r**x*xxskrsixs)

TYPE
ABSTRACT = (DEFI NED, UNDEFI NED) ;
(***x**xx% Ginple types of the VAMP-system (#mul) *x****x*x)
(******** Structured types of the VAMP-system (#nul) ***x**)
END.
(***************** End Of [EG_ARE Ivu:) PAS ********************)

Remarks:

The stub-block extends over 16 lines. Line 1 is the stub-segment and line 16 closes the
stub-block. Lines 2-8 constitute the first code-segment of the stub, lines 10-12 the middle one

and line 15 the last one.

There arethree sots (or slot-segments), lines 9, 13 and 14. All slots consist of oneline only
and carry the multiple option. For instance the first slot can swallow any number of parameter

definition that might turn up in the future.
The names (identifications) of the slots are respectively

"PARAMVETERSOFTHEVAMPSYSTEM'
"SI MPLETYPESOFTHEVAMPSYSTEM'
" STRUCTUREDT YPESOFTHEVAMPSYSTEM'

CLiP provisiona user manual (version 2.100)

6 Examples

3.3 Example 3: Quick stubs and abstract data types

First level data structures:

Thislevel introduces the data-structure TTY _INFO, containing the initial communication
between the terminal and the program. The definition requires in addition four system parameters
and some constants and types which are related to file specifications. The structure of CODE_INFO
isleft open for the time being.

1| (******x**x*x pParameters of the VAMP-system (#qui ck) *x****x*ixs)
21 (* eeeeaee Parameters of TTY_ INFO --------- *)
3| MAX_FILE SPEC L = 255; (* Maximum length file-specific. *)
41 MAX_FILE_NAVE L = 39; (* Maximum l ength fil e-namne. *)
5| MAX_ FILE EXT_L = 39; (* Maximum length file-extension. *)
6| MAX_I N_FILES = 8; (* Maxi mum nunber of in-files for *)
7 (* a single run. *)
8| UPB I N FILES = 9 (* = MAX_IN FILES + 1. *)
9| MAX_ MODULES = 10; (* Maxi mum nunber of nodul es *)
10 (* specified for a run. *)
11| UPB_MODULES = 11; (* = MAX_MODULES + 1. *)
12| EMPTY =",

13

14| (*****x**x* Ginple types of the VAMP-system (#quick) ****x*xxskx)
N I G Sinple types of TTY_ INFO --------- *)

16| FI LE_SPEC
17| FI LE_NAME
18| FI LE_EXT

VARYI NG [MAX_FI LE_SPEC L] OF CHAR
VARYI NG [MAX_FI LE_NAME L] OF CHAR;
VARYI NG [MMX_FI LE_EXT_L] OF CHAR

19

20| (******** Gtructured types of the VAWMP-system ****x*xxkxxkrkix)
A Structured types of TTY_INFO --------- *)
22| TTY_INFO = RECORD

23 IN FILES: ARRAY [1..UPB IN FILES] OF FILE SPEC,
24 MODULES: ARRAY [1..UPB_MODULES] OF FI LE_NAME;
25 DFLT_EXT: FI LE_EXT;

26 I NV_MODE,

27 GO BOOLEAN;

29 END (* RECORD*) ;

30 (**************** I:ECI aratlon Of m INFO *******************)
31| (******** End of Structured types of the VAMP-system *****x*xx)

34 (************* [bcl aratlon Of m INFO(#def) ***************)
35| CODE_I NFO = ABSTRACT,
36 (******************** End Of dEC| aratlon *********************)

Remarks:

Thissection contains five stubs altogether, i.e. lines 1-12, 14-18, 20-31 and 34-36. Thefirst
two blocks one have no internal slots. The quick option promotes them to quick stubs, which
means that they are completed by thefirst line that is not an L6.

The third stub (20-31) illustrates how an abstract data type can be implemented. The stub
isan ordinary one with one dlot - identified as "DECLARATI ONOFCODEI NFO' - at line 30. The
slot is by default satisfied with the stub at lines 34-36. But this declaration will be replaced by
anew one at some time in the future.

CLiP provisiona user manual (version 2.100)

3.4 Example 4: An ordinary refinement step

3.4 Example 4: An ordinary refinement step

Body of VAMP:

The input-fileswill be processed sequentially in the same order as given by the user. The inter-
mediate file"VAMP.TMP" is guarded by a sentinel to simplify backspacing later on and it needs an
additional global declaration.

1 (*********** S| n-ple types Of the VANP_SyStem ************)
2 FTYPE = FI LE OF CHAR;
3 (****************** End Of dEC| aratlon ******************)

Now t he body of VAMP expands to

(********************** VANP (body) **************************)

4
5| [INHERI T (’ SYS$LI BRARY: STARLET. PEN' , ’ DECLAR PEN)]
6| PROGRAM VAVP (1 NPUT, OUTPUT);
7
8

(***************** Constants Of VANP (#n-ult) *****************)
9 (***************** Types Of VANP (#n-ult) *********************)
10| VAR

11 FI LE_CNT: 1..UPB_ I N FILES;

12 CURR_| N_FI LE: TEXT; (* Currently read file. *)
13 CODE_LI NES: FTYPE, (* Frominput extracted code. *)
14 TTY_DATA: TTY_I NFO,

15 CODE_STRUCT: CODE_| NFG,

16 (************ Varlabl ES Of VANP (#wlt) ******************)
17

18| [EXTERNAL] PROCEDURE ASKTTY (VAR TTY_DATA: TTY_INFO): EXTERN;
19 (*************** Functlons Of VANP (#rmlt) *******************)

21| BEGA N

22 (* Take the data, that are needed for this VAMP run from *)
23 (* the termnal. *)
24 ASKTTY (TTY_DATA);

25 W TH TTY_DATA DO

26 I F GO THEN

27 BEG N

28 (********************* VANP (C) **********************)
29 (** Initialize CODE_STRUCT. **)
30 (***)
31

32 OPEN (CODE_LI NES, FILE_NAME : =" VAVP. TMP',

33 ORGANI ZATI ON : = RELATI VE, ACCESS METHOD : = DI RECT,
34 DI SPOSI TI ON : = DELETE);

35 REWRI TE (CODE_LI NES) ;

36 FILE_CNT : = 1;

37 VWH LE (I N_FILES [FILE_CNT] <> EMPTY) DO

38 BEG N

39 WRI TELN (' Proceeding on file ',IN FILES [FILE CNT]);
40 OPEN (CURR_IN FILE, FILE NAME := IN_FILES [FILE _CNT],
41 H STORY : = READONLY) ;

42 RESET (CURR_I N _FI LE);

43 PUT (CODE_LI NES); (* Start file with a sentinel. *)
44

CLiP provisiona user manual (version 2.100)

8 Examples

45 (****************** VANP (A) *********************)
46 (** Build CODE_STRUCT and fill CODE LINES by a *x)
47 (** scan of CURR_IN_FILE, using the information **)
48 (** of MODULES, DFLT_EXT and | NV_MODE. *x)
49 (***)
50

51 CLOSE (CURR_IN FILE);

52 FILE CNT := FILE CNT + 1;

53 END (*WHI LE*);

54

55 (******************** VANP (B) ***********************)
56 (** Cenerate the files as specified by CODE STRUCT *x)
57 (** fromthe data contained by CODE LI NES. *x)
58 (***)
59

60 (* Cose and Delete scratch-file CODE_LI NES. *)
61 CLOSE (CODE_LI NES, DELETE);

62 END

63 ELSE

64 WRI TELN (' !'!'! You specified an enpty run - try again !!!");
65| END (*VAMP*).

66 (******************* End Of VANP (body) **********************)
67

68

69| (****x**x*xxx% Constants of VAMP (#| eader, #quick) ***x*xxkxkix)
70| CONST

71 (************ Types Of VANP (#I eader, #QUI Ck) ****************)
72| TYPE

Remarks:

Thisrefinement contains four stubs (lines 1-3, 4-66, 69-70 and 71-72). The second stub has
sevendots(lines8, 9, 16, 19, 28-30, 45-49 and 55-58). Lines 22, 23 and 60 are simple code-lines
from CLiPs point of view.

The leader option of the last two stubs defines the code that will be inserted in front of a
stub that matches the slot.

CLiP provisiona user manual (version 2.100)

3.5 Example 5: A subroutine module

3.5 Example 5: A subroutine module

(*rrxnx #Fil e " ASKTTY. PAS" *k Rk
[I NHERI T (’ DECLAR PEN)] MODULE ASKTTY (I NPUT, OUTPUT);

(*x*xxxxxxxk Pyternal procedures of ASKTTY (#nult) **x*xxkxkdxs)

(***)

(* Routi ne: ASKTTY - ASK i nformation fromTTY. *)
(* Purpose: To obtain fromthe TTY the information which *)
(* is needed to performa VAMP run. *)
(* Interface: TTY_DATA - Data fromTTY to VAMP. *)
(* TTY - Source of all know edge. *)

(* Author/Date: VAWP project managenent, Septenber 29, 1983. *)

(***)

[GLOBAL] PROCEDURE ASKTTY (VAR TTY_DATA: TTY_I NFO);

(************* Constants Of ASKTTY (#n-ultlpl e) ***************)
(************* Types Of ASKTTY (#n-ultlpl e) *******************)
(************* Varlabl es Of ASKTTY (#n-ultlpl e) ***************)
(************* Procedures Of ASKTTY (#n-ultlpl e) **************)

BEG N
W TH TTY_DATA DO
BEG N
(******************** ASKTTY (1) *********************)
(** Get IN_FILES from TTY. *x)
(***)
GO := NOT (IN_FILES[1] = EMPTY);
| F GO THEN
BEG N
(**************** ASKTTY (2) *********************)
(** Ask which nodul es nust be generated by VAMP. **)
(** Set | NV_MODE, MODULES and GO accordingly. **)
(***)
END (*IF*);
| F GO THEN
BEG N
(**************** ASKTTY (3) *********************)
(** Ask DFLT _EXT fromthe term nal. *x)
(***)
END (*IF*);
END (*W TH*);

END (* ASKTTY*):
END (* MODULE*).

(********************** End Of I\mJLE ************************)

(***x*x*x*xxx Constants of ASKTTY (#l eader, #quick) **x*xx*xkixs)
CONST

CLiP provisiona user manual (version 2.100)

9

10 Examples

51 (********** Types Of ASKTTY (#I eader, #QLH Ck) ****************)
52| TYPE
53| (*******x+*x Variables of ASKTTY (#| eader, #quick) *****x*xxsxs)
54| VAR

Remarks:

A clear cut example of asubroutine definition in VAX/VMS Pascal that is to be compiled
independently. The refinement contains stubs at lines 1-46, 49-50, 51-52 and 53-54. The last
three stubs are all quick stubs.

The first stub isamain stub. It carries no identification and only specifies the name of the
file that will finally hold the module. Had the file-option be omitted, this would have meant an
error.

Lines 4, 16, 17, 18 and 19 are single-line slot for future declarations. The leader stubs at
the end secure syntactic details. Lines 24-26, 31-34 and 38-40 are ordinary slots again.

CLiP provisiona user manual (version 2.100)

4 Semantics of options 11

4 Semantics of options

#Comment (stub, slot)
The comment option transforms the special CLIP-charactersto a predefined format which
suits a particular programming language. The option has an obligatory argument, e.g.
PASCAL,FORTRAN, C, ADA etc. or ON/OFF. The ON/OFF argument specifieswether
or not the slot- or stub-segment isto be included upon substitution. Comment options can
be nested and the most local version controls the operation.

#Default (stub)
A default stubisprefixedto exclusively substituted if no other stubisfoundfor that particular
slot.

#l ndent (stub, slot)
The indent option controls the indentation of the generated listing. Indent options can be
nested and the most local option overrules the more global ones. Indent has as one optional
argument, ON or OFF.

#File (stub)
Thefile option identifiesthe stub asamain stub (viz. theroot of anew module). The option
carries a string in quotes as argument. This string specifies the name of the file to be gen-
erated.

#L eader (stub)
Theleader stub is usually combined with multiple slots. It modifies the environment of the
stubs that will be substituted by inserting the leader stub in front of the first encountered
normal stub.

#Multiple (slot)
A multiple slot accepts the substitution of any number of stubs.

#Optional (slot)
An optional slot accepts the substitution of 0 or 1 stubs only.

#Overrule (stub)
The overrule stub replaces the stub aready substituted in a particular position. It is mainly
meant for testing purposes.

#Quick (stub)
A quick stub is a stub without internal structure (viz. slots). Following the stub segment
only L6-type lines are allowed. Any other type of line will end the stub.

#Separ ator (stub)
A separator stub is to be inserted between two consecutive stubs of the same slot.

#Trailer (stub)
Thetrailer stubisthe counterpart of the default stub. It modifiesthe environment by adding
thetrailer stub after the last encountered normal stub.

CLiP provisiona user manual (version 2.100)

12 Using CLiP

5 Using CLIiP

The complete CLiP system for DOS and VMS consists of two independent programs,
CLIP_1.EXE and CLIP_2.EXE. The Unix version has only one program, CLIP, which is
functionally identical to CLIP_2. CLIP_1 preparesafile, CLIP.INI, telling CLIP_2 (the actual
module extractor) literally everything it has to know in order to perform a run (a detailed
description of the structure of an INI-file is in the next section). Thus CLIP.INI specifies to
CLIP_2 (CLIP):
- thefilesit hasto read (i.e. the source files),
- the modulesit should extract (i.e. target modules),
- the name of thereport file,
- thesyntax of the CLiP-lines (i.e. the style of the lines that trigger the modul e extraction
process).
CLIP_1 allowsavery detailed specification of the extraction process, much more detailed than
you will need in general. For this reason the CLiP system comes with a couple of routines to
shortcut CLIP_1 and for Unix userstheseroutines arethe primary tool to construct their INI-file.
For a description of these routines we refer to section "Using CLiP" of the READ_ME file of
thisrelease.
When using CLiP it is recommended to introduce at least the following directories:
- A directory for the source files CLiP will use. This directory also holds the various
INI-file you maintain to conduct the extraction process.
- A directory to contain the extracted modules.
- A directory to contain the results of the compilation and linking of the modules.
- In case CLIP is used in combination with a word-processor, it is wise to keep the
word-processor files again in a separate directory. In this case the source file directory
should be fed with ASCII exports from word-processor files.

CLiP provisiona user manual (version 2.100)

6 The structure of an INI-file 13

6 The structure of an INI-file

This section explains the structure of an INI-file by means of an example file. You should
understand this structure thoroughly before your try to edit INI-files yourself directly through
an editor [Ammers 1993].

The example is an INI-file for MS-DOS. The only difference with other platformsis the
specification of directories. Thenumbersat thebeginning of every lineareadded for convenience
of reference. They are not part of the fileitself.

<=—=—=—=—=—=—=—==—=—==—===== Exanple of an IN -file —————=———=—=—=—=—=—=—=—=—=—===>
1| This file contains data that is needed to run CLi P
2| And is generated by CLi P_MVENU
3| Modifying this file at own risk.
4] Using CLi P_MENU i s definitely recomended.
5
6| | NTERACTI VE_MODE Mode (| NTERACTI VE/ DEBUG HELPFUL/ AUTO)
71 NO Interactive fault correction (YES/ NO
8| BOTH Error message destination (TERM NAL/......)
9 * Left comrent string
10| *) Ri ght commrent string
11| * Conmand char act er
12| ENDOF END string
13| # Option nmarker
14| EXTRACTED The specified nodules are (OM TTED/ EX-
15| TRACTED)
16| ------------ REPCRT FILE -----------
17| CLIP. RPT
18| ------------ INPUT FILES -----------

19| f:\LPT\ MAN\ EXO1_A. ASC
20| f:\LPT\ MAN\ EX01_B. ASC

21| ------me - - - MODULES ---------------
22| F:\TEST\
23| PALI NDRO. PAS
24| F:\TEST\
25| TESTDATA. I N
26| ------------ MODULE DI RECTORY ------
27| f:\LPT\
------------ END OF INl FILE -------
<================= End of Exanple INl-file ===================>
Lines 1-5: Descriptive lines that are flushed upon reading.

Lines 6-14:

Lines 6-7:

Lines8:

Lines 9-13:

Lines9:

Information behind position 24 is not interpreted.
These lines refer to unimplemented options. They should not be changed.

| dentifies the output device for messages and reports. The first word of the line
must be on of the following keywords TERMINAL, REPORTFILE (or FILE),
BOTH or NONE and we assume the meaning self evident.

These lines together define the syntax of the lines CLiP will recognize. For an
explanation of the CLiP syntax, refer to [Ammers 1993].

Atmost 6 charactersto specify the"left comment string” i.e. theopening sequence
of acomment string of the programming languageyou want to use. Thecharacters
cannot be letters (A-Z, a-z), digits (0-9) or adot (.).

CLiP provisiona user manual (version 2.100)

14 The structure of an INI-file

Lines 10:

Lines 11;

Lines 12;

Lines 13:

Line 14:

Line 15;

Line 16:
Line 17;

Line 18-19:

Line 20:

Line 21-24:

Line 25;

Line 26:
Line 27;

At most 6 characters to specify the "right comment string” i.e. the closing
sequence of a comment string of the programming language you want to use.
The characters cannot be letters (A-Z, az), digits (0-9) or adot (.).

The character that is postfixed to a left comment string and prefixed to a right
comment string in order to identify it as a specia comment that CLiP has to
process, aso called CLiP-line. The character cannot bealetter (A-Z, a-z), adigits
(0-9) or adot (.).

The leading characters that identify a particular CLiP-line as the end of a stub,
i.e. aparticular section that can be substituted elsewhere.

The character that identifies the options.

Relatesto the modul esin the modul e section bel ow. The specified modul es must
either beextracted or omitted and thefirst word of thislinecanonly beOMITTED
or EXTRACTED.

Starts the section defining the file that mirrors the extraction process. Thisline
should be copied literally.

Path and file specification of the report file.

Starts the section defining the input files for the extraction process, the so called
source files. Thisline should be copied literally.

Every line specifies a path and source file. There may be up to 64 linesin this
section.

Starts the section defining the modules that are considered during the extraction
process. Whether the modules are extracted or omitted depends on line 14. This
line should be copied literally.

Every line pair specifies a path and a module file. There may be up to 64 pairs
(128 lines) in this section.

Starts the section to identify the default directory for modules, i.e. the directory
where modules go to that have no explicit directory specified by the MODULES
section. This line should be copied literally.

Default directory for extracted modules.
Identifies the end of the INI-file. Thisline should be copied literally.

CLiP provisiona user manual (version 2.100)

7.1 "SP_EXTR_STR: system failure call maintenance" 15

7 Bugs, work-arounds and undocumented features

7.1 "SP_EXTR_STR: system failure call maintenance"

Thisfailure may happen if the stubs have not been correctly closed with the END-STRING that
has been specified as the syntax. The default value of this string is "ENDOF". Also the line
containing the END-STRING should be properly closed. For example in aPascal situation

(KHEEH Rk End of nodule (2.1) Xk
should be al right, but
(*rHEr End of nodule (2.1) %)

may give trouble since the string "**)" isincorrect here.

7.2 Options in general

Several optionshave been introduceswith very advanced applicationsin mind. They have hardly
been tested will probably not work. Y ou won't need them either. For this reason don’t use the
options OVERRULE, SEPARATOR and TRAILER.

7.3 Multiple option

A dslot with the"MULTIPLE" option raises an error if no stubs are found matching the slot. To
prevent this error message one should specify the option "OPTIONAL" aso for the slot.

7.4 Report file option NONE

This option to suppress the printing of reports to the terminal has not been implemented. It will
be eliminated in some later version.

7.5 Generating target modules

7.5.1 Specification

If CLIP.INI specifies atarget module that matches no file-option argument anywhere in the list
of specified sourcefiles, CLiP doesnot complain. The matchingiscase sensitiveand for instance
afile-option argument

(********** #flle "EXANPLE PAS" ***********************)
does not fit amodule specification in CLIP.INI of the form
Exanpl e. PAS

This may lead to unpleasant surprises.

On MS-DOS and VAX/VMS platforms the specification of files is not context sensitive.
For thisreasonthe CLIP_1 program (whichisavailablefor theMS-DOSand VAX/VMSversions
of CLiP) converts those names to upper case in the INI-file it creates. Thus the file-option

CLiP provisiona user manual (version 2.100)

16 Bugs, work-arounds and undocumented features

arguments in the source files should definitely be specified in upper case too.

InaUnix environment afile nameis case sensitive indeed. Currently no CLIP_1 existsfor
Unix and an INI-file has to be created by means of the short-cut routine CLP (or directly by
means of an editor, cf. section 6). No conversion is performed in this case and one has to make
sure the file-option argument isidentical to the corresponding name in the INI-file.

7.5.2 Omitted modules

If modules are specified for being OMITTED at extraction time, it will be omitted independent
of the path that may have been specified. The module will never be generated.

7.5.3 Empty run

CLiP does not always recognize a corrupted INI-file. Thusif you run CLiP and it produces a
report of theform

============================ End Scanni ng ==============================
============================ Busy anal ysi ng ============================
============================ End anal ysi ng =============================
============================ BuSy generati ng ===========================
============================ End generati ng ============================

Used (CPU) tine :5.88 Sec.
See you next tine !

then you start checking the specifications of the target modules, since this is the most likely

source of trouble. Keep in mind however, that the problem may be also arise due to a corrupted
INI-file.

7.6 Lostlines

If you have stubs of the form

(****************** (EN P(x)_ gl Obal rOUtlnes kkhkkkkhkhkkkkhkhkkkhkhkxkhkkk*k

***********************;**)

(: routine: wite_string *)

*

(**)

you will see that the second line of the stub (the "starred” line) is not generated in the target
modules. For thisreason it is better to put an additional empty line in between. For examplethe
following stub will be extracted correctly.

CLiP provisiona user manual (version 2.100)

8 References 17

(****************** (EN P(x)_ gl Obal rOUtlnes ********************)

**)

(: routine: wite_string :)

(**)

7.7 DOS version only

If you activate the PROJECT/Load INI-file or PROJECT/Save INI-file menu of the CLIP_1
program and you specify an illegal drive in the Current Directory option, you may hang the
system. For instance a drive specification preceeded by a space will produce this bug.

8 References

Ammers E.W. van, M.R. Kramer (1993), The CLiP Style of Literate Programming (submitted
for publication). Anonymously ftp-able as CLIP_STYLE.PS, CLIP_STYLE_A.PS and
CLIP_STYLE_B.PSfrom directory CLIP on sunOl.info.wau.nl.

AmmersE.W. van, Kramer M.R. (1992), VAMP: A Tool for Literate Programming Independent
of Programming Language and Formatter. CompEuro ’ 92 Proceedings, May 4-8 1992, the
Hague, pg. 371-376.

Knuth D.E. (1984). Literate Programming. The Computer Journal 27, 2, 97-111.

CLiP provisiona user manual (version 2.100)

Table of Contents

CLiP - C ode from Li terate P rograms Provisional User Manualccccccevveviennee. 1
1 g1 00 (1o 1 o o OO PPRPRRI 1
2 Syntax (Programming SLYIE)c.cceoereririeieeere e 2
2.1 Stub blocks and documentation blOCKSccoviiiiinivenieeeee s 3
2.2 SEOIMENLS ..ottt ettt b et s e e s s e e e e ne e n e b e neen e e neennan 3
PG I @ 10 SO PSPPSR 3
3 EXAMPIES ...t 4
3.1 Example 1: Defining @mMOCUIEc.ccoriierenerenerieeee e 4
3.2 Example 2: MUItIPIE SIOLSocviiiiiereereeee e 5
3.3 Example 3: Quick stubs and abstract datatypescccocerrierieienenenenenins 6
3.4 Example4: Anordinary refinement StEPcoovvevenieinieceee e 7
3.5 Example5: A subroutine MOAUIE ... 9

4 SeMANICS Of OPLIONSccueieirierieetieieeeee ettt b e e b b 11

5 USING CLIP ettt sa b nne s 12

6 Thestructure of an INI-FIlE ..o 13

7 Bugs, work-arounds and undocumented fEaLUIESceovreereeirreerieeieeseesee e 15

7.1 "SP_EXTR_STR: system failure call maintenance”cccocevcevivenvnnne 15

7.2 OPLONSIN QENETEL ..ot 15

7.3 MUITIPIE OPLION ... 15

7.4 Report file option NONE ..o 15

7.5 Generating target MOAUIEScoiiuiriiiiieiee e e 15

7.5.1 SPECITICALION ..ottt 15

7.5.2 OMitted MOUUIESocveeiiiiieee e e 16

7.5.3 EMPLY FUN oo s 16

7.6 LOSEIINES ...ttt sb e 16

7.7 DOSVEISION ONMY oottt s 17

8 REFEIENCES ...t 17

CLiP provisiona user manual (version 2.100)

