mif2ptl

Produce PostScript Type 1 fonts from Metafont source

Scott Pakin, scott+mf@pakin.org

mailto:scott+mf@pakin.org

This file documents mf2pt1 version 2.8, dated 6 July 2024.

Copyright (©) 2005-2024 Scott Pakin

This program may be distributed and/or modified under the conditions of the WTEX Project
Public License, either version 1.3¢ of this license or (at your option) any later version.

The latest version of this license is in:

https://www.latex-project.org/lppl.txt

and version 1.3c or later is part of all distributions of INTEX version 2006,/05/20 or later.

https://www.latex-project.org/lppl.txt

Table of Contents

1 Introduction..................... 1
1.1 Requirements................coooiiiiiiaan, 1
1.2 Installation.............. ..o, 2

2 Usage........ccovviiiiiiiiiiin. 2
2.1 Restrictionscccooiiiiiiiiiiii.. 3
2.2 Specifying font information 4
2.3 Additional command-line options 7
2.4 Custom font encodings 9
2.5 Restoring mfplain defaults............... 10

3 Future Work 10

Acknowledgments................. 11

Chapter 1: Introduction 1

1 Introduction

METAFONT is a high-level, mathematically oriented language for producing fonts. The
METAFONT interpreter produces device-dependent bitmaps, which render well at the target
resolution on the target device, but poorly at other resolutions or on other devices. Adobe’s
PostScript Type 1 font format is the de facto font standard for printers these days. It is a
vector format, which implies that it scales better than bitmaps, and it delegates the device-
and resolution-dependent tweaking from the font source to the target device’s PostScript
renderer. However, Type 1 fonts are extremely difficult to code by hand. Usually, one uses
a WYSIWYG program to design a Type 1 font. METAFONT, with its font-specific program-
ming language, is an elegant alternative. A font designer can write reusable subroutines
for repeated features, such as serifs and accents. He can define a font in terms of arbitrary
parameters, such as “boldness” or “italicness”, making it trivial to produce entire families
of fonts from a single source (hence the “meta” in the name “METAFONT”). Ideally, we
would like to design a font using the METAFONT language, but produce PostScript Type 1
output instead of bitmaps.

mf2pt1 helps bridge the gap between METAFONT and Type 1 fonts. mf2pt1 facilitates
producing PostScript Type 1 fonts from a METAFONT source file. It is not, as the name
may imply, an automatic converter of arbitrary METAFONT fonts to Type 1 format. mf2pt1
imposes a number of restrictions on the METAFONT input. If these restrictions are met,
mf2pt1 will produce valid Type 1 output.

1.1 Requirements
Before using mf2pt1, you will need to install the following programs:
Perl mf2ptl is written in Perl. You will need a Perl interpreter to run it.

MetaPost mf2pt1 actually uses MetaPost, not METAFONT, to produce PostScript output.
Specifically, you will need the mpost executable and the mfplain.mp base file.

Type 1 Utilities
Producing properly encoded Type 1 fonts is tricky. mf2pt1 delegates the effort
to the Type 1 Utilities, specifically, to the tlasm program within that suite.

FontForge (optional)
FontForge is a WYSIWYG, but scriptable, Type 1 font-editing program. Al-
though FontForge is not strictly required for mf2pt1 to produce a Type 1 font,
mf2ptl uses FontForge when available to autohint the generated Type 1 font,
thereby making it look better especially at lower resolutions.

Perl is available from the Comprehensive Perl Archive Network (https://www.cpan.
org); MetaPost and the Type 1 utilities are available from the Comprehensive TEX Archive
Network (https://www.ctan.org); and FontForge is available from https://fontforge.
sourceforge.net/. In addition, MetaPost’s home page is https://tug.org/metapost.
html, and the Type 1 utilities’ home page is https://www.lcdf.org/type/.

Besides being useful for autohinting fonts, FontForge enables a font designer to hint fonts
manually for additional fine-tuning and to convert among a variety of font formats, such
as PostScript, TrueType, and X Window fonts. FontForge is strongly recommended as a
complement to mf2pt1.

https://www.cpan.org
https://www.cpan.org
https://www.ctan.org
https://www.ctan.org
https://fontforge.sourceforge.net/
https://fontforge.sourceforge.net/
https://tug.org/metapost.html
https://tug.org/metapost.html
https://www.lcdf.org/type/

Chapter 2: Usage 2

1.2 Installation

To install mf2pt1, move the mf2pt1 executable someplace where your operating system can
find it. If you’re running Microsoft Windows, you should rename the program to mf2pt1.pl,
so that Windows knows it’s a Perl script. (Alternatively, if you have pl2bat, use that to
produce a mf2pt1.bat file, which you can run as simply mf2pt1.)

The next step is to produce a mf2pt1.mem file from the supplied mf2pt1.mp. The com-
mand to do this differs from system to system but is usually something like the following:

mpost -progname=mpost -ini mf2ptl \\dump

Move the resulting mf2pt1.mem file someplace where MetaPost can find it.

The mf2pt1 documentation (what you're reading now) is written in Texinfo and can
therefore easily be converted to a variety of formats:

PDF (mf2ptl.pdf)
texi2pdf mf2ptl.texi

PostScript (mf2pt1.ps)
texi2dvi mf2ptl.texi
dvips mf2ptl.dvi -o mf2ptl.ps

HTML (mf2pt1.html)
makeinfo --html mf2ptl.texi

Info (mf2pt1.info)
makeinfo mf2ptl.texi

N.B. The install-info command is a convenient way to install mf2pt1.info on your
system.

On Unix, you may also want to generate an mf2pt1 man page. The man page is embed-
ded within the mf2pt1 Perl script and can be extracted with pod2man:

pod2man --center="User Commands" --date="6 July 2024" \
-—release="v2.8" mf2ptl > mf2ptl.1

You can then move mf2pt1.1 into /usr/man/manl or any other man page directory. Note
that the mf2pt1 man page is fairly rudimentary. It is primarily a list of the command-line
options (see Section 2.2 [Font information], page 4) and a pointer to the document that
you're reading now.

2 Usage

mf2ptl is fairly straightforward to use. To process a METAFONT source file, merely specify
the filename:

mf2ptl myfont.mf
That simple command automatically performs all of the following operations:

1. Read myfont.mf.

Chapter 2: Usage 3

2. Use mpost to convert each character to a separate Encapsulated PostScript (EPS) file
named myfont.num.

3. Process and merge the EPS files into a single “disassembled” Type 1 font called
myfont.ptl.

4. Run tlasm from the Type 1 Utilities to convert the disassembled font into a true,
binary Type 1 font called myfont.pfb.

5. Invoke fontforge to apply rendering hints to myfont.pfb and to attempt to remove
overlapping paths.

The external programs launched by mf2ptl—mpost, tlasm, and fontforge—can be
overridden by setting the eponymous, uppercase environment variable. For example, invok-
ing FontForge’s predecessor, PfaEdit, instead of FontForge is simply a matter of setting the
‘FONTFORGE’ environment variable to ‘pfaedit’ before invoking mf2pt1. As a corollary, you
can inhibit an mf2pt1 external program from running by setting the corresponding envi-
ronment variable to the name of a nonexistent program. Arguments can be included in the
environment variable’s value. Hence, defining ‘MPOST’ to ‘mpost -recorder’, for instance,
instructs mf2pt1 to run mpost with the ‘-recorder’ option.

2.1 Restrictions

If mf2pt1 sounds too good to be true, it is—somewhat. mf2pt1 is not a general-purpose
METAFONT-to-Type 1 converter. Rather, it can convert only certain METAFONT constructs.
This is not a showstopper for new fonts designed with mf2pt1 in mind, but it is unlikely
that mf2pt1 will work on an arbitrary METAFONT source file.

mf2pt1’s biggest restriction is that each glyph must be drawn entirely from closed paths,
using METAFONT’s fill and unfill commands. (mf2pt1 has limited support for draw and
undraw, but their use is currently discouraged. filldraw and unfilldraw issue a warning
message and invoke draw and undraw, respectively.) The Type 1 format requires that
these paths be nonoverlapping. The following are some of the alternatives for removing
path overlaps:

1. Install FontForge. As part of its final step in producing a Type 1 font, mf2pt1 instructs
FontForge to replace overlapping paths with nonoverlapping paths.

2. Remove overlaps using METAFONT code within the font program itself. A .zip file
attachment to a 6 January 2005 article (https://tug.org/pipermail/metapost/
2005-January/000080.html) by Bogustaw Jackowski on the MetaPost mailing list
(subject: “Re: all intersections between two paths”) includes a MetaPost library which
assists with that task. The library provides a find_outlines command which can be
used to define a path as the union of two other paths. A number of MetaPost example
programs are also included in the .zip file.

3. Design your fonts from the beginning without using overlapping paths.
A secondary restriction is that mf2pt1 redefines a number of Plain METAFONT commands,

such as beginchar, fill, and unfill. METAFONT font programs which redefine or bypass these
(using METAFONT primitives) will not be convertible with mf2pt1.

A far less severe restriction is due to mf2pt1’s utilizing MetaPost’s METAFONT interface
instead of METAFONT itself. The implication is that commands not defined by MetaPost’s

https://tug.org/pipermail/metapost/2005-January/000080.html
https://tug.org/pipermail/metapost/2005-January/000080.html

Chapter 2: Usage 4

mfplain.mp cannot be handled by mf2pt1, either. Very few fonts will have a problem with
this restriction but see the MetaPost manual for more information.

2.2 Specifying font information

METAFONT fonts normally specify a set of fontdimens which provide information about
a particular font that cannot otherwise be inferred. These include features such as the
font’s x-height, quad width, interword stretchability and shrinkability, and other design
characteristics that TEX makes use of. PostScript fonts utilize a largely different set of font
parameters, such as the underline position and thickness, font family name, and copyright
notice. mf2pt1 provides METAFONT commands to define the PostScript font parameters in
the generated Type 1 font. These parameters should appear in the METAFONT source file
as follows:

if known ps_output:

fi

ps_output is defined by mf2pt1 but not by Plain METAFONT. Checking if it is known is the
recommended way to determine if the font is being built under mf2pt1.

The following list presents all of the font-information commands provided by mf2pt1 and
describes what each command means. Commands marked with an asterisk are also defined
by Plain METAFONT and therefore do not need to be enveloped within a test for ps_output.

font_coding_scheme

The mapping between character numbers and PostScript names. If this is
the name of a file, mf2pt1 expects it to contain PostScript code defining a
font-encoding vector. See Section 2.4 [Custom font encodings], page 9, for an
example of such a file. If font_coding_scheme is not the name of a file, mf2pt1
expects it to be one of the literal strings standard (Adobe standard encoding),
isolatinl (ISO Latin 1 encoding), ot1l (TEX 7-bit encoding), t1 (TEX 8-bit
encoding), or asis (encoding integrated with the character programs using
the glyph_name command as described in Section 2.4 [Custom font encodings],
page 9). Anything else will generate a warning message and cause mf2pt1 to
use standard instead.

font_comment
A textual comment that will appear within the generated font. This is often
used for copyright notices.

font_family
The family that this font belongs to. For example, “Utopia Bold Italic” belongs
to the Utopia family.

font_fixed_pitch
Whether the font is monospaced (if true) or or proportionally spaced (if false).

font_identifier (*)
The full name of the font, e.g., Utopia Bold Italic.

font_name The symbolic font name, used to load the font from a PostScript
document. Spaces are forbidden. Generally, the font name is of the form

Chapter 2: Usage 5

family-modifiers. For example, the font name of Utopia Bold Italic would
be Utopia-BoldItalic.

font _size (*)
The font design size. This is specified in “sharped” units within METAFONT
code or as a point size on the command line.

font_slant (*)
When specified with font_slant, the amount of slant per point. When specified
with —-italicangle, the angle in counterclockwise degrees from the vertical
(i.e., zero for an upright font, negative for a right-slanting italic font).

font_underline_position
The vertical position at which an underline should lie, specified in “sharped”
units within METAFONT code or as a number of points on the command line.

font_underline_thickness
The thickness of an underline, specified in “sharped” units within METAFONT
code or as a number of points on the command line.

font_unique_id
The unique ID for this font. The ID should be between 0 and 16,777,215,
with the “open” range being 4,000,000-4,999,999. All IDs not in that range are
allocated by contacting Adobe’s UniquelD Coordinator. (I don’t believe a fee
is involved, but I don’t know for sure.) If a unique ID is not specified, mf2pt1
will not write a unique ID to the file. Note that Adobe no longer recommends
including unique IDs in fonts.

font_version
The version number of the font. This should be of the form MMM.mmm, where
MMM is the major version number and mmm is the minor version number.

font_weight
The font weight. For example, the font weight of Utopia Bold Italic is Bold.

Each of the preceding font-information commands has a command-line equivalent. Their
use is discouraged but they are listed here for completeness:

font_coding_scheme --encoding
font_comment —-—comment
font_family —-—family
font_fixed_pitch --fixedpitch
font_identifier —--fullname
font_name --name

font _size --designsize

Chapter 2: Usage 6

font_slant --italicangle
font_underline_position --underpos
font_underline_thickness = --underthick
font_unique_id --uniqueid
font_version --fontversion
font_weight --weight

A special case is -——fixedpitch which does not take an argument. Rather, you should
use —-fixedpitch as the equivalent of ‘font_fixed_pitch true’ and ——nofixedpitch as
the equivalent of ‘font_fixed_pitch false’.

The next table lists the METAFONT type and default value of each of the parameters
listed in the previous table.

font_coding_scheme string "standard"

font_comment string "Font converted to Type 1 by mf2ptl, written by
Scott Pakin."

font_family string (The value of font_identifier)

font_fixed_pitch boolean false

font_identifier string (The input filename, minus .mf)

font_name string (The value of font_family, plus an underscore, plus

the value of font_weight, with all spaces removed)

font_size numeric (Must be specified or mf2pt1 will abort with an error
message)

font_slant numeric 0

font_underline_position numeric -1

font_underline_thickness numeric 0.5
font_unique_id string (Randomly generated in the range 4000000-4999999)
font_version string "001.000"

font_weight string "Medium"

Chapter 2: Usage 7

As an example, the following METAFONT code shows the usage of all of the parameters
that mf2pt1 accepts:

if known ps_output:

font_coding_scheme "otl";

font_comment "Copyright (C) 2005-2024 Scott Pakin.";
font_family "Kerplotz";

font_fixed_pitch false;

font_identifier "Kerplotz Light Oblique";

font_name "Kerplotz-LightOblique";

font _size 10pt#; % Important to include this.
font_slant 1/6;

font_underline_position -1pt#;
font_underline_thickness 1/2pt#;

font_unique_id "4112233"; % Better to omit this.
font_version "002.005";
font_weight "Light";

fi

In the above, the font_fixed_pitch call could have been omitted, as it defaults to false.
Also, unless you’ve requested a unique ID from Adobe, it’s generally better not to assign
font_unique_id; let mf2pt1 choose a random value itself.

The same parameters can also be specified on the command line as follows:

mf2ptl --encoding=otl --comment="Copyright (C) 2005-2024 Scott Pakin."
--family=Kerplotz --nofixedpitch --fullname="Kerplotz Light Oblique"
--name=Kerplotz-LightOblique --designsize=10 --italicangle=-9.5
--underpos=-100 --underthick=50 --uniqueid=4112233 --version=002.005
--weight=Light kerplotz.mf

Note that a METAFONT font slant of 1/6 is equal to a PostScript italic angle of approximately
-9.5. The conversion formula is s = — tan #, in which s is the slant and € is the italic angle.
In addition, the underline position and thickness must be multiplied by 1000/font_size to
convert from the METAFONT units that are used within the .mf file to the PostScript units
that are used on the command line.

2.3 Additional command-line options

In addition to the command-line options for setting font parameters that were presented
in Section 2.2 [Font information], page 4, mf2pt1 supports a --rounding option. While
mf2pt1 normally rounds all font coordinates to the nearest integer, -—rounding increases
coordinate precision by instructing mf2pt1 to round instead to the nearest multiple of a
given fractional number. For example, ‘--rounding=0.25’ rounds the coordinate (7.4, 10.3)
to (7.5,10.25) while it would otherwise be rounded to the less-precise (7, 10).

Large glyphs can be problematic in MetaPost and therefore in mf2pt1. Unlike
METAFONT, MetaPost does not honor ‘mag’ for magnifying dimensions. Rather, the number
of PostScript (a.k.a. “big”) points per pixel—bpppix’—is hardwired to 0.02 and all other
dimensions (‘mm’, ‘in’; ‘pt’, etc.) are expressed in terms of that. Consequently, glyphs that
multiply a large number of font units by a dimension are likely to exceed 4096, the largest

Chapter 2: Usage 8

value that MetaPost can represent in its fixed-point format. If numerical overflow becomes
a problem you can use the --bpppix option to mf2ptil to change the value of ‘bpppix’.
For example, specifying ‘--bpppix=0.2’ enables a tenfold increase in maximum glyph size
(with a corresponding decrease in precision).

After generating a Type 1 font, mf2pt1 runs it through FontForge to add hinting in-
formation, remove overlaps, and otherwise clean up the generated font. The —-ffscript
option specifies the filename of a FontForge script to use instead of the default script, which
is listed below:

Open($1);

SelectAll();

RemoveOverlap(Q);

AddExtrema() ;

Simplify (0, 2);

CorrectDirection();

Simplify (0, 2);

RoundToInt();

AutoHint () ;

Generate($1);

Quit (0);
See the FontForge documentation for an explanation of each of those commands and a
description of other commands made available to FontForge scripts. mf2pt1 runs the script
with one argument ($1), which is the name of the generated .pfb file.

mf2pt1 also supports a ——help option which summarizes all of the program’s command-
line options.

Chapter 2: Usage 9

2.4 Custom font encodings

Section 2.2 [Font information], page 4, lists the font encodings currently supported by
mf2ptl and mentions that an alternate encoding can be specified by providing the name of
an encoding file. To elaborate, the following example represents the contents of an encoding
file which defines a—largely useless nowadays—EBCDIC font encoding:

(0
% Sample encoding vector: EBCDIC

% The encoding vector must have a name and be defined as a
PostScript array.

/ebcdic_encoding [

/_a0 /_al /_a2 /_a3 /_a4 /_ab /_a6 /_a7 /_a8 /_a9 /_al0 /_all

/_al2 /_al3 /_al4 /_alb /_al6 /_al7 /_al8 /_al9 /_a20 /_a21 /_a22
/_a23 /_a24 /_a25 /_a26 /_a27 /_a28 /_a29 /_a30 /_a31 /_a32 /_a33
/_a34 /_a35 /_a36 /_a37 /_a38 /_a39 /_a40 /_adl /_ad2 /_a43 /_ad4d
/_a4b /_a46 /_a4d7 /_a48 /_a49 /_ab0 /_abl /_ab2 /_ab3 /_ab4 /_abb
/_ab6 /_ab7 /_ab8 /_ab9 /_a60 /_a6l /_a62 /_a63 /space /_ab65b

/_a66 /_a67 /_a68 /_a69 /_a70 /_a71 /_a72 /_a73 /bracketleft
/period /less /parenleft /plus /exclam /ampersand /_a81 /_a82
/_a83 /_a84 /_a85 /_a86 /_a87 /_a88 /_a89 /bracketright /dollar
/asterisk /parenright /semicolon /asciicircum /hyphen /slash
/_a98 /_a99 /_al00 /_al01l /_al02 /_al03 /_al04 /_al05 /bar /comma
/percent /underscore /greater /question /_all2 /_al13 /_all4
/_allb /_al16 /_all7 /_al18 /_al19 /_al20 /_al21 /colon /numbersign
/at /quoteright /equal /quotedbl /_al28 /a /b /c /d /e /f /g /h

/1 /_al138 /_al139 /_al40 /_al4l /_al42 /_al43 /_al44 /j /k /1 /m

/n /o /p/q/r /_alb4 /_albb /_al56 /_al57 /_al58 /_al59 /_al60
/asciitilde /s /t /u /v /w /x /y /z /_al70 /_al71 /_al72 /_al73
/_al74 /_al75 /_al76 /_al77 /_al78 /_al79 /_al80 /_al81 /_al82
/_al83 /_al84 /quoteleft /_al86 /_al87 /_al88 /_al89 /_al90 /_al91
/braceleft /A /B /C /D /E /F /G /H /I /_a202 /_a203 /_a204 /_a205
/_a206 /_a207 /braceright /J /K /L /M /N /0 /P /Q /R /_a218 /_a219
/_a220 /_a221 /_a222 /_a223 /backslash /_a225 /S /T /U /V /W /X /Y
/Z /_a234 /_a235 /_a236 /_a237 /_a238 /_a239 /zero /one /two /three
/four /five /six /seven /eight /nine /_a250 /_a251 /_a252 /_a253
/_a254 /_a255

% Don't forget to end the array.

] def
L J

All entries in the encoding vector are PostScript “names” and therefore must be pre-
fixed with a slash. Unnamed characters such as control characters are commonly named
‘_anumber’, where number is the decimal offset into the character table. Undefined char-
acters are indicated by ‘.notdef’. In the EBCDIC example, the character at position 0 in
the font will be named ‘a0’; the character at position 1 will be named ‘al’; the character at
position 74 will be named ‘bracketleft’; the character at position 129 will be named ‘a’;
and so forth.

Chapter 3: Future Work 10

Individual characters can be mapped to an encoding either numerically or by executing
a glyph_name command within a character definition. For example, the following code
overrides the character position passed to beginchar (i.e., 123) with whatever character
position the current encoding has designated for the ‘ohungarumlaut’ glyph:
beginchar (123, cap_height#-1/2pt#, cap_height#, 0);
if known ps_output:
glyph_name "ohungarumlaut";

fi
eli(.lc.har;
2.5 Restoring mfplain defaults

mf2ptl normally redefines filldraw as fill and unfilldraw as unfill because Type 1 fonts
don’t allow overlapping curves. Similarly, mf2pt1 redefines pencircle as a 20-gon to coerce
MetaPost into drawing it using a filled instead of a stroked PostScript path.

If you know you’ll be postprocessing your fonts using FontForge, which can automati-
cally convert overlapping paths to nonoverlapping paths, then you can restore the original
mfplain.mp definitions of filldraw, unfilldraw, and pencircle as follows:

if known ps_output:

pencircle := mfplain_pencircle;

let filldraw := mfplain_filldraw;

let unfilldraw := mfplain_unfilldraw;
fi

3 Future Work

One avenue for future work is to enable the font designer to specify Type 1 font hints
directly in the METAFONT font program. Hinting is a way for a font designer to specify
how a font should be rendered at low resolutions, for example, at typical monitor res-
olutions. In METAFONT, this is done by controlling the way that points are mapped to
pixel locations, using commands such as define_corrected_pixels, define_blacker_pixels, and
lowres_fix. Type 1 fonts are hinted in a completely different manner. Type 1 hints dis-
tinguish key character features, such as stems and dots, from decorations which can be
discarded at low resolutions. The PostScript interpreter uses that information to determine
how to map points to pixels. Although mf2pt1 employs FontForge to autohint the fonts
it generates, the approach is mechanical and unlikely to hint as well as a human can do
manually. It would be convenient for mf2pt1 one day to provide METAFONT commands for
hstem, vstem, dotsection, and the other Type 1 hints. That way, hints will no longer need
to be re-added manually every time mf2pt1 regenerates a Type 1 font.

Another future addition to mf2pt1 is the addition of more font encodings. The following
are the encodings that mf2pt1 will most likely accept:

TeXMathItalicEncoding
Upper- and lowercase Greek and Latin letters, old-style digits, and a few sym-
bols and accents.

Acknowledgments 11

TeXMathSymbolEncoding
A variety of symbols, as well as calligraphic Latin majuscules.

TeXMathExtensionEncoding
Variable-sized symbols, such as braces, integrals, and radicals.

AdobeExpert
Small caps, currency symbols, old-style digits, and various superior and inferior
letters and digits.

Acknowledgments

Many thanks are owed to Werner Lemberg for writing the code underlying the —~-rounding
option; for introducing the glyph_name command and asis encoding vector; for provid-
ing the default FontForge script listed in Section 2.3 [Additional command-line options],
page 7; for fixing some code-generation bugs in mf2pt1; for finding a more robust way to
dump mf2pt1.mem; for directing me to the overlap-removal code mentioned in Section 2.1
[Restrictions], page 3; for supplying the crossproduct, makeline, and is_clockwise functions
used by mf2pt1.mp; for proposing the —-bpppix command-line option; and for suggesting
numerous features and improvements to mf2pt1. Thanks also go to Werner Lemberg and
Bogustaw Jackowski for updating the is_clockwise function in mf2pt1.mp to work around a
bug in MetaPost which relates to the turningnumber command. Finally, thanks go to Ralf
Stubner for providing the T1 encoding vector and for pointing out a typo in the generated
font programs; to Michael Zedler for alerting me to problems with --encoding and sug-
gesting I modify that option to accept PostScript .enc files; and to Michael Ummels for
fixing a couple of bugs that made character widths in the generated fonts slightly too large.

	1 Introduction
	Requirements
	Installation

	2 Usage
	Restrictions
	Specifying font information
	Additional command-line options
	Custom font encodings
	Restoring mfplain defaults

	3 Future Work
	Acknowledgments

