LATEX ENVIRONMENTS

TO IMAGE FORMAT
V2.1 — 2021-05-21"
©2013-2021 by Pablo Gonzélez L'

CTAN https://www.ctan.org/pkg/ltximg
© https://github.com/pablgonz/ltximg

Abstract

ltximgisa perl script that automates the process of extracting and converting environments provided by
TikZ, PStricks and other packages from (input file) to image formats and standalone files using ghostscript
and poppler-utils. Generates a file with only extracted environments and another with all extracted
environments converted to \includegraphics.

Contents
License 1 6 ImageFormats...................... 7
2 Motivation and Acknowledgments 1 7 Howtouse 8
Requirements for operation 2 7.1 Syntax 8
3.1 Modulesrequired 2 7.2 Command line interface 8
4 Howitworks 2 7.3 Options frominputfile. 11
4.1 Theinputfile 2 8 Thewayofarara 12
4.2 Verbatimcontents 3 9 Notefordvisvgmusers 13
4.3 Stepsprocess, 4 10 Example usign latexmk 13
5 Extractcontent 6 11 Finalnotes 14
5.1 Default environments 6 12 Changehistory 14
5.2 Extract with docstriptags 7 13 References 15
5.3 Prevent extraction and remove 7 14 Index of Documentation 16

1 License

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

2 Motivation and Acknowledgments

The original idea was to extend the functionality of the pst2pdf[9] script to work with tikzpicture and other environ-
ments. The TikZ[2] package allows to externalize the environments, but, the idea was to be able to extend this to any type
of environment covering three central points:

1. Generate a separate image files for environments.
2. Generate a standalone files with only the extracted environments.
3. Generate a file replacing the environments by \includegraphics.

From the side of TgX there are some packages that cover several of these points such as the preview[1], xcomment[12],
extract[13] and cachepic[14] packages among others, but none covered all points.

In the network there are some solutions in bash that were able to extract and convert environments, but in general they
presented problems when the document contained “verbatim style” code or were only available for Linux.

“This file describes a documentation for version 2.1, last revised 2021-05-21.
TE-mail: «pablgonz@yahoo.com»

1/18

https://www.ctan.org/pkg/ltximg
https://github.com/pablgonz/ltximg
https://www.gnu.org/licenses/gpl-3.0.html
https://www.fsf.org/
https://www.gnu.org/licenses/gpl-3.0.html
mailto:pablgonz@yahoo.com

EXima 2.1 §.3 Requirements for operation

Analysed the situation the best thing was to create a new “script” that was able to cover the three points and was multi
platform, the union of all these ideas is born 1tximg.

This script would not be possible without the great work of Herbert Vof3 author of pst2pdf* and Heiko Oberdiek author
of pdfcrop®. Several parts of the code have been taken and adapted from both scripts.

3 Requirements for operation

For the complete operation of 1tximg you need to have a modern TgX distribution such as TgX Live or MiKTgX, have a
version equal to or greater than 5.28 of per1, a version equal to or greater than 9.52 of ghostscript, a version equal to
or greater than 1.40 of pdfcrop and have a version equal to or greater than 0.52 of poppler-utils. MiKTEX and cygwin
users must install the appropriate software for full operation.

1tximg auto detects the ghostscript, but not poppler-utils. You should keep this in mind if you are using the script
directly and not the version provided in your TgX distribution.

The script has been tested on Windows 10, cygwin 3.1.6, Git for Windows 2.30 and Linux (fedora 34) using ghostscript
9.53.3, poppler-utils 0.90, perl 5.32 and the standard classes offers by KIEX: book, report, article and letter. The
preview[1] and pst-pdf[5] packages are required to process the (input file) and if an (output file) is generated, the
graphicx[10] and grfext[11] packages will be needed.

3.1 Modules required

1tximg uses only packages from the core of the per1, the distribution encapsulated in TgX Live 2020 for Windows does
not have the module Win32::Console: : ANSI, this does not affect the operation of the script, but it does affect the
presentation of the messages when invoked from standart cmd, it is recommended to use a more modern (and comfortable)
application such as Windows Terminal.

» Getopt::Long e File::Find

e File::Spec::Functions e Env

e File::Basename e autodie

* Archive::Tar « Config

e Data::Dumper e Cwd

» FileHandle e Term::ANSIColor

e I0::Compress::Zip e Module::Load::Conditional
+ File::Path « Only on Windows:

e File::Temp - Win32

» POSIX — Win32::Console: :ANSI
e File::Copy — Win32::TieRegistry

4 How it works

It is important to have a general idea of how the ‘extraction and conversion” process works and the requirements that
must be fulfilled so that everything works correctly, for this we must be clear about some concepts related to how to work
with the (input file), the (verbatim content) and the (steps process.

4.1 The input file

The (input file) must comply with certain characteristics in order to be processed, the content at the beginning and at the
end of the (input file) is treated in a special way, before \documentclass and after \end{document} can go any type of
content, internally the script will “split” the (input file) at this points.

If the (input file) contains files using \input{(file)} or \include{ file } these will not be processed, from the side of the
script they only represent lines within the file, if you want them to be processed it is better to use the latexpand? first
and then process the file.

Like \1input{ file)} or \include{ file }, blank lines, vertical spaces and tab characters are treated literally, for the script
the (input file) is just a set of characters, as if it was a simple text file. It is advisable to format the source code (input file
using utilities such as chktex* and latexindent?, especially if you want to extract the source code of the environments.

Both \thispagestyle{ style } and \pagestyle{ style } are treated in a special way by the script, if they do not appear
in the preamble then \pagestyle{empty) } will be added and if they are present and { (style, } is different from { (empty, }
this will be replaced by { (empty) }.

'https://ctan.org/pkg/pst2pdf
*https://ctan.org/pkg/pdfcrop
Shttps://www.ctan.org/pkg/latexpand
4https://www.ctan.org/pkg/chktex
Shttps://www.ctan.org/pkg/latexindent

©2013 — 2021 by Pablo Gonzalez 2/18

https://ctan.org/pkg/pst2pdf
https://ctan.org/pkg/pdfcrop
https://www.ctan.org/pkg/latexpand
https://www.ctan.org/pkg/chktex
https://www.ctan.org/pkg/latexindent

Xima 2.1 §.4 How it works

This is necessary for the image creation process, it does not affect the (output file), but it does affect the standalone files.
For the script the process of dividing the (input file) into four parts and then processing them:

. \documentclass{article}
3

i \begin{document}

.

s/ \end{document}

If for some reason you have an environment filecontents before \documentclass or in the preamble of the (input file
that contains a sub-document or environment you want to extract, the script will ignore them. Similarly, the content after
\end{document} is ignored in the extraction process.

4.2 Verbatim contents

One of the greatest capabilities of this script is to “skip” the complications that (verbatim content) produces with the
extraction of environments using tools outside the “TgX world™. In order to “skip” the complications, the (verbatim
content) is classified into three types:

« Verbatim in line.
« Verbatim standard.
« Verbatim write.

Verbatim in line

The small pieces of code written using a “verbatim macro” are considered (verbatim in line), such as \verb | (code) | or
\verbx | (code) | or \macro{{code)} or \macro[{opts)]1{ (code)?}.

Most “verbatim macro” provide by packages minted[18], fancyvrb[16] and listings[17] have been tested and are fully
supported. They are automatically detected the verbatim macro (including » argument) generates by \newmint and
\newmintinline and the following list:

e \mint e \verb * \pygment

e \spverb « \Verb « \Scontents
* \qverb e \lstinline « \tchboxverb
« \fverb * \pyginline e \mintinline

Some packages define abbreviated versions for “verbatim macro” as \DefineShortVerb, \lstMakeShortInline and
\MakeSpecialShortVerb, will be detected automatically if are declared explicitly in (input file) .

The following consideration should be kept in mind for some packages that use abbreviations for verbatim macros,
such as shortvrb[15] or doc[15] for example in which there is no explicit \macro in the document by means of which
the abbreviated form can be detected, for automatic detection need to find \DefineShortVerb explicitly to process it
correctly. The solution is quite simple, just add in (input file :

\UndefineShortVerb{\|}
\DefineShortVerb{\|}

depending on the package you are using. If your “verbatim macro” is not supported by default or can not detect, use the
options described in 7.2 and 7.3.

Verbatim standard

These are the “classic” environments for “writing code” are considered (verbatim standard), such as verbatim and
lstlisting environments. The following list (including * argument) is considered as (verbatim standard) environments:

e Example « SaveVerbatim « comment * pyglist

e CenterExample e PSTcode e chklisting e program

» SideBySideExample e LTXexample « verbatimtab e programl
» PCenterExample e tcblisting e listingcont e programL
e PSideBySideExample e spverbatim e boxedverbatim e programs
e verbatim * minted e demo e programf
e Verbatim e listing e sourcecode e programsc
e BVerbatim e lstlisting e xcomment e programt
e LVerbatim e alltt e pygmented

Only TgX can understand TgX, all other languages and programs are just lines in a file.

©2013 — 2021 by Pablo Gonzalez 3/18

EXima 2.1

§.4 How it works

They are automatically detected (verbatim standard) environments (including » argument) generates by commands:

e \DefineVerbatimEnvironment e \includecomment
e \NewListingEnvironment e« \newtcblisting
e \DeclareTCBListing e \NewTCBListing
* \ProvideTCBListing « \newverbatim

e \lstnewenvironment * \NewProgram

e \newtabverbatim « \newminted

e \specialcomment

If any of the (verbatim standard) environments is not supported by default or can not detected, you can use the options
described in 7.2 and 7.3.

Verbatim write

Some environments have the ability to write “external files” or “store content” in memory, these environments are
considered (verbatim write), such as scontents, filecontents or VerbatimOut environments. The following list is
considered (including argument) as (verbatim write) environments:

* scontents e tcbwritetmp e verbatimwrite « filecontentsdefstarred
« filecontents » extcolorbox o filecontentsdef « filecontentsgdef

e tcboutputlisting e extikzpicture « filecontentshere o« filecontentsdefmacro

* tcbexternal * VerbatimOut « filecontentsdefmacro « filecontentsgdefmacro

They are automatically detected (verbatim write) (including argument) environments generates by commands:

e \renewtcbexternalizetcolorbox

e \renewtcbexternalizeenvironment
e \newtchexternalizeenvironment

e« \newtchexternalizetcolorbox

e \newenvsc

If any of the (verbatim write) environments is not supported by default or can not detected, you can use the options
described in 7.2 and 7.3.

4.3 Steps process

For creation of the image formats, extraction of source code of environments and creation of an (output file), Ltximg
need a various steps. Let’s assume that the (input file) is test. tex, (output file) is test-out. tex, the working directory
are “. /”, the directory for images are . /images, the temporary directory is /tmp and we want to generate images in pdf
format and (standalone) files for all environments extracted.

We will use the following code as test. tex:

. \documentclass{article}
\usepackage{tikz}

\begin{document}

; Some text
\begin{tikzpicture}

7 Some code

s \end{tikzpicture}

s Always use \verb|\begin{tikzpicture}| and \verb|\end{tikzpicture}| to open
v and close environment

u| \begin{tikzpicture}

12 Some code

13 \end{tikzpicture}

4 Some text

5 \begin{verbatim}

6| \begin{tikzpicture}

17 Some code

i3/ \end{tikzpicture}

v \end{verbatim}

Some text

\end{document}

.. Some lines that will be qdignored by the script

©2013 — 2021 by Pablo Gonzalez

4/18

LXima 2.1

§.4 How it works

Validating Options

The first step is read and validated [(options)] from the command line and test. tex, verifying that test. tex contains
some environment to extract, check the name and extension of test-out. tex, check the directory . /images if it doesn’t
exist create it and create a temporary directory /tmp/hG45uVklvo.

The entire test. tex file is loaded into memory and “split” to start the extraction process.
Comment and ignore

In the second step, once the file test. tex is loaded and divided in memory, proceeds (in general terms) as follows:

Search the words \begin{ and \end{ in verbatim standard, verbatim write, verbatim in line and com-
mented lines, if it finds them, converts to \BEGIN{ and \END{, then places all code to extract inside the
\begin{preview} ...\end{preview}.

At this point “all” the code you want to extract is inside \begin{preview}...\end{preview}.

Creating files and extracting

In the third step, the script generate (standalone) files: test-fig-1.tex, test-fig-2.tex, ... and saved in . /images
then proceed in two ways according to the [(options) | passed to generate a temporary file with a random number (1981
for example):

1. If script is call without --noprew options, the following lines will be added at the beginning of the test. tex (in
memory):

\PassOptionsToPackage{inactive}{pst-pdf}
\AtBeginDocument{

\RequirePackage[inactive]{pst-pdf}
\RequirePackage[active,tightpage]{preview}
\renewcommand\PreviewBbAdjust{-60pt -60pt 60pt 60pt}}

«

The different parts of the file read in memory are joined and save in a temporary file test-fig-1981.tex in “. /”.
This file will contain all the environments for extraction between \begin{preview}...\end{preview} along with the
rest of the document. If the document contains images, these must be in the formats supported by the engine selected
to process the (input file).

2. If script is call with --noprew options, the \begin{preview}...\end{preview} lines are only used as delimiters for
extracting the content without using the package preview, the following lines will be added at the beginning of the
test.tex (in memory):

\PassOptionsToPackage{inactive}{pst-pdf}
\AtBeginDocument{
\RequirePackage[inactive]{pst-pdf}}

Then it is joined with all extracted environments separated by \newpage and saved in a temporary file test-fig-1981. tex

«

in“./”.
If --norun is passed, the temporary file test-fig-1981. tex is renamed to test-fig-all.tex and moved to . /images.
Generate image formats

In the fourth step, the script generating the file test-fig-1981.pdf with all code extracted and croping, running:

[user@machine ~:]$ conqﬁkv -no-shell-escape -interaction=nonstopmode -recorder test-fig-1981.tex
[user@machine ~:]$ pdfcrop --margins 0 test-fig-1981.pdf test-fig-1981.pdf

Now move test-fig-1981.pdfto /tmp/hG45uVklvo and rename to test-fig-all.pdf, generate image files test-fig-1.pdf

and test-fig-2.pdf and copy to . /images, if the image files exist, they will be rewritten each time you run the script.
The file test-fig-1981.tex is moved to the . /images and rename to test-fig-all. tex.

Note the options passed to (compiler) always use -no-shell-escape and -recorder to generate the . fs file which is
used to delete temporary files and directories after the process is completed. The --shell option activates ~shell-escape
or —enable-write18 in MiKTgX for compatibility with packages such as minted or others.

©2013 — 2021 by Pablo Gonzalez

5/18

LXima 2.1

\begin{preview}
env content

\end{preview}

\begin{postscript}
env content

\end{postscript}

\begin{PSTexample}
env content
\end{PSTexample}

§.5 Extract content

Create output file

In the fifth step, the script apply the option --clean, remove all content betwen %<xremove> ... %</remove> and try
to detect whether the graphicx package and the \graphicspath command are in the preamble of the (output file) (in
memory). If it is not possible to find it, it will read the . log file generated by the temporary file with only preamble.
Once the detection is complete, the package grfext and \PrependGraphicsExtensionsx will be added at the end of the
preamble:

. \usepackage{graphicx}

> \graphicspath{{images/}}

; \usepackage{grfext}

, \PrependGraphicsExtensions*{.pdf}

«

Now converting all extracted code to \includegraphics and save test-out.tex in “./”, then proceed to run:

[user@machine ~:]$ Conqﬂkv -recorder -no-shell-escape test-out.tex
generating the file test-out. pdf.

Clean temporary files and dirs

In the sixth step, the script read the files test-fig-1981.fls and test-out. fls, extract the information from the tem-
porary files and dirs generated in the process in “. /” and then delete them together with the directory /tmp/hG45uVvklva.

Finally the output file test-out. tex looks like this:

. \documentclass{article}
\usepackage{tikz}
\graphicspath{{images/}}
\usepackage{grfext}

IS

\PrependGraphicsExtensions*{.pdf}

; \begin{document}
Some text

\includegraphics[scale=1]{test-fig-1}

Always use \verb|\begin{tikzpicture}| and \verb|\end{tikzpicture}| to open
and close environment
\includegraphics[scale=1]{test-fig-2}
Some text
\begin{verbatim}
\begin{tikzpicture}
Some code

17 \end{tikzpicture}

\end{verbatim}
Some text
, \end{document}

5 Extract content

The script provides two ways to (extract) content from (input file), using (environments) and (docstrip tags). Some
environment (including argument) are supported by default. If environments are nested, the outermost one will be
extracted.

5.1 Default environments

Environment provide by preview[1] package. If any preview environments found in the (input file) will be extracted and
converted these. Internally the script converts all environments to extract in preview environments. Is better comment
this package in preamble unless the option -n,--noprew is used. This environment is reserved for the internal process of
extraction and conversion, it cannot be passed as an argument to the option --skipenv.

Environment provide by pst-pdf[5], auto-pst-pdf[6] and auto-pst-pdf-lua[7] packages. Since the pst-pdf, auto-pst-pdf
and auto-pst-pdf-lua packages internally use the preview package, is better comment this in preamble. Only the content
of this environment is extracted and “not” the environment itself when using the --srcenv or --subenv options.

Environment provide by pst-exa[8] packages. The script automatically detects the \begin{PSTexample} ...\end{PSTexample}
environments and processes them as separately compiled files. The user should have loaded the package with the [swpl]

or [tch] option and run the script using --latex or --xetex. This environment is reserved for the internal process of
extraction and conversion, it cannot be passed as an argument to the option --skipenv.

©2013 — 2021 by Pablo Gonzalez 6/18

LXiva 2.1

\begin{pspicture}
env content
\end{pspicture}
\begin{psgraph}
env content
\end{psgraph}
\begin{tikzpicture}
env content
\end{tikzpicture}
\begin{pgfpicture}
env content
\end{pgfpicture}

%<x1tximg>
content
%< /ltximg>

\begin{nopreview}
env content
\end{nopreview}

%<*noltximg>
content
%< /noltximg>

%<*xremove>
content

%< /remove>

pdf

eps

§.6 Image Formats

Environment provide by PStricks[3] package. The plain TgX syntax \pspicture \endpspicture its converted to
ETEX syntax \begin{pspicture} \end{pspicture} if not within the PSTexample or postscript environments.

Environment provide by pst-plot[4] package. The plain TgX syntax \psgraph \endpsgraph its converted to KX

syntax \begin{psgraph} \end{psgraph} if not within the PSTexample or postscript environments.

Environment provide by TikZ[2] package. The plain TEgX syntax \tikzpicture \tikzpicture its converted to

KIEX syntax \begin{tikzpicture} \end{tikzpicture} but no a short syntax \tikz ... ;.

Environment provide by pgf[2] package. Since the script uses a “recursive regular expression” to extract environments, no
presents problems if present pgfinterruptpicture.

If you need to extract other environments you can use one of the options described in 7.2 or 7.3.

5.2 Extract with docstrip tags

All content included between %<*1tximg> . %</ltximg> is extracted. The tags can not be nested and should be at
the beginning of the line and in separate lines. Internally the script converts all this tags to preview environments.

%<x1tximg>
code to extract
%< /ltximg>

5.3 Prevent extraction and remove
Sometimes you do not want to “extract all” the environments from (input file) or you want to remove environments or
arbitrary content. The script provides a convenient way to solve this situation.

Environment provide by preview package. Internally the script converts all “skip” environments to \begin{nopreview}
...\end{nopreview}. Is better comment this package in preamble unless the option -n,--noprewis used. This environment
is reserved for the internal process of extraction and conversion, it cannot be passed as an argument to the option --
extrenv.

All content betwen %<*noltximg> ... %</noltximg> are ignored and no extract. The tags can not be nested and should
be at the beginning of the line and in separate lines. Internally the script converts all this tags to nopreview environments.

%<*noltximg>
no extract this
%</noltximg>

All content betwen %<*remove> ... %</remove> are deleted in the (output file). The tags can not be nested and should

be at the beginning of the line and in separate lines.

%<xremove>
lines removed in output file

%</remove>

The content will be deleted if it is “not” within a (verbatim) or (verbatim write) environment. If you want to remove
specific environments automatically you can use one of the options described in 7.2 or 7.3.

6 Image Formats

The (image formats) generated by the 1tximg using ghostscript and poppler-utils are the following command lines:

The image format generated using ghostscript. The line executed by the system is:

[user@machine ~:]$% gs -q -dNOSAFER -sDEVICE=pdfwrite -dPDFSETTINGS=/prepress

The image format generated using pdftoeps. The line executed by the system is:

[user@machine ~:]$ pdftops -q -eps

©2013 — 2021 by Pablo Gonzalez

7/18

EXima 2.1

png

jpg

ppm

tiff

svg

bmp

-h, --help

-1, —-log

-v, —--version

-V, --verbose

-d, --dpi
-t, --tif
-b, —-—bmp
=j, —-ipg

§.7 How to use

The image format generated using ghostscript. The line executed by the system is:

[user@machine ~:]$ gs -q -dNOSAFER -sDEVICE=pngalpha -r150

The image format generated using ghostscript. The line executed by the system is:

[user@machine ~:]$ gs -q -dNOSAFER -sDEVICE=jpeg -r150 -dJPEGQ=180 \
-dGraphicsAlphaBits=4 -dTextAlphaBits=4

The image format generated using pdftoppm. The line executed by the system is:

[user@machine ~:]¢ pdftoppm -q -r 156

The image format generated using ghostscript. The line executed by the system is:

[user@machine ~:]$ gs -q -dNOSAFER -sDEVICE=tiff32nc -ri50

The image format generated using pdftocairo. The line executed by the system is:

[user@machine ~:]$ pdftocairo -q -r 158

The image format generated using ghostscript. The line executed by the system is:

[user@machine ~:]$ gs -q -dNOSAFER -sDEVICE=bmp32b -r150

7 How to use

7.1 Syntax

The syntax for 1tximg is simple, if your use the version provided in your TgX distribution:

[user@machine ~:1$% ltximg [(options] [--]1 (input file

If the development version is used:

[user@machine ~:1% perl ltximg [{options] [--]1 (input file

The extension valid for (input file) are .tex or . ltx, relative or absolute paths for files and directories is not supported.

If used without [(options)] the extracted environments are converted to pdf image format and saved in the . /images

directory using pdflatex and preview package.

7.2 Command line interface

The script provides a command line interface with short - and long -- option, they may be given before the name of the
input file), the order of specifying the options is not significant. Options that accept a (value) require either a blank
space ; or = between the option and the (value). Multiple short options can be bundling and if the last option takes a

comma separated list) you need -- at the end.
boolean

Display a command line help and exit.
boolean

Write a 1tximg. log file with all process information.
boolean

Display the current version (2.1) and exit.
boolean

Show verbose information of process in terminal.
integer

Dots per inch for images files. Values are positive integers less than or equal to 2500.
boolean

Create a . t1if images files using ghostscript.
boolean

Create a . bmp images files using ghostscript.

boolean

Create a . jpg images files using ghostscript.

©2013 — 2021 by Pablo Gonzalez

(default: off)

(default: off)

(default: off)

(default: off)

(default: 150)

(default: off)

(default: off)

(default: off)

8/18

LXima 2.1

~P, —~png
-e, --eps
-s, —-svg
-P, --ppm
-g, —-gray
-f, --force

-n, --noprew

-m, —--margins

-r, --runs

-0, —-output

--prefix

--myverb

-—imgdir

--zip

--tar

—-—-srcenv

--subenv

--shell

——horun

§.7 How to use

boolean (default: off)

Create a . png transparent image files using ghostscript.

boolean (default: off)
Create a .eps image files using pdftops.

boolean (default: off)
Create a . svg image files using pdftocairo.

boolean (default: off)

Create a . ppm image files using pdftoppm.
boolean (default: off)

Create a gray scale for all images using ghostscript. The line behind this options is:

[user@machine ~:]$ gs -q -dNOSAFER -sDEVICE=pdfwrite -dPDFSETTINGS=/prepress \
-sColorConversionStrategy=Gray -dProcessColorModel=/DeviceGray

boolean (default: off)

Try to capture \psset{(code } and \tikzset{ code) } to extract. When using the --force option the script will try to
capture \psset{ (code) } or \tikzset{ code } and leave it inside the preview environment, any line that is between
\psset{{code } and \begin{pspicture} or between \tikzset{ code } and \begin{tikzpicture} will be captured.

boolean (default: off)
Create images files without preview package. The \begin{preview}...\end{preview} lines are only used as delimiters

for extracting the content without using the package preview. Using this option “only” the extracted environments are
processed and not the whole (input file), sometimes it is better to use it together with --force.

integer (default: o)
Set margins in bp for pdfcrop.

123 (default: 1)
Set the number of times the (compiler) will run on the (input file) for environment extraction.

file name (default: empty)

Create (file name) with all extracted environments converted to \includegraphics. Only file name) must be passed
without relative or absolute paths.

string (default: fig)
Set (prefix) append to each generated files.

macro name (default: myverb)
Set custom verbatim command \myverb. Just pass the (macro name, without “\”.

string (default: images)
Set the name of directory for save generated files. Only the (name, of directory must be passed without relative or
absolute paths.

boolean (default: off)
Compress the files generated by the script in . /images in . z1ip format. Does not include (output file).

boolean (default: off)
Compress the files generated by the script in . /images in . tar. gz format. Does not include (output file).

boolean (default: off)
Create separate files with “only code” for all extracted environments. This option is mutually exclusive with --subenv.
boolean (default: off)

Create a (standalone) files (with “preamble and code”) for all extracted environments. This option is designed to generate
“compilable files” for each extracted environment, is mutually exclusive with --srcenv.

boolean (default: off)

Enable \write18 shell command .
boolean (default: off)

Execute the script, but do not create image files. This option is designed to be used in conjunction with --srcenv or
--subenv and to debug the (output file).

©2013 — 2021 by Pablo Gonzalez

9/18

LXima 2.1

-—nopdf

--nocrop

——arara

—--xetex

--latex

--dvips

--dvilua

-—-dvipdf

--latexmk

--luatex

--clean

-—extrenv

--skipenv

--verbenv

§.7 How to use

boolean (default: off)

Don’t create a . pdf image files.
boolean (default: off)

Don’t run pdfcrop in image files.

boolean (default: off)
Use arara’ tool for compiler (input file) and (output file). This option is designed to full process (input file) and (output
file), is mutually exclusive with “any” other (compiler) option. See 8 for more information.

boolean (default: off)

Using xelatex compiler (input file) and (output file). In the execution xelatex is called with the -no-pdf option
generating a . xvd file and then it is processed using xdvipdfmx, this is only to execute faster conversion of environments
to images and it is only done on the (input file).

boolean (default: off)

Using latex»dvips»ps2pdf compiler in (input file) and pdflatex for (output file). To support transparencies in the
updated versions of ghostscript the line executed by ps2pdf is:

[user@machine ~:1$% ps2pdf -sPDFSETTINGS=prepress -sAutoRotatePages=None -dALLOWPSTRANSPARENCY

boolean (default: off)

Using latex»dvips»ps2pdf for compiler (input file) and (output file). To support transparencies in the updated versions
of ghostscript the line executed by ps2pdf is:

[user@machine ~:]$ ps2pdf -sPDFSETTINGS=prepress -sAutoRotatePages=None -dALLOWPSTRANSPARENCY

boolean (default: off)

Using dvilualatex»dvips»ps2pdf for compiler (input file) and lualatex for (output file). To support transparencies
in the updated versions of ghostscript the line executed by ps2pdf is:

[user@machine ~:]$ ps2pdf -sPDFSETTINGS=prepress -sAutoRotatePages=None -dALLOWPSTRANSPARENCY

boolean (default: off)

Using latex»dvipdfmx for compiler (input file) and (output file).
boolean (default: off)

Using latexmk® for process (output file). This option is designed to full process (output file, is mutually exclusive with
--arara.

boolean (default: off)

Using lualatex for compiler (input file) and (output file,.
doc|pst|tkz|all|off (default: doc)

Removes specific content in (output file). Valid values for this option are:

doc All content after \end{document} is removed.

pst All \psset{ code } and PStricks package is removed in preamble) and (body .
tkz All \tikzset{(code } is removed in (body.

all Activates doc, pst and tkz.

off Deactivate all.

comma separated list (default: empty)

Add environments to extract, if it’s the last option passed need -- at the end. The environments document and nopreview
are not supported in this option.

comma separated list (default: empty)

Add environments that should “not be extracted” and that the script supports by default, if it’s the last option passed need
-- at the end. The environments PSTexample and preview are not supported in this option.

comma separated list (default: empty)

Add (verbatim standard) environment support, if it’s the last option passed need -- at the end.

Thttps://ctan.org/pkg/arara
8https://www.ctan.org/pkg/latexmk

©2013 — 2021 by Pablo Gonzalez

10/18

https://ctan.org/pkg/arara
https://www.ctan.org/pkg/latexmk

LXiva 2.1 §.7 How to use

--writenv (comma separated list (default: empty)

Add (verbatim write) environment support, if it’s the last option passed need -- at the end.

--deltenv (comma separated list (default: empty)

Add environments to deleted in (output file). The environments are delete only in (body) of (output file), if it’s the last
option passed need -- at the end. The environment document is not supported in this option.

Passing options from command line
An example of usage from command line:

[user@machine ~:]$ ltximg --latex -s -o test-out test-in.ltx

Create a . /images directory (if it does not exist) with all extracted environments converted to image formats (pdf, svg)
in individual files, an output file (tesi-out.ltx) with all extracted environments converted to \includegraphics and a
single file (‘est-in-fig-all.ltx) with only the extracted environments using latex»dvips»ps2pdf and preview package for
for process (test-in.ltx) and pdflatex for (test-out.lix).

7.3 Options from input file
Many of the ideas in this section are inspired by the arara. A very useful way to pass options to the script is to place
them in commented lines at the beginning of the file, very much in the “style of arara”.

% ltximg: (argument): {(option one, option two, option three, ...)}

%! 1tximg: (argument): {(option one, option two, option three, ...)}
The vast majority of the (options) can be passed into the (input file). These should be put at the beginning of the file
in commented lines and everything must be on the same line, the exclamation mark ! deactivates the (options). When
passing options from the (input file) you should be aware that they must “not” contain - or --, the = sign between an

option and its value is mandatory, short names are disabled and options found in the (input file, overwrite those passed
on the command line. Valid values for (argument, are the following:

% ltximg: extrenv: {(environment one, environment two, environment three, ...)}

This line is to indicate to the script which environments, not supported by default, are extracted.
% ltximg: skipenv: {(environment one, environment two, environment three, ...)}

This line is to indicate to the script which environments, of the ones supported by default, should not be extracted.
% ltximg: verbenv: {(environment one, environment two, environment three, ...)}

This line is to indicate to the script which environments, its considerate a (verbatim standard).
% ltximg: writenv: {(environment one, environment two, environment three, ...)}

This line is to indicate to the script which environments its consider (verbatim write).
% ltximg: deltenv: {(environment one, environment two, environment three, ...)}

This line is to indicate to the script which environments are deleted.
% ltximg: options: {(option one = value, option two = value, option three = value, ...)}

This line is to indicate to the script which options(other than those listed above) need to process.

All options passed from the (input file) are validated by the 1tximg after they are read. If you are going to create an
output file) and you do not want these lines to remain, it is better to place them inside the %<xremove> ... %</remove>.
Like this:

1 %<xremove>
> % ltximg: options: { png, srcenv, xetex }
5 % ltximg: extrenv: { description }

4 %</remove>

Passing options from input file

Adding the following lines to the beginning of the file file-in.tex:

1 % ltximg: options: { luatex, output = file-out, imgdir = pics, prefix = env }
2 % ltximg: skipenv: { tikzpicture }
; % ltximg: deltenv: { filecontents }

and run:
[user@machine~:]$ ltximg file-in.tex

©2013 — 2021 by Pablo Gonzalez 11/18

LXiva 2.1

§.8 The way of arara

Create a . /pics directory (if it does not exist) with all extracted environments, except tikzpicture, converted to
image formats (pdf) in individual files, an output file (file-out.tex) with all extracted environments converted to
\1includegraphics and environment filecontents removed, a single file (file-in-env-all.lix) with only the extracted
environments using lualatex and preview package for process (file-in.tex) and (file-out.tex).

8 The way of arara

By design, 1tximg only runs “one or more compilation” on top of the (input file), but, sometimes you need to process in a
specific mode the (input file) or needs to be processed with something other than BIEX, XglfTX, pdfEITEX or LuaBTEX
engine. This is where arara[19] comes in, this “great little tool”, is able to have complete control over the compilation of
the (input file), we just have to keep a few considerations in mind:

1. Read the documentation (this always comes first).

2. Add { options: [-recorder] } to “rule” for clean temporary files.
3. Avoiding the use of : clean: { extensions: [...] }.

4. Don’t set -jobname and -output-directory in any “rule”.

When the --arara option is passed to the script, the line that runs in the system is:

[user@machine~:]$ arara --log file.tex

If you have several “rules” within the file they will all be executed, to avoid this we must add:
1 % arara: halt

After the last “rule” you have at the beginning of the file. With all these considerations in mind it is possible to extract
and convert environments from any file.

For example, by adding these lines at the beginning of the file:

v % arara: lualatex: { options: [-recorder] }

> % arara: lualatex: { options: [-recorder] }

3 %<*remove>

4+ % ltximg: options: { arara, output = file-out, prefix = tkz}
5 %</remove>

and run:

[user@machine~:]$ ltximg test.tex

Create a . /images directory (if it does not exist) with all extracted environments converted to image format (pdf) in
individual files, an output file (file-out.tex) with all exatracted environments converted to \includegraphics, a single
file (test-tkz-all.tex) with only the extracted environments using preview package and lualatex “two times” for process
(test.tex) and (file-out.tex).

Remember that the (input file) and (output file) will be compiled using the same “rule”. One trick to get around this
situation is to use:

1 %<xremove>

> % arara: lualatex: { options: [-recorder] }

% arara: lualatex: { options: [-recorder] }

% arara: halt

IS

% ltximg: options: { arara, output = file-out, prefix = tkz}

%< /remove>
; % arara: xelatex: { options: [-recorder] }
s % arara: xelatex: { options: [-recorder] }

The content betwen %<xremove> ... %</remove> are remove from output file before compiling. Thus, the output file
(file-out.tex) will be compiled using xelatex “two times”

As a final consideration, 1tximg passes options to the preview package and the pdfcrop script according to the engine
used. When using --arara it will “try” to detect the used engine by means of a regular expression, if the detection fails
the default values will be used.

This does not affect the process of creating (standalone) files and can be prevented by using --noprew or --nocrop at
the cost of not having the images cropped.

In this way we can (compile) and (convert) any document as long as the conditions of the (input file) are met and the
correct “rule” are used.

©2013 — 2021 by Pablo Gonzalez

12/18

LXima 2.1

§.9 Note for dvisvgm users

9 Note for dvisvgm users

By design, the image format svg is created using pdftocairo over the generated pdf file, but, if you want to have a good
svg files that preserve our typographic fonts it is best to use dvisvgm®. The best results of dvisvgm[20] are obtained
when processing the file in . dvi or . xdv format, there are two possible ways to do this:

1. Execute the script using --subenv and --norun to generate (standalone) files, move to . /images and generate .dv1
or . xdv files, then runing:

[user@machine~:1$ for i in x.tex; do (compiler) [{options)] $i;done
[user@machine~:1$ for i in *.dvi; do dvisvgm [{options)] $i;done

2. Execute the script using --norun, move to . /images and generate .dvi or .xdv file, then runing:

[user@machine~:]$ conqﬁkw [<qpﬁons>] test-fig-all. tex
[user@machine~:]$ dvisvgm [<oonnS>] test-fig-all.dvi

10 Example usign latexmk

If you are a user of latexmk, another great utility that automates the compilation process, you must keep in mind that
this will run only in the (output file). Consider the following example adapted from How to get tikzmark to work and
Draw an aircraft with Tikz to generate an image in svg, png and pdf format from environment picture using lualatex
and latexmk.

%<*remove>

% ltximg: extrenv: {picture}

% ltximg: skipenv: {tikzpicture}
%</remove>
\documentclass{article}
\usepackage{tikz}

7 \usetikzlibrary{calc,tikzmark}

\setlength{\parindent}{Opt}
\begin{document}

\section{How to get Tikzmark to work}
By taking logarithms of both sides:

> \[

t = \frac{30\cdot\ln(3/22)}{\ln(15/22)}
\tikzmark{calculator}\approx\tikzmark{otherside}
156

o\

7 \begin{tikzpicture}[overlay,remember picture]

\coordinate (target) at ($(pic cs:calculator)!1/2!(pic cs:otherside) - (0,.5ex)$);
\draw[arrows=->] (target) ++(8,-2ex) node [anchor=north] {use calculator} -- (target);
\end{tikzpicture}
\section{Draw an aircraft with Tikz}
The best airplane ever drawn by David Carlise. No TikZ used, just the
classic and perhaps forgotten \verb|\begin{picture} ... \end{picture}|.

s \begin{picture} (200,100)

\put(308,48){\line(1,0){158}} \put(30,40){\line(d,1){606}}
\put(30,100){\line(1,0){20}} \put(56,100){\line(1,-4){10}}
\put(60,60){\line(1,0){100}} \put(160,60){\line(1,-1){20}}
\put(160,50) {\line(0,-1){80}} \put(1308,50){\line(0,-1){80}}
\put(180,-30){\1line(1,0){30}} \put(100,61){\line(0,1){49}}
\put(130,61){\line(0,1){49}} \put(100,118){\line(1,0){30}}

\end{picture}

\end{document}

We now run:

[user@machine~:]$ ltximg --luatex --latexmk --svg --png -o file-out file-in.tex

Create a . /images directory (if it does not exist) with all picture environments, except tikzpicture, converted to image
formats (svg, png, pdf), an output file (file-out.tex) with all picture environments converted to \includegraphics, a
single file (file-in-fig-all.ltx) with only environments picture extracted using lualatex and preview package for process
(file-in.tex) and latexmk for full process (file-out.tex).

Shttps://ctan.org/pkg/dvisvgm

©2013 — 2021 by Pablo Gonzalez

13/18

https://tex.stackexchange.com/a/209059
https://tex.stackexchange.com/a/114847
https://ctan.org/pkg/dvisvgm

IXime 2.1

§.11 Final notes

11 Final notes

The process and operations required to generate the various types of (image formats) or (standalone, files have been

described throughout the documentation, but, as discussed in section 8, sometimes the requirements are a little different.

This is the best way to extend the capabilities of the 1tximg. Although many tasks can be automated, in the end only the
user knows what the document contains and how it should be generated.

Finding the correct “regular expressions” and writing a “good documentation” would be the great mission (which does not
end yet).

12 Change history

The most recent publicly released of 1tximg is available at CTAN: https://www.ctan.org/pkg/ltximg. Historical and
developmental versions are available at ©) https://github.com/pablgonz/ltximg.

While general feedback via email is welcomed, specific bugs or feature requests should be reported through the issue
tracker: https://github.com/pablgonz/ltximg/issues.

This is a short list of some of the notable changes in the history of the 1tximg along with the versions, both development
(devp) and public (ctan).

v2.1 (ctan), 2021-05-21 v1.5 (ctan), 2018-04-12

- Maintenance update. — Use GitHub to control version.

- Fix internal hash for regex. — Rewrite and optimize code and options.
v2.0 (ctan), 2021-01-24 — Change pdf2svg for pdftocairo.
— Add -dALLOWPSTRANSPARENCY to ps2pdf. — Complete support for pst-exa package.
— The --xetex option now uses xelatex and then - Escape characters in regex according to Perl v5.2x.

xdvipdfmx. v1.4 (devp), 2016-11-29

- Fix module detection under TgX Live on Windows. - Remove and rewrite code for regex and system call.

Add POD and man documentation.
v1.9 (ctan), 2020-08-22
- Fix graphicx detection.
- Fix typos in documentation.
— Add more contents to . log file.
v1.8 (ctan), 2020-08-18
- It is now possible to extract any environment.
- Add --log, --runs, --latexmk and --dvilua op-
tions.
— All calls to the system are captured.

Re-write source code acording to Perl v5.3x.
Review of documentation.

v1.7 (ctan), 2019-08-24
- Add scontents environment support.
- Add filecontentsdefmacro environment support.

Fix regex in source code.

Update documentation.
v1.6 (ctan), 2019-07-13
- Add --zip and --tar options.
- Add new Verb from fvextra.
- Fix and update source code and documentation.

©2013 — 2021 by Pablo Gonzalez

- Add --arara compiler, clean and comment code.

— Add --dvips and --dvipdfm(x) for creation images.

- Add bmp, tiff image format.
v1.3 (devp), 2016-08-14
- Rewrite some part of code (norun, nocrop, clean).
— Suport minted and tcolorbox package.
- Escape some characters in regex according to Perl
V5.2X.

All options read from command line and input file.
— Use /tmp dir for work process.
v1.2 (ctan), 2015-04-22
— Remove unused modules.
- Add more image format.
- Fix regex.
v1.1 (ctan), 2015-04-21

Change mogrify to gs for image formats.
Create output file.

— Rewrite source code and fix regex.
Change format date to iso format.

v1.0 (ctan), 2013-12-01
- First public release.

14/18

https://www.ctan.org/pkg/ltximg
https://github.com/pablgonz/ltximg
https://github.com/pablgonz/ltximg/issues

LEXima 2.1

§.13 References

13 References

[1] Kastrup, Davip. “The preview package for BIEX”. Available from CTAN, https://www.ctan.org/pkg/preview,
2017.

[2] TanTAu, TiLL. “The TikZ and PGF Packages”. Available from cTAN, https://www.ctan.org/pkg/pgf, 2020.

[3] Van ZanpT, TimoTHY. “PSTricks - PostScript macros for generic TgX”. Available from cTAN, https://www.ctan.

org/pkg/pstricks-base, 2007.

[4] VAN ZanDT, TimoTHY. “pst-plot — Plot data using PSTricks”. Available from cTAN, https://www.ctan.org/pkg/
pst-plot, 2019.

[5] NieprascHK, RoLF. “The pst-pdf Packages”. Available from CTAN, https://www.ctan.org/pkg/pst-pdf, 2019.

[6] RoBErRTSON, WiLL. “The auto-pst-pdf Packages”. Available from CTAN, https://www.ctan.org/pkg/auto-pst-pdf,
2009.

[7] Vo, HERBERT. “auto-pst-pdf-lua - Using Lual{IgX with PSTricks”. Available from CTAN, https://www.ctan.org/
pkg/auto-pst-pdf-Tlua, 2018.

[8] Vos, HERBERT. “pst-exa - Typeset PSTricks examples, with pdfTEX”. Available from cTAN, https://www.ctan.org/
pkg/pst-exa, 2017.

[9] Vo, HERBERT. “pst2pdf - A script to compile PSTricks documents via pdf TgX”. Available from cTAN, https://www.

ctan.org/pkg/pst2pdf, 2017.

[10] TuE BIEX3 ProjecT. “graphics — Enhanced support for graphics”. Available from cTAN, https://www.ctan.org/
pkg/graphicx, 2017.

[11] OBERDIEK, HEIKO. “The grfext package”. Available from cTAN, https://www.ctan.org/pkg/grfext, 2019.

[12] VAN ZanDT, TimoTHY. “The xcomment package”. Available from CTAN, https://www.ctan.org/pkg/xcomment,
2010.

[13] Apriaens, HENDRI. “The extract package”. Available from CTAN, https://www.ctan.org/pkg/extract, 2019.
[14] Trzeciak, Tomasz M. “The cachepic package”. Available from cTAN, https://www.ctan.org/pkg/cachepic, 2009.

[15] MrtTELBACH, FRANK. “The doc and shortvrb Packages”. Available from CTAN, https://www.ctan.org/pkg/doc,
2020.

[16] VAN ZaNDT, TimotHY. “The fancyvrb package - Fancy Verbatims in BIEX”. Available from cTAN, https://www.

ctan.org/pkg/fancyvrb, 2020.
[17] HorrMmANN, JoBsT. “The listings package”. Available from CTAN, https://www.ctan.org/pkg/listings, 2020.

[18] Poore, GEOFFREY M. “The minted package - Highlighted source code in BIEX”. Available from cTAN, https:
//www.ctan.org/pkg/minted, 2017.

[19] THE IsLanD orF TgX. “arara - The cool TgX automation tool”. Available from CTAN, https://www.ctan.org/pkg/
arara, 2020.

[20] GIESEKING, MARTIN. “dvisvgm - A fast DVI to SVG converter”. Available from CTAN, https://ctan.org/pkg/
dvisvgm, 2020.

©2013 — 2021 by Pablo Gonzalez

15/18

https://www.ctan.org/pkg/preview
https://www.ctan.org/pkg/pgf
https://www.ctan.org/pkg/pstricks-base
https://www.ctan.org/pkg/pstricks-base
https://www.ctan.org/pkg/pst-plot
https://www.ctan.org/pkg/pst-plot
https://www.ctan.org/pkg/pst-pdf
https://www.ctan.org/pkg/auto-pst-pdf
https://www.ctan.org/pkg/auto-pst-pdf-lua
https://www.ctan.org/pkg/auto-pst-pdf-lua
https://www.ctan.org/pkg/pst-exa
https://www.ctan.org/pkg/pst-exa
https://www.ctan.org/pkg/pst2pdf
https://www.ctan.org/pkg/pst2pdf
https://www.ctan.org/pkg/graphicx
https://www.ctan.org/pkg/graphicx
https://www.ctan.org/pkg/grfext
https://www.ctan.org/pkg/xcomment
https://www.ctan.org/pkg/extract
https://www.ctan.org/pkg/cachepic
https://www.ctan.org/pkg/doc
https://www.ctan.org/pkg/fancyvrb
https://www.ctan.org/pkg/fancyvrb
https://www.ctan.org/pkg/listings
https://www.ctan.org/pkg/minted
https://www.ctan.org/pkg/minted
https://www.ctan.org/pkg/arara
https://www.ctan.org/pkg/arara
https://ctan.org/pkg/dvisvgm
https://ctan.org/pkg/dvisvgm

IXima 2.1

§.14 Index of Documentation

14 Index of Documentation

The italic numbers denote the pages where the corresponding entry is described.

A
article(class) 2
auto-pst-pdf (package) 6
auto-pst-pdf-lua (package) 6
B
book (class) 2
C
cachepic (package) 1
Compiler
AraAra . e e e e e e e e e e e e e e e 10
dvilualatex 10
dvipdfmx 10
dVips .. 10, 11
Tatex ... e 10, 11
Tualatex i 10, 12, 13
pdflatex 8, 10, 11
xdvipdfmx L 10
xelatex 10, 12

Compiler options

—enable-writel8, 5
—no-pdf ... 10
-no-shell-escape 5
—recorder ... 5
-shell-escape 5
D
\DeclareTCBListing, 4
\DefineShortVerb 3
\DefineVerbatimEnvironment 4
doc(package) 3
Docstrip tag
TEXimg .o 7
noltximg 7
FEMOVE . ittt ittt e 7

Document class

article 2
book 2
Tetter 2
report ... e 2
E

Environments suport by default
PSTexample 6
NOPFeVIEW . . v vttt e e e e e 7
pgfpicture 7
postscript 6
PrevView e e e 6
psgraph 7
pspicture 7
tikzpicture 7

Environments
PSTexample, 7, 10
document 10, 11
NOPIrevVIewo v ittt e e 7, 10
pgfinterruptpicture 7

©2013 — 2021 by Pablo Gonzalez

picture 13
postscript 7
preview 6,7, 9, 10
tikzpicture 1, 12, 13
Environments verbatim
BVerbatim 3
CenterExample 3
Example 3
LTXexample i 3
LVerbatim 3
PCenterExample 3
PSTcode e 3
PSideBySideExample 3
SaveVerbatim 3
SideBySideExample 3
Verbatim 3
alltt ... 3
boxedverbatim o 3
chklisting 3
comment 3
demo . ..o 3
Tistingcont 3
Tisting 3
Tstlisting o i 3
minted 3
programL e 3
programf 3
programl 3
ProgramsCttt i ittt e 3
Programsttt 3
programt 3
Program e 3
pyglist 3
pygmented 3
SOUNCeCOde . . .t 3
spverbatim 3
teblisting . ..o oo 3
verbatimtab o 3
verbatim 3
xcomment L. e 3

Environments verbatim write

VerbatimOut 4
extcolorbox e 4
extikzpicture L o 4
filecontentsdefmacro 4
filecontentsdefstarred 4
filecontentsdef 4
filecontentsgdefmacro 4
filecontentsgdef 4
filecontentshere 4
filecontents 3,4, 12
scontents L oo 4
tcbexternal 4
tcboutputlisting L L. 4
tcbwritetmp ... 4
verbatimwrite o . 4
extract (package), 1

16/18

§.14 Index of Documentation

F
fancyvrb (package) 3
File
Ttximg.log oo 8
File extentions
bmp .. 8
dvi 13
DS i 9
B 5
JPE 8
LOg ot e 6, 8
EX L 8
pPAf 10
0 = 9
CPPM 9
SV v e e e 9
tar.gz ... 9
TOX o 8
Lo 8
XAV e 13
Xvd L 10
ZAP 9
\fverb 3
G
\graphicspath 6
graphicx (package) 2,6
grfext (package) 2,6
I
Image formats
bmp . . 8
DSt e 7
JPE 8
pdf . 4,7, 8, 11-13
PN o e 8, 13
PPM o e e e e e e 8
SVE e e e e e 8 11, 13
LS 8
\include e e e e e 2
\includecomment i 4
\includegraphics 1, 6,9, 11—13
\dnput . .o e 2
L
letter(class) 2
listings (package) 3
\lstinline i it e e e e e e e e 3
\lstMakeShortInline @i 3
\lstnewenvironment, 4
M
\MakeSpecialShortverb 3
MmNt L e e e e e e e 3
minted (package), 3,5
\mintinline i, 3
N
\NEWENVSC . . v v ittt e e e e 4
\NewListingEnvironment 4
\newmint e 3
\newminted o o 4

©2013 — 2021 by Pablo Gonzalez

\newmintinline 3
\Newpage e 5
\NewProgram 4
\newtabverbatim 4
\newtcbexternalizeenvironment 4
\newtcbexternalizetcolorbox 4
\NewTCBLisSting« o ittt 4
\newtcblisting 4
\newverbatim o o o oo 4
(0]
Operating system
LinUX oo e e e 1,2
Windows, 2

ltximg options in command line

STArANA e 10, 12
—=bmp . 8
—=clean 6, 10
—=deltenv 11
—=dpT 8
—=dvilua oo 10
—=dvipdf ... 10
—=dVIPS L 10
TIPS e 9
-—extrenv 7, 10
——force 9
STErAY e 9
——help .. 8
——imgdir L 9
SIPE e 8
—=latexmk 10
—=latex ... 6, 10
—log e 8
—=luatex ... 10
STMArGINS oo 9
--myverb L 9
STNOCKOP v v e e 10, 12
——nopdf ... 10
STNOPFEW oo e 5-7,9, 12
STNOFUN L v 5,9, 13
-—output L. 9
TTPNE e 9
SIPPM e 9
——prefix .. 9
STPUNS oo e 9
——shell 59
—=skipenv ... 6, 10
STSFCENV L e 6, 9
-—subenv e 6, 9, 13
TSV e 9
——tar L e 9
i B I 8
—-verbenv ... 10
—-verbose 8
SSVErSTON Lo 8
—mwritenv L. 11
—=XETEX . e e 6, 10
T ZAP e e e e 9
Itximg options in input file
deltenv 11
extrenv ... 11

17/18

IXiva 2.1

§.14 Index of Documentation

options 11
skipenv ... 11
verbenv ... 11
writenv ... 11
P
Package options
SWPL Lo 6
tech o 6
Packages
PStricks 1, 7, 10
TikZ .. 1,7
auto-pst-pdf-lua 6
auto-pst-pdf 6
cachepic 1
doC .. 3
extract 1
fancyvrb ... 3
graphicx 2,6
grfext 2,6
Tistings ... 3
minted 35
PEf 7
preview, 1,2, 59, 11—13
PST=€Xa .. 6
pst-pdf 2,6
pst-plot 7
shortvrb 3
xcomment ... 1
\pagestyle L e 2
Perl module
Archive::Tar 2
Config 2
Cwd .. 2
Data::Dumper 2
Env . 2
File::Basename 2
File::Copy .« v v it 2
File::Find 2
File::Path 2
File::Spec::Functions 2
Files:Temp . ..o e 2
FileHandle 2
Getopt::long i 2
I0::COMPreSS:iZiP v v v v vttt et e e 2
Module::Load::Conditional 2
POSIX . . o 2
Term::ANSIColor 2
Win32::Console::ANSI 2
Win32::TieRegistry 2
WiN32 .. 2
autodie 2
pef (package) 7
\PrependGraphicsExtensions* 6
preview (package) 1, 2, 5—9, 11—13
Programs
Git for Windows 2

©2013 — 2021 by Pablo Gonzalez

Windows Terminal 2
Arara .. 12
chktex 2
cmd L. 2
CYBWIN e 2
dvisvgm ... 13
ghostscript 1, 2, 7—10
pdftocairo 8,9, 13
pdftoeps 7
pdftoppm 8 9
pdftops 9
perl . . 1,2
poppler-utils 1,2, 7
\ProvideTCBListing 4
pst-exa (package) 6
pst-pdf (package) 2,6
pst-plot (package) 7
PStricks (package) 1,7, 10
\pyginline e 3
\pygment 3
Q
\gverb ..o 3
R
\renewtcbexternalizeenvironment 4
\renewtcbexternalizetcolorbox 4
report(class), 2
S
\Scontents e 3
Scripts
latexindent 2
Tatexmk 10, 13
Tatexpand e 2
pdfcrop 2,9, 10, 12
ps2pdf .. 10, 11
pst2pdf ... 1,2
shortvrb (package) 3
\specialcomment 4
\spverb . .. e e 3
swpl (package option) 6
T
teb (package option) L. 6
\tcboxverb o o 3
\thispagestyle 2
TikZ (package) 1,7
\%
\Verb . . 3
\Verb . e e e e e e e 3
w
\Writel8 . . . o e e e e e e 9
X
xcomment (package) 1

18/18

	License
	Motivation and Acknowledgments
	Requirements for operation
	Modules required

	How it works
	The input file
	Verbatim contents
	Steps process

	Extract content
	Default environments
	Extract with docstrip tags
	Prevent extraction and remove

	Image Formats
	How to use
	Syntax
	Command line interface
	Options from input file

	The way of arara
	Note for dvisvgm users
	Example usign latexmk
	Final notes
	Change history
	References
	Index of Documentation

