The Stanford GraphBase: A Platform for Combinatorial Algorithms

A highly portable collection of programs and data will soon be available to researchers
who study combinatorial algorithms and data structures. All files will be in the public
domain, and usable with only one restriction: They must not be changed! A “change file”
mechanism will allow local customization while the master files stay intact.

The programs are intended to be interesting in themselves as examples of “literate
programming.” Thus, the Stanford GraphBase can also be regarded as a collection of
approximately 30 essays for programmers to enjoy reading, whether or not they are doing
algorithmic research. The programs are written in CWEB, a combination of TEX and C that
is easy to use by anyone who knows those languages and easy to read by anyone familiar
with the rudiments of C. (The CWEB system is itself portable and in the public domain.)

Four program modules constitute the kernel of the GraphBase:
GB_FLIP is a portable random number generator;

GB_GRAPH defines standard data structures for graphs and includes routines for
storage allocation;

GB_I0 reads data files and makes sure they are uncorrupted;
GB_SORT is a portable sorting routine for 32-bit keys in linked lists of nodes.

All of the other programs rely on GB_GRAPH and some subset of the other three parts of
the kernel.

A dozen or so generator modules construct graphs that are of special interest in al-
gorithmic studies. For example gb_basic contains 12 subroutines to produce standard
graphs, such as the graphs of queen moves on d-dimensional rectangular boards with
“wrap-around” on selected coordinates. Another generator module, GB_RAND, produces
several varieties of random graphs.

Each graph has a unique identifier that allows researchers all over the world to work
with exactly the same graphs, even when those graphs are “random.” Repeatable experi-
ments and standard benchmarks will therefore be possible and widely available.

Most of the generator modules make use of data sets, which the author has been
collecting for 20 years in an attempt to provide interesting and instructive examples for
some forthcoming books on combinatorial algorithms (The Art of Computer Programming,
Volumes 4A, 4B, and 4C). For example, one of the data sets is words.dat, a collection
of 5-letter words of English that the author believes is “complete” from his own reading
experience. Each word is accompanied by frequency counts in various standard corpuses
of text, so that the most common terms can be singled out if desired. GB_WORDS makes a
subset of words into a graph by saying that two words are adjacent when they agree in 4
out of 5 positions. Thus, we can get from words to graph in seven steps:

words, wolds, golds, goads, grads, grade, grape, graph.
This is in fact the shortest such chain obtainable from words.dat.

A dozen or so demonstration modules are also provided, as illustrations of how the
generated graphs can be used. For example, the LADDERS module is an interactive program

1



to construct chains of 5-letter words like the one just exhibited, using arbitrary subsets of
the data. If we insist on restricting our choices to the 2000 most common words, instead
of using the entire collection of about 5700, the shortest path from words to graph turns
out to have length 20:

words, lords, loads, leads, leaps, leapt, least,

lease, cease, chase, chose, chore, shore, shone,

phone, prone, prove, grove, grave, grape, graph.

Several variations on this theme have also been implemented: If we consider the

distance between adjacent words to be alphabetic distance, for example, the shortest path
from words to graph turns out to be

words (3) woods (16) goods (14) goads (3) grads (14) grape (3) graph,
total length 65.

The LADDERS module makes use of another GraphBase module called GB_DI1JK, which
carries out Dijkstra’s algorithm for shortest paths and allows the user to plug in arbitrary
implementations of priority queues so that the performance of different queuing methods
can be compared.

The graphs produced by GB_WORDS are undirected. Other generator modules, like
GB_ROGET, produce directed graphs. Roget’s Thesaurus of 1882 classified all concepts into
1022 categories, which we can call the vertices of a graph; an arc goes from u to v when
category u contains a cross reference to category v in Roget’s book. A demonstration mod-
ule called ROGET_COMPONENTS determines the strong components of graphs generated by
GB_ROGET. This program is an exposition of Tarjan’s algorithm for strong components
and topological sorting of directed graphs.

Similarly, world literature leads to further interesting families of undirected graphs via
the GB_BOOKS module. Five data sets anna.dat, david.dat, homer.dat, huck.dat, and
jean.dat give information about Anna Karenina, David Copperfield, The Iliad, Huckle-
berry Finn, and Les Misérables; as you might expect, the characters of each work become
the vertices of a graph. Two vertices are adjacent if the corresponding characters en-
counter each other, in selected chapters of the book. A demonstration program called
BOOK_COMPONENTS finds the blocks (i.e., biconnected components) of these graphs using
the elegant algorithm of Hopcroft and Tarjan.

Another module, GB_ GAMES, generates graphs based on college football scores. All
the games from the 1990 season between America’s leading 120 teams are recorded in
games.dat; this data leads to “cliquey” graphs, because most of the teams belong to
leagues and they play every other team in their league. The overall graph is, however,
connected. A demonstration module called FOOTBALL finds long chains of scores, to prove
for instance that Stanford might have trounced Harvard by more than 2000 points if the
two teams had met—Dbecause Stanford beat Notre Dame by 5, and Notre Dame beat Air
Force by 30, and Air Force beat Hawaii by 24, and ... , and Yale beat Harvard by 15.
(Conversely, a similar “proof” also ranks Harvard over Stanford by more than 2000 points.)
No good algorithm is known for finding the optimum solution to problems like this, so the
data provides an opportunity for researchers to exhibit better and better solutions with
better and better techniques as algorithmic progress is made.



The ¢B_ECON module generates directed graphs based on the flow of money between
industries in the US economy. A variety of graphs can be obtained, as the economy can be
divided into any number of sectors from 2 to 80 in this model. A demonstration program
ECON_ORDER attempts to rank the sectors in order from “suppliers” to “consumers,”
namely to permute rows and columns of a matrix so as to minimize the sum of entries
above the diagonal. Again, no good algorithms for this problem are known; two heuristics
are implemented for comparison, one “greedy” and the other “cautious.” Greed appears
to be victorious, at least in the economic sphere.

The highway mileage between 128 North American cities appears in miles.dat, and
the ¢B_MILES module generates a variety of graphs from it. Of special interest is a demon-
stration module called MILES_SPAN, which computes the minimum spanning trees of graphs
output by GB_MILES. Four algorithms for minimum spanning trees are implemented and
compared, including some that are theoretically appealing but do not seem to fare so well
in practice. An approach to comparison of algorithms called “mem counting” is shown in
this demonstration to be an easily implemented machine-independent measure of efficiency
that gives a reasonably fair comparison between competing techniques.

A generator module called GB_RAMAN produces “Ramanujan graphs,” which are im-
portant because of their role as expander graphs, useful for communication. A demonstra-
tion module called GIRTH computes the shortest circuit and the diameter of Ramanujan
graphs. Notice that some graphs, like those produced by GB_BASIC or GB_RAMAN, have a
rigid mathematical structure; others, like those produced by GB_ROGET or GB_MILES, are
more “organic” in nature. It is interesting and important to test algorithms on both kinds
of graphs, in order to see if there is any significant difference in performance.

A generator module called GB_GATES produces graphs of logic circuits. One family
of graphs is equivalent to a simple RISC chip, a programmable microcomputer with a
variable number of registers and a variable number of bits per word. Using such a “meta-
network” of gates, algorithms for design automation can be tested for a range of varying
parameters. A demonstration module TAKE_RISC simulates the execution of the chip on a
sample program. Another meta-network of gates will perform parallel multiplication of m-
bit numbers by n-bit numbers or by an n-bit constant; the MULTIPLY module demonstrates
this network.

Planar graphs are generated by GB_PLANE, which includes among other things an
implementation of the best currently known algorithm for Delaunay triangulation.

Pixel data can lead to interesting bipartite graphs. Leonardo’s Giaconda is repre-
sented by mona.dat, an array of pixels that is converted into graphs of different kinds
by GB_MONA. A demonstration routine ASSIGN_MONA solves the assignment problem by
choosing one pixel in each row and in each column so that the total brightness of selected
pixels is maximized. Although the assignment problem being solved here has no relevance
whatever to art criticism or art appreciation, it does have great pedagogical value, be-
cause there is probably no better way to understand the characteristics of a large array of
numbers than to perceive the array as an image.

This lecture might well have been called “Fun and games with the Stanford Graph-
Base,” because the demonstration programs are great toys to play with. Indeed, the author



firmly believes that the best serious work is also good fun, and we shouldn’t apologize if
we enjoy doing research.

The Stanford GraphBase is now being beta-tested, and it should be released in 1993.
A book about it, containing in particular all the programs together with indexes and
typographic aids to the reader, will also be published in 1993. A module called GB_SAVE
converts GraphBase graphs to and from an ASCII format that readily interfaces with other
systems for graph manipulation.

—Donald E. Knuth
Stanford University
March 31, 1992



