
glossaries-extra and bib2gls: An
Introductory Guide

Nicola Talbot
dickimaw-books.com

Version 4.5 2025-05-14

This document is an introductory guide to bib2gls and the glossaries-extra
package to help you get started. For further information, including more com-
plex commands and settings, see the main bib2gls user manual (bib2gls.pdf,
in the same directory as this document), the glossaries-extra user manual, (dis-
tributed with the glossaries-extra package [2]) and the glossaries user manual
(distributed with the glossaries package [3]). See also the gallery [5] for exam-
ples.

The glossaries package is the base package. The glossaries-extra package inter-
nally loads the glossaries package and extends it, providing extra options or mod-
ifying the base commands to increase flexibility. If youwant to use bib2gls, you
must load glossaries-extra, which provides the interface required by bib2gls.
This document doesn’t cover the other indexing methods described in the base
package. If you get an undefined control sequence or unknown option error
when trying out any of the examples here, check that you are using the latest
versions of glossaries, glossaries-extra and bib2gls.

https://www.dickimaw-books.com/

Contents
1 Introduction 1

1.1 Labels . 4
1.2 First Use . 7
1.3 Categories . 9
1.4 Adding Extra Information . 9
1.5 Accessibility Support . 14
1.6 Prefixes . 16
1.7 Spaces . 17
1.8 Undefined References . 19
1.9 Robust, Fragile and Expandable Commands 21

2 Abbreviations 27
2.1 Only Long or Only Short . 29
2.2 Plural Abbreviations . 30
2.3 Abbreviation Markup . 31
2.4 Dotted Abbreviations . 34
2.5 Translations . 37

3 Symbols 44
3.1 Functions . 46
3.2 Dealing with Automated Case-Changing . 50

4 Displaying the Definition 52
4.1 Listing the Terms (Glossary) . 52

4.1.1 Groups and Locations . 56
4.1.1 Homographs and Hierarchical Terms 59
4.1.1 Multiple Glossaries . 66
4.1.2 Redisplaying or Filtering a Glossary 68
4.1.3 Hyperlink Targets . 70

4.2 Stand-alone Definitions . 71
4.2.1 Numbering Top-Level Entries . 76
4.2.2 Stand-alone Hierarchical Entries . 78

5 Changing the Formatting 81
5.1 Post-Link Category Hooks . 85
5.2 Glossary Name and Description Formatting 89
5.3 Post-Name and Post-Description Hooks . 90

i

Contents

6 Problematic Areas 93
6.1 Headings and Captions . 93
6.2 Nesting . 97
6.3 Shortcut Commands or Active Characters . 97
6.4 Formatting Commands that Need Direct Access to the Text 98
6.5 Buffering Changes to the First Use Flag . 99

7 Incorporating bib2gls 102
7.1 The .bib Format . 106

7.1.1 Defining Terms with Optional Descriptions 107
7.1.2 Defining Abbreviations . 111
7.1.3 Defining Symbols . 112

7.2 Indexing . 115
7.3 Aliasing Fields and Entry Types . 117

Command Summary 124

Index 145

ii

1 Introduction
The glossaries package provides a way of defining terms, notation or abbreviations that can
then be used in the document. This ensures consistent naming and formatting. (With the
help of the hyperref package, it’s also possible to create hyperlinks from the reference to a
place in the document that provides a definition of the term, but more about that later.) Each
entry (term, notation or abbreviation) is defined using:

\newglossaryentry{〈label〉}{〈key=value list〉}

Here’s a simple example:

\documentclass{article}

\usepackage{glossaries}

\newglossaryentry{duck}% label
{% information about this term:

name={duck},% display name
description={a waterbird with webbed feet}% description

}

\newglossaryentry{goose}% label
{% information about this term:

name={goose},% display name
plural={geese},% plural form
description={a large waterbird with a long neck, short legs,
webbed feet and a short broad bill}

}

\begin{document}
The pond contained a \gls{duck} (\glsentrydesc{duck}) and
a \gls{goose} (\glsentrydesc{goose}). \Glspl{duck} and
\glspl{goose} are fowl.
\end{document}

The resulting text is:

1

1 Introduction

+The pond contained a duck (a waterbird with webbed feet) and a goose (a large
waterbird with a long neck, short legs, webbed feet and a short broad bill). Ducks
and geese are fowl.

For convenience, the text produced by commands such as \gls is called the link text (even
if there are no hyperlinks).

The first argument of \newglossaryentry is a label that uniquely identifies the term
(see section 1.1). The second argument is a comma-separated list of 〈setting〉=〈value〉 as-
signments. Each 〈setting〉 is referred to as a “key” in the glossaries manual or as a “field” in
the bib2gls manual. A list of the available base keys can be found in the glossaries user
manual. The glossaries-extra package provides some additional keys that are described in the
glossaries-extra manual. The bib2gls user manual summarises all keys (fields) in section 4.2.

The term “field” not only includes the keys that may be used with \newglossaryentry
but also internal labels (which may or may not have a corresponding key) that are used to
store information. Note that there are some fields that may be used in the document that are
considered internal fields by bib2gls because the field value is typically set as a by-product
of the way that bib2glsworks. If these fields are set manually then you may get unexpected
results as this can break bib2gls’s normal operation.

If the field value contains commas or equal signs the value must be grouped to hide
those characters from the 〈key〉=〈value〉 parser. When using bib2gls, the field value
must be delimited according to the .bib file format.

The two main keys are name and description. The name identifies how the term should
be displayed in the glossary (see section 4). It also provides the default singular term, if not
explicitly given. The default plural is obtained by appending “s” to the singular form. If this
isn’t correct (as with “geese”), then the plural form can be specified with the plural key.

The description (set with the description key) is usually only displayed in the glossary,
but you can display it in the text using:

\glsentrydesc{〈label〉}

as in the above example. This simply expands to the value of the description field (or does
nothing if there’s no entry associated with the given label).

The main command used to reference a term is:

\gls[〈options〉]{〈label〉}[〈insert〉]

In the above example, \gls just displays the singular form, but you can provide alternative
text to use the first time a term is referenced (see section 1.2). The plural form is obtained
with the variant command:

\glspl[〈options〉]{〈label〉}[〈insert〉]

There are other variants of \gls that perform case-changing. If you want to start a sentence
with an entry then you can use:

2

1 Introduction

\Gls[〈options〉]{〈label〉}[〈insert〉]

for the singular form and

\Glspl[〈options〉]{〈label〉}[〈insert〉]

for the plural form. For all capitals, use:

\GLS[〈options〉]{〈label〉}[〈insert〉]

for the singular form and

\GLSpl[〈options〉]{〈label〉}[〈insert〉]

for the plural form. Any mention of \gls and its variants in this guide or in the user man-
uals means that the comments applied to \gls also apply to the plural and case-changing
versions.

The 〈insert〉 optional argument is provided to insert additional material. For example:

The \gls{goose} liked the \gls{duck}['s] hat.

which produces (assuming the above definitions):

+The goose liked the duck’s hat.

In some cases, there may not be a noticeable difference between the above and the following:

The \gls{goose} liked the \gls{duck}'s hat.

It depends on other settings, such as whether or not hyperlinks have been enabled. (The
inserted material is commonly moved inside the hyperlink.) Take care if you need a literal
open square bracket following \gls{〈label〉} as you need to prevent it from being interpreted
as the optional 〈insert〉 argument. For example:

The \gls{goose} liked the \gls{duck}{['s]} hat.

which now produces:

+The goose liked the duck[’s] hat.

An alternative in this case could be to define:

3

1 Introduction

\newcommand*{\missing}[1]{[#1]}

and then use:

The \gls{goose} liked the \gls{duck}\missing{'s} hat.

This conveniently hides the open square bracket from \gls.

Commands like \gls are robust. Commands like \glsentrydesc are expandable.
(See section 1.9.) If you want the entry to appear in a PDF bookmark, you need to use
an expandable command to reference it.

There are some helper commands that internally use \newglossaryentry, such as \new-
abbreviation (described in section 2) and \glsxtrnewsymbol (described in section 3). If
the description contains explicit paragraph breaks then:

\longnewglossaryentry{〈label〉}{〈key=value list〉}{〈description〉}

is required instead.

1.1 Labels
The label used to identify the entry can’t contain any special characters, such as % (percent),
& (ampersand), # (hash), $ (dollar), or ~ (tilde). Be careful of packages that make other char-
acters active (such as babel with its shortcuts). If you are using inputenc, this also includes
extended Latin characters and characters from other scripts.

Recent updates to the LATEX kernel mean that there’s much better support for UTF-8 char-
acters. Ensure that you have at least glossaries v4.50, glossaries-extra v1.49 and mfirstuc 2.08.
It’s now possible to have:

\newglossaryentry{élite}% label
{

name = {élite},
description = {group of people regarded as
the best of a particular society or organisation}

}

4

1 Introduction

Regardless of whether or not you use a native UTF-8 engine, provided you have a new TEX
distribution.

The UTF-8 information below refers to older versions and older kernels.

If you want to include UTF-8 characters in the label then you must use a TEX engine with
native Unicode support (that is, XƎLATEX or LuaLATEX).

For example, with no UTF-8 support (not even inputenc):

\newglossaryentry{elite}% label (no UTF-8 support)
{

name = {{\'e}lite},
description = {group of people regarded as
the best of a particular society or organisation}

}

or with inputenc:

\newglossaryentry{elite}% label (UTF-8 not natively supported)
{

name = {élite},
description = {group of people regarded as
the best of a particular society or organisation}

}

Whereas with XƎLATEX or LuaLATEX you can do:

\newglossaryentry{élite}% label (UTF-8 natively supported)
{

name = {élite},
description = {group of people regarded as
the best of a particular society or organisation}

}

You may have noticed the grouping of the initial (accented) letter in the ASCII example
({\'e}lite). This is necessary to ensure that the first-letter case-changing commands, such
as \Gls, work. It also used to be required around the “ é ” with inputenc, but if you have up-
to-date versions of glossaries and datatool then it should no longer be necessary. No special
treatment is needed with XƎLATEX or LuaLATEX where “ é ” is a single token.

5

1 Introduction

If you can’t use extended characters in the label (because you’re not using XƎLATEX or
LuaLATEX), then simply stripping the accents to create an ASCII alternative may be sufficient,
but take care if this may cause a conflict. For example:

\newglossaryentry{resume}% label
{

name = {resume},
description = {continue after an interruption}

}

\newglossaryentry{resumee}% label
{

name = {r\'esum\'e},
description = {summary of something or curriculum vitae}

}

For languages that use a non-Latin script, if you can’t or don’t want to use XƎLATEXor LuaLATEX,
then you need to decide the most appropriate ASCII naming scheme. For example:

\newglossaryentry{goose}% using translation for label
{

name = {гусь},
plural = {гуси},
description = {…}

}

or

\newglossaryentry{hus}% using closest ASCII match for label
{

name = {гусь},
plural = {гуси},
description = {…}

}

In addition to labels identifying entries, there are also labels that identify other things,
such as a glossary, category or letter group. The same restrictions apply to those labels.

6

1 Introduction

1.2 First Use
Each entry has a first use flag (boolean variable) that determines whether or not the entry
has been referenced in the document. Commands like \gls and \glspl change the flag
to indicate that the entry has been used. Commands like \glsentrydesc don’t. Here’s a
modification of the earlier example document that provides different versions depending on
whether or not the entry has already been referenced:

\documentclass{article}

\usepackage{glossaries}

\newglossaryentry{duck}% label
{% information about this term:

name = {Duck (noun)},% display name
first = {duck (quack, quack)},% first use singular
firstplural = {ducks (quack, quack)},% first use plural
text = {duck},% subsequent use singular
description = {a waterbird with webbed feet}% description

}

\newglossaryentry{goose}% label
{% information about this term:

name = {Goose (noun, pl. geese)},% display name
first = {goose (honk, honk)},% first use singular
firstplural = {geese (honk, honk)},% first use plural
text = {goose},% subsequent use singular
plural = {geese},% subsequent use plural
description={a large waterbird with a long neck, short legs,
webbed feet and a short broad bill}

}

\begin{document}
The pond contained a \gls{duck}\footnote{\glsentryname{duck}:
\glsentrydesc{duck}} and two
\glspl{goose}\footnote{\glsentryname{goose}:
\glsentrydesc{goose}}. \Glspl{duck} and \glspl{goose} are fowl.
\end{document}

This now produces:

7

1 Introduction

+The pond contained a duck (quack, quack)1 and two geese (honk, honk)2.
Ducks and geese are fowl.

This uses:
\glsentryname{〈label〉}

which works in a similar way to \glsentrydesc. In this case, \glsentryname simply ex-
pands to the value of the name key. There’s also a case-changing version:

\Glsentryname{〈label〉}

which changes the initial character to upper case, but (unlike \glsentryname) this command
isn’t expandable. If, for example, I had instead set the duck’s name key using:

name = {duck (noun)}

then I would need to use \Glsentryname{duck} instead.
So on first use, \gls uses the value of the first key and \glspl uses the value of the

firstplural key. On subsequent use, \gls uses the value of the text key and \glspl
uses the value of the plural key. Regular abbreviations also follow this usage. Non-regular
abbreviations follow a different behaviour for \gls (and its variants) that’s determined by
the abbreviation style.

If the first use for a particular group of terms always has the same pattern (such as follow-
ing the term with a brief description or alternative representation), then it’s simpler to use
one of the automated methods provided, such as the abbreviation mechanism (section 2) or
changing the formatting (section 5).

You can test if an entry has been used with:

\ifglsused{〈label〉}{〈true〉}{〈false〉}

This requires that the entry (identified by 〈label〉) is defined. If it isn’t then neither 〈true〉
nor 〈false〉 is done and an error or warning occurs. Otherwise, the command will do 〈true〉
if the entry has been used or 〈false〉 if the entry hasn’t been used.

When using bib2gls, entries are never defined on the first LATEX run, so you may instead
prefer:

\GlsXtrIfUnusedOrUndefined{〈label〉}{〈true〉}{〈false〉}

which does 〈true〉 if either the entry hasn’t been defined or hasn’t been marked as used,
otherwise it does 〈false〉.

Neither \ifglsused nor \GlsXtrIfUnusedOrUndefined should occur in the post-link
hook (described later) as the entry will have already been used by that point. Instead, you
need \glsxtrifwasfirstuse (see section 5.1).

1Duck (noun): a waterbird with webbed feet
2Goose (noun, pl. geese): a large waterbird with a long neck, short legs, webbed feet and a short broad bill

8

1 Introduction

1.3 Categories
The glossaries-extra extension package provides the category key, which isn’t available with
just the base glossaries package. The value of this key must be a label as it’s used to construct
command names. You can choose whatever label you like (as long as it conforms to the
valid labelling scheme, described in section 1.1). If you don’t specify a category, then \new-
glossaryentry and \longnewglossaryentry assume general. The helper commands,
such as \newabbreviation, have different defaults.

For example:

\newglossaryentry{amethyst}
{

name = {amethyst},
description = {a purple type of quartz},
category = {mineral}

}

The value of the category field for a given entry can be obtained with:

\glscategory{〈label〉}

where 〈label〉 identifies the entry. This command is expandable and does nothing if the entry
hasn’t been defined. You can test the value of the category field using:

\glsifcategory{〈label〉}{〈category〉}{〈true〉}{〈false〉}

This checks if the category field for the entry given by 〈label〉 is set to 〈category〉, but
doesn’t perform any expansion of 〈category〉. It generates an error if the entry doesn’t exist
(or warning with undefaction={warn}).

The category allows you to apply certain types of formatting, such as the post-link hook
(section 5.1). For abbreviations, the category also governs the abbreviation style (see sec-
tion 2) and can be used for filtering. Categories may be assigned attributes that can also be
used to modify formatting or styles.

Unlike the post-link hook, which needs to be defined before an entry is used (with com-
mands like \gls), some attributes need to be set before the entry is defined, so it’s best to set
them up as soon as possible in the preamble (after loading glossaries-extra).

1.4 Adding Extra Information
In addition to the name and description keys, there’s also a symbol key which allows you
to store an associated symbol. The value can be obtained with:

\glssymbol[〈options〉]{〈label〉}[〈insert〉]

9

1 Introduction

(which is robust and recognises the post-link hook) or with:

\glsentrysymbol{〈label〉}

(which behaves like \glsentrydesc and \glsentryname). Neither of the above commands
affect the first use flag. For example:

\documentclass{article}

\usepackage[hidelinks]{hyperref}
\usepackage{glossaries}

\newglossaryentry{pi}% label
{% settings:

name = {Archimedes' constant},
symbol = {\ensuremath{\pi}},
description = {ratio of a circle's circumference to its

diameter}
}

\newglossaryentry{thetai}% label
{% settings:

name = {theta parameter},
symbol = {\ensuremath{\theta_i}},
description = {one of the model parameters}

}

\begin{document}
\gls{pi} (\glssymbol{pi}). Compare \glssymbol{thetai}^2
with $\glssymbol{thetai}[^2]$.
\end{document}

This produces:

+Archimedes’ constant (π). Compare θi2 with θ2i .

Note that in this case there is now a difference between using the final optional 〈insert〉
argument and simply appending the extra material. This is a result of the hyperlink that
causes an interruption between the subscript _i and the following superscript ^2. (In this
case, there’s no target for the hyperlinks. That’s covered in section 4.)

If you have additional information, such as a translation, associated image or citation,
then you can supply this with the six user keys: user1, …, user6. The value of the first field
(user1) can be obtained with:

10

1 Introduction

\glsuseri[〈options〉]{〈label〉}[〈insert〉]

(which behaves like \glssymbol) or with:

\glsentryuseri{〈label〉}

(which behaves like \glsentrysymbol). The other fields are similarly obtained using lower
case Roman numerals, so value of the sixth field (user6) can be obtained with:

\glsuservi[〈options〉]{〈label〉}[〈insert〉]

(which behaves like \glssymbol) or with:

\glsentryuservi{〈label〉}

(which behaves like \glsentrysymbol). For example:

\newglossaryentry{polly.parrot}% label
{%

name = {Polly Parrot},
description = {Senior assistant at the International Society

of Duck and Geese},
user1 = {British},% nationality
user2 = {1970-12-31},% date of birth
user3 = {female},% gender
user4 = {43 The Lane, Some Town, Noshire AB1 2XY},% address
user5 = {polly.parrot@example.com}% email

}

Alternatively you can define your own custom keys. If you don’t need commands equiv-
alent to \glssymbol, then you can use:

\glsaddstoragekey{〈key〉}{〈default value〉}{〈no link cs〉}

where 〈key〉 is the name of the new key, 〈default value〉 is the default value if the key isn’t
explicitly set and 〈no link cs〉 is the name of the command to access the field value (equiva-
lent to \glsentrysymbol). If you want commands equivalent to \glssymbol that have the
〈options〉 and 〈insert〉 optional arguments and obey the post-link hook, then use

\glsaddkey{〈key〉}{〈default value〉}{〈no link cs〉}{〈no link ucfirst cs〉}{〈link cs〉}{〈link
ucfirst cs〉}{〈link allcaps cs〉}

The first three arguments are as for \glsaddstoragekey. The next argument 〈no link ucfirst
cs〉 is like 〈no link cs〉 but converts the first letter to upper case (analogous to \Glsentry-
name). The final three commands behave like \glssymbol, but 〈link ucfirst cs〉 converts the
first letter to upper case and 〈link allcaps cs〉 converts the entire value to upper case.

11

1 Introduction

The new keys must be provided before the entries are defined (and the key definitions
must come before the first resource set if you use bib2gls). For example:

\glsaddstoragekey{nationality}{}{\Nationality}
\glsaddstoragekey{dateofbirth}{}{\DateOfBirth}
\glsaddstoragekey{gender}{}{\Gender}
\glsaddstoragekey{address}{}{\Address}
\glsaddstoragekey{email}{}{\Email}
\newglossaryentry{polly.parrot}% label
{%

name = {Polly Parrot},
description = {Senior assistant at the International Society

of Duck and Geese},
nationality = {British},% nationality
dateofbirth = {1970-12-31},% date of birth
gender = {female},% gender
address = {43 The Lane, Some Town, Noshire AB1 2XY},% address
email = {polly.parrot@example.com}% email

}

In addition to the commands like \glssymbol and \glsentrysymbol, there are other
ways of accessing the field value or checking if the field has been set. In the commands
listed below, the field label is the internal label. In some cases, this is the same as the key, but
there are a few that have a different internal label. See Table 4.5 in the bib2gls user manual
or Table 4.1 in the glossaries user manual [3]. Custom fields provided with \glsaddkey or
\glsaddstoragekey have matching key and internal field labels.

The glossaries-extra package provides a generic way of accessing a field, analogous to com-
mands like \glsentryname:

\glsxtrusefield{〈entry label〉}{〈field label〉}

This expands to the field value if defined or does nothing if the entry or field isn’t defined.
The base glossaries package provides:

\ifglshassymbol{〈entry label〉}{〈true〉}{〈false〉}

which tests if the symbol field has been assigned. There are similar commands for other
common fields. For a more general purpose test, you can use:

\ifglshasfield{〈field label〉}{〈entry label〉}{〈true〉}{〈false〉}

which checks if the given entry (identified by 〈entry label〉, which must be defined) has the
field identified by 〈field label〉 set to a non-empty value. Within 〈true〉, you can access the
field value with:

12

1 Introduction

\glscurrentfieldvalue

The glossaries-extra package provides a similar command:

\glsxtrifhasfield{〈field label〉}{〈entry label〉}{〈true〉}{〈false〉}

which doesn’t test if the entry exists. The unstarred form adds implicit grouping around
〈true〉 or 〈false〉 (allowing nested use). The starred form \glsxtrifhasfield* doesn’t. You
can compare the field value with a string using:

\GlsXtrIfFieldEqStr{〈field label〉}{〈entry label〉}{〈text〉}{〈true〉}{〈false〉}

If you need the string to be (protected) fully expanded before comparison, you need:

\GlsXtrIfFieldEqXpStr{〈field label〉}{〈entry label〉}{〈text〉}{〈true〉}{〈false〉}

If you additionally need the field value (protected) fully expanded before comparison, use:

\GlsXtrIfXpFieldEqXpStr{〈field label〉}{〈entry label〉}{〈text〉}{〈true〉}{〈false〉}

For a complete list of field commands, see the glossaries-extra user manual [2].
The earlier duck and goose examples from section 1.2 can be rewritten to move the par-

enthetical material into separate keys:

\newglossaryentry{duck}% label
{% information about this term:

name = {duck},
user1 = {noun},
user2 = {quack, quack},
description = a waterbird with webbed feet

}

\newglossaryentry{goose}% label
{% information about this term:

name = {goose},
plural = {geese},
user1 = {noun},
user2 = {honk, honk},
description={a large waterbird with a long neck, short legs,
webbed feet and a short broad bill}

}

The post-link hook and glossary style can then be modified to include the additional infor-
mation. For example:

13

1 Introduction

\glsdefpostlink{general}{% post-link hook
\glsxtrifwasfirstuse{\space(\glsentryuserii{\glslabel})}%

}

\glssetcategoryattribute{general}{glossname}{firstuc}

\glsdefpostname{general}{% post-name hook
\space
(\glsentryuseri{\glscurrententrylabel}%
\GlsXtrIfXpFieldEqXpStr{plural}{\glscurrententrylabel}%
{\glsentrytext{\glscurrententrylabel}s}{}%
{, pl.\␣\glsentryplural\glscurrententrylabel}%

)%
}

The post-link hook appends the value of the user2 field after the first use of \gls (or its
variants). The glossname attribute is set to firstuc, which converts the first letter of the
name field to upper case when it’s displayed in the glossary. The post-name hook appends
(in parentheses) the value of the user1 field and then checks if the plural form is the same
as the singular form with “s” appended, and only displays the plural if they are different. See
section 5 and section 4 for further details.

1.5 Accessibility Support
The base glossaries package is distributed with the supplementary glossaries-accsupp pack-
age, which uses the accsupp package [1] to provide accessibility support. With the glossaries-
extra extension package, the glossaries-accsupp package needs to be loaded after glossaries
but before glossaries-extra sets up the accessibility integration support. The simplest way to
do this is with glossaries-extra’s accsupp package option.

The accessibility support is provided through the PDF ActualText specification (via the
accsupp package). If you need E or Alt instead of ActualText then redefine:

\glsaccsupp{〈accessible text〉}{〈text〉}

as appropriate. For example:

\renewcommand*{\glsaccsupp}[2]{%
\BeginAccSupp{Alt={#1}}#2\EndAccSupp{}%

}

14

1 Introduction

The glossaries-accsupp package provides additional keys (see Table 4.4 in the bib2gls
user manual or Chapter 18 of the glossaries user manual [3]). The main keys are access,
which provides an alternative to the name field, symbolaccess, which provides an alterna-
tive to the symbol field and shortaccess, which provides an alternative to the short field,
firstaccess, which provides an alternative to the first field, and textaccess, which
provides an alternative to the text field. If any of the accessibility fields are unset, no acces-
sibility support is provided for that field. For example:

\newglossaryentry{R}% label
{% settings:
name = {\ensuremath{\Re}},
access = {set of real numbers symbol},% name access
textaccess = {set of real numbers},% text access
firstaccess = {set of real numbers},% first access
description = {set of real numbers}

}

This means that when the name field is displayed in the glossary, the corresponding acces-
sibility text is “set of real numbers symbol”, but the link text for \gls is just “set of real
numbers” (for both first use and subsequent use).

There are some category attributes that govern the default settings of some fields when
using \newabbreviation (see section 2). If accessibility support is provided, there are some
additional attributes (introduced to glossaries-extra version 1.31):

accessinsertdots This is a boolean attribute that behaves like insertdots but only applies
to the shortaccess field, if it hasn’t explicitly been set. This is useful for initialisms
that should be read out as letters but the screen reader might interpret as a word. For
example:

\glssetcategoryattribute{initialism}{accessinsertdots}{true}

\newabbreviation[category=initialism]{pi}{PI}{Private Investigator}

This means that the short form appears as just “PI” in the document text, but the ac-
cessibility text is “P.I.” which prompts the screen reader to read it as an abbreviation
instead of the word “pi”. Since the shortaccess field is an aid to the screen reader and
doesn’t modify the visible text, there’s no check for the retainfirstuseperiod or discard-
period attributes for that field. This setting doesn’t affect the accessibility support for
the name, first or text fields.

15

1 Introduction

nameshortaccess This is a boolean attribute, where the value true indicates the attribute
is set. If the shortaccess field is assigned (either explicitly with the key or implicitly
through the use of the accessinsertdots attribute) and the access field isn’t specified,
then if the nameshortaccess attribute is set this will copy the shortaccess field to the
access field. For example:

\glssetcategoryattribute{initialism}{accessinsertdots}{true}

\glssetcategoryattribute{initialism}{nameshortaccess}{true}

\newabbreviation[category=initialism]{pi}{PI}{Private Investigator}

Abbreviations that behave like regular terms (such as short-nolong) may also need
textshortaccess and firstshortaccess set.

textshortaccess Like nameshortaccess, but applies to the textaccess field.

firstshortaccess Like firstshortaccess, but applies to the firstaccess field.

accessaposplural If the shortaccess field is set (either explicitly with the key or implicitly
through the use of the accessinsertdots attribute) and the shortpluralaccess field
isn’t set, the accessaposplural boolean attribute behaves like aposplural but only applies
to the shortpluralaccess field. If the accessaposplural attribute isn’t set but the
aposplural attribute is set, then that’s used instead. If you want aposplural on but not
apply it to shortpluralaccess then you need to set the accessaposplural attribute to
false.

accessnoshortplural A boolean attribute like accessaposplural but analogous to noshort-
plural instead.

These attributes have no effect for entries that aren’t defined using \newabbreviation.
(These attributes apply to \newacronym provided it internally uses \newabbreviation,
which is does by default with glossaries-extra.)

1.6 Prefixes
The glossaries package is distributed with the supplementary glossaries-prefix package. This
automatically loads glossaries, but if you are using glossaries-extra, it’s best loaded after. This
supplementary package supplies extra keys and some commands analogous to \gls. The
main purpose is to provide a different prefix to \gls, depending on whether it’s the first use
or subsequent use. For example, if the first use starts with a vowel (or vowel sound), you
may need “an \gls{〈label〉}” but if the subsequent use starts with a constant, you may need
“a \gls{〈label〉}”. The prefix for the first use form is specified in the prefixfirst field, and

16

1 Introduction

the prefix for the subsequent use form is specified in the prefix field. If a space is required
between the prefix and \gls, this needs to be included, as the prefixing system allows for
prefixes like l’ which shouldn’t be followed by a space.

To include the prefix, use:

\pgls[〈options〉]{〈label〉}[〈insert〉]

instead of \gls. For example:

\documentclass{book}

\usepackage{glossaries-extra}
\usepackage{glossaries-prefix}

\newabbreviation
[prefixfirst={a~},prefix={an\space}]
{svm}{SVM}{support vector machine}

\begin{document}
With a prefix: \pgls{svm} or \pgls{svm}.
Without a prefix: the \gls{svm}.
\end{document}

This produces:

+With a prefix: a support vector machine (SVM) or an SVM. Without a prefix:
the SVM.

1.7 Spaces
With LATEX in general, spaces are sometimes significant and sometimes ignored. When defin-
ing entries, any spaces around the equal sign or comma are ignored. For example, if an entry
is defined as

\newglossaryentry{sample}
{

name = {sample} , description = {an example}
}

then

17

1 Introduction

/\gls{sample}/

will produce

+/sample/

(no spaces). Similarly with:

\newglossaryentry{sample}
{

name = sample , description = {an example}
}

However, spaces at the start or end of the value that’s provided as an argument (rather than
in a key=value list) often aren’t ignored.

The unstarred version of \longnewglossaryentry appends extra code to the end of the
description, which removes any trailing spaces (and also the post-description hook). The
starred version \longnewglossaryentry* (only available with glossaries-extra) doesn’t. In
both cases any leading spaces are retained. For example, if the entry is defined as:

\longnewglossaryentry{sample}{name={sample}}{ an example } 7

then:

/\glsentrydesc{sample}/

produces:

+/ an example/

(trailing space removed), whereas if the entry is defined as:

\longnewglossaryentry*{sample}{name={sample}}{ an example } 7

then:

18

1 Introduction

/\glsentrydesc{sample}/

produces:

+/ an example /

(leading and trailing spaces retained).
Spaces in labels are significant. For example, in \gls{ duck } the spaces are considered

part of the label. If the entry was actually defined without spaces in the label then the entry
referenced in \gls{ duck } won’t be found.

1.8 Undefined References
If an entry that hasn’t been defined is referenced with \gls, by default an error is triggered.
For example:

\documentclass{article}

\usepackage{glossaries}

\begin{document}
A \gls{duck}.
\end{document}

This produces the error:

Glossary entry `duck' has not been defined.

If you instruct LATEX to ignore the error and continue, the result is

+A .

The glossaries-extra package provides the option undefaction={warn}, which will convert
the error to a warning. For example:

\documentclass{article}

\usepackage[undefaction=warn]{glossaries-extra}

\begin{document}
A \gls{duck}.
\end{document}

19

1 Introduction

This now produces the warning:

Glossary entry `duck' has not been defined on input line 6

(There are also other warnings about an empty main glossary.) The result is now:

+A ⁇.

This replaces the undefined reference with two question marks, just like undefined cross-
references. Notice the difference between using \ifglshasfield:

\documentclass{article}

\usepackage[undefaction=warn]{glossaries-extra}

\begin{document}
A \gls{duck}
(\ifglshasfield{useri}{duck}{\glscurrentfieldvalue}{not set}).
\end{document}

which produces:

+A ⁇ (⁇).

(and has two undefined warnings) and using \glsxtrifhasfield:

\documentclass{article}

\usepackage[undefaction=warn]{glossaries-extra}

\begin{document}
A \gls{duck}
(\glsxtrifhasfield{useri}{duck}{\glscurrentfieldvalue}{not set}).
\end{document}

which only has one undefined warning and produces:

+A ⁇ (not set).

When you incorporate bib2gls into the build process (see section 7), the first LATEX run
doesn’t have any entries defined. One of the actions that the record option automatically
performs is to switch on undefaction={warn}, which avoids undefined errors on the first
LATEX run. For example:

20

1 Introduction

\documentclass{article}

\usepackage[record]{glossaries-extra}

\begin{document}
A \gls{duck}
(\glsxtrifhasfield{useri}{duck}{\glscurrentfieldvalue}{not set}).
\end{document}

This produces the same result as the previous example, but there’s only the one warning
(about an undefined reference) and no warning about the empty main glossary.

1.9 Robust, Fragile and Expandable Commands
Commands like \gls are robust . This protects them from premature expansion in situations
that would otherwise break the command. If content containing a robust command is written
to an external file, the robust command itself is written instead of its definition. For example,
consider the following document:

\documentclass{article}
\newcommand{\test}{some sample text}
\begin{document}
\tableofcontents
\section{\test}
\end{document}

In this case, \test is expandable. Its definition doesn’t contain anything complicated. The
.toc file (which is input by \tableofcontents) contains the line:

\contentsline {section}{\numberline {1}some sample text}{1}

So \test has been expanded to its definition when it was written to the .toc file. If \test
is defined in terms of another command, that will also be expanded. For example:

\documentclass{article}
\newcommand{\sample}{\emph{sample}}
\newcommand{\test}{some \sample\␣text}

21

1 Introduction

\begin{document}
\tableofcontents
\section{\test}
\end{document}

The .toc file now contains:

\contentsline {section}{\numberline {1}some \emph {sample}\␣text}{1}

So \sample has also been expanded but neither \emph nor \␣ (backslash space) have been
expanded. Robust commands don’t expand. For example:

\documentclass{article}

\usepackage{glossaries}

\newglossaryentry{duck}
{

name={duck},
description={a waterbird with webbed feet}

}

\begin{document}
\tableofcontents
\section{\Gls{duck}: \glsentrydesc{duck}}
\end{document}

The .toc file now contains:

\contentsline {section}{\numberline {1}\Gls {duck}: a waterbird with
webbed feet}{1}

So \Gls doesn’t expand, and the command itself is written to the .toc file, but \glsentry-
desc does expand.

A fragile command is one that breaks (causes an error) when it’s expanded in this type of
context. One such command is \footnote. For example, the following won’t work:

22

1 Introduction

\documentclass{article}

\usepackage{glossaries}

\newglossaryentry{duck}
{

name={duck},
description={a waterbird with webbed feet}

}

\begin{document}
\tableofcontents
\section{\Gls{duck}\footnote{\glsentrydesc{duck}}} 7

\end{document}

This causes the error:

! Argument of \@sect has an extra }.

Inserting \protect before the command prevents the attempted expansion, which makes
the command behave as though it was robust:

\section{\Gls{duck}\protect\footnote{\glsentrydesc{duck}}}

In this case, it’s unlikely that you’d want the footnote to appear in the table of contents
(TOC), so it would be better to use the optional argument:

\section[Duck]{\Gls{duck}\footnote{\glsentrydesc{duck}}} 4

Now the .toc file is just:

\contentsline {section}{\numberline {1}Duck}{1}

If the description field contains a fragile command then \glsentrydesc will break in
expandable contexts. For example, the following doesn’t work:

23

1 Introduction

\documentclass{article}

\usepackage{glossaries}

\newglossaryentry{duck}
{

name={duck},
description={a waterbird\footnote{a bird that lives on or
near water} with webbed feet}

}

\begin{document}
\tableofcontents
\section{\Gls{duck}: \glsentrydesc{duck}} 7

\end{document}

This is a contrived example. In this case, it would be better to also define the term “waterbird”:

\documentclass{article}

\usepackage{glossaries}

\newglossaryentry{waterbird}
{

name={waterbird},
description={a bird that lives on or near water}

}

\newglossaryentry{duck}
{

name={duck},
description={a \gls{waterbird} with webbed feet}

}

\begin{document}
\tableofcontents
\section{\Gls{duck}: \glsentrydesc{duck}}
\end{document}

The .toc file now contains:

24

1 Introduction

\contentsline {section}{\numberline {1}\Gls {duck}: a \gls {waterbird}
with webbed feet}{1}

The examples in this section are used to illustrate the differences between fragile, ro-
bust and expandable commands. In general, it’s better not to use commands like \gls
in headings or captions (see section 6.1). Using commands like \gls in field values
can be problematic (see section 6.2).

By default, most of the field values are expanded when the entry is defined. This allows
for defining entries programmatically, but it can cause a problem if the value contains any
fragile commands. For example:

\documentclass{article}

\usepackage{glossaries}

\newglossaryentry{duck}% label
{

name = {duck},
first = {duck\footnote{quack, quack}}, 7

description = {a waterbird with webbed feet}
}

\begin{document}
A \gls{duck}.
\end{document}

This causes the confusing error:

! Undefined control sequence.
\in@ #1#2->\begingroup \def \in@@

In order for this example to work, the fragile command must either be protected:

\newglossaryentry{duck}% label
{

name = {duck},
first = {duck\protect\footnote{quack, quack}}, 4

description = {a waterbird with webbed feet}
}

25

1 Introduction

or the expansion must first be switched off:

\glsnoexpandfields 4

\newglossaryentry{duck}% label
{

name = {duck},
first = {duck\footnote{quack, quack}},
description = {a waterbird with webbed feet}

}

Since it’s not possible to programmatically define entries with bib2gls, the expansion is
automatically switched off as bib2glswrites \glsnoexpandfields to the .glstex file (al-
though you can disable this feature with --expand-fields).

The reason why \footnote didn’t cause a problem in the description field when the
entry was defined is that, by default, expansion isn’t performed on the name, description
and symbol fields, regardless of whether or not \glsnoexpandfields has been used. This
only applies to the point when the entries are being defined. Unprotected fragile commands
can still cause a problem if the value is later used in a problematic context (such as the earlier
example where \glsentrydesc was used in a section heading).

26

2 Abbreviations
The abbreviation handling provided by the base glossaries package is quite restrictive and
only one abbreviation style can be used for all abbreviations. The glossaries-extra package
internally loads the glossaries package and extends it, providing new options and a better
abbreviation mechanism that allows different styles per category.

The base glossaries package provides:

\newacronym[〈key=value list〉]{〈label〉}{〈short〉}{〈long〉}

The extension package glossaries-extra provides:

\newabbreviation[〈key=value list〉]{〈label〉}{〈short〉}{〈long〉}

which internally uses \newglossaryentrywith the category set to abbreviation (which
can be overridden in the optional 〈key=value list〉). The glossaries-extra package also rede-
fines \newacronym in terms of \newabbreviation so that it effectively behaves like:

\newabbreviation[type=\acronymtype,category=acronym,〈key=value list〉]
{〈label〉}{〈short〉}{〈long〉}

This makes it easier to transfer over from the base glossaries package, but if you use \new-
acronym remember that the category is set to acronym instead of abbreviation.

In both cases, 〈label〉 is the entry’s label used to identify the abbreviation in commands
like \gls, 〈short〉 is the short form and 〈long〉 is the long form. Any additional settings, such
as the category or description can be set in the optional argument.

The style must be set before the abbreviations are defined using:

\setabbreviationstyle[〈category〉]{〈style-name〉}

where 〈category〉 is the category label and 〈style-name〉 is the name of the style. If the op-
tional argument is omitted, abbreviation is assumed. The glossaries-extra package auto-
matically sets the default styles:

\setabbreviationstyle{long-short}
\setabbreviationstyle[acronym]{short-nolong}

This means that if you don’t explicitly set the style then any abbreviation defined with \new-
acronym will use the short-nolong style (unless you change the category in the optional
argument) and other abbreviations will use the long-short style.

27

2 Abbreviations

If these styles aren’t suitable, then you need to change them. Any abbreviation that’s
defined with a category that hasn’t been assigned a style will fallback on the style for the de-
fault abbreviation category. There are many predefined styles to choose from and they
come with commands to help adjust the formatting. See the glossaries-extra user man-
ual [2] for the complete list. The glossaries-extra package also comes with a sample document
sample-abbr-styles.pdf demonstrating all the predefined styles.

The style determines whether the abbreviation is treated as a regular term. There are also
some category attributes that govern abbreviations (see below and section 1.5). These should
also be set before the abbreviation is defined.

Some of the styles set the description field (typically to the 〈long〉 form). The styles that
end with -desc don’t, and so that key must be set explicitly in the 〈key=value list〉 optional
part.

Here’s a simple example that uses both \newabbreviation and \newacronym to illustrate
the difference:

\documentclass{article}

\usepackage{glossaries-extra}

\newabbreviation{tug}{TUG}{\TeX\␣Users Group}
\newabbreviation{cldr}{CLDR}{Unicode Common Locale Data
Repository}

\newacronym{SIunit}{SI unit}{International System of Units}
\newacronym{ascii}{ASCII}{American Standard Code for
Information Interchange}

\begin{document}
First use: \gls{tug}, \gls{cldr}, \gls{SIunit}, \gls{ascii}.
Next use: \gls{tug}, \gls{cldr}, \gls{SIunit}, \gls{ascii}.
\end{document}

This produces:

+First use: TEX Users Group (TUG), Unicode Common Locale Data Repository
(CLDR), SI unit, ASCII. Next use: TUG, CLDR, SI unit, ASCII.

Note that the first use of SIunit and ascii only show the short form. This is because the
default style for the acronym category is the short-nolong style, which doesn’t show the long
form with \gls (and its variants).

The final optional 〈insert〉 argument of commands like \gls is typically moved inside,
depending on the style. For example:

28

http://mirrors.ctan.org/macros/latex/contrib/glossaries-extra/samples/sample-abbr-styles.pdf

2 Abbreviations

\documentclass{article}

\usepackage{glossaries-extra}

\newabbreviation{svm}{SVM}{support vector machine}

\begin{document}
The \gls{svm}['s] parameters are\ldots
\end{document}

This produces:

+The support vector machine’s (SVM) parameters are…

Compare this with:

The \gls{svm}'s parameters are\ldots 7

which produces:

+The support vector machine (SVM)’s parameters are…

2.1 Only Long or Only Short
If you only want \gls to show the short form but not the long form (including on first use),
use one of the -nolong styles (such as short-nolong). If you only want the long form and
not the short form (including subsequent use), use one of the -noshort styles (such as long
-noshort).

If you want only the long form on first use (without the short form) and only the short
form subsequently then use one of the -only styles, such as long-only-short-only.

If you need to reshow the full form, you can reset the first use flag with:

\glsreset{〈label〉}

which will make the next instance of \gls{〈labe〉} act according to first use.

If you need an abbreviation in a caption or section title, see section 6.1.

Otherwise, if you want a specific instance to show only the short form, without modifying
the first use flag, then use

29

2 Abbreviations

\glsxtrshort[〈options〉]{〈label〉}

If you want a specific instance to show only the long form, without modifying the first use
flag, then use

\glsxtrlong[〈options〉]{〈label〉}

If you want a specific instance to show both the long and short form, without modifying the
first use flag, then use

\glsxtrfull[〈options〉]{〈label〉}

Depending on the style, this may not exactly match the format produced by the first use of
\gls{〈label〉}. Don’t use these commands for every use. Change the style instead, which
will make it easier to modify the document at a later date.

If you find these commands quite long-winded, there are some shortcuts available with
the shortcuts option, but as these may interfere with other packages, you might want to
consider investigating your text editor settings as the more sophisticated ones provide ways
of inserting commonly-used commands to save typing.

2.2 Plural Abbreviations
If the abbreviation represents something countable then the plural form can again be ob-
tained with \glspl:

\documentclass{article}

\usepackage{glossaries-extra}

\newabbreviation{svm}{SVM}{support vector machine}

\begin{document}
First use: \glspl{svm}. Next use: \glspl{svm}.
\end{document}

This produces:

+First use: support vector machines (SVMs). Next use: SVMs.

The default plural short and long forms are obtained by appending the letter “s” after the
singular form. These can be changed on an individual basis with the shortplural and
longplural keys. For example:

30

2 Abbreviations

\newabbreviation
[longplural={lower triangular matrices}]
{ltm}{LTM}{lower triangular matrix}

It may be that you prefer to keep the short plural form the same as the short singular
value for all abbreviations within a particular category. You can implement this with the
noshortplural attribute, which must be set to true before the abbreviations for that category
are defined. For example:

\glssetcategoryattribute{abbreviation}{noshortplural}{true}
\newabbreviation{svm}{SVM}{support vector machine}

Now:

First use: \glspl{svm}. Next use: \glspl{svm}.

produces:

+First use: support vector machines (SVM). Next use: SVM.

A related attribute is aposplural which inserts “ 's ” (apostrophe followed by “s”) to form the
default short plural to help avoid ambiguity with lower case abbreviations where it might
not be obvious that the “s” indicates a plural (rather than another letter in the abbreviation).
Again, this needs to be set before the abbreviations for the given category (or categories) are
defined (but check with your supervisor, publisher or editor as this usage is controversial).

2.3 Abbreviation Markup
The markwords attribute can be set to true to indicate that \newabbreviation should parse
the long form and markup the words using:

\glsxtrword{〈text〉}

The words are separated with

\glsxtrwordsep

For example:

31

2 Abbreviations

\glssetcategoryattribute{abbreviation}{markwords}{true}
\newabbreviation{ssl}{SSL}{Secure Sockets Layer}

This is essentially the same as

\newabbreviation{ssl}{SSL}{\glsxtrword{Secure}\glsxtrwordsep
\glsxtrword{Sockets}\glsxtrwordsep\glsxtrword{Layer}}

This is typically usedwith the -hyphen abbreviation styles, such as long-hyphen-short-hyphen.
If the final optional 〈insert〉 argument of commands like \gls startswith a hyphen, \glsxtrwordsep
is locally changed to a hyphen.

For example:

\documentclass{article}

\usepackage{glossaries-extra}

\setabbreviationstyle{long-hyphen-short-hyphen}

\glssetcategoryattribute{abbreviation}{markwords}{true}

\newabbreviation{ssl}{SSL}{Secure Sockets Layer}

\begin{document}
First use: \gls{ssl}[-enabled]. Next use: \gls{ssl}[-enabled].
\end{document}

This produces:

+First use: Secure-Sockets-Layer-enabled (SSL-enabled). Next use: SSL-enabled.

Compare this with:

First use: \gls{ssl}-enabled. Next use: \gls{ssl}-enabled. 7

which instead produces:

+First use: Secure Sockets Layer (SSL)-enabled. Next use: SSL-enabled.

32

2 Abbreviations

Whereas:

First use: \gls{ssl}[enabled]. Next use: \gls{ssl}[enabled].

produces:

+First use: Secure Sockets Layer enabled (SSL enabled). Next use: SSL enabled.

Note that this is different to the result obtained with the long-short style which doesn’t in-
clude the inserted material in the parentheses (and doesn’t check if the inserted text starts
with a hyphen).

There’s a related attribute markshortwords which applies to the short form instead. This is
only useful if the short form contains spaces.

Another markup-related attribute is tagging. In general, you don’t need to explicitly set
this attribute. Instead, you need to define a tagging command using:

\GlsXtrEnableInitialTagging{〈category list〉}{〈cs〉}

This (robustly) defines 〈cs〉 (a control sequence) to accept a single argument, which you need
to use in the 〈long〉 part of the abbreviation definition (it’s not inserted automatically).

The \GlsXtrEnableInitialTagging command also sets the tagging attribute to true
for each of the listed categories, which ensures that 〈cs〉 uses

\glsxtrtagfont{〈text〉}

within the glossary (see section 4). Within the main text the command simply does its argu-
ment. For example:

\documentclass{article}

\usepackage{glossaries-extra}

\GlsXtrEnableInitialTagging{abbreviation}{\itag}

\newabbreviation{xml}{XML}{e\itag{x}tensible \itag{m}arkup
\itag{l}anguage}

\begin{document}
First use: \gls{xml}. Next use: \gls{xml}.
\end{document}

This produces:

33

2 Abbreviations

+First use: extensible markup language (XML). Next use: XML.

This doesn’t show the markup as the tagging command (\itag in this example) simply ex-
pands to its argument in the main document text. The difference is only evident in the glos-
sary.

If all your abbreviations are defined in a separate file, it’s useful to provide a definition of
the tagging command with \providecommand to ensure it’s defined if you decide not to use
\GlsXtrEnableInitialTagging. With bib2gls, you can include it in the @preamble. For
example:

@preamble{"\providecommand{\itag}[1]{#1}"}

2.4 Dotted Abbreviations
If an abbreviation ends with a full stop, it can be awkward when it appears at the end of a
sentence, as you can end up with two dots by mistake. For example:

\documentclass{article}

\usepackage{glossaries-extra}

\newabbreviation{dante}{DANTE e.V.}
{Deutschsprachige Anwendervereinigung \TeX\␣e.V.}

\newabbreviation{gp}{G.P.}{General Practitioner}

\begin{document}
\gls{dante} is a local \TeX\␣user group.
The German-speaking local \TeX\␣user group is \gls{dante}.

A \gls{gp} is a medical doctor.
I went to my surgery to see the \gls{gp}.
\end{document}

This results in:

+Deutschsprachige Anwendervereinigung TEX e.V. (DANTE e.V.) is a local TEX
user group. The German-speaking local TEX user group is DANTE e.V.. 7

A General Practitioner (G.P.) is a medical doctor. I went to my surgery to see
the G.P.. 7

34

2 Abbreviations

The awkward double-dot is caused by the final dot in the short form followed by the sentence
terminating full stop.

If the discardperiod attribute is set to true, the post-link hook will look ahead for a full
stop. If it finds one, it will be discarded. For example:

\documentclass{article}

\usepackage{glossaries-extra}

\glssetcategoryattribute{abbreviationdot}{discardperiod}{true}

\newabbreviation[category=abbreviationdot]
{dante}{DANTE e.V.}{Deutschsprachige Anwendervereinigung \TeX\␣e.V.}

\newabbreviation[category=abbreviationdot]
{gp}{G.P.}{General Practitioner}

\begin{document}
\gls{dante} is a local \TeX\␣user group.
The German-speaking local \TeX\␣user group is \gls{dante}.

A \gls{gp} is a medical doctor.
I went to my surgery to see the \gls{gp}.
\end{document}

This now results in:

+Deutschsprachige Anwendervereinigung TEX e.V. (DANTE e.V.) is a local TEX
user group. The German-speaking local TEX user group is DANTE e.V.

A General Practitioner (G.P.) is a medical doctor. I went to my surgery to see
the G.P.

This attribute only affects the non-plural commands, such as \gls and \glsxtrshort. If the
last paragraph in the above example is changed to:

A \gls{gp} is a medical doctor.
I went to my surgery to see the \glspl{gp}.

then the result is:

+A General Practitioner (G.P.) is a medical doctor. I went to my surgery to see
the G.P.s.

35

2 Abbreviations

In this case there’s no need to discard the terminating full stop as the plural form doesn’t
end with one. If the plural form also ends with a full stop (for example, if the noshortplural
attribute is also set) then you additionally need to set the pluraldiscardperiod attribute.

The post-link hook is also applied to other commands, such as \glsxtrfull, \glsxtrlong,
\glsxtrshort and \glssymbol. For example:

I went to my surgery to see the \glsxtrshort{gp}.

results in:

+I went to my surgery to see the G.P.

In some cases, this may be inappropriate, for example:

I went to my surgery to see the \glsxtrlong{gp}.

results in:

+I went to my surgery to see the General Practitioner

In this case the terminating full stop shouldn’t be discarded. There are several ways to prevent
it. For example, moving the full stop into the 〈insert〉 argument:

I went to my surgery to see the \glsxtrlong{gp}[.]

This results in:

+I went to my surgery to see the General Practitioner.

Alternatively, insert \relax before the full stop:

I went to my surgery to see the \glsxtrlong{gp}\relax.

Depending on the abbreviation style, it may be inappropriate for the first use to discard
the full stop. In this case, it’s a bit of a nuisance to keep track of whether the term is being
referenced for the first time. Instead, set the retainfirstuseperiod attribute to true.

If you have many abbreviations defined without dots and then you later decide to insert
them, you may prefer an automated approach. This can be done by setting the insertdots
attribute to true. For example:

36

2 Abbreviations

\documentclass{article}

\usepackage{glossaries-extra}

\glssetcategoryattribute{initialism}{insertdots}{true}
\glssetcategoryattribute{initialism}{discardperiod}{true}
\glssetcategoryattribute{initialism}{retainfirstuseperiod}{true}

\setabbreviationstyle[initialism]{short-long}

\newabbreviation[category=initialism]
{gp}{GP}{General Practitioner}

\begin{document}
Today I went to my surgery to see the \gls{gp}.
Tomorrow I'm going to my surgery to see the \gls{gp}.
\end{document}

This produces:

+Today I went to my surgery to see the G.P. (General Practitioner). Tomorrow
I’m going to my surgery to see the G.P.

2.5 Translations
If an abbreviation needs to be accompanied by a translation, then you can use a custom field
or one of the supplied user fields described in section 1.4 to store the translation. The -user
abbreviation styles can be used to include the extra information if the field is set. The user1
field is the default, but you can change this by redefining:

\glsxtruserfield

to the internal field name. (For example, userii for user2.) In the sample document below,
the translation is supplied in the default user1 field:

\documentclass{article}

\usepackage{glossaries-extra}

\setabbreviationstyle{long-short-user}

37

2 Abbreviations

\newabbreviation[user1={ribonucleic acid}]
{rna}{RNA}{ribonukleins\"aure}

\begin{document}
First use: \gls{rna}. Next use: \gls{rna}.
\end{document}

This produces:

+First use: ribonukleinsäure (RNA, ribonucleic acid). Next use: RNA.

If the field is empty, long-short-user behaves like long-short.
Here’s an example where the native language is English:

\newabbreviation{iso}{ISO}
{International Organization for Standardization}

\newabbreviation[
user1 = {Associa\c{c}\~ao Brasileria de Normas T\'ecnicas},
user2 = {pt-BR},
category = {foreignabbreviation}

]
{abnt}{ABNT}{Brazilian National Standards Organization}

\newabbreviation[
user1 = {Deutsches Institut f\"ur Normung e.V.},
user2 = {de-1996},
category = {foreignabbreviation}

]{din}{DIN}{German Institute for Standardization}

The use of the custom category label foreignabbrevaiationmeans I can set up different
abbreviation styles. For example:

\setabbreviationstyle{short-nolong}
\setabbreviationstyle[foreignabbreviation]{long-short-user}

This example differs from the previous one as there are now two foreign languages (Por-
tuguese and German) with English as the native language. The previous had German as the
native language and English as the sole foreign language. In this case, I’ve used the user2
field to identify the language of the original text (stored in the user1 field).

For example, suppose I’m using babel with the language options british, brazilian and
ngerman:

38

2 Abbreviations

\usepackage[main=british,brazilian,ngerman]{babel}

then I might want to modify \glsxtruserparen to use \foreignlanguage. This would be
easier if the user2 field used a recognised babel dialect label, but that’s less consistent across
documents. For example, in another document I might use UKenglish or just english (or
perhaps use polyglossia instead).

The glossaries package loads tracklang [4], which provides:

\GetTrackedDialectFromLanguageTag{〈language tag〉}{〈cs〉}

If the given language tag matches a document dialect that’s been tracked (by tracklang), this
stores the tracklang dialect label in the control sequence 〈cs〉 otherwise it sets that control
sequence to empty. The match requires that five properties of the language tag and track-
lang’s dialect label are the same: root language, region, sub-language, variant and script.
Some of these elements may be empty, in which case those elements must be empty for
both. If the script is missing in either case, the default script for the given root language is
assumed. For example, Latn for en (English).

The tracklang dialect label isn’t always the same as babel’s dialect label.

The simplest way to test if the tracklang label matches the babel label is to test for the
existence of \captions〈label〉. For example, using etoolbox’s \ifcsundef:

\GetTrackedDialectFromLanguageTag{pt-BR}{\dialectlabel}
\ifdefempty\dialectlabel
{}% no exact match found
{% exact match found

\ifcsundef{captions\dialectlabel}
{}% not a recognised babel label
{}% recognised babel label

}

In the “not a recognised babel label” argument, you can find out if the tracklang dialect label
has a mapping to the closest known babel dialect label with:

\IfTrackedDialectHasMapping{〈tracklang label〉}{〈true〉}{〈false〉}

If true, you can fetch the corresponding babel label with:

\GetTrackedDialectToMapping{〈tracklang label〉}

If false, you can try the root language label instead, which can be obtained with:

39

2 Abbreviations

\TrackedLanguageFromDialect{〈dialect〉}

For example:

\GetTrackedDialectFromLanguageTag{pt-BR}{\dialectlabel}
\ifdefempty\dialectlabel
{}% no exact match found
{% exact match found

\ifcsundef{captions\dialectlabel}
{% not a recognised babel label, use root language

\edef\dialectlabel{\TrackedLanguageFromDialect\dialectlabel}%
}%
{}% recognised babel label

}

Consider the following document:

\documentclass{article}

\usepackage[british]{babel}
\usepackage{tracklang}

\begin{document}
\GetTrackedDialectFromLanguageTag{en-GB}{\trackeddialect}%
Tracked dialect label: \trackeddialect.
\IfTrackedDialectHasMapping{\trackeddialect}%
{Has mapping: \GetTrackedDialectToMapping{\trackeddialect}}%
{No mapping}.
Root language: \TrackedLanguageFromDialect{\trackeddialect}.
\end{document}

In this case the tracklang dialect label is the same as babel’s dialect label. The above produces:

+Tracked dialect label: british. No mapping. Root language: english.

Now consider this document:

\documentclass[en-MT]{article}

\usepackage[british][babel]

40

2 Abbreviations

\usepackage{tracklang}

\begin{document}
en-GB: \GetTrackedDialectFromLanguageTag{en-GB}
{\trackeddialect}% Tracked dialect label: \trackeddialect.
\IfTrackedDialectHasMapping{\trackeddialect}%
{Has mapping: \GetTrackedDialectToMapping{\trackeddialect}}%
{No mapping}.
Root language: \TrackedLanguageFromDialect{\trackeddialect}.

en-MT: \GetTrackedDialectFromLanguageTag{en-MT}
{\trackeddialect}% Tracked dialect label: \trackeddialect.
\IfTrackedDialectHasMapping{\trackeddialect}%
{Has mapping: \GetTrackedDialectToMapping{\trackeddialect}}%
{No mapping}.
Root language: \TrackedLanguageFromDialect{\trackeddialect}.
\end{document}

In this case the document requires Maltese English but babel doesn’t have an associated
dialect so british is used instead in babel’s options list. However, tracklang does recognise
en-MT as a document class option, which allows extra localisation from other locale-sensitive
packages. (For example, datetime2 will use different time zone abbreviations.) If tracklang
picks up document class options, these override any babel settings, but the mapping allows
a way of accessing the captions hook provided by babel.

The above document produces:

+en-GB: Tracked dialect label: . No mapping. Root language: .
en-MT: Tracked dialect label: maltaenglish. Has mapping: british. Root lan-

guage: english.

So now, even though babel’s british option has been used, en-GB isn’t recognised as a
tracked locale. Things are a little more complicated if the language tag is too specific com-
pared to the babel dialect label. For example, while the dialect label nswissgerman identifies
the region, the ngerman label doesn’t.

\documentclass{article}

\usepackage[ngerman]{babel}
\usepackage{tracklang}

\begin{document}
\GetTrackedDialectFromLanguageTag{de-DE-1996}{\trackeddialect}%
Tracked dialect label: \trackeddialect.

41

2 Abbreviations

\IfTrackedDialectHasMapping{\trackeddialect}%
{Has mapping: \GetTrackedDialectToMapping{\trackeddialect}}%
{No mapping}.

In this case no dialect label is found. The result is:

+Tracked dialect label: . No mapping.

This is because the document doesn’t have a dialect that matches both the language and
region. As from tracklang version 1.3.6, \GetTrackedDialectToMapping sets:

\TrackedDialectClosestSubMatch

to the closest dialect label that has the same root language if the exact match isn’t found.
This will be empty if there’s no tracked dialect with the given root language (and may also
be empty if an exact match is found).

Returning to glossaries-extra with the original text stored in the user1 field (identified by
\glsxtruserfield in the long-short-user style) and the language tag stored in the user2
field, then if you have at least version 1.32 of glossaries-extra and version 1.3.6 of tracklang
you can use:

\GlsXtrForeignText{〈label〉}{〈text〉}

to encapsulate 〈text〉 with:

\foreignlanguage{〈language name〉}{〈text〉}

where the field containing the appropriate locale tag is stored in the field given by:

\GlsXtrForeignTextField

which defaults to the userii internal field for the entry identified by 〈label〉 (corresponding
to the user2 field). For example:

\documentclass{article}

\usepackage[main=british,brazilian,ngerman]{babel}
\usepackage[record]{glossaries-extra}

\setabbreviationstyle[foreignabbreviation]{long-short-user}

\newabbreviation{iso}{ISO}
{International Organization for Standardization}

\newabbreviation[
user1 = {Associa\c{c}\~ao Brasileria de Normas T\'ecnicas},

42

2 Abbreviations

user2 = {pt-BR},
category = {foreignabbreviation}

]
{abnt}{ABNT}{Brazilian National Standards Organization}

\newabbreviation[
user1 = {Deutsches Institut f\"ur Normung e.V.},
user2 = {de-1996},
category = {foreignabbreviation}

]{din}{DIN}{German Institute for Standardization}

\renewcommand*{\glsxtruserparen}[2]{%
\glsxtrfullsep{#2}%
\glsxtrparen
{#1%
\ifglshasfield{\glsxtruserfield}{#2}%
{, \emph{\GlsXtrForeignText{#2}{\glscurrentfieldvalue}}}%
{}%

}%
}

\begin{document}
\gls{abnt}, \gls{din}.
\end{document}

This essentially uses the earlier tracklang code where an extra \ifdefempty is inserted,
which sets the equivalent of \trackeddialect in the above to \TrackedDialectClosest-
SubMatch. If the test for the captions hook is false, then \foreignlanguage isn’t used.

43

3 Symbols
Section 1.4 described the symbol key, which can be used to additionally provide a symbol.
For example:

\documentclass{article}

\usepackage{siunitx}% provides \si
\usepackage{glossaries}

\newglossaryentry{length}% label
{% settings:

name = {length},
symbol = {\si{\metre}},
description = {measurement between two points}

}

\newglossaryentry{area}% label
{% settings:

name = {area},
symbol = {\si{\metre\squared}},
description = {measurement of a surface}

}

\begin{document}
Measurements: \gls{length} (\glssymbol{length}) and
\gls{area} (\glssymbol{area}).
\end{document}

This produces:

+Measurements: length (m) and area (m2).

It may be that you prefer to have the symbol in the name field instead. The example doc-
ument below is a modification of the above and uses the post-link hook to append the de-
scription on first use (see section 5.1).

44

3 Symbols

\documentclass{article}

\usepackage{siunitx}
\usepackage{glossaries-extra}

\glsnoexpandfields % name field contains \si

\glsdefpostlink{symbol}{\glsxtrpostlinkAddDescOnFirstUse}

\newglossaryentry{length}% label
{% settings:

name = {\si{\metre}},
description = {length},
category = {symbol}

}

\newglossaryentry{area}% label
{% settings:

name = {\si{\metre\squared}},
description = {area},
category = {symbol}

}

\begin{document}
First use: \gls{length} and \gls{area}.
Next use: \gls{length} and \gls{area}.
\end{document}

Note the need for \glsnoexpandfields (described in section 1.9). This wasn’t required in
the previous example because the siunitx commands were in the symbol field, which isn’t
expanded by default. The name field also isn’t expanded by default, but its value is copied
to the text and first fields, which are expanded by default. If \glsnoexpandfields is
omitted from the above document, the following error would occur:

! Undefined control sequence.
\@glo@name ->\si {\metre

}

Although \si is robust, commands like \metre and \squared are only available within the
argument of \si (and other similar commands provided by siunitx) and so break in expand-
able contexts. With \glsnoexpandfields, the document compiles correctly and produces:

+First use: m (length) and m2 (area). Next use: m and m2.

45

3 Symbols

The glossaries-extra’s symbols package option provides the command

\glsxtrnewsymbol[〈key=value list〉]{〈label〉}{〈symbol〉}

which is a shortcut for

\newglossaryentry{〈label〉}{name={〈symbol〉},category={symbol},sort={〈label〉},
type={symbols},〈key=value list〉}

So the above document can be changed to:

\documentclass{article}

\usepackage{siunitx}
\usepackage[symbols]{glossaries-extra}

\glsnoexpandfields

\glsdefpostlink{symbol}{\glsxtrpostlinkAddDescOnFirstUse}

\glsxtrnewsymbol[description = {length}]{length}{\si{\metre}}

\glsxtrnewsymbol[description = {area}]{area}{\si{\metre\squared}}

\begindocument
First use: \gls{length} and \gls{area}.
Next use: \gls{length} and \gls{area}.
\end{document}

The result is the same.

3.1 Functions
Some symbols may represent functions. For example:

\documentclass{article}

\usepackage[symbols]{glossaries-extra}

46

3 Symbols

\glsnoexpandfields

\glsxtrnewsymbol
[description = {derivative}]
{deriv}% label
{\ensuremath{f'(x)}}% symbol

\begin{document}
The derivative is denoted \gls{deriv}.
\end{document}

This produces:

+The derivative is denoted f ′(x).

What if I need to change the variable for a specific instance, for example, if I want f ′(xi)
instead of f ′(x)? I can just use:

The gradient at x_i is $f'(x_i)$.

So far, none of the example documents have a glossary or list of terms. The ultimate aim
when using the glossaries package is to ensure consistent formatting and notation, and, where
applicable, include a list of all terms referenced in the document. The use of commands like
\gls helps to achieve this. If the notation needs to be changed, only the entry definition (and
associated formatting commands) should need to be redefined without having to go through
the whole document changing the code. Using commands like \gls also identifies which
entries need to be included in the list of terms and, if hyperref is loaded, can be hyperlinked
to the relevant place in that list (see section 4).

So explicitly using f'(x_i) won’t index the deriv entry or mark it has having been used
or create a hyperlink. One possibility is to use one of the following commands:

\glslink[〈options〉]{〈label〉}{〈text〉}

\glsdisp[〈options〉]{〈label〉}{〈text〉}

They both work in much the same way, indexing the entry and displaying 〈text〉 as the link
text. The only difference is that \glsdisp also unsets the first use flag, which marks the
entry as having been used. For example:

The gradient at x_i is \glslink{deriv}{$f'(x_i)$}.

47

3 Symbols

This solves the problem of ensuring that the deriv entry is indexed and, if hyperref is loaded,
ensures that the link text has a hyperlink to the relevant place in the list of notation, but it
doesn’t solve the problem of consistent formatting.

One way of ensuring consistent formatting is to define a semantic command. For example:

\documentclass{article}

\usepackage[symbols]{glossaries-extra}

\glsnoexpandfields

\newcommand{\derivfn}[1]{f'(#1)}

\glsxtrnewsymbol
[description = {derivative}]
{deriv}% label
{\ensuremath{\derivfn{x}}}% symbol

\begin{document}
The derivative is denoted \gls{deriv}.
The gradient at x_i is \glslink{deriv}{$\derivfn{x_i}$}.
\end{document}

This produces:

+The derivative is denoted f ′(x). The gradient at xi is f ′(xi).

Now only \derivfn needs modifying if the notation must change. This requires remem-
bering both the entry label (deriv in this case) and the associated formatting command
(\derivfn in this case). The glossaries-extra package provides a way of storing the associ-
ated formatting command in one of the additional keys (see section 1.4). The field is identified
by:

\GlsXtrFmtField

which defaults to useri (the internal representation of the user1 key). The value must be
the name (without the leading backslash) of a control sequence that takes a single mandatory
argument. The above custom command derivfn satisfies this requirement, so the entry can
be defined as:

\glsxtrnewsymbol
[% settings:
description = {derivative},

48

3 Symbols

user1 = {derivfn}
]
{deriv}% label
{\ensuremath{\derivfn{x}}}% symbol

The formatting command can now be applied using one of the following:

\glsxtrfmt[〈options〉]{〈label〉}{〈text〉}

\glsxtrfmt*[〈options〉]{〈label〉}{〈text〉}[〈insert〉]

which internally use \glslink or:

\glsxtrentryfmt{〈label〉}{〈text〉}

which doesn’t (and so is more like using \glsentryname).
So an alternative approach is:

\documentclass{article}

\usepackage[symbols]{glossaries-extra}

\glsnoexpandfields

\newcommand{\derivfn}[1]{f'(#1)}

\glsxtrnewsymbol
[% settings:
description = {derivative},
user1 = {derivfn}

]
{deriv}% label
{\ensuremath{\derivfn{x}}}% symbol

\begin{document}
The derivative is denoted \gls{deriv}.
The gradient at x_i is $\glsxtrfmt{deriv}{x_i}$.
\end{document}

This again produces:

+The derivative is denoted f ′(x). The gradient at xi is f ′(xi).

49

3 Symbols

Both the starred \glsxtrfmt* and unstarred \glsxtrfmt format the 〈text〉 argument
using:

\glsxtrfmtdisplay{〈cs-name〉}{〈text〉}{〈insert〉}

where 〈cs-name〉 is the control sequence name stored in the field identified by \GlsXtrFmt-
Field and the 〈insert〉 part is the final optional argument for the starred \glsxtrfmt* (if
provided) otherwise it’s empty. If the command identified by 〈cs-name〉 doesn’t exist (or if
the field providing it isn’t set) then just 〈text〉〈insert〉 is done.

Nested link text causes problems so don’t use \glsxtrfmt in the optional part of
commands like \gls or \glssymbol or in field values that are used by those types
of command. Also don’t use \glsxtrfmt within the 〈text〉 or 〈insert〉 part of another
instance of \glsxtrfmt or in \glslink or \glsdisp. Use \glsxtrentryfmt instead.

If more than one argument is required, then a helper macro is needed. For example:

\newcommand{\iderivfn}[2][f]{#1'(#2)}
\newcommand{\derivfn}[1]{\iderivfn#1}

Now to obtain g′(xi):

$\glsxtrfmt{deriv}{[g]{x_i}}$

Note that for this simplistic helper macro, the mandatory inner argument needs extra braces
if it consists of more than a single token. For example:

$\glsxtrfmt{deriv}{{x_i}}$

3.2 Dealing with Automated Case-Changing
Commands like \Gls don’t usually make much sense for symbols as a change in case can
cause a change in meaning. For example, x might denote a vector and X might denote a
matrix. However, you may have a mixed list of terms containing both symbols and words,
and if you set the glossname attribute to firstuc, which automatically converts the first
letter of each name to upper case in the glossary, then this can cause a problem for entries
where the name starts with a symbol. The simplest solution is to insert an empty group at
the start of the name field for such entries. For example:

50

3 Symbols

\glsxtrnewsymbol
[description = {length}]% settings
{length}% label
{{}\si{\metre}}% name

This is done automatically by bib2gls, but if it causes any interference you can switch off
the behaviour with --no-mfirstuc-math-protection.

51

4 Displaying the Definition
The examples so far only use the defined entries in the documents with commands like \gls
or \glssymbol or \glsentrydesc. These are useful for ensuring consistent formatting, but
it’s also helpful to have a place in the document where the term is formally defined. This
can be partially solved by including the description in parentheses on first use, either by
explicitly including the description in the first field or with the use of the post-link hook,
but the first use might not be the most appropriate place for the description.

4.1 Listing the Terms (Glossary)
If you want a complete list of all defined terms, you can use:

\printunsrtglossary[〈options〉]

This lists all the terms for the given glossary (identified by the type key in 〈options〉, see
section 4.1.1) according to the order of the glossary’s internal list of labels, which is typically
in the order of definition. (As each entry is defined, its label is appended to the internal list
of the associated glossary.)

You can change the default title with the title option. For example:

\printunsrtglossary[title={Nomenclature}]

The title used in the TOC is assumed to be the same, but you can change it with toctitle.
For example:

\printunsrtglossary[
title={List of Terms and Notation},
toctitle={Notation}

]

The glossary style can be set with the style key in 〈options〉. Alternatively, you can set
a default style with the style package option. There are many predefined styles to choose
from (see the glossaries gallery [6]). The styles are provided in supplementary packages,
some of which are automatically loaded. Since each package adds to the document overhead,

52

https://www.dickimaw-books.com/gallery/glossaries-styles/

4 Displaying the Definition

and some require additional packages to be loaded, when using glossaries-extra, it’s a good
idea to disable the automatic loading of all styles with nostyles and then use stylemods to
load the specific packages (alongwith the glossaries-extra-stylemods package, which patches
some of the predefined styles). For example, the index style is provided by the glossary-tree
package, so stylemods={tree}will automatically load glossary-tree and provide all the tree-
like styles, including index. The stylemods value may be a comma-separated list, so to load
both glossary-tree and glossary-long, use stylemods={tree,long}. For example:

\documentclass{scrartcl}
\usepackage{mhchem}% provides \ce
\usepackage[postpunc={dot},% full stop after description
nostyles,% don't load default style packages

% load glossaries-extra-stylemods.sty and glossary-tree.sty:
stylemods={tree}

]{glossaries-extra}

\newglossaryentry{area}
{

name = {\ensuremath{A}},
description = {area}

}

\newglossaryentry{amethyst}
{

name = {amethyst},
description = {a purple type of quartz},
symbol = {\ce{SiO2}}

}

\newglossaryentry{circumference}
{

name = {\ensuremath{C}},
description = {circumference}

}

\newglossaryentry{duck}
{

name = {duck},
description = {a waterbird with webbed feet}

}
\newglossaryentry{goose}
{

name = {goose},

53

Glossary

description = {a large waterbird with a long neck, short legs,
webbed feet and a short broad bill}
}

\newglossaryentry{radius}
{

name = {\ensuremath{r}},
description = {radius}

}

\newglossaryentry{pi}
{

name = {\ensuremath{\pi}},
description = {Archimedes' constant}

}

\begin{document}
\printunsrtglossary[style={index}]
\end{document}

This produces:

+

Glossary
A area.

amethyst (SiO2) a purple type of quartz.

C circumference.

duck a waterbird with webbed feet.

goose a large waterbird with a long neck, short legs, webbed feet and a short
broad bill.

r radius.
π Archimedes’ constant.

The index glossary style checks if the symbol field has been set. If it has, then the symbol
is added in parentheses (as in the amethyst example). Only some of the styles include the
symbol field. (Table 15.1 in the glossaries user manual [3] gives an overview of the features
supported by the predefined styles.)

54

Glossary

The bookindex style is provided by the glossary-bookindex package, which is distributed
with glossaries-extra. This style is designed for indexes and omits both the description and the
symbol by default. It’s customized specifically for use with bib2gls. Without the location
lists obtained by bib2gls, this simply becomes a list of the name values for each term.

The glossary is sub-divided into letter groups. By default, these sub-groups are separated
with a vertical gap (for example, between duck and goose above). In the above example, the
letter group is determined by the first character of the sort field. Since the default behaviour
of both glossaries and glossaries-extra is to use makeindex, the sort field (which is used by
makeindex) is set to the value of the name field (unless explicitly set) and then sanitized.

When using \printunsrtglossary, the sort field is irrelevant except to determine the
letter group (unless the group field has been defined). The sub-group heading is displayed
by some styles, such as the indexgroup and bookindex styles. For example, with:

\printunsrtglossary[style={indexgroup}]

The glossary is now:

+

Glossary
Symbols

A area.

A

amethyst (SiO2) a purple type of quartz.

Symbols

C circumference.

D

duck a waterbird with webbed feet.

G

goose a large waterbird with a long neck, short legs, webbed feet and a short
broad bill.

Symbols

r radius.
π Archimedes’ constant.

55

Glossary

This explains why there’s a gap between A (area) and amethyst as they don’t belong to the
same letter group. The sort field for the area entry is \ensuremath{A} which has been
sanitized, so it starts with a literal backslash (\). This means that area is assigned to the
symbols letter group. The symbols group occurs three times, because the list is following the
order of definition.

4.1.1 Groups and Locations

The group and location fields are considered internal fields by bib2gls. They may
be referenced within the document, but they should not be assigned in the .bib file.
bib2gls assigns these fields according to the resource options and command line
switches. Explicitly assigning them can cause unexpected results. See also section 1.3
of the bib2gls manual.

The group key isn’t defined by default, but if it is defined then \printunsrtglossary
will use the group field instead of trying to determine the group from the first character of
the sort field (as in the example above). The value of the group field must be a label (see
section 1.1). A title may be assigned to a group with:

\glsxtrsetgrouptitle{〈group label〉}{〈group title〉}

If a title hasn’t been assigned, the label is used as the title. The above command is the pre-
ferred form, but the base glossaries package checks for a control sequence in the form \〈la-
bel〉groupnamewhere 〈label〉 is the group label. The glossaries-extra package also recognises
this form to ensure backward-compatibility. If the group field is empty the sub-group won’t
have a title.

For example, the following defines the group field with a custom command \grouplabel
(that’s not needed, but it’s required by the \glsaddstoragekey syntax):

\documentclass{scrartcl}
\usepackage{mhchem}
\usepackage[postpunc={dot},% full stop after description
nostyles,% don't load default style packages
stylemods={tree}% load glossary-tree.sty and patch styles

]{glossaries-extra}

\glsaddstoragekey{group}{}{\grouplabel}
\glsxtrsetgrouptitle{greek}{Greek Symbols}

\newglossaryentry{area}
{

name = {\ensuremath{A}},
description = {area},

56

Glossary

group = {A}
}

\newglossaryentry{amethyst}
{

name = {amethyst},
description = {a purple type of quartz},
symbol = {\ce{SiO2}},
group = {A}

}

\newglossaryentry{circumference}
{

name = {\ensuremath{C}},
description = {circumference},
group = {C}

}

\newglossaryentry{duck}
{

name = {duck},
description = {a waterbird with webbed feet},
group = {D}

}

\newglossaryentry{goose}
{

name = {goose},
description = {a large waterbird with a long neck, short legs,
webbed feet and a short broad bill},
group = {G}

}

\newglossaryentry{radius}
{

name = {\ensuremath{r}},
description = {radius},
group = {R}

}

\newglossaryentry{pi}
{

name = {\ensuremath{\pi}},
description = {Archimedes' constant},

57

Glossary

group = {greek}
}

\begin{document}
\printunsrtglossary[style={indexgroup}]
\end{document}

This produces:

+

Glossary
A

A area.
amethyst (SiO2) a purple type of quartz.

C

C circumference.

D

duck a waterbird with webbed feet.

G

goose a large waterbird with a long neck, short legs, webbed feet and a short
broad bill.

R

r radius.

Greek Symbols

π Archimedes’ constant.

Note that with this method every entry must be assigned a group or it will be assigned to the
empty group.

Similarly, if the location field is defined, you can use it to provide a location list. The
record package option conveniently defines both group and location, so the following
can be used instead:

58

Glossary

\usepackage[
record,% provides group and location fields (and other stuff)
postpunc=dot,nostyles,stylemods=tree]{glossaries-extra}

\newglossaryentry{area}
{

name = {\ensuremath{A}},
description = {area},
group = {A},
location = {page 1}

}

This very quickly becomes tedious and prone to errors as the entries have to be ordered
manually, and every entry must be assigned the group and location (if required). Every time
the location changes through edits to the document, the locationsmust be updated. However,
this is exactly the method that bib2gls uses, but it does it automatically for you by selecting
the required data from one or more .bib files and then creating a file containing all the
glossary entry definitions with the fields set appropriately. The .aux file provides bib2gls
with the indexing information so that it knows which entries to select and what the locations
are, and how to order the definitions. See section 7 for further information.

4.1.1 Homographs and Hierarchical Terms
An entry may be assigned a parent with the parent key. The value must be the label of an
entry that’s already defined. You can test if an entry has the parent field set with:

\ifglshasparent{〈entry label〉}{〈true〉}{〈false〉}

If the name key is omitted, the value is assumed to be the same as the parent’s name. For
example:

% parent:
\newglossaryentry{glossary}{name={glossary},description={}}
% children:
\newglossaryentry{glossarycol}
{% settings:
parent = {glossary},% parent label
description = {collection of glosses}

}
\newglossaryentry{glossarylist}
{% settings:

59

Glossary

parent = {glossary},% parent label
description = {list of technical words}

}

In this case the entry with the label glossary is the parent entry , and the entries with the la-
bels glossarycol and glossarylist are child entries (or sub-items). An entry that doesn’t
have a parent is a main or top-level or level 0 item. In this case, the child entries don’t have
the name key, so the name is obtained from the parent’s name. This is an example of a homo-
graph, where two words with different meanings have the same spelling. The parent entry
has an empty description.

Here’s another example:

% parent:
\newglossaryentry{mineral}% label
{% settings:

name = {mineral},
description = {natural inorganic substance}

}
% sub-entries:
\newglossaryentry{quartz}% label
{

parent = {mineral},% parent label
name = {quartz},
description = {hard mineral consisting of silica}

}
\newglossaryentry{amethyst}% label
{

parent = {quartz},% parent label
name = {amethyst},
description = {a purple type of quartz}

}

In this case, the child entries have the name key set. This is an example of a set of hierarchical
entries, where each child entry is a sub-category of the parent. Some glossary styles are
appropriate for homographs and some are appropriate for hierarchical entries and some are
only appropriate for flat glossaries (no child entries). For example, the index, indexgroup, tree
and treegroup styles are appropriate for hierarchical entries:

\documentclass{scrartcl}

60

Glossary

\usepackage[nostyles,postpunc={dot},stylemods={tree}]{glossaries-extra}

\newglossaryentry{animal}
{

name = {animal},
description = {living organism with a nervous system and sense organs
that can move independently}

}

\newglossaryentry{bird}
{

parent = {animal},
name = {bird},
description = {warm-blooded egg-laying animal with feathers, wings
and a beak}

}

\newglossaryentry{duck}
{

parent = {bird},
name = {duck},
description = {a waterbird with webbed feet}

}

\newglossaryentry{goose}
{

parent = {bird},
name = {goose},
description = {a large waterbird with a long neck, short legs,
webbed feet and a short broad bill}

}

\newglossaryentry{mineral}
{

name = {mineral},
description = {natural inorganic substance}

}

\newglossaryentry{calcite}% label
{

parent = {mineral},% parent label
name = {calcite},
description = {a carbonate mineral}

}

61

Glossary

\newglossaryentry{quartz}
{

parent = {mineral},
name = {quartz},
description = {hard mineral consisting of silica}

}

\newglossaryentry{amethyst}
{

parent = {quartz},
name = {amethyst},
description = {a purple type of quartz},

}

\newglossaryentry{citrine}
{

parent = {quartz},
name = {citrine},
description = {a form of quartz with a colour ranging
from pale yellow to brown due to ferric impurities}

}

\begin{document}
\printunsrtglossary[style=indexgroup]
\end{document}

This produces:

+

Glossary
A

animal living organism with a nervous system and sense organs that can move
independently.

bird warm-blooded egg-laying animal with feathers, wings and a beak.
duck a waterbird with webbed feet.
goose a large waterbird with a long neck, short legs, webbed feet and a

short broad bill.

M

mineral natural inorganic substance.

62

Glossary

calcite a carbonate mineral.
quartz hard mineral consisting of silica.
amethyst a purple type of quartz.
citrine a form of quartz with a colour ranging from pale yellow to brown

due to ferric impurities.

The treenoname and treenonamegroup styles are appropriate for homographs. These are
usually best with the subentrycounter package option, which defines the glossarysubentry
counter that’s incremented and displayed for every level 1 entry (that is, an entry with a
parent but not a grandparent). If the entrycounter option is also used, glossaryentry is set
as the master counter for glossarysubentry (although it’s not included in the display form of
that counter), but subentrycounter may be used without entrycounter, in which case
glossarysubentry has no master counter. If subentrycounter is used as a package option
and entrycounter is later switched on outside of the package option list (through \setup-
glossaries or in the optional argument of \printunsrtglossary) then it won’t be made
the master counter.

For example:

\documentclass{scrartcl}

\usepackage[subentrycounter,% create glossarysubentry counter
postpunc={dot},% append full stop after description
nostyles,stylemods={tree}]{glossaries-extra}

\newglossaryentry{bow1}
{
name={bow},
description={(rhymes with toe)}

}

\newglossaryentry{bowknot}
{

parent = {bow1},
description = {a knot tied with two loops and loose ends}

}

\newglossaryentry{bowweapon}
{

parent = {bow1},
description = {a weapon for shooting arrows, made of curved wood
joined at both ends with taut string}

}

63

Glossary

\newglossaryentry{bow2}
{
name={bow},
description={(rhymes with cow)}

}

\newglossaryentry{bowbend}
{

parent = {bow2},
description = {bend head or upper body}

}

\newglossaryentry{bowpressure}
{

parent = {bow2},
description = {give in to pressure}

}

\newglossaryentry{bow3}
{
name={bow},
description={(also bows) the front end of a ship}

}

\newglossaryentry{glossary}{name={glossary},description={}}

\newglossaryentry{glossarycol}
{

parent = {glossary},
description = {collection of glosses}

}

\newglossaryentry{glossarylist}
{

parent = {glossary},
description = {list of technical words}

}

\begin{document}
\printunsrtglossary[style=treenoname]
\end{document}

This produces

64

Glossary

+

Glossary
bow (rhymes with toe).
1) a knot tied with two loops and loose ends.
2) a weapon for shooting arrows, made of curved wood joined at both ends

with taut string.
bow (rhymes with cow).
1) bend head or upper body.
2) give in to pressure.

bow (also bows) the front end of a ship.

glossary .
1) collection of glosses.
2) list of technical words.

The empty description for the top-level glossary entry has caused an odd effect with a space
occurring between the name and the post-description punctuation. This can be removed by
redefining:

\glstreenonamedesc{〈label〉}

so that it checks if the description field has been set with:

\ifglshasdesc{〈entry label〉}{〈true〉}{〈false〉}

For example:

\renewcommand{\glstreenonamedesc}[1]{%
\ifglshasdesc{#1}
{\glstreepredesc\glossentrydesc{#1}\glspostdescription}
{}% do nothing, description field is empty

}

Another variation is to check if the entry has children add use a colon instead of a full stop.
The base glossaries package provides:

\ifglshaschildren{〈entry label〉}{〈true〉}{〈false〉}

However this method is very inefficient as it has to iterate over all defined entries and check if
any have the parent field set to 〈entry label〉. A more efficient method can be obtained with
bib2gls and the save-child-count resource option, which will save the number of child
entries that have been indexed in an internal field labelled childcount and a list of child

65

Glossary

entry labels is stored in the internal field labelled childlist. In this case, a more efficient
method is to use:

\GlsXtrIfHasNonZeroChildCount{〈entry label〉}{〈true〉}{〈false〉}

which checks the childcount field for a non-zero value. If you don’t use bib2gls, this
command will always do 〈false〉 (unless you explicitly set the internal fields to the correct
values, which is tedious and has to be updated whenever definitions are added, deleted or
have the parent field changed).

Another variation could use custom fields (see section 1.4) to store the pronunciation guide
(“rhymes with …”) and the alternative version (“also …”) as well as other information, such
as whether the word is a noun or verb.

4.1.1 Multiple Glossaries
The default glossary has the label main, but it can also be referenced with:

\glsdefaulttype

The nomain package option suppresses the creation of the main glossary, in which case \gls-
defaulttype will be set to the first glossary to be defined. (There must be at least one
glossary defined, so if you use nomain you must provide another default.) If you use the
entrycounter package option, the associated counter isn’t reset at the start of the glossary.
If you have multiple glossaries and you need it to be reset, add:

\glsresetentrycounter

before the start of the appropriate glossary.
Abbreviations defined with \newabbreviation (see section 2) are, by default, assigned to

the glossary given by:

\glsxtrabbrvtype

This initially expands to \glsdefaulttype, but the abbreviations option redefines this to
abbreviations and creates a glossary with that label.

Abbreviations defined with \newacronym are, by default, assigned to the glossary given
by:

\acronymtype

This initially expands to \glsdefaulttype, but the abbreviations option redefines this to
\glsxtrabbrvtype. However, the acronyms option redefines \acronymtype to acronym
and creates a glossary with that label. So if you use both the abbreviations and acronyms
package options, you will have two extra glossaries created, one as the default for \new-
abbreviation and the other as the default for \newacronym.

The symbols package option creates a glossary with the label symbols and defines \gls-
xtrnewsymbol (see section 3) which sets the type to symbols. There are also similar package

66

Glossary

options numbers and index, which create the numbers glossary (and \glsxtrnewnumber)
and the index glossary (and \newterm).

In each case, the default type can be overridden when defining an entry by using the type
key in the assignment list. The value must be the label identifying a defined glossary.

You can provide your own custom glossary using:

\newglossary*{〈type〉}{〈title〉}

where 〈type〉 is the label used to identify the glossary and 〈title〉 is the default title used by
\printunsrtglossary. (The unstarred version has a different syntax and is only applicable
with makeindex or xindy.) For example:

\newglossary*{measurements}{SI Units}
\newglossaryentry{length}
{% settings:

name = {\si{\metre}},
description = {length},
type = {measurements}% glossary label

}

In this case, the label identifying the new glossary is measurements and the title is “SI Units”.
You can specify the glossary using the type setting in the optional argument of \print-

unsrtglossary. For example, the above measurements glossary can be displayed with:

\printunsrtglossary[type={measurements}]

For convenience, there’s a command that iterates over all defined glossaries (in the order of
definition) and does \printunsrtglossary[type={〈label〉}] for each glossary:

\printunsrtglossaries

There’s no optional argument for this command. When creating glossaries with package
options, such as abbreviations, you may find an unexpected order as the options aren’t
always processed in the order in which they were specified. (Some glossaries-extra options
are passed to the base glossaries package and are processed when that package is internally
loaded not when the extension options are processed.) Inwhich case you need to use \print-
unsrtglossary for each glossary in the required order. You will also need to do this if the
glossary settings are different. (For example, if one glossary needs to use the tree style and
another needs to use the treenoname style.)

You can also define an ignored glossary , which is ignored by \printunsrtglossaries.
This is a useful way of creating a glossary for common terms that shouldn’t appear in a list
or for stand-alone entries (see section 4.2). The unstarred form:

67

Glossary

\newignoredglossary{〈type〉}

is useful for common terms where the list won’t be displayed as it automatically suppresses
hyperlinks for entries assigned to that glossary. The starred form:

\newignoredglossary*{〈type〉}

is useful for stand-alone entries as it doesn’t automatically suppress the hyperlinks. Although
\printunsrtglossaries skips ignored glossaries, it’s still possible to display an ignored
glossary with \printunsrtglossary but you’ll need to use the title option to override
the default title.

4.1.2 Redisplaying or Filtering a Glossary
It’s possible to use \printunsrtglossary multiple times for the same glossary, but if you
have hyperlinks youwill need to either suppress the targets with target={false} or change
the target name (see section 4.1.3).

The starred form of \printunsrtglossary has an extra argument:

\printunsrtglossary*[〈options〉]{〈code〉}

This may be used to make local assignments. It’s equivalent to:

\begingroup 〈code〉\printunsrtglossary[〈options〉]\endgroup

For example, if the group key has been defined (see section 4.1.1) you can locally switch to
a different field for the group label by redefining:

\glsxtrgroupfield

within 〈code〉. For example, if the secondarygroup field has been defined:

\printunsrtglossary*{%
\renewcommand{\glsxtrgroupfield}{secondarygroup}%

}

Note that this just changes the group labels. The order is still according to the glossary’s
internal list of labels.

Unlike \printglossary (used with makeindex and xindy) which inputs a file containing
the code to typeset the glossary, \printunsrtglossary iterates over the labels defined in
the given glossary and adds the appropriate code to an internal command. Once the con-
struction of the internal command is completed, it’s then performed. (The construction of

68

Glossary

this internal command is done to avoid complications when iterating within tabular-like en-
vironments, as some of the styles use longtable or supertabular.) There’s a hook just before
the internal command is expanded:

\printunsrtglossarypredoglossary

The glossary header and preamble are displayed before the loop starts, so this hook won’t
change them (but you can make local changes in 〈code〉 outside of the hook). The style is also
set before the loop, but the start and end of the theglossary environment (which is defined by
the glossary styles) is included in the internal command, so minor adjustments to the style
can be made in this hook.

There’s another hook that’s performed at each iteration:

\printunsrtglossaryentryprocesshook{〈label〉}

where 〈label〉 is the current entry label. For example, the alttree style needs to know the
widest entry name in order to set up the correct indentation. The widest name is set using:

\glssetwidest[〈level〉]{〈text〉}

but this requires knowing which entry has the widest name. There are some commands
provided by the glossary-tree and glossaries-extra-stylemods packages that iterate over all
entries, measuring each name, in order to find the widest, but since \printunsrtglossary
already has to iterate over the list before typesetting it, this hook can be used to update the
widest name at the same time. You can update the value with:

\glsupdatewidest[〈level〉]{〈text〉}

which computes the width of 〈text〉 and, if it’s wider than the current widest name for the
given level, sets the widest value to 〈text〉 (without expanding it). If 〈text〉 needs expanding
you need to use:

\eglsupdatewidest[〈level〉]{〈text〉}

The 〈level〉 refers to the entry’s hierarchical level with a value of 0 indicating top-level (that
is, an entry without a parent). The level is stored in the internal level field and can only be
accessed with \glsxtrusefield or similar commands (see section 1.4).

You can also redefine this hook to filter the glossary list. If an entry shouldn’t appear in
the list, use:

\printunsrtglossaryskipentry

For example, to only include entries that have the category set to formula:

\printunsrtglossary*[target=false,title={Formula}]
{% local code:

\renewcommand{\printunsrtglossaryentryprocesshook}[1]{%

69

Glossary

\glsifcategory{#1}{formula}
{}% category = formula
{\printunsrtglossaryskipentry}%

}%
}

This uses \glsifcategory to check the value of the entry’s category field (see section 1.3).
Another conditional you might find useful is:

\glsxtriflabelinlist{〈label〉}{〈list〉}{〈true〉}{〈false〉}

which tests if the given 〈label〉 is in the comma-separated 〈list〉 of labels. Both 〈label〉 and
〈list〉 are fully expanded before testing. This command is only intended for labels, which
must be fully expandable. For example, the following excludes any entries that have the
category set to abbreviation or acronym:

\printunsrtglossary*[target=false,title={Formula}]
{% local code:

\renewcommand{\printunsrtglossaryentryprocesshook}[1]{%
\glsxtriflabelinlist
{\glscategory{#1}}% category label for this entry
{abbreviation,acronym}% exclusion list
{\printunsrtglossaryskipentry}% skip (exclude)
{}% don't skip (include)

}%
}

4.1.3 Hyperlink Targets
The naming system used for the hyperlinks from commands like \gls and \glssymbol to
the corresponding definition in the glossary is given by 〈prefix〉〈label〉 where 〈label〉 is the
entry’s label and 〈prefix〉 is given by:

\glolinkprefix

This can locally be changed within commands like \gls and \glssymbol with the prefix
option. There is a matching prefix option for \printunsrtglossary. You can set an
additional prefix in the glossary with targetnameprefix={〈extra〉}, which means that the
target name in the glossary is now 〈extra〉\glolinkprefix〈label〉 (so targetnameprefix
doesn’t modify \glolinkprefix but prepends an extra prefix).

If you change the prefix either by using the above options or by redefining \glolink-
prefix, you need to make sure that the target names match for the links to work correctly.

70

Glossary

The debug={showtargets} package option can be used to show the target names in the
document. The target is displayed in the document using:

\glsshowtarget{〈label〉}

which may be redefined as appropriate. For example:

\documentclass{article}

\usepackage{hyperref}
\usepackage[debug=showtargets]{glossaries-extra}

\newglossaryentry{sample}{name={sample},description={an example}}

\begin{document}
\gls[prefix={TARGET.}]{sample}.

\printunsrtglossary[prefix={TARGET.}]
\printunsrtglossary[prefix={TARGET.},targetnameprefix={EXTRA.}]
\end{document}

4.2 Stand-alone Definitions
The glossaries-extra package provides:

\glsxtrglossentry{〈label〉}

which may be used to create a target for a particular entry (identified by 〈label〉). This dis-
plays the value of the name field, but it also obeys the post-name hook (see section 5.3), the
glossname and glossnamefont attributes (see section 5.2), and provides accessibility support
if the access field is set (see section 1.5). This command may be used for both top-level
and child entries, and will obey the entrycounter (see below) and subentrycounter (see
section 4.1.1) package options according to the entry’s hierarchical level.

This command doesn’t display any of the other field values. If any are required, you need
to add them afterwards. For the description, you can use \glsentrydesc, but it’s better to
use:

\glossentrydesc{〈label〉}

Unlike \glsentrydesc, which just displays the value of the description field, \gloss-
entrydesc obeys the glossdesc and glossdescfont attributes (section 5.2). Alternatively, you
can use:

\Glossentrydesc{〈label〉}

71

Glossary

which converts the first letter of the description to upper case. To pick up the postpunc
setting and the post-description category hook, append \glspostdescription after the
description (see section 5.3).

There’s a similar command for symbols:

\glossentrysymbol{〈label〉}

There are currently no category attributes governing this command, but it does check for the
symbolaccess field if accessibility support has been added (see section 1.5). For other fields,
you can use the commands described in section 1.4.

If you need to substitute the name for another field in the target, you can use:

\glsxtrglossentryother{〈header〉}{〈label〉}{〈field〉}

instead of \glsxtrglossentry{〈label〉}, where 〈label〉 identifies the entry and 〈field〉 is the
internal field label to use instead of the name. The 〈header〉 argument is the code to use in
the header (which should be left empty for the default value1) if \glsxtrglossentryother
is used in a sectioning command. This command obeys the glossname and glossnamefont
attributes and the post-name hook, even though it’s not actually displaying the name. For
example,

\section{\glsxtrglossentryother{}{duck}{plural}}

Here’s a complete example that uses \glsxtrglossentry after an equation to describe
the notation:

\documentclass{article}

\usepackage{xcolor}% provides colour
\usepackage[colorlinks,linkcolor=purple]{hyperref}
\usepackage[postpunc={dot}]{glossaries-extra}

\newglossaryentry{pi}
{

name = {\ensuremath{\pi}},
description = {Archimedes' constant}

}

\newglossaryentry{radius}
{

1The 〈header〉 argument doesn’t use standard LATEXoptional syntax [〈option〉] because \glsxtrglossentry-
other has to be expandable in order for it to work correctly in section arguments.

72

Glossary

name = {\ensuremath{r}},
description = {radius}

}

\newglossaryentry{area}
{

name = {\ensuremath{A}},
description = {area}

}

\begin{document}
\begin{equation}
\gls{area} = \gls{pi}\gls{radius}[^2]
\end{equation}
\begin{tabular}{ll}
\glsxtrglossentry{area} & \glossentrydesc{area}\glspostdescription\\
\glsxtrglossentry{pi} & \glossentrydesc{pi}\glspostdescription\\
\glsxtrglossentry{radius} & \glossentrydesc{radius}\glspostdescription
\end{tabular}
\end{document}

This produces:

+
A = πr2 (1)

A area.
π Archimedes’ constant.
r radius.

The purple text shows the hyperlinks to the relevant definition. As with \printunsrtglos-
sary, the hypertargets are prefixed with \glolinkprefix (see section 4.1.2). This can be
locally changed to avoid clashes if the definition needs to be reproduced later.

A more convenient approach to the above is to define an environment that can list all the
referenced entries automatically. The glossaries-extra package provides away of buffering the
boolean switch performed by \gls that ensures that the first use flag is unset (see section 6.5).
This is intended for use where the switch causes a problem, but it can also be used in this case
to store a list of used entries (since there’s no difference between first use and subsequent
use in this case, it won’t affect the link text).

Here’s a modified version of the above document:

\documentclass{article}

73

Glossary

\usepackage{xcolor}
\usepackage[colorlinks,linkcolor=purple]{hyperref}
\usepackage[postpunc={dot}]{glossaries-extra}

\newglossaryentry{pi}
{

name = {\ensuremath{\pi}},
description = {Archimedes' constant}

}

\newglossaryentry{radius}
{

name = {\ensuremath{r}},
description = {radius}

}

\newglossaryentry{area}
{

name = {\ensuremath{A}},
description = {area}

}

\newglossaryentry{circumference}
{

name = {\ensuremath{C}},
description = {circumference}

}

\newcommand{\doglossaryentry}[1]{% handler macro
\glsxtrglossentry{#1} & \glossentrydesc{#1}\glspostdescription\\%

}

\newcounter{localglossary}

\newenvironment{localglossary}
{%

\stepcounter{localglossary}%
\renewcommand{\glolinkprefix}{\thelocalglossary.}%
\GlsXtrStartUnsetBuffering*

}
{%

\par
\begin{tabular}{ll}
\GlsXtrForUnsetBufferedList\doglossaryentry

74

Glossary

\end{tabular}
\GlsXtrStopUnsetBuffering
\par

}

\begin{document}
The area of a circle is given by:
\begin{localglossary}
\begin{equation}
\gls{area} = \gls{pi}\gls{radius}[^2]
\end{equation}
\end{localglossary}
The circumference of a circle is given by:
\begin{localglossary}
\begin{equation}
\gls{circumference} = 2\gls{pi}\gls{radius}
\end{equation}
\end{localglossary}
\end{document}

This produces:

+The area of a circle is given by:

A = πr2 (1)

A area.
π Archimedes’ constant.
r radius.

The circumference of a circle is given by:

C = 2πr (2)

C circumference.
π Archimedes’ constant.
r radius.

The custom localglossary counter is defined and incremented to ensure that the target prefix
\glolinkprefix is unique for each environment. This definition of the custom localglos-
sary environment is intentionally kept trivial since the main point here is the demonstration
of \glsxtrglossentry and the buffering rather than the actual formatting of the entries.
Additional vertical spacing, appropriate alignment and a paragraph column specifier are left
as an exercise for the reader.

75

Glossary

4.2.1 Numbering Top-Level Entries
The entrycounter package option creates a new counter called glossaryentry, which will au-
tomatically be incremented and displayed at the start of \glsxtrglossentry for top-level
entries. (The glossarysubentry counter created with the subentrycounter option, described
in section 4.1.1, may be used independently of the entrycounter package option.) In the
above example, this counter will need to depend on the custom localglossary counter to en-
sure that it’s reset at the start of each localglossary environment. This can easily be done by
using the name of the master counter as the value of counterwithin (which automatically
implements entrycounter), but the master counter must be defined first:

\newcounter{localglossary}
\usepackage[counterwithin={localglossary}]{glossaries-extra}

The default definition of \theHglossaryentry is:

\currentglossary.\theglossaryentry

The prefix \currentglossary is set by both \printunsrtglossary and \glsxtrgloss-
entry to the current glossary label (given by the type option in \printunsrtglossary and
by the entry’s type field for \glsxtrglossentry). In the case of \glsxtrglossentry (and
\glsxtrglossentryother), the value of \currentglossary is obtained from:

\GlsXtrStandaloneGlossaryType

which defaults to the value of the type field for the current entry.
Since this example is using multiple stand-alone definitions that may repeat the same

entry, this definition isn’t appropriate and will cause duplicate destination warnings. The
simplest solution is to redefine \GlsXtrStandaloneGlossaryType in terms of the custom
localglossary counter value:

\renewcommand{\GlsXtrStandaloneGlossaryType}{%
standalone.\thelocalglossary.\arabic{glossaryentry}%

}

Unlike commands such as \gls, which can be problematic in moving arguments, \gls-
xtrglossentry is designed to work in section headings. For example:

76

Glossary

\documentclass{article}

\usepackage{mhchem}
\usepackage[colorlinks,linkcolor=magenta]{hyperref}
\usepackage[postpunc={dot}]{glossaries-extra}

\newglossaryentry{amethyst}
{

name = {amethyst},
description = {a purple type of quartz},
symbol = {\ce{SiO2}},
category = {mineral}

}

\glssetcategoryattribute{mineral}{glossname}{firstuc}

\newcommand{\displayterm}[1]{%
\subsection{\glsxtrglossentry{#1}}%
Chemical formula: \glossentrysymbol{#1}.
\Glossentrydesc{#1}\glspostdescription\par

}
\begin{document}
\tableofcontents
\section{Types of Quartz}
A reference to \gls{amethyst}.

\displayterm{amethyst}
\end{document}

(Again, improvements to the actual formatting of the custom \displayterm is left as an
exercise to the reader. Additional fields could contain, for example, the name of an image file
to illustrated the entry. See the glossaries gallery [5] for further ideas.)

The above example uses the glossname attribute to convert the first letter of the name to
upper case. Unfortunately this can’t be applied to the PDF bookmark or TOC. A solution to
this would be to explicitly set the name with the first letter as an upper case character and
the text field in lower case. For example:

\newglossaryentry{amethyst}
{

name = {Amethyst},
text = {amethyst},

77

https://www.dickimaw-books.com/gallery/

Glossary

description = {a purple type of quartz},
symbol = {\ce{SiO2}},
category = {mineral}

}

The glossname attribute can then be omitted. This is a bit inconvenient, but if you use
bib2gls (see section 7) this can be performed automatically with the name-case-change
resource option.

4.2.2 Stand-alone Hierarchical Entries
Sub-entries can also be displayed with \glsxtrglossentry or \glsxtrglossentryother.
These check if the entry has a parent (with \ifglshasparent). If it doesn’t, then it will
display the glossaryentry counter label if the entrycounter package option has been used.
If the entry does have a parent, it uses:

\GlsXtrStandaloneSubEntryItem{〈label〉}

which checks the internal level field to determine the hierarchical level. If the level is 1
(that is, the entry has a parent but not a grandparent) then it will display the glossarysubentry
label if that counter has been defined, otherwise it does nothing.

Here’s an example document with a top-level entry (mineral), a level 1 entry (quartz)
and a level 2 entry (amethyst).

\documentclass{article}

\usepackage{xcolor}% provides colour
\usepackage[colorlinks,linkcolor=magenta]{hyperref}
\usepackage[
entrycounter,% enable top-level counter
subentrycounter,% enable level 1 counter
postpunc={dot},% put full-stop after description
nostyles,% suppress automatic loading of default styles
stylemods={tree}% load glossary-tree.sty

]{glossaries-extra}

\newglossaryentry{mineral}
{

name = {mineral},
description = {natural inorganic substance},
category = {mineral}

}

78

Glossary

\newglossaryentry{calcite}
{

parent = {mineral},
name = {calcite},
description = {a carbonate mineral},
category = {mineral}

}

\newglossaryentry{quartz}
{

parent = {mineral},
name = {quartz},
description = {hard mineral consisting of silica},
category = {mineral}

}

\newglossaryentry{amethyst}
{

parent = {quartz},
name = {amethyst},
description = {a purple type of quartz},
category = {mineral}

}

\glssetcategoryattribute{mineral}{glossname}{firstuc}

\renewcommand{\GlsXtrStandaloneGlossaryType}{standalone}

\newcommand{\displayterm}[1]{%
\par
Definition \glsxtrglossentry{#1}:
\glossentrydesc{#1}\glspostdescription\par

}

\begin{document}
\displayterm{mineral}
\displayterm{calcite}
\displayterm{quartz}
\displayterm{amethyst}

A reference to \gls{mineral}.
A reference to \gls[prefix=main.]{amethyst}.

\renewcommand{\GlsEntryCounterLabelPrefix}{main.glsentry-}

79

Glossary

\glsresetentrycounter
\printunsrtglossary[prefix={main.},style=tree]
\end{document}

This produces:

+Definition 1. Mineral: natural inorganic substance.
Definition 1) Calcite: a carbonate mineral.
Definition 2) Quartz: hard mineral consisting of silica.
Definition Amethyst: a purple type of quartz.
A reference to mineral. A reference to amethyst.

Glossary
1. Mineral natural inorganic substance.
1) Calcite a carbonate mineral.
2) Quartz hard mineral consisting of silica.
Amethyst a purple type of quartz.

Note the need to reset the glossaryentry counter with \glsresetentrycounter before the
main glossary. The top-level entry (mineral) has the label formatted as “1.␣” and the level 1
entries (calcite and quartz) have their labels formatted as “1)␣” and “2)␣” but the level 2
entry (amethyst) doesn’t have an associated number. If you want to number levels deeper
than 1, you will have to provide your own custom counters. (If the stand-alone level 2 en-
try shows a number when you try this, then you’ve encountered a bug that’s been fixed in
glossaries-extra version 1.31.)

The hyperlinks are shown in magenta. The first (mineral) links to the stand-alone target,
and the second (amethyst) links to the entry in the main glossary.

80

5 Changing the Formatting
All commands like \gls and \glssymbol by default encapsulate the link text within the
argument of:

\glstextformat{〈text〉}

For example:

\documentclass{article}

\usepackage{xcolor}% provides colour
\usepackage{pifont}% provides \ding
\usepackage{glossaries-extra}

\newglossaryentry{duck}% label
{

name = {duck},
description = {a waterbird with webbed feet}

}

\newglossaryentry{fleuron}% label
{

name = {fleuron},
symbol = {\ding{167}},
category = {ornament},
description = {typographic ornament}

}

\newabbreviation{tug}{TUG}{\TeX\␣Users Group}

\renewcommand{\glstextformat}[1]{\textcolor{violet}{#1}}

\begin{document}
A \gls{duck}, a \gls{fleuron} (\glssymbol{fleuron},
\glsentrydesc{fleuron}) and \gls{tug}.
\end{document}

81

5 Changing the Formatting

This produces:

+A duck, a fleuron (§, typographic ornament) and TEX Users Group (TUG).

Note that this has affected \gls and \glssymbol but not \glsentrydesc.
A distinction can be made between abbreviations (non-regular terms) and regular terms

(non-abbreviations or abbreviations that are considered regular entries). A regular term is
encapsulated with

\glsxtrregularfont{〈text〉}

and an abbreviation is encapsulated with

\glsxtrabbreviationfont{〈text〉}

For example:

\documentclass{article}

\usepackage{xcolor}% provides colour
\usepackage{pifont}% provides \ding
\usepackage{glossaries-extra}

\newglossaryentry{duck}% label
{

name = {duck},
description = {a waterbird with webbed feet}

}

\newglossaryentry{fleuron}% label
{

name = {fleuron},
symbol = {\ding{167}},
category = {ornament},
description = {typographic ornament}

}

\newabbreviation{tug}{TUG}{\TeX\␣Users Group}
\newacronym{ascii}{ASCII}{American Standard Code for
Information Interchange}

\renewcommand{\glstextformat}[1]{\textcolor{violet}{#1}}
\renewcommand{\glsxtrregularfont}[1]{\underline{#1}}
\renewcommand{\glsxtrabbreviationfont}[1]{\emph{#1}}

82

5 Changing the Formatting

\begin{document}
Two \glspl{duck}, a \gls{fleuron} (\glssymbol{fleuron},
\glsentrydesc{fleuron}), \gls{tug} and \gls{ascii}.
\end{document}

This now produces:

+Two ducks, a fleuron (§, typographic ornament), TEX Users Group (TUG) and
ASCII.

Note the difference between the abbreviation defined with \newabbreviation and the one
definedwith \newacronym. The above example document is using the default styles, which is
long-short for the abbreviation category and short-nolong for the acronym category. The
short-nolong style makes the abbreviation behave like a regular entry and so it’s governed
by \glsxtrregularfont not by \glsxtrabbreviationfont.

The \glstextformat command is overridden by the textformat attribute. The value of
this attribute must be the name (without the leading backslash) of a command that takes a
single argument, which will be used instead of \glstextformat for any entry that has this
attribute set for its category. For example:

\documentclass{article}

\usepackage{xcolor}% provides colour
\usepackage{pifont}% provides \ding
\usepackage{glossaries-extra}

\newcommand{\ornamentfmt}[1]{\textcolor{cyan}{#1}}

\glssetcategoryattribute{ornament}{textformat}{ornamentfmt}

\setabbreviationstyle{long-short-em}
\setabbreviationstyle[acronym]{short-sc-nolong}

\newglossaryentry{duck}% label
{

name = {duck},
description = {a waterbird with webbed feet}

}

\newglossaryentry{fleuron}% label
{

name = {fleuron},
symbol = {\ding{167}},

83

5 Changing the Formatting

category = {ornament},
description = {typographic ornament}

}

\newabbreviation{tug}{TUG}{\TeX\␣Users Group}
\newacronym{ascii}% label
{ascii}% short form needs to be in lower case with sc styles
{American Standard Code for Information Interchange}

\renewcommand{\glstextformat}[1]{\textcolor{violet}{#1}}
\renewcommand{\glsxtrregularfont}[1]{\underline{#1}}
\renewcommand{\glsxtrabbreviationfont}[1]{\textbf{#1}}

\begin{document}
Two \glspl{duck}, a \gls{fleuron} (\glssymbol{fleuron},
\glsentrydesc{fleuron}), \gls{tug} and \gls{ascii}.
\end{document}

This produces:

+Two ducks, a fleuron (§, typographic ornament), TEX Users Group (TUG)
and ascii.

So \gls{fleuron} and \glssymbol{fleuron} are now formatted according to the custom
command \ornamentfmt (cyan) not by \glstextformat (violet), but they are still affected
by \glsxtrregularfont (underline).

The tug abbreviation has been assigned the long-short-em style which encapsulates the
short form with \emph, but it also obeys \glsxtrabbreviationfont (bold) and it’s encap-
sulated by \glstextformat (violet), so the full form on first use is all violet and bold with
the short form in italics.

The ascii entry (which has the category set to acronym) has been assigned the short-sc
-nolong style, which encapsulates the short form with \textsc (so the short form must be
converted to lower case) and identifies the entry as a regular term, so it obeys \glsxtrreg-
ularfont (underline). Again, the link text is encapsulated with \glstextformat (violet) so
the abbreviation is violet, underlined and in small-caps.

You can override a specific instance with the textformat setting in the first optional
argument of commands like \gls. For example, if the above is modified to:

Two \glspl{duck}, a \gls[textformat=textbf]{fleuron}
(\glssymbol{fleuron}, \glsentrydesc{fleuron}), \gls{tug}
and \gls{ascii}.

84

5 Changing the Formatting

then the result is now:

+Two ducks, a fleuron (§, typographic ornament), TEX Users Group (TUG)
and ascii.

In this case, only that specific instance is changed.
Take care if the formatting command needs to parse its argument as the argument won’t be

the actual text but consists of intermediary commands that determine the required text and
any inner formatting, such as the formatting applied by abbreviation styles. See section 6.4
for further details.

5.1 Post-Link Category Hooks
Extra information can be appended after commands such as \gls by defining a post-link hook
for the given category. You can obtain the label of the entry that’s just been referenced with:

\glslabel

The post-link hook is a command in the form

\glsxtrpostlink〈category〉

where 〈category〉 is the category label. This hook is implemented after any instances of
commands such as \gls or \glssymbol (but not after commands like \glsentryname, \gls-
entrydesc or \glsentryname, which may be used in the hook).

Consider the following document:

\documentclass{article}

\usepackage{pifont}% provides \ding
\usepackage{glossaries-extra}

\newglossaryentry{fleuron}% label
{

name = {fleuron},
symbol = {\ding{167}},
description = {typographic ornament}

}

\newglossaryentry{pi}% label
{

name = {Archimedes' constant},
symbol = {\ensuremath{\pi}},
category = {constant},

85

5 Changing the Formatting

description = {Archimedes' constant}
}

% post-link hook for 'constant' category:
\newcommand{\glsxtrpostlinkconstant}{%
\space (\glsentrysymbol{\glslabel})}

\begin{document}
A \gls{fleuron} and \gls{pi}.
\end{document}

This produces:

+A fleuron and Archimedes’ constant (π).

The fleuron entry doesn’t have the category key explicitly set, so it defaults to general,
but the pi entry has the category set to constant, so it’s affected by the post-link hook
for that category, which in this case is given by \glsxtrpostlinkconstant. This hook is
defined to use \glsentrysymbol where the entry label is obtained from \glslabel, which
is set by \gls and similar commands.

If \glssymbol{\glslabel} had been used instead of \glsentrysymbol
{\glslabel} it would’ve caused infinite recursion! Don’t use commands like
\glssymbol, \glsdesc or \gls in post-link hooks.

This means that \gls{pi} is automatically followed by the symbol in parentheses, but
\gls{fleuron} isn’t because it’s governed by the general post-link hook instead. Note
that the above is a simple example to demonstrate one of the uses of the category field.

Here’s a minor modification that sets the category for the fleuron entry to ornament and
creates another hook for that.

\documentclass{article}

\usepackage{pifont}% provides \ding
\usepackage{glossaries-extra}

\newglossaryentry{fleuron}% label
{

name = {fleuron},
symbol = {\ding{167}},
category = {ornament},
description = {typographic ornament}

}

86

5 Changing the Formatting

\newglossaryentry{pi}% label
{

name = {pi},
symbol = {\ensuremath{\pi}},
category = {constant},
description = {Archimedes' constant}

}

% post-link hook for 'ornament' category:
\newcommand{\glsxtrpostlinkornament}{%
\space (\glsentrydesc{\glslabel})}

% post-link hook for 'constant' category:
\newcommand{\glsxtrpostlinkconstant}%
\space (\glsentrysymbol{\glslabel})

\begin{document}
A \gls{fleuron} and \gls{pi}. Another \gls{fleuron} and
\gls{pi}. Symbols: \glssymbol{fleuron} and \glssymbol{pi}.
\end{document}

This produces:

+A fleuron (typographic ornament) and Archimedes’ constant (π). Another
fleuron (typographic ornament) and Archimedes’ constant (π). Symbols: § (ty-
pographic ornament) and π (π). 7

The post-link hook is repeated after every instance of \gls or \glssymbol etc. In the case
of the ornament category, the description is appended in parentheses and in the case of the
constant category the symbol is appended. This results in redundant repetition, especially
with \glssymbol{pi} which displays the symbol followed by the symbol in parentheses.

It’s more likely that the information only needs to be appended after the first use. You can
determine if the post-link hook follows the first use of the entry using:

\glsxtrifwasfirstuse{〈true〉}{〈false〉}

For example:

\newcommand{\glsxtrpostlinkconstant}{%
\glsxtrifwasfirstuse{\space (\glsentrysymbol{\glslabel})}{}%

}

87

5 Changing the Formatting

Commands that don’t check or modify the first use flag, such as \glssymbol, always set
\glsxtrifwasfirstuse so that it expands to 〈false〉. This means that even if \glssymbol
{pi} is placed before the first instance of \gls{pi} it still won’t be treated as the first use
of that entry.

For convenience, there’s a shortcut command:

\glsxtrpostlinkAddSymbolOnFirstUse

So an alternative definition is:

\newcommand{\glsxtrpostlinkconstant}{%
\glsxtrpostlinkAddSymbolOnFirstUse

}

This does nothing if the symbol field hasn’t been set.
Similarly, there’s a shortcut command for the description:

\glsxtrpostlinkAddDescOnFirstUse

Version 1.31+ provides a combination:

\glsxtrpostlinkAddSymbolDescOnFirstUse

If the symbol field is set, this displays the symbol followed by a comma and space. The
description is always displayed at the end of the parenthetical material.

Also from glossaries-extra v1.31, there’s a shortcut command that you can use to define
the post-link hook:

\glsdefpostlink{〈category〉}{〈definition〉}

This is just a shortcut for:

\csdef{glsxtrpostlink〈category〉}{〈definition〉}

So the above document can be changed to:

\documentclass{article}

\usepackage{pifont}% provides \ding
\usepackage{glossaries-extra}

\newglossaryentry{fleuron}% label
{

88

5 Changing the Formatting

name = {fleuron},
symbol = {\ding{167}},
category = {ornament},
description = {typographic ornament}

}

\newglossaryentry{pi}% label
{

name = {pi},
symbol = {\ensuremath{\pi}},
category = {constant},
description = {Archimedes' constant}

}

% post-link hook for 'ornament' category:
\glsdefpostlink{ornament}{%

\glsxtrpostlinkAddSymbolDescOnFirstUse
}

% post-link hook for 'constant' category:
\glsdefpostlink{constant}{%

\glsxtrpostlinkAddSymbolOnFirstUse
}

\begin{document}
Symbols: \glssymbol{fleuron} and \glssymbol{pi}.
A \gls{fleuron} and \gls{pi}. Another \gls{fleuron} and
\gls{pi}.
\end{document}

The result is now:

+Symbols: § and π. A fleuron (§, typographic ornament) and Archimedes’
constant (π). Another fleuron and Archimedes’ constant.

5.2 Glossary Name and Description Formatting
When an entry’s definition is displayed within \printunsrtglossary or \glsxtrgloss-
entry (see section 4), the value of the name field is encapsulated by

\glsnamefont{〈text〉}

89

5 Changing the Formatting

This may be overridden with the glossnamefont attribute whose value must be the name
(without the leading backslash) of a control sequence that takes a single argument. If set,
this control sequence is used instead of \glsnamefont.

By default \glsnamefont simply does its argument, but the glossary style may apply
additional formatting. For example, the list styles place the name in the optional argument of
\itemwithin the description environment. With the standard document classes, this renders
the name in bold, but other classes may apply different formatting.

The tree styles defined by the glossary-tree style encapsulate the name within:

\glstreenamefmt{〈text〉}

which does \textbf{〈text〉} by default. So, for example, if \glsnamefont is redefined to
use \textit and the tree style is used, then the name will appear in italic bold. The letter
group headings are encapsulated within:

\glstreegroupheaderfmt{〈text〉}

which defaults to \glstreenamefmt{〈text〉}, so if you need to redefine \glstreenamefmt
you may also need to redefine \glstreegroupheaderfmt if the headers should have differ-
ent formatting. The glossaries-extra-stylemods package (as from v1.31) now redefine both
\glstreenamefmt and \glstreegroupheaderfmt to use:

\glstreedefaultnamefmt{〈text〉}

which does \textbf{〈text〉} by default. This means that if you want to change both the
header and name to a different font, you can just redefine \glstreedefaultnamefmt, and
if you want to change only the font used for the name, then now you only need to redefine
\glstreenamefmt, without also having to redefine \glstreegroupheaderfmt.

Case-changing can be automatically applied to the name with the glossname attribute,
which may take one of the values: firstuc (convert the first letter to upper case), title
(convert to title case) or uc (convert to all capitals). Alternatively, if you’re using bib2gls,
you can use the name-case-change resource option.

The description is similarly governed by the glossdescfont, which again should have the
name (without the leading backslash) of a control sequence that takes a single argument.
There’s no equivalent of \glsnamefont for the description but the glossary or abbreviation
style may apply particular formatting, which will be in addition to the formatting command
given by glossdescfont (if set).

Case-changing is also available for descriptions with the glossdesc attribute, but this only
has two allowed values: firstuc (convert the first letter to upper case) and title (convert
to title case). Alternatively, if you’re using bib2gls, you can use the description-case
-change resource option.

5.3 Post-Name and Post-Description Hooks
Information can be appended to the name in the glossary for a particular category using the
post-name hook, which is given by the command:

90

5 Changing the Formatting

\glsxtrpostname〈category〉

The current entry’s label can be referenced with:

\glscurrententrylabel

For example, if the preferred glossary style doesn’t include the symbol field, but you want
the symbol displayed after the name for entries with the category field set to symbol:

\newcommand{\glsxtrpostnamesymbol}{\space
(\glsentrysymbol{\glscurrententrylabel})}

There’s a convenient shortcut:

\glsdefpostname{〈category〉}{〈definition〉}

which defines \glsxtrpostname〈category〉 to 〈definition〉 (using \csdef). There’s also a
more general purpose post-name hook used regardless of the category:

\glsextrapostnamehook{〈label〉}

The post-name hook is placed inside the formatting command used for the name field in
the glossary. It’s only present in the glossary (see section 4.1) or stand-alone entries (see
section 4.2).

There is a similar post-description hook. For a particular category, the hook is given by:

\glsxtrpostdesc〈category〉

There are some categories that have empty hooks already defined, such as

\glsxtrpostdescgeneral

These will need \renewcommand rather than \newcommand. Again there’s a shortcut com-
mand provided:

\glsdefpostdesc{〈category〉}{〈definition〉}

which just uses \csdef, so there’s no check if the command is already defined. As with the
post-name hook, the entry’s label can be accessed with \glscurrententrylabel.

Punctuation (such as a full stop or comma) can automatically be appended to the descrip-
tion in the glossary with the postpunc option. (Note that the unstarred form of \long-
newglossaryentry interferes with this option. Use the starred form \longnewglossary-
entry* instead.) The post-description punctuation (if set) is placed after the post-description
category hook (if provided). Both the post-description category hook and the post-description
punctuation are implemented by

\glspostdescription

91

5 Changing the Formatting

The glossaries-extra-stylemods package (which can be loaded with the stylemods option)
patches the predefined styles provided with the base glossaries package to ensure that the
standard styles all use \glspostdescription.

92

6 Problematic Areas
There are some places where the use of commands like \gls can cause problems. Common
issues are listed below, with workarounds provided.

6.1 Headings and Captions
The arguments of sectioning commands (such as \chapter or \section) and of captions
(\caption) are moving arguments. The text is not only displayed at the point in the docu-
ment where the command occurs, but may also be copied to the TOC or list of figures etc.
Additionally, depending on the page style, the section argument may also be reproduced in
the page header. This repeated use of the samematerial can cause complications, in particular
it can prematurely triggering the first use flag switch and cause unwanted indexing.

If the content appears in the page header and the page styles converts headers to upper
case, this can also cause a problem. However, if you make sure you have glossaries v4.50+,
glossaries-extra v1.49+ and mfirstuc v2.08+ with a recent TEX distribution, most of the case-
changing problems should now no longer occur.

Here’s an example that doesn’t cause an error (because there’s not enough text to trigger
a page break) but does cause unexpected output:

\documentclass{book}

\usepackage{glossaries-extra}

\setabbreviationstyle{long-short-sc}
\newabbreviation{html}{html}{hypertext markup language}

\begin{document}
\tableofcontents
\chapter{A chapter about \gls{html}}
Reference \gls{html}.
\end{document}

On the first LATEX run, the TOC is empty as the associated .toc file didn’t exist at the start. The
chapter title appears as “A chapter about hypertext markup language (html)”, which shows
the first use of \gls{html}. The .toc file (which was created but not read by \tableof-
contents) now contains:

93

6 Problematic Areas

\contentsline {chapter}{\numberline {1}A chapter about \gls {html}}{3}

This means that on the next LATEX run, the TOC now includes \gls{html}. Since the TOC
occurs at the start of the document, this is now the first use of html, so the full form is shown
in the TOC, but the chapter title is now “A chapter about html”, which shows the subsequent
use.

The glossaries-extra package provides some commands that are designed for use in section
or caption titles. These include:

\glsfmtshort{〈label〉}

which shows the short form of an abbreviation,

\glsfmtlong{〈label〉}

which shows the long form of an abbreviation,

\glsfmtfull{〈label〉}

which shows the full form of an abbreviation,

\glsfmtname{〈label〉}

which shows the entry’s name,

\glsfmtfirst{〈label〉}

which shows the entry’s first field, and

\glsfmttext{〈label〉}

which shows the entry’s text field.
Here’s a modified version of the above:

\documentclass{book}

\usepackage{lipsum}% provides \lipsum
\usepackage{glossaries-extra}

\setabbreviationstyle{long-short-sc}
\newabbreviation{html}{html}{hypertext markup language}

\begin{document}
\tableofcontents
\chapter{A chapter about \glsfmtlong{html}}

94

6 Problematic Areas

Reference \gls{html}.
\lipsum % dummy text
\end{document}

This now shows the long form in the TOC and the chapter title. Since \glsfmtlong doesn’t
affect the first use flag, the reference after the chapter title now shows the first use full form.
There’s no longer an error with the page header on the second page, but it’s not quite right
as the case-change hasn’t been applied, so the page heading appears as:

+4 CHAPTER 1. A CHAPTER ABOUT hypertext markup language

This shouldn’t occur anymore, but if it does, it can be corrected by setting the headuc attribute
to true:

\glssetcategoryattribute{abbreviation}{headuc}{true}

This now makes the page header too long, but remember that you can use the optional ar-
gument of sectioning commands to provide a shorter form for both the page heading and
TOC:

\chapter[A chapter about \glsfmtshort{html}]{A chapter about
\glsfmtlong{html}}

One final problem remains and it’s due to the long-short-sc abbreviation style which uses
\textsc to display the short form in small capitals. The combination of italic and small
capitals isn’t supported with the default fonts and results in a font substitution. There’s a
similar problem in the TOC which displays the chapter title in bold. There’s a warning at the
end of the transcript:

Some font shapes were not available, defaults substituted.

The conflict between bold and small capitals can be solved by switching to the T1 font en-
coding:

\usepackage[T1]{fontenc}

The conflict between italic and small capitals can be solved with the slantsc package. Another
possibility is to redefine:

\glsabbrvscfont{〈text〉}

which is used by the “sc” abbreviation styles:

95

6 Problematic Areas

\renewcommand{\glsabbrvscfont}[1]{%
\glsxtrifinmark{\glsuppercase{#1}}{\textsc{#1}}%

}

This uses:

\glsxtrifinmark{〈true〉}{〈true〉}

which expands to 〈true〉 in headings and the TOC, otherwise it expands to 〈false〉. This use
of \glsuppercase replaces the need for the headuc attribute. Both headuc and the above
redefinition of \glsabbrvscfont will cause the abbreviation to appear in upper case in the
TOC. If you don’t want this, you can defer making these modifications until after the TOC.
Alternatively, use:

\glsxtrRevertTocMarks

which makes \glsxtrifinmark expand to 〈false〉 in the TOC. For example:

\documentclass{book}

\usepackage[T1]{fontenc}
\usepackage{lipsum}
\usepackage{glossaries-extra}

\renewcommand{\glsabbrvscfont}[1]{%
\glsxtrifinmark{\glsuppercase{#1}}{\textsc#1}%

}

\setabbreviationstyle{long-short-sc}
\newabbreviation{html}{html}{hypertext markup language}

\begin{document}
\tableofcontents
\chapter[A chapter about \glsfmtshort{html}]{A chapter
about \glsfmtlong{html}}
Reference \gls{html}.
\lipsum % dummy text
\end{document}

96

6 Problematic Areas

6.2 Nesting
Nesting refers to commands like \gls and \glssymbol being used in the link text of similar
commands. This occurs if these commands are used in fields that form part of the link text
or if they occur in the final 〈insert〉 optional argument (which is included in the link text) or
in the post-link hook (which isn’t included in the link text but is still problematic).

Themost serious problem is when the post-link hook includes one of these commands that
references an entry with the same category (and therefore the same post-link hook code) as
you can end up with an infinite loop. For example:

\glsdefpostlink{symbol}{ (\glssymbol{\glslabel})}% infinite loop! 7

Instead, use \glsentrysymbol:

\glsdefpostlink{symbol}{ (\glsentrysymbol{\glslabel})} 4

Better still, use commands like \glsxtrpostlinkAddSymbolOnFirstUse (see section 5.1).

6.3 Shortcut Commands or Active Characters
Some packages, such as babel, provide shortcut commands or active characters that can be
enabled through a particular setting. It’s best not to use these in entry definitions. Instead
use the full command name. The main problem comes when the shortcuts aren’t enabled
until the start of the document environment. For example, the ngerman language setting
in babel makes the double quote character (") active and it becomes a shortcut for \" (the
umlaut accent command):

\documentclass{article}

\usepackage[ngerman]{babel}
\usepackage{glossaries-extra}

\newabbreviation{rna}{RNA}{ribonukleins"aure} 7

\begin{document}
Explicit use: ribonukleins"aure.
Reference: \gls{rna}.
\end{document}

97

6 Problematic Areas

This produces:

+Explicit use: ribonukleinsäure. Reference: ribonukleins”aure (RNA).

This is because the double quote character still had its normal meaning when the rna entry
was defined, so the " in the long form is an actual double quote character not a shortcut for
\".

Another problem occurs when you have a large file containing entry definitions that will
be shared bymultiple documents. If shortcut commands are used in the entry definitions then
every document that uses those entries must ensure that the appropriate shortcut commands
are set up before use. Also, when using bib2gls, it recognises commands like \" but not
babel shorthands, so the sorting will be adversely affected if you simply use " instead of \".

For large files that are written once (with minor subsequent edits), but reused many times
for multiple documents, it’s better to use the actual command (that simply requires the ap-
propriate package to be loaded, if applicable, without specific options to enable it).

6.4 Formatting Commands that Need Direct Access to
the Text

If you want to redefine any of the formatting commands \glstextformat, \glsxtrreg-
ularfont or \glsxtrabbreviationfont, remember that their argument isn’t the actual
text but consists of intermediary commands that determine the required text and any inner
formatting, such as the formatting applied by abbreviation styles.

With the hyperoutside setting on, the outermost level will be the command to apply
the hyperlink with \glstextformat (or the equivalent provided by textformat) inside the
hyperlink text. (If hyperlinks aren’t enabled the outer command simply does the hyperlink
text.)

With hyperoutside={false}, the outermost level will be \glstextformat (or equiva-
lent) with the command that applies the hyperlink inside the formatting argument.

The next level down sets up the abbreviation styles for the given category (if appropriate).
If the entry isn’t an abbreviation or is an abbreviation classified as regular then \glsxtr-
regularfont is applied to the command that governs how regular entries are formatted.
Otherwise \glsxtrabbreviationfont is applied to the command that governs how abbre-
viations are formatted.

Finally, there are tests applied to determine if this is the first use, if the plural is required, if
any case-changing is required, if the final optional argument has been given, or if a command
such as \glssymbol has been used. These tests determine which field to obtain the link
text from. With abbreviations, any formatting required by the abbreviation style is finally
performed.

This makes it very difficult to apply a formatting command that needs direct access to the
actual text that needs to be displayed. One possible method is to use:

\GlsXtrExpandedFmt{〈cs〉}{〈text〉}

98

6 Problematic Areas

which first (protected) fully expands 〈text〉 and then performs 〈cs〉{〈expanded text〉} where
〈cs〉 is a control sequence. For example, the soul package provides the command \ul to
underline text, but it needs to be able to parse its argument to work. If I simply try to change
the standard \underline to \ul in the earlier example from section 5:

\renewcommand{\glsxtrregularfont}[1]{\ul{#1}}

then this causes the error:

! Package soul Error: Reconstruction failed.

Instead I need:

\renewcommand{\glsxtrregularfont}[1]{\GlsXtrExpandedFmt\ul{#1}}

and also \ding now needs protection:

\newglossaryentry{fleuron}% label
{

name = {fleuron},
symbol = {\protect\ding{167}},
category = {ornament},
description = {typographic ornament}

}

6.5 Buffering Changes to the First Use Flag
The soul commands, described above, also have problems if the first use flag is switched off
within the argument. This can be demonstrated with the following:

\documentclass{article}
\usepackage{soul}
\usepackage{glossaries-extra}
\newabbreviation{ssl}{SSL}{Secure Sockets Layer}
\begin{document}
\ul{Some text about \gls{ssl}.}
\end{document}

99

6 Problematic Areas

This produces the somewhat confusing error message:

Glossary entry `{ssl}' has not been defined.

Enclosing \gls{ssl} inside the argument of \mbox changes the error message to:

! Package soul Error: Reconstruction failed.

The only way to avoid an error is to switch on the \glsunset buffering, which modifies the
internal command that normally changes the first use flag. Instead, the entry label is simply
stored in an internal list. The buffering is switched on with:

\GlsXtrStartUnsetBuffering

The unstarred form of this command may result in multiple occurrences of an entry in the
buffer’s internal list. The starred form, which only adds an entry’s label to the list if not
already present, is better if the list needs to contain unique items.

The current buffer can be iterated over using;

\GlsXtrForUnsetBufferedList{〈cs〉}

where 〈cs〉 is a command that takes a single argument (the entry’s label). Finally, entries in
the buffer can be unset and the buffer cleared with:

\GlsXtrStopUnsetBuffering

The above example will work if it’s changed to:

\documentclass{article}
\usepackage{soul}
\usepackage{glossaries-extra}
\newabbreviation{ssl}{SSL}{Secure Sockets Layer}
\begin{document}
\GlsXtrStartUnsetBuffering
\ul{Some text about \mbox{\gls{ssl}}.}
\GlsXtrStopUnsetBuffering
\end{document}

Note the need for \mbox, which can cause a problem with line-breaking. Another problem
is that if the entry is referenced multiple times within the same buffer, each use of \gls (or
its variants) will be treated as the first use.

Another workaround is to use textformatwith a command that uses \GlsXtrExpanded-
Fmt (see section 6.4). For example:

100

6 Problematic Areas

\documentclass{article}
\usepackage{soul}
\usepackage{glossaries-extra}

\newrobustcmd{\gul}[1]{%
{%
\def\glsxtrabbreviationfont##1{\GlsXtrExpandedFmt{\ul}{##1}}%
\def\glsxtrregularfont##1{\GlsXtrExpandedFmt{\ul}{##1}}%
#1%

}}

\newabbreviation{ssl}{SSL}{Secure Sockets Layer}
\begin{document}
\ul{Some text about }\gls[textformat=gul]{ssl}.
\end{document}

101

7 Incorporating bib2gls

So far, the examples haven’t actually used bib2gls, so what does it actually do? Recall the
example document in section 4.1.1, reproduced below:

\documentclass{scrartcl}
\usepackage{mhchem}
\usepackage[postpunc={dot},% full stop after description
nostyles,% don't load default style packages
stylemods={tree}% load glossary-tree.sty and patch styles

]{glossaries-extra}

\glsaddstoragekey{group}{}{\grouplabel}
\glsxtrsetgrouptitle{greek}{Greek Symbols}

\newglossaryentry{area}
{

name = {\ensuremath{A}},
description = {area},
group = {A}

}

\newglossaryentry{amethyst}
{

name = {amethyst},
description = {a purple type of quartz},
symbol = {\ce{SiO2}},
group = {A}

}

\newglossaryentry{circumference}
{

name = {\ensuremath{C}},
description = {circumference},
group = {C}

}

\newglossaryentry{duck}

102

7 Incorporating bib2gls

{
name = {duck},
description = {a waterbird with webbed feet},
group = {D}

}

\newglossaryentry{goose}
{

name = {goose},
description = {a large waterbird with a long neck, short legs,
webbed feet and a short broad bill},
group = {G}

}

\newglossaryentry{radius}
{

name = {\ensuremath{r}},
description = {radius},
group = {R}

}

\newglossaryentry{pi}
{

name = {\ensuremath{\pi}},
description = {Archimedes' constant},
group = {greek}

}

\begin{document}
\printunsrtglossary[style={indexgroup}]
\end{document}

The document preamble is quite cluttered. It could be tidied up by moving all the \new-
glossaryentry code into a separate file called, say, entries.tex. The main document
code can now be simplified to:

\documentclass{scrartcl}
\usepackage{mhchem}
\usepackage[
record,% create group field and other stuff
postpunc={dot},% full stop after description
nostyles,% don't load default style packages

103

7 Incorporating bib2gls

stylemods={tree}% load glossary-tree.sty and patch styles
]{glossaries-extra}

\glsxtrsetgrouptitle{greek}{Greek Symbols}

\input{entries}% input entries.tex

\begin{document}
\printunsrtglossary[style={indexgroup}]
\end{document}

This is much neater, but maintaining the entries.tex file is quite troublesome. Each entry
must be defined in the correct order (that matches the desired listing in \printunsrtglos-
sary) and only those entries that should appear in \printunsrtglossary should be defined
(unless you want the laborious task of filtering them out, as in section 4.1.2). The group
field needs setting for every entry, and if the location field also needs setting then the
entries.tex file will need to be modified every time new document edits cause a shift in
the page numbers.

With bib2gls, you write all the entry definitions (without the group or location fields
set) in one or more .bib files. It’s then bib2gls that creates the equivalent of the above
entries.tex file with all the entry definitions in the correct order and with the group or
location fields set, if appropriate. To avoid accidentally overwriting an important docu-
ment file, bib2gls uses the extension .glstex rather than .tex (but it’s still a file containing
LATEX code that defines the entries using \newabbreviation or \newglossaryentry1).

Instead of using \input in the document preamble, you now need to use:

\GlsXtrLoadResources[〈options〉]

The .glstex file doesn’t exist on the first LATEX run as bib2gls can only create the file once
the .aux file has been created (since the .aux file contains all the information about which
entries to select, the name of the .bib files where their definitions are stored and how to
order them). So \GlsXtrLoadResources tests if the .glstex file exists before trying to
input it. The record option is necessary because it:

• enables the undefaction={warn} option (the entries aren’t defined on the first LATEX
run);

• creates the group and location fields;

• disables the makeindex/xindy indexing and instead writes the indexing information
as a record in the .aux file;

• loads glossaries-extra-bib2gls (which provides extra commands specific to bib2gls).
1Actually it uses \longnewglossaryentry* to allow for multi-paragraph descriptions, and \longnew-
glossaryentry* and \newabbreviation are used indirectly through helper commands.

104

7 Incorporating bib2gls

Each time you use a command like \gls or \glssymbol (but not like \glsentrysymbol) in
the document, a record is added to the .aux file containing the entry’s label, the location (by
default the page number) where the entry was used, and extra information including how
to format the location. The default behaviour of bib2gls is to only select those entries that
have records in the .aux file and any dependent entries.

The example above doesn’t include any references (commands like \gls), so bib2gls
won’t select any entries and the .glstex file won’t contain any definitions. This means that
the glossary will be empty. If you want all entries from the specified .bib files selected then
you need to change the selection setting:

\GlsXtrLoadResources[selection={all}]

This doesn’t explicitly name any .bib file. The default is \jobname.bib but you can change
this with the src option. For example, if the entries are defined in entries.bib (regular
terms), symbols.bib (symbols) and abbrvs.bib (abbreviations) then you need to use:

\GlsXtrLoadResources[
src={entries,symbols,abbrvs},% bib files
selection={all}% select all entries

]

You can have multiple instances of \GlsXtrLoadResources, but remember that each in-
stance inputs a file containing definitions, and the glossary produced with \printunsrt-
glossary follows the same order. This means that you can have blocks within the same
glossary that use different sorting methods. For example:

\GlsXtrLoadResources[
src={symbols},% bib file
sort={letter-case},% sort according to character code
category={symbol},% set this as the category field
group={glssymbols}% set this as the group field

]
\GlsXtrLoadResources[

src={entries,abbrvs},% bib files
sort={en-GB}

]

105

7 Incorporating bib2gls

The first instance fetches the data from symbols.bib, sorts the entries according to the
character code, sets the category field to symbol, and sets the group field to glssymbols
for each definition written to the .glstex file. The glssymbols group label is recognised by
the glossaries package, and the title is obtained from the language-sensitive \glssymbols-
groupname command (“Symbols” in English). So the glossary will start with a symbols group
that contains all the entries selected from symbols.bib. The rest of the glossary is obtained
from the data selected from the entries.bib and abbrvs.bib file sorted according to the
en-GB locale. These entries will have the group field set by the locale’s sort rule.

The document build now needs to include a call to bib2gls. For example, if the main
document file is called myDoc.tex then the build process is:

pdflatex myDoc
bib2gls --group myDoc
pdflatex myDoc

Omit the --group switch if you want the group field left empty, and replace pdflatexwith
xelatex etc, as appropriate.

7.1 The .bib Format
The .bib files define entry data in the form:

@〈entry type〉{〈id〉,
〈field1〉 = {〈value〉},
…
〈fieldn〉 = {〈value〉}

}

where 〈id〉 is the entry’s label. The most basic entry type is @entry. For example:

@entry{goose,
name = {goose},
plural = {geese},
description = {a large waterbird with a long neck, short legs,
webbed feet and a short broad bill}

}

This is analogous to:

106

7 Incorporating bib2gls

\newglossaryentry{goose}
{

name = {goose},
plural = {geese},
description = {a large waterbird with a long neck, short legs,
webbed feet and a short broad bill}

}

You can use any of the defined keys, such as symbol:

@entry{amethyst,
name = {amethyst},
description = {a purple type of quartz},
symbol = {\ce{SiO2}}

}

but avoid using internal fields. If you define custom keys in your document, make sure you
define them all before the first instance of \GlsXtrLoadResources as all the recognised
keys are written to the .aux file for bib2gls to detect. Any unrecognised fields in the .bib
file are ignored.

The @entry type is intended mainly for words or phrases, optionally with an associ-
ated symbol. If the name field contains symbols or other non-alphabetic content (such
as punctuation that shouldn’t be ignored by the sort comparator) see section 7.1.3.

7.1.1 Defining Terms with Optional Descriptions
The @entry type requires the description field and either the name or parent field. There’s
a similar command that doesn’t have any required fields: @index. If the name isn’t supplied,
it’s assumed to be the same as the 〈id〉. If the description isn’t supplied it’s assumed to be
empty. This type behaves like @entry, but it sets the default category to index. So:

@index{duck}

is analogous to:

107

7 Incorporating bib2gls

\newglossaryentry{duck}
{
name={duck},
description={},
category={index}

}

and

@index{goose,
plural = {geese}

}

is analogous to:

\newglossaryentry{goose}
{
name={goose},
plural={geese},
description={},
category={index}

}

If the name contains content that can’t be used in a label (see section 1.1), then you need the
name field. For example:

@index{chateau,
name = {ch\^ateau},
plural = {ch\^ateaux}

}

is analogous to:

\newglossaryentry{chateau}
{
name={ch\^ateau},

108

7 Incorporating bib2gls

plural={ch\^ateaux},
description={},
category={index}

}

There’s a similar entry type @indexplural that sets the name field (if not provided) to the
plural form, which is obtained from the plural field, if set. Otherwise it’s obtained by ap-
pending the plural suffix (“s”) to the text field. If the text field isn’t set it’s obtained from
the label. The other difference is that it sets the default category field to indexplural. For
example,

@indexplural{duck}

is analogous to:

\newglossaryentry{duck}
{
name={ducks},
text={duck},
description={},
category={indexplural}

}

and

@indexplural{goose,
plural = {geese}

}

is analogous to:

\newglossaryentry{goose}
{
name={geese},
text={goose},
plural={geese},
description={},

109

7 Incorporating bib2gls

category={indexplural}
}

The name-case-change={firstuc} resource option converts the first letter of the name
field to upper case, so with

\GlsXtrLoadResources[name-case-change={firstuc}]

then

@index{duck}

is now analogous to:

\newglossaryentry{duck}
{
name={Duck},
text={duck},
description={},
category={index}

}

and

@indexplural{goose,
plural = {geese}

}

is now analogous to:

\newglossaryentry{goose}
{
name={Geese},
text={goose},
plural={geese},

110

7 Incorporating bib2gls

description={},
category={indexplural}

}

and

@entry{amethyst,
name = {amethyst},
description = {a purple type of quartz},
symbol = {\ce{SiO2}}

}

is now analogous to:

\newglossaryentry{amethyst}
{
name={Amethyst},
text={amethyst},
description={a purple type of quartz},
symbol = {\ce{SiO2}}

}

7.1.2 Defining Abbreviations
Abbreviations can be defined with @abbreviation. For example:

@abbreviation{html,
short = {HTML},
long = {hypertext markup language}

}

which is analogous to:

\newabbreviation{html}{HTML}{hypertext markup language}

(which sets the category to abbreviation). Alternatively, you can use @acronym. For
example:

111

7 Incorporating bib2gls

@acronym{html,
short = {HTML},
long = {hypertext markup language}

}

which is analogous to:

\newacronym{html}{HTML}{hypertext markup language}

(which sets the category to acronym). If you decide to use one of the abbreviation styles
that formats the short field with \textsc (for example, long-short-sc) then the short value
needs to be in lower case. (Remember that \textsc only changes lower case characters to
small capitals. For example, \textsc{html} is displayed as html but \textsc{HTML} is
displayed as HTML.)This can easily be accomplishedwith the short-case-change resource
option. For example:

\GlsXtrLoadResources[short-case-change={lc}]

Recall from section 2 that the abbreviation style must be set before the abbreviations are
defined. This means that if you want to use \setabbreviationstyle it must come before
\GlsXtrLoadResources.

The default sort value used by bib2gls is usually taken from the name field. This typically
isn’t supplied with abbreviations. The actual value depends on the abbreviation style, which
bib2gls doesn’t know about, so bib2gls uses the short field instead for abbreviations. If
you want to change this, for example, if you are using the long-noshort-desc style, then use
the abbreviation-sort-fallback option. For example:

\GlsXtrLoadResources[abbreviation-sort-fallback={long}]

7.1.3 Defining Symbols
If the name field contains the symbol (rather than having a textual name and the symbol in
symbol) then the notation can be defined with @symbol. For example:

112

7 Incorporating bib2gls

@symbol{pi,
name = {\ensuremath{\pi}},
description = {Archimedes' constant}

}

This behaves much like @entry but there are two significant differences: the category de-
faults to symbol and the default value used when sorting is the label not the value of the
name field. So in this case, the sort value defaults to pi. Therefore the above is analogous to:

\newglossaryentry{pi}
{

name = {\ensuremath{\pi}},
description = {Archimedes' constant},
category = {symbol},
sort = {pi}

}

This is essentially like \glsxtrnewsymbol but it doesn’t set the type field.
You can change the default value used for sorting symbolswith the symbol-sort-fallback

option. For example, to sort symbols according to the name field:

\GlsXtrLoadResources[
symbol-sort-fallback={name},
break-at={none}

]

This means that the sort value for the above example entry is now \ensuremath{\pi},
which bib2gls’s TEX interpreter converts to the Unicode symbol 0x1D70B (mathematical
italic small pi, π). The interpreter used by bib2gls recognises all the standard mathematical
Greek commands, and also the missing Greek commands \omicron, \Alpha etc (which are
provided by glossaries-extra-bib2gls). Using these commands rather than the Latin equiva-
lent ensures correct sorting (\omicron comes between \xi and \pi, but o comes between n
and p). See section 2 (TEX Parser Library) in the bib2gls user manual for further details.

The default sort method is designed for words and phrases, so non-letters, such as
punctuation characters, are discarded. If your sort values include symbols that need
to be taken into account by the comparator, use break-at={none} to prevent them
from being discarded.

Alternatively, you may prefer to sort symbols according to the description:

113

7 Incorporating bib2gls

\GlsXtrLoadResources[symbol-sort-fallback={description}]

There’s a similar entry type @number, which behaves much like @symbol except that it
sets the default category to number. It also follows the symbol-sort-fallback setting.
For example, the pi entry could be defined as:

@symbol{pi,
name = {\ensuremath{\pi}},
description = {Archimedes' constant},
value = {3.141592654}

}

I’ve used a custom field here (value) that bib2gls will ignore by default. I can instruct
bib2gls to convert this to a known field with field-aliases. For example:

\GlsXtrLoadResources[field-aliases={value=user1}]

This makes bib2gls treat;

value = {3.141592654}

as though it had been:

user1 = {3.141592654}

This can now be used in one of the hooks (described in section 5). For example, the post-
description hook:

\glsdefpostdesc{number}{% check if user1 field given:
\glsxtrifhasfield{useri}{\glscurrententrylabel}
{ (\glscurrentfieldvalue)}
{}% not provided

}

114

7 Incorporating bib2gls

It can also be used if you want to order the entries numerically. For example:

\GlsXtrLoadResources[
field-aliases={value=user1},
sort={double},% use double-precision numeric comparisons
sort-field={user1}

]

This uses sort-field to set the field used for sorting. This affects all entry types.
There are more examples in section 8 of the main bib2gls user manual.

7.2 Indexing
By default, bib2gls selects entries from the specified .bib files that have been directly
indexed in the document or that are dependencies of selected entries. Indexing is per-
formed through commands like \gls and \glssymbol (but not by commands like \gls-
entrysymbol). The record package option ensures that the indexing is done that matches
the requirements of bib2gls (rather than the default makeindex syntax).

Each instance of \gls, \glssymbol etc writes a record to the .aux file, that includes the
entry’s label, the location in the document where the record was triggered and the associated
format to encapsulate the location. For example, if \gls{duck} appears on page 3, the record
label is duck, the location is 3 and the format is the default \glsnumberformat.

The format can be changed with the format key. For example:

\gls[format=hyperbf]{duck}

This sets the format to hyperbf, which makes a bold hyperlink, if hyperref has been loaded,
otherwise it just uses \textbf. The value of the format option should be the name (without
a leading backslash) of a text-block command that takes a single argument (the location to
be formatted). The glossaries package provides some commands like \hyperbf that may be
used to ensure a hyperlink (if supported). The basic command is:

\glshypernumber{〈text〉}

which provides the hyperlink (if enabled) otherwise it just does its argument. So, if you want,
for example, an underlined hyperlink:

\newcommand{\hyperul}[1]{\underline{\glshypernumber{#1}}}

115

7 Incorporating bib2gls

Now you can use format={hyperul}.
There’s a special command \glsignore that ignores its argument. With makeindex and

xindy, this can lead to spurious commas in the location list, because the location is still in-
cluded in the list, even though the location itself isn’t displayed (since it’s discarded by \gls-
ignore). However, bib2gls recognises format={glsignore} as a special ignored record.
This indicates that bib2gls should select that particular entry but not include that record in
the location list.

If a selected entry depends on another entry that hasn’t been indexed, for example, a
parent entry, then the dependent entry will automatically be selected as well, by default.
The dependent entry won’t have a location list if it hasn’t been indexed anywhere. If you
don’t want the location lists to appear in a particular glossary, use nonumberlist in the
optional argument of \printunsrtglossary.

If you want to index an entry without actually displaying any text, you can use:

\glsadd[〈options〉]{〈label〉}

where 〈label〉 is the entry’s label. The format key is again available in 〈options〉. For example:

\renewcommand{\glsextrapostnamehook}[1]{% \glsadd[format=hyperbf]
{#1}%
}

This automatically indexes the given entry in the post-name hook. This is redundant if you
only have a single glossary, but may be useful if the entry is repeated in a later list. Alterna-
tively, if you are using a dual entry type (see section 4.5 in the main bib2gls user manual),
the hook could check for the existence of the dual label (identified by the dual-field re-
source option) and use that instead. For example:

\renewcommand{\glsextrapostnamehook}[1]{% \glsxtrifhasfield{\GlsXtr-
DualField}{#1}

{%
\glsadd[format=hyperbf]{\glscurrentfieldvalue}%

}%
{}% no dual

}

If you want to index multiple entries at the same time with the same set of options, you
can use:
\glsaddeach[〈options〉]{〈label list〉}

This just iterates through the comma-separated list of labels and performs \glsadd[〈options〉]
{〈label〉} for each label in 〈label list〉. For example, to ensure that bib2gls selects the entries
with the labels duck, goose and parrot, even if they aren’t referenced in the document:

116

7 Incorporating bib2gls

\glsaddeach[format={glsignore}]{duck,goose,parrot}

To select all entries, regardless of whether or not they have been indexed, use the selection
={all} resource option. There are other selection criteria. See the main bib2gls user man-
ual for further details.

7.3 Aliasing Fields and Entry Types
In section 2.5, the user1 key was used to store a translation:

\newabbreviation[user1={ribonucleic acid}]
{rna}{RNA}{ribonukleins\"aure}

You can also use the generic user fields in .bib files, but a more flexible approach is to use a
semantic naming scheme in the .bib file and use resource aliasing to convert these custom
field names into recognised keys. For example, the above abbreviation could be written in
the .bib file as:

@abbreviation{rna,
short = {RNA},
long = {ribonukleins\"aure},
translation = {ribonucleic acid}

}

The custom translation field will be ignored by bib2gls, unless it’s first defined in the
document or aliased in the resource options:

\GlsXtrLoadResources[
src={abbrvs},% entries defined in abbrvs.bib
% treat translation as though it's user1:
field-aliases={translation=user1}

]

This makes bib2gls behave as though the entry was defined in the bib2gls file as:

117

7 Incorporating bib2gls

@abbreviation{rna,
short = {RNA},
long = {ribonukleins\"aure},
user1 = {ribonucleic acid}

}

The definition is now the same as the above example from section 2.5. The .bib entry type
can also be aliased. Here’s a modified version:

@foreignabbreviation{rna,
short = {RNA},
nativelong = {ribonukleins\"aure},
foreignlong = {ribonucleic acid}

}

and here are the aliases:

\GlsXtrLoadResources[
src={abbrvs},% entries defined in abbrvs.bib
% treat @foreignabbreviation as though it's @abbreviation:
entry-type-aliases={foreignabbreviation=abbreviation},
field-aliases={nativelong=long,foreignlong=user1}

]

This has the same result, but suppose another document is in English rather than German:

\GlsXtrLoadResources[
src={abbrvs},% entries defined in abbrvs.bib
entry-type-aliases={foreignabbreviation=abbreviation},
field-aliases={foreignlong=long}

]

Now the long field is set to the English version, and the German long form is ignored.
Here’s another example where the native language is now English:

118

7 Incorporating bib2gls

@abbreviation{iso,
short = {ISO},
long = {International Organization for Standardization}

}

@foreignabbreviation{abnt,
short = {ABNT},
foreignlong = {Associa\c{c}\~ao Brasileria de Normas T\'ecnicas},
nativelong = {Brazilian National Standards Organization},
language = {pt-BR}

}

@foreignabbreviation{din,
short = {DIN},
foreignlong = {Deutsches Institut f\"ur Normung e.V.},
nativelong = {German Institute for Standardization},
language = {de-DE-1996}

}

The aliasing is again identified in the resource options:

\GlsXtrLoadResources[
src={abbrvs},% entries defined in abbrvs.bib
entry-type-aliases={foreignabbreviation=abbreviation},
field-aliases={nativelong=long,foreignlong=user1,language=user2},
category={same as original entry}

]

This has an extra setting that assigns the category field to the original entry type (before any
aliasing occurred) without the leading @ (and converted to lower case). This makes bib2gls
act as though the abbreviations had actually been defined as:

@abbreviation{iso,
short = {ISO},
long = {International Organization for Standardization},
category = {abbreviation}

}

@abbreviation{abnt,

119

7 Incorporating bib2gls

short = {ABNT},
user1 = {Associa\c{c}\~ao Brasileria de Normas T\'ecnicas},
long = {Brazilian National Standards Organization},
user2 = {pt-BR},
category = {foreignabbreviation}

}

@abbreviation{din,
short = {DIN},
user1 = {Deutsches Institut f\"ur Normung e.V.},
long = {German Institute for Standardization},
user2 = {de-1996},
category = {foreignabbreviation}

}

which is now the same as an earlier example in section 2.5. If I don’t need a particular
custom field (such as language in the above), I can simply omit it from the aliasing, but it’s
available for other documents if the need arises. Here’s the complete document modified
from section 2.5:

\documentclass{article}

\usepackage[main=british,brazilian,ngerman]{babel}
\usepackage[record]{glossaries-extra}

\setabbreviationstyle[foreignabbreviation]{long-short-user}

\GlsXtrLoadResources[
src={abbrvs},% entries defined in abbrvs.bib
entry-type-aliases={foreignabbreviation=abbreviation},
field-aliases={nativelong=long,foreignlong=user1,language=user2},
category={same as original entry}

]

\renewcommand*{\glsxtruserparen}[2]{%
\glsxtrfullsep{#2}%
\glsxtrparen
{#1%
\ifglshasfield{\glsxtruserfield}{#2}%
{, \emph{\GlsXtrForeignText{#2}{\glscurrentfieldvalue}}}%
{}%

}%

120

7 Incorporating bib2gls

}

\begin{document}
\gls{abnt}, \gls{din}.
\end{document}

Here’s another example where field and entry aliasing can make the .bib data more flex-
ible:

@mineral{amethyst,
mineralname = {amethyst},
mineraldescription = {a purple type of quartz},
mineralformula = {\ce{SiO2}}

}

For one document, I might use:

\GlsXtrLoadResources[
src={entries},% data in entries.bib
entry-type-aliases={mineral=symbol},
field-aliases={

mineralformula=name,
mineralname=description

},
category={same as original entry}

]

This makes the amethyst entry behave as though it was defined as:

@symbol{amethyst,
description = {amethyst},
name = {\ce{SiO2}},
category = {mineral}

}

Another document might have:

121

7 Incorporating bib2gls

\GlsXtrLoadResources[
src={entries},% data in entries.bib
entry-type-aliases={mineral=entry},
field-aliases={

mineralformula=symbol,
mineralname=name
mineraldescription=description

},
category={same as original entry}

]

which now makes the amethyst entry behave as though it was defined as:

@entry{amethyst,
name = {amethyst},
description = {a purple type of quartz},
symbol = {\ce{SiO2}},
category = {mineral}

}

See section 8 in the main bib2gls user manual for more examples of aliasing fields and
entry types.

122

Bibliography
[1] Heiko Oberdiek. The accsupp package, 2018. https://ctan.org/pkg/accsupp.

[2] Nicola Talbot. The glossaries-extra package, 2018. https://ctan.org/pkg/
glossaries-extra.

[3] Nicola Talbot. The glossaries package, 2018. https://ctan.org/pkg/glossaries.

[4] Nicola Talbot. The tracklang package, 2018. https://ctan.org/pkg/tracklang.

[5] Nicola Talbot. Dickimaw Books gallery, 2019. https://www.dickimaw-books.com/
gallery/.

[6] Nicola Talbot. Gallery (all styles provided by glossaries), 2019. https://www.
dickimaw-books.com/gallery/glossaries-styles/.

123

https://ctan.org/pkg/accsupp
https://ctan.org/pkg/glossaries-extra
https://ctan.org/pkg/glossaries-extra
https://ctan.org/pkg/glossaries
https://ctan.org/pkg/tracklang
https://www.dickimaw-books.com/gallery/
https://www.dickimaw-books.com/gallery/
https://www.dickimaw-books.com/gallery/glossaries-styles/
https://www.dickimaw-books.com/gallery/glossaries-styles/

Command Summary
Symbols

\␣
Produces an inter-word space.
Kernel command.

\^{〈character〉}
Puts a circumflex accent over 〈character〉.
Kernel command.

\~{〈character〉}
Puts tilde accent over 〈character〉.
Kernel command.

\'{〈character〉}
Puts an acute accent over 〈character〉.
Kernel command.

\"{〈character〉}
Puts an umlaut accent over 〈character〉.
Kernel command.

\\[〈len〉]
Starts a new row in a tabular or array context with an extra vertical space of length 〈len〉
above it (starred form prohibits a page break).
Kernel command.

A

\acronymtype
Expands to the default acronym glossary type when using \newacronym.
Glossaries.

\Alpha
Greek letter alpha A.
Glossaries-extra-bib2gls.

C

\c{〈character〉}
Puts a cedilla accent over 〈character〉.
Kernel command.

124

Command Summary

\caption[〈list title〉]{〈title〉}
Caption title.
Kernel command.

\ce{〈formula〉}
Displays the chemical formula.
Mhchem.

\chapter[〈TOC title〉]{〈title〉}
Chapter heading.
Book or report classes.

\csdef{〈cs-name〉}〈syntax〉{〈definition〉}
Defines the control sequence whose name is given by 〈cs-name〉, without checking if
the command already exists.
Etoolbox.

\currentglossary
Defined within the glossary to the current glossary type, this has no meaning outside
of the glossary list.
Glossaries.

D

\ding{〈number〉}
Displays the symbol associated with the given number.
Pifont.

E

\eglsupdatewidest[〈level〉]{〈text〉}
As \glsupdatewidest but expands 〈text〉.
Glossaries-extra-stylemods v1.23+.

\emph{〈text〉}
Emphasizes the given text (italic or slanted if the surrounding font is upright, otherwise
upright font is used).
Kernel command.

\ensuremath{〈maths〉}
Ensures the argument is in math mode. As a general rule this should only be used if
you know for certain that the argument just contains mathematical markup and doesn’t
cause a change in mode.
Kernel command.

F

\footnote[〈number〉]{〈text〉}
Displays the given text as a footnote.
Kernel command.

125

Command Summary

\foreignlanguage{〈language name〉}{〈text〉}
Typesets 〈text〉 according to the rules of the given language.
Babel.

G

\GetTrackedDialectFromLanguageTag{〈language tag〉}{〈cs〉}
Gets the tracklang dialect label from the given language tag and stores it in the command
〈cs〉. The result will be empty if there’s no tracked dialect associated with the given
language tag.
Tracklang v1.3+.

\GetTrackedDialectToMapping{〈tracklang label〉}
The language hook label corresponding to the given tracklang label.
Tracklang v1.3+.

\glolinkprefix
Target name prefix used in entry hyperlinks.
Glossaries.

\Glossentrydesc{〈label〉}
Like \glossentrydesc but converts the first letter to upper case.
Glossaries.

\glossentrydesc{〈label〉}
Used by glossary styles to display the description.
Glossaries.

\glossentryname{〈label〉}
Used by glossary styles to display the name.
Glossaries.

\glossentrysymbol{〈label〉}
Used by glossary styles to display the symbol.
Glossaries.

\GLS[〈options〉]{〈label〉}[〈insert〉]
As \gls but converts the link text to upper case.
Glossaries.

\Gls[〈options〉]{〈label〉}[〈insert〉]
As \gls but converts the first letter of the link text to upper case.
Glossaries.

\gls[〈options〉]{〈label〉}[〈insert〉]
On first use displays the first use text (the value of the first field for general entries)
and on subsequent use displays the subsequent use text (the value of the text field for
general entries) where the text is optionally hyperlinked to the relevant place in the
glossary. The options are the same as for \glslink.
Glossaries.

126

Command Summary

\glsabbrvscfont{〈text〉}
Used with “sc” abbreviation styles to format the short form using \textsc.
Glossaries-extra v1.17+.

\glsaccsupp{〈accessible text〉}{〈text〉}
Used by the accessibility support to interface with the accsupp package (use \xglsacc-
supp if 〈text〉 needs to be fully expanded first).
Glossaries-accsupp.

\glsadd[〈options〉]{〈label〉}
Indexes the entry without displaying any text.
Glossaries.

\glsaddeach[〈options〉]{〈label list〉}
Indexes each entry identified in the comma-separated list of labels without displaying
any text.
Glossaries-extra v1.31+.

\glsaddkey{〈key〉}{〈default value〉}{〈no link cs〉}{〈no link ucfirst cs〉}{〈link cs〉}{〈link uc-
first cs〉}{〈link allcaps cs〉}

Adds a new key for use in \newglossaryentry and associated commands to access it.
Glossaries.

\glsaddstoragekey{〈key〉}{〈default value〉}{〈no link cs〉}
Adds a new key for internal use that can be set in \newglossaryentry.
Glossaries.

\glsbibdata[〈options〉]{〈bib-list〉}
A shortcut command that uses \GlsXtrLoadResources with src={{〈bib-list〉}}.
Glossaries-extra v1.55+.

\glscategory{〈label〉}
Expands to the value of the category field for the entry identified by 〈label〉 or nothing
if the entry hasn’t been defined.
Glossaries-extra.

\glscurrententrylabel
Only for use in the glossary, such as in the style or in the post-name or post-description
hooks, this expands to the label of the current entry.
Glossaries.

\glscurrentfieldvalue
Only for use in the 〈true〉 part of \ifglshasfield or \glsxtrifhasfield, this ex-
pands to the field value.
Glossaries.

\glsdefaulttype
The default glossary type.
Glossaries.

127

Command Summary

\glsdefpostdesc{〈category〉}{〈definition〉}
Define the post-description hook \glsxtrpostdesc〈category〉 for the given category.
Glossaries-extra v1.31+.

\glsdefpostlink{〈category〉}{〈definition〉}
Define the post-link hook \glsxtrpostlink〈category〉 for the given category.
Glossaries-extra v1.31+.

\glsdefpostname{〈category〉}{〈definition〉}
Define the post-name hook \glsxtrpostname〈category〉 for the given category.
Glossaries-extra v1.31+.

\glsdesc[〈options〉]{〈label〉}[〈insert〉]
Links to the entry’s definition in the glossary with the link text obtained from the
description field without altering the first use flag.
Glossaries.

\glsdisp[〈options〉]{〈label〉}{〈text〉}
Links to the entry’s definition in the glossary with the given link text and marks the
entry as having been used. The options are the same as for \glslink.
Glossaries.

\GlsEntryCounterLabelPrefix
Used as a prefix in the \label command automatically implemented by the entrycounter
and subentrycounter options.
Glossaries v4.38+.

\glsentrydesc{〈label〉}
Expands to the value of the description field.
Glossaries.

\Glsentryname{〈label〉}
Displays the value of the name field with the first character converted to upper case.
Glossaries.

\glsentryname{〈label〉}
Expands to the value of the name field.
Glossaries.

\glsentryplural{〈label〉}
Expands to the value of the plural field.
Glossaries.

\glsentrysymbol{〈label〉}
Expands to the value of the symbol field.
Glossaries.

\glsentrytext{〈label〉}
Expands to the value of the text field.
Glossaries.

128

Command Summary

\glsentryuseri{〈label〉}
Expands to the value of the user1 field.
Glossaries.

\glsentryuserii{〈label〉}
Expands to the value of the user2 field.
Glossaries.

\glsentryuseriii{〈label〉}
Expands to the value of the user3 field.
Glossaries.

\glsentryuseriv{〈label〉}
Expands to the value of the user4 field.
Glossaries.

\glsentryuserv{〈label〉}
Expands to the value of the user5 field.
Glossaries.

\glsentryuservi{〈label〉}
Expands to the value of the user6 field.
Glossaries.

\glsextrapostnamehook{〈label〉}
Additional category-independent code for the post-name hook.
Glossaries-extra v1.25+.

\glsfmtfirst{〈label〉}
Provided for use in section or caption titles, this displays the given entry’s first field.
Glossaries-extra.

\glsfmtfull{〈label〉}
Provided for use in section or caption titles, this displays the full form of the given
abbreviation (using the inline style that matches \glsxtrfull).
Glossaries-extra.

\glsfmtlong{〈label〉}
Provided for use in section or caption titles, this displays the long form of the given
abbreviation.
Glossaries-extra.

\glsfmtname{〈label〉}
Provided for use in section or caption titles, this displays the given entry’s name.
Glossaries-extra.

\glsfmtshort{〈label〉}
Provided for use in section or caption titles, this displays the short form of the given
abbreviation.
Glossaries-extra.

129

Command Summary

\glsfmttext{〈label〉}
Provided for use in section or caption titles, this displays the given entry’s text field.
Glossaries-extra.

\glshypernumber{〈text〉}
A location format that has a hyperlink (if enabled).
Glossaries.

\glsifcategory{〈label〉}{〈category〉}{〈true〉}{〈false〉}
Does 〈true〉 if the category field for the entry given by 〈label〉 is 〈category〉.
Glossaries-extra.

\glsignore{〈text〉}
Does nothing but when used as a location format bib2gls recognises it as an ignored
record.
Glossaries.

\glslabel
Only for use in the post-link hooks, this expands to the label of the entry that was last
referenced.
Glossaries.

\glslink[〈options〉]{〈label〉}{〈text〉}
Links to the entry’s definition in the glossary with the given link text without altering
the first use flag.
Glossaries.

\glsnamefont{〈text〉}
Used by \glossentryname to format the name.
Glossaries.

\glsnoexpandfields
Switches off field expansion.
Glossaries.

\glsnumberformat{〈text〉}
Default location format, uses \glshypernumber if hyperlinks enabled otherwise just
does 〈text〉.
Glossaries.

\GLSpl[〈options〉]{〈label〉}[〈insert〉]
As \GLS but shows the plural form.
Glossaries.

\Glspl[〈options〉]{〈label〉}[〈insert〉]
As \Gls but shows the plural form.
Glossaries.

\glspl[〈options〉]{〈label〉}[〈insert〉]
As \gls but shows the plural form.
Glossaries.

130

Command Summary

\glspostdescription
A hook added after the description in some glossary styles (all if the glossaries-extra
-stylemods package is loaded to patch them). This hook is used to reflect the nopostdot
package option for glossaries and the postpunc option for glossaries-extra.
Glossaries and modified by glossaries-extra.

\glsreset{〈label〉}
Resets the first use flag so that the entry is marked as not used.
Glossaries.

\glsresetentrycounter
Resets the glossaryentry counter if the entrycounter setting is on.
Glossaries.

\glssetcategoryattribute{〈category〉}{〈attribute〉}{〈value〉}
Sets the value of the attribute for the given category.
Glossaries-extra.

\glssetwidest[〈level〉]{〈text〉}
Used with the alttree style to set the widest entry name for the given level.
Glossary-tree.

\glsshowtarget{〈label〉}
Used to show the target name when the debug={showtargets} option is on.
Glossaries v4.32+.

\glssymbol[〈options〉]{〈label〉}[〈insert〉]
Links to the entry’s definition in the glossary with the link text obtained from the
symbol field without altering the first use flag.
Glossaries.

\glssymbolsgroupname
Language-sensitive name used for the symbols group and also used for the title of the
glossary created with the symbols package option.
Glossaries.

\glstextformat{〈text〉}
Used by commands like \gls to format the link text.
Glossaries.

\glstreedefaultnamefmt{〈text〉}
Used as the default format for \glstreenamefmt, \glstreegroupheaderfmt and \gls-
treenavigationfmt.
Glossaries-extra-stylemods v1.31+.

\glstreegroupheaderfmt{〈text〉}
Used with the tree styles to format the group headings.
Glossary-tree v4.22+ and glossaries-extra-stylemods v1.31+.

131

Command Summary

\glstreenamefmt{〈text〉}
Used with the tree styles to format the entry’s name.
Glossary-tree v4.08+ and glossaries-extra-stylemods v1.31+.

\glstreenavigationfmt{〈text〉}
Used with the tree styles to format the navigation elements.
Glossary-tree v4.22+ and glossaries-extra-stylemods v1.31+.

\glstreenonamedesc{〈label〉}
Displays the pre-description separator, the description and the post-description hook
for the treenoname styles.
Glossaries-extra-stylemods v1.31+.

\glstreepredesc{〈label〉}
Separator used before the description for the tree styles.
Glossary-tree v4.26+.

\glsunset{〈label〉}
Unsets the first use flag so that the entry is marked as having been used.
Glossaries.

\glsupdatewidest[〈level〉]{〈text〉}
As \glssetwidest but only sets if 〈text〉 is wider than the current value.
Glossaries-extra-stylemods v1.23+.

\glsuppercase{〈text〉}
Converts 〈text〉 to upper case.
Glossaries v4.50+.

\glsuseri[〈options〉]{〈label〉}[〈insert〉]
Links to the entry’s definition in the glossary with the link text obtained from the user1
field without altering the first use flag.
Glossaries.

\glsuserii[〈options〉]{〈label〉}[〈insert〉]
Links to the entry’s definition in the glossary with the link text obtained from the user2
field without altering the first use flag.
Glossaries.

\glsuseriii[〈options〉]{〈label〉}[〈insert〉]
Links to the entry’s definition in the glossary with the link text obtained from the user3
field without altering the first use flag.
Glossaries.

\glsuseriv[〈options〉]{〈label〉}[〈insert〉]
Links to the entry’s definition in the glossary with the link text obtained from the user4
field without altering the first use flag.
Glossaries.

132

Command Summary

\glsuserv[〈options〉]{〈label〉}[〈insert〉]
Links to the entry’s definition in the glossary with the link text obtained from the user5
field without altering the first use flag.
Glossaries.

\glsuservi[〈options〉]{〈label〉}[〈insert〉]
Links to the entry’s definition in the glossary with the link text obtained from the user6
field without altering the first use flag.
Glossaries.

\glsxtrabbreviationfont{〈text〉}
Used by commands like \gls to format the link text for (non-regular) abbreviations.
Glossaries-extra v1.30+.

\glsxtrabbrvtype
Expands to the default glossary type when using \newabbreviation.
Glossaries-extra.

\GlsXtrDualField
The field used to store the dual label. This defaults to dual but will need to be redefined
if a different value is given by dual-field.
Glossaries-extra-bib2gls v1.30+.

\GlsXtrEnableInitialTagging{〈category list〉}{〈cs〉}
Defines the control sequence 〈cs〉 to be used with abbreviation tagging with the given
categories.
Glossaries-extra.

\glsxtrentryfmt{〈label〉}{〈text〉}
Alternative to \glsxtrfmt for use in section headings.
Glossaries-extra v1.12+.

\GlsXtrExpandedFmt{〈cs〉}{〈text〉}
Fully expands 〈text〉 and then does 〈cs〉{〈expanded text〉}.
Glossaries-extra v1.30+.

\glsxtrfmt[〈options〉]{〈label〉}{〈text〉}
Formats the given text according to the formatting command identified by the value of
the field obtained from \GlsXtrFmtField.
Glossaries-extra v1.12+.

\glsxtrfmt*[〈options〉]{〈label〉}{〈text〉}[〈insert〉]
Like \glsxtrfmt but inserts extra material into the link text but outside of the format-
ting command.
Glossaries-extra v1.23+.

\glsxtrfmtdisplay{〈cs-name〉}{〈text〉}{〈insert〉}
Used by \glsxtrfmt to format the given 〈text〉 where 〈cs-name〉 is obtained from the
field identified by \GlsXtrFmtField and 〈insert〉 is empty for the unstarred \glsxtr-
fmt and the final optional argument of the starred version \glsxtrfmt*.
Glossaries-extra.

133

Command Summary

\GlsXtrFmtField
Expands to the internal label of the field used to store the control sequence name for
use with \glsxtrfmt.
Glossaries-extra v1.12+.

\GlsXtrForeignText{〈label〉}{〈text〉}
Encapsulates 〈text〉 in \foreignlanguage where the language label is obtained from
the locale tag given in the field identified by \GlsXtrForeignTextField.
Glossaries-extra v1.32+.

\GlsXtrForeignTextField
Used by \GlsXtrForeignText to identify the field containing the locale tag.
Glossaries-extra v1.32+.

\GlsXtrForUnsetBufferedList{〈cs〉}
Iterates over all the entry whose labels are stored in the buffer that was started with
\GlsXtrStartUnsetBuffering and implements 〈cs〉{〈label〉} at each iteration.
Glossaries-extra v1.31+.

\glsxtrfull[〈options〉]{〈label〉}
Links to the entry’s definition in the glossary with the link text obtained from the long
and short fields (using the appropriate abbreviation style) without altering the first use
flag.
Glossaries-extra.

\glsxtrfullsep{〈label〉}
The separator used in the full format for the parenthetical abbreviation styles or for
inline parenthetical styles. This just does a space by default.
Glossaries-extra.

\glsxtrglossentry{〈label〉}
Displays the given entry name including a hypertarget (if hyperref has been loaded) as
the destination for commands like \gls.
Glossaries-extra v1.21.

\glsxtrglossentryother{〈header〉}{〈label〉}{〈field〉}
Like \glsxtrglossentry but uses the value given in the supplied internal 〈field〉where
〈header〉 is the code to use in the header (leave empty for default).
Glossaries-extra v1.22+.

\glsxtrgroupfield
Expands to the field label used to store the entry group labels.
Glossaries-extra v1.21+.

\GlsXtrIfFieldCmpNum{〈field〉}{〈entry label〉}{〈comparison〉}{〈number〉}{〈true〉}{〈false〉}
Compares the given (numerical) field value to the given integer 〈number〉. The 〈com-
parison〉may be one of: =, < or >. If the field is undefined or empty, the value is assumed
to be 0. If the field is set, it must expand to an integer value. The value can be referenced

134

Command Summary

in 〈true〉 or 〈false〉 with \glscurrentfieldvalue. The unstarred form adds implicit
grouping. The starred form (new to v1.39) doesn’t.
Glossaries-extra v1.31+.

\GlsXtrIfFieldEqNum{〈field〉}{〈entry label〉}{〈number〉}{〈true〉}{〈false〉}
Tests if the given field value expands to the given integer 〈number〉. If the field is un-
defined or empty, the value is assumed to be 0. If the field is set, it must expand to
an integer value. The value can be referenced in 〈true〉 or 〈false〉 with \glscurrent-
fieldvalue. The unstarred form adds implicit grouping. The starred form (new to
v1.39) doesn’t.
Glossaries-extra v1.31+.

\GlsXtrIfFieldEqStr{〈field label〉}{〈entry label〉}{〈text〉}{〈true〉}{〈false〉}
Tests if the given field value is the same as 〈text〉 for the given entry, whichmay not exist.
The unstarred form adds implicit grouping. The starred form (new to v1.39) doesn’t.
Glossaries-extra v1.21+.

\GlsXtrIfFieldEqXpStr{〈field label〉}{〈entry label〉}{〈text〉}{〈true〉}{〈false〉}
Like \GlsXtrIfFieldEqStr but first (protected) fully expands 〈text〉 (but not the field
value). The unstarred form adds implicit grouping. The starred form (new to v1.39)
doesn’t.
Glossaries-extra v1.31+.

\GlsXtrIfFieldNonZero{〈field〉}{〈entry label〉}{〈true〉}{〈false〉}
Tests if the given field value expands to a non-zero integer. If the field is undefined
or empty, the value is assumed to be 0. If the field is set, it must expand to an integer
value. The value can be referenced in 〈true〉 or 〈false〉 with \glscurrentfieldvalue.
The unstarred form adds implicit grouping. The starred form (new to v1.39) doesn’t.
Glossaries-extra v1.31+.

\GlsXtrIfFieldUndef{〈field label〉}{〈entry label〉}{〈true〉}{〈false〉}
Tests if the given field (identified by its internal field label) isn’t defined for the given
entry, which may also not exist.
Glossaries-extra v1.23+.

\glsxtrifhasfield{〈field label〉}{〈entry label〉}{〈true〉}{〈false〉}
Tests if the given entry has the given internal field set (defined and not empty) without
testing if the entry exists and adds implicit scoping to 〈true〉 and 〈false〉.
Glossaries-extra v1.19+.

\glsxtrifhasfield*{〈field label〉}{〈entry label〉}{〈true〉}{〈false〉}
Tests if the given entry has the given field set (defined and not empty) without testing
if the entry exists and without introducing an implicit scope.
Glossaries-extra v1.19+.

\GlsXtrIfHasNonZeroChildCount{〈entry label〉}{〈true〉}{〈false〉}
For use with the save-child-count resource option, this uses \GlsXtrIfFieldNon-
Zero to test if the childcount field has a non-zero value. The value can be referenced

135

Command Summary

in 〈true〉 or 〈false〉 with \glscurrentfieldvalue. The TEX parser library recognises
this command regardless of whether or not the child count is saved.
Glossaries-extra-bib2gls v1.31+.

\glsxtrifinmark{〈true〉}{〈true〉}
Used by commands like \glsfmtshort, this expands to 〈true〉 in page headings and the
table of contents, otherwise it expands to 〈false〉.
Glossaries-extra v1.07+.

\glsxtriflabelinlist{〈label〉}{〈list〉}{〈true〉}{〈false〉}
Tests if the 〈label〉 is contained in the comma-separated 〈list〉, where both 〈label〉 and
〈list〉 are fully expanded before testing. This test is designed for labels that are fully
expandable.
Glossaries-extra v1.21+.

\GlsXtrIfUnusedOrUndefined{〈label〉}{〈true〉}{〈false〉}
Does 〈true〉 if the entry given by 〈label〉 hasn’t been used or is undefined, otherwise it
does 〈false〉. This command is not for use in the post-link hooks.
Glossaries-extra v1.34+.

\glsxtrifwasfirstuse{〈true〉}{〈false〉}
Only for use in the post-link hooks this tests if the entry just referenced was used for
the first time.
Glossaries-extra.

\GlsXtrIfXpFieldEqXpStr{〈field label〉}{〈entry label〉}{〈text〉}{〈true〉}{〈false〉}
Like \GlsXtrIfFieldEqStr but first (protected) fully expands both the field value and
〈text〉. The unstarred form adds implicit grouping. The starred form (new to v1.39)
doesn’t.
Glossaries-extra v1.31+.

\GlsXtrLoadResources[〈options〉]
Input the .glstex file created by bib2gls and write resource instructions to the .aux
file.
Glossaries-extra v1.11+.

\glsxtrlong[〈options〉]{〈label〉}
Links to the entry’s definition in the glossary with the link text obtained from the long
field (using the appropriate abbreviation style) without altering the first use flag.
Glossaries-extra.

\glsxtrnewnumber[〈key=value list〉]{〈label〉}
Defines a new number.
Glossaries-extra numbers.

\glsxtrnewsymbol[〈key=value list〉]{〈label〉}{〈symbol〉}
Defines a new symbol.
Glossaries-extra symbols.

136

Command Summary

\glsxtrparen{〈text〉}
Used to markup parenthetical material, such as in \glsxtrpostlinkAddDescOnFirst-
Use or in the long-short and short-long abbreviation styles.
Glossaries-extra v1.17+.

\glsxtrpostdesc〈category〉
Hook used after the description is displayed in the glossary for entries that have the
category set to 〈category〉. Common category hooks such as \glsxtrpostdescgeneral
are provided by glossaries-extra. If required, this hook can be defined with \glsdef-
postdesc.
Glossaries-extra.

\glsxtrpostdescgeneral
Hook used after the description is displayed in the glossary for entries that have the
category set to general.
Glossaries-extra.

\glsxtrpostlinkAddDescOnFirstUse
Only for use in the post-link hooks, this appends a space and the value of the description
field in parentheses if the entry that was just referenced was used for the first time.
Glossaries-extra.

\glsxtrpostlinkAddSymbolDescOnFirstUse
Only for use in the post-link hooks, if the entry that was just referenced was used for
the first time, this appends a space and, in parentheses, the value of the symbol field (if
set) followed by the value of the description field.
Glossaries-extra v1.31+.

\glsxtrpostlinkAddSymbolOnFirstUse
Only for use in the post-link hooks, this appends a space and the value of the symbol
field in parentheses if the entry that was just referenced was used for the first time and
has the symbol field set.
Glossaries-extra.

\glsxtrpostlink〈category〉
Hook used after commands like \gls for entries that have the category set to 〈cate-
gory〉. If required, this hook can be defined with \glsdefpostlink.
Glossaries-extra.

\glsxtrpostname〈category〉
Hook used by \glossentryname for entries that have the category set to 〈category〉.
If required, this hook can be defined with \glsdefpostname.
Glossaries-extra.

\glsxtrprovidestoragekey{〈key〉}{〈default value〉}{〈no link cs〉}
Adds a new key, if not already defined, for use in \newglossaryentry and an associated
command to access it where (unlike \glsaddstoragekey) the 〈no link cs〉 part may be
empty if unrequired.
Glossaries-extra v1.12+.

137

Command Summary

\glsxtrregularfont{〈text〉}
Used by commands like \gls to format the link text for regular terms.
Glossaries-extra v1.04+.

\glsxtrresourcefile[〈options〉]{〈basename〉}
Input the .glstex file created by bib2gls and write resource instructions to the .aux
file. This command is deprecated as from glossaries-extra v1.55 (use \glsbibdata in-
stead).
Glossaries-extra v1.08+ (deprecated).

\glsxtrRevertTocMarks
Restores original behaviour of \tableofcontents so that \glsxtrifinmark expands
to 〈false〉 in the table of contents.
Glossaries-extra v1.07+.

\glsxtrsetgrouptitle{〈group label〉}{〈group title〉}
Globally sets the title for the group identified by the given label.
Glossaries-extra v1.14+.

\glsxtrshort[〈options〉]{〈label〉}
Links to the entry’s definition in the glossary with the link text obtained from the short
field (using the appropriate abbreviation style) without altering the first use flag.
Glossaries-extra.

\GlsXtrStandaloneGlossaryType
Expands to the label for \currentglossary within \glsxtrglossentry and \gls-
xtrglossentryother.
Glossaries-extra v1.31+.

\GlsXtrStandaloneSubEntryItem{〈label〉}
Used within \glsxtrglossentry and \glsxtrglossentryother to display sub-item
labels.
Glossaries-extra v1.31+.

\GlsXtrStartUnsetBuffering
Starts buffering calls to \glsunset (which is internally used by commands like \gls)
for use in code where the boolean switch causes a problem. The buffer can later be
processed and cleared with \GlsXtrStopUnsetBuffering. The starred form (added to
v1.31) avoids duplicate labels in the buffer’s internal list.
Glossaries-extra v1.30+.

\GlsXtrStopUnsetBuffering
Unsets (locally with the starred form) the first use flag of all the entry whose labels
are stored in the buffer that was started with \GlsXtrStartUnsetBuffering and then
clears the buffer.
Glossaries-extra v1.30+.

\glsxtrtagfont{〈text〉}
Font used by tagging command defined by \GlsXtrEnableInitialTagging.
Glossaries-extra.

138

Command Summary

\glsxtrusefield{〈entry label〉}{〈field label〉}
Expands to the value of the given field for the given entry.
Glossaries-extra v1.12+.

\glsxtruserfield
Used by the parenthetical abbreviation styles, this expands to the internal label of the
field used to store the additional parenthetical material. The default value is useri.
Glossaries-extra v1.04+.

\glsxtruserparen{〈text〉}{〈label〉}
Used by the “user” abbreviation styles to format the parenthetical material where 〈text〉
is the default parenthetical text and 〈label〉 is the entry’s label. This checks the field
given by \glsxtruserfield and, if set, the 〈text〉 is followed by a comma and the user
value.
Glossaries-extra v1.04+.

\glsxtrword{〈text〉}
Used to encapsulate each word in the long form of an abbreviation by the markwords
attribute.
Glossaries-extra v1.17+.

\glsxtrwordsep
Used to mark spaces between each word in the long form of an abbreviation by the
markwords attribute.
Glossaries-extra v1.17+.

H

\hyperbf{〈text〉}
A location format that uses the bold font that also has a hyperlink (if enabled).
Glossaries.

I

\ifcsundef{〈cs-name〉}{〈true〉}{〈false〉}
Tests if the control sequence given by 〈cs-name〉 is undefined.
Etoolbox.

\ifdefempty{〈cs〉}{〈true〉}{〈false〉}
Tests if the control sequence 〈cs〉 is empty.
Etoolbox.

\ifglsfieldvoid{〈field label〉}{〈entry label〉}{〈true〉}{〈false〉}
Expands to 〈true〉 if the given entry doesn’t exist, or exists but doesn’t have the field
(identified by its internal field label) defined or does have the field defined but the field
is empty. Otherwise expands to 〈false〉. This is essentially like \GlsXtrIfFieldUndef
but also tests for an empty value.
Glossaries v4.50+.

139

Command Summary

\ifglshaschildren{〈entry label〉}{〈true〉}{〈false〉}
Tests if the given entry, which must be defined, has child entries. This method is inef-
ficient as it has to iterate over all defined entries to determine which ones have 〈entry
label〉 as the value of the parent field. With bib2gls, a more efficient approach is to use
save-child-count and test the value of the childcount field. The TEX parser library
recognises this command and will simply use the child count (regardless of whether or
not the child count is saved).
Glossaries.

\ifglshasdesc{〈entry label〉}{〈true〉}{〈false〉}
Tests if the given entry, which must be defined, has the description field set.
Glossaries.

\ifglshasfield{〈field label〉}{〈entry label〉}{〈true〉}{〈false〉}
Tests if the given entry, which must be defined, has the given field set to a non-empty
value. This is implemented in bib2gls in the same way as \glsxtrifhasfield*.
Glossaries.

\ifglshasparent{〈entry label〉}{〈true〉}{〈false〉}
Tests if the given entry, which must be defined, has the parent field set.
Glossaries.

\ifglshassuppressedesc{〈entry label〉}{〈true〉}{〈false〉}
Tests if the given entry, which must be defined, has the description field set to \no-
postdesc.
Glossaries.

\ifglshassymbol{〈entry label〉}{〈true〉}{〈false〉}
Tests if the given entry, which must be defined, has the symbol field set to value that’s
not empty and not \relax.
Glossaries.

\ifglsused{〈label〉}{〈true〉}{〈false〉}
Does 〈true〉 if the entry given by 〈label〉 has been used, 〈false〉 if the entry hasn’t been
used and neither if the entry doesn’t exist (an error or warning message will occur and
⁇ will appear in the document). This command is not for use in the post-link hooks.
Glossaries.

\IfTrackedDialectHasMapping{〈tracklang label〉}{〈true〉}{〈false〉}
Tests if the tracklang dialect label has been assigned a mapping to a language hook label.
Tracklang v1.3+.

\input{〈file〉}
Input the given file.
Kernel command.

J

\jobname
The current job name, which is usually the name of the main .tex file without the

140

Command Summary

extension.
Primitive.

L

\label{〈id〉}
Creates a label that can be referenced with \ref or \pageref.
Kernel command.

\longnewglossaryentry{〈label〉}{〈key=value list〉}{〈description〉}
Defines a new glossary entry and appends \leavemode\unskip\nopostdesc at the
end of 〈description〉.
Glossaries.

\longnewglossaryentry*{〈label〉}{〈key=value list〉}{〈description〉}
Defines a new glossary entry without appending any extra code to the end of 〈descrip-
tion〉.
Glossaries-extra v1.12+.

N

\newabbreviation[〈key=value list〉]{〈label〉}{〈short〉}{〈long〉}
Defines a new abbreviation.
Glossaries-extra.

\newacronym[〈key=value list〉]{〈label〉}{〈short〉}{〈long〉}
Defines a new abbreviation. The glossaries-extra package redefines this to use \new-
abbreviation with the category set to acronym.
Glossaries.

\newglossary*{〈type〉}{〈title〉}
Defines a new glossary identified by 〈type〉 with the given title.
Glossaries.

\newglossaryentry{〈label〉}{〈key=value list〉}
Defines a new glossary entry.
Glossaries.

\newignoredglossary{〈type〉}
Defines a new ignored glossary (with hyperlinks suppressed) identified by 〈type〉 that’s
not included in the list used by commands, such as \printunsrtglossaries, that it-
erate over defined glossaries.
Glossaries v4.08+.

\newignoredglossary*{〈type〉}
Defines a new ignored glossary (without suppressing hyperlinks) identified by 〈type〉
that’s not included in the list used by commands, such as \printunsrtglossaries,
that iterate over defined glossaries.
Glossaries-extra v1.11+.

141

Command Summary

\newterm[〈key=value list〉]{〈label〉}
Defines a new glossary entry where the description field defaults to empty.
Glossaries’s index package option.

\nopostdesc
Suppresses the post-description hook.
Glossaries.

O

\omicron
Greek letter omicron o.
Glossaries-extra-bib2gls.

P

\pageref{〈id〉}
Cross-reference the page where \label{〈id〉} occurred.
Kernel command.

\pgls[〈options〉]{〈label〉}[〈insert〉]
Does 〈prefix〉\gls[〈options〉]{〈label〉}[〈insert〉], where the 〈prefix〉 is obtained from the
appropriate prefix field.
Glossaries-prefix.

\printglossary[〈options〉]
Inputs file created by makeindex or xindy.
Glossaries.

\printunsrtglossaries
Iterates over all non-ignored defined glossaries and performs \printunsrtglossary
for each one.
Glossaries-extra v1.08+.

\printunsrtglossary[〈options〉]
Display a glossary by iterating over all entries associated with that glossary in the or-
der in which they were defined (which, with bib2gls, should correspond to the order
obtained from the sort settings given in the resource set options).
Glossaries-extra v1.08+.

\printunsrtglossary*[〈options〉]{〈code〉}
As \printunsrtglossary but performs 〈code〉 first (scoped to localise any assignments
within 〈code〉).
Glossaries-extra v1.12+.

\printunsrtglossaryentryprocesshook{〈label〉}
Performed at each iteration of the internal loop used by \printunsrtglossary.
Glossaries-extra v1.21+.

142

Command Summary

\printunsrtglossarypredoglossary
Hook performed by \printunsrtglossary.
Glossaries-extra v1.21+.

\printunsrtglossaryskipentry
Only allowed within \printunsrtglossaryentryprocesshook this command indi-
cates that the current entry should be skipped.
Glossaries-extra v1.21+.

\protect〈token〉
Protects 〈token〉 from expansion.
Kernel command.

\providecommand{〈cs〉}[〈n〉][〈def 〉]{〈code〉}
Defines a command if it’s not already defined.
Kernel command.

R

\ref{〈id〉}
Cross-reference the location where \label{〈id〉} occurred.
Kernel command.

S

\section[〈TOC title〉]{〈title〉}
Section heading.
Most classes that have a concept of document sections.

\setabbreviationstyle[〈category〉]{〈style-name〉}
Sets the abbreviation style to 〈style-name〉 for the given 〈category〉, must be used before
the abbreviation is defined.
Glossaries-extra.

\setupglossaries{〈key=value list〉}
Applies the base glossaries options that are allowed to be changed after the package has
loaded.
Glossaries.

\si{〈unit〉}
Displays the unit with intelligent formatting.
Siunitx.

T

\tableofcontents
Displays the table of contents (by reading in the .toc file) and then opens .toc file to
allow the sectioning commands to write to it.
Kernel command.

143

Command Summary

\textbf{〈text〉}
Displays the given text in bold.
Kernel command.

\textit{〈text〉}
Displays the given text in italic.
Kernel command.

\textsc{〈text〉}
Applies small-caps font to 〈text〉.
Kernel command.

\theglossaryentry
Textual representation of the glossaryentry counter, which is definedwith the entrycounter
option.
Glossaries.

\theHglossaryentry
Hypertarget associatedwith the glossaryentry counter, which is definedwith the entrycounter
option.
Glossaries.

\TrackedDialectClosestSubMatch
Set by \GetTrackedDialectFromLanguageTag if an exact match isn’t found but a par-
tial match on the root language is found.
Tracklang v1.3.6+.

\TrackedLanguageFromDialect{〈dialect〉}
Expands to the root language associated with the given (tracklang) dialect label.
Tracklang.

U

\ul{〈text〉}
Underlines the given text.
Soul.

\underline{〈text〉}
Underlines the given text.
Kernel command.

\usepackage[〈options〉]{〈name〉}[〈min version〉]
Loads the package identified by 〈name〉.
Kernel command.

X

\xglsaccsupp{〈accessible text〉}{〈text〉}
Used by the accessibility support to interface with the accsupp package, where 〈text〉 is
fully expanded.
Glossaries-accsupp.

144

Index

Symbols

_ (subscript) . 10
^ (superscript) . 10
~ (non-breakable space) 4, 17
" (active) . 97, 98
" (literal) . 98
@ (bib entry identifier) 106, 119
$ (maths shift) . 4
\␣ . 22, 124
\^ . 108, 124
\~ . 119, 124
\' . 5, 119, 124
\" 38, 97, 98, 119, 124
\\ . 73, 124
\ (literal) . 56
& (alignment) . 73
& (literal) . 4
(parameter) 4, 116
% (comment) 4, 105, 114–119

A

abbreviation styles
long-hyphen-short-hyphen 32
long-noshort 29
long-noshort-desc 112
long-only-short-only 29
long-short 27, 33, 38, 83, 136
long-short-em 83, 84
long-short-sc 95, 112
long-short-user 38, 42
short-long 37, 136
short-nolong 16, 27–29, 83
short-sc-nolong 83, 84

\acronymtype 66, 124
\Alpha . 113, 124

applications
makeindex 55, 67, 68, 104, 115,

116, 142
xindy 67, 68, 104, 116, 142

ASCII . 5, 6, 28, 83
ascii . 84, 85
attributes see category attributes

C

\c . 119, 124
\caption . 93, 125
case-change . 2
see also upper case, lower case, title case &
sentence case

category attributes 9, 28
accessaposplural 16
accessinsertdots 15, 16
accessnoshortplural 16
aposplural 16, 31
discardperiod 15, 35
firstshortaccess 16
glossdesc 71, 90
glossdescfont 71, 90
glossname 14, 50, 71, 72, 77, 78, 90
glossnamefont 71, 72, 90
headuc . 95, 96
insertdots 15, 36
markshortwords 33
markwords 31, 139
nameshortaccess 16
noshortplural 16, 31, 36
pluraldiscardperiod 36
retainfirstuseperiod 15, 36
tagging . 33
textformat 83, 98

145

Index

textshortaccess 16
\ce . 53, 125
\chapter . 93, 125
child entry . 60
CLDR . 28
command line options (bib2gls)

--expand-fields 26
--group . 106
--no-mfirstuc-math

-protection 51
\csdef . 91, 125
\currentglossary 76, 125, 138

D

\ding . 81, 99, 125

E

\eglsupdatewidest 69, 125
see also \glssetwidest &
\glsupdatewidest

\emph . 22, 84, 125
\ensuremath 10, 113, 125
entry types

@abbreviation 111, 118, 119
@acronym . 111
@entry 106, 107, 113
@index . 107
@indexplural 109
@number . 114
@preamble . 34
@symbol 112, 114

example terms
Archimedes’ constant 10, 86–89
area . 44
DANTE e.V. 34, 35
duck 2, 3, 82–85
Duck (noun) 8
f ′(x) . 47–49
fleuron . 82–89
goose . 2, 3
Goose (noun, pl. geese) 8
G.P. 34–36
G.P. 37

length . 44
m . 45
m2 . 45
RNA . 38
SSL . 32, 33
SVM . 29, 30
theta parameter 10
TUG . 84, 85
XML . 34

expandable . 4, 25

F

fields
access 15, 16, 71
category . 9, 27, 38, 69, 70, 84, 86, 91,

105–114, 119, 127, 130, 136, 137, 141
description . 2, 9, 23–28, 65, 71, 107,

128, 137–141
first 8, 15, 45, 52, 94, 126, 129
firstaccess 15, 16
firstplural 8
long 118, 119, 134, 136
longplural 30
name . . 2, 8, 9, 14, 15, 26, 44, 45, 50, 55,

59, 60, 71, 72, 77, 89–91, 107–113,
128, 134

parent 59, 65, 66, 107, 139, 140
plural 2, 8, 109, 128
prefix . 17
prefixfirst 16
short 15, 112, 119, 134, 138
shortaccess 15, 16
shortplural 30
shortpluralaccess 16
symbol 9–15, 26, 44, 45, 54, 88, 91, 107,

112, 128, 131, 137, 140
symbolaccess 15, 72
text . . . 8, 15, 45, 77, 94, 109, 126–129
textaccess 15, 16
user1 . . 10, 14, 37, 38, 42, 48, 114, 117,

128, 132
user2 10, 14, 37–42, 129, 132
user3 10, 129, 132

146

Index

user4 10, 129, 132
user5 10, 129, 132
user6 10, 11, 129, 133

fields, internal
childcount 65, 66, 135, 139
childlist . 66
dual . 133
group 55–58, 68, 104–106
level . 69, 78
location 56, 58, 104
secondarygroup 68
sort 46, 55, 56
type 27, 46, 66, 67, 76, 113
useri 20, 48, 114, 138
userii . 37, 42

file formats
.aux 59, 104–107, 115, 137
.bib 2, 56, 59, 104–107, 115–121
.glstex 26, 104–106, 137
.tex . 104, 140
.toc 21–24, 93, 143

first use . 8, 14–16, 28–30, 36, 44, 52, 73, 84,
87, 93–100
first use flag 7, 10, 29, 30, 47, 73, 88, 93, 95,
99, 100, 131, 132, 138
\footnote 22, 26, 125
\foreignlanguage 39, 42, 43, 126
fragile . 22, 23–26
full stop (.) 34–36, 65, 91

G

\GetTrackedDialectFromLanguage-
Tag . 39, 126, 144
\GetTrackedDialectToMapping 39,
42, 126
\glolinkprefix 70, 73, 75, 126
glossary styles

alttree . 69, 131
bookindex . 55
index 53, 54, 60
indexgroup 55, 60
list . 90
tree 60, 67, 90, 132

treegroup . 60
treenoname 63, 67, 132
treenonamegroup 63

glossaryentry 63, 76–80, 131, 143, 144
glossarysubentry 63, 76, 78
\Glossentrydesc 71, 126
\glossentrydesc 71, 126
\glossentryname 126, 130, 137
\glossentrysymbol 72, 126
\GLS . 3, 126, 130
\Gls 3, 5, 22, 50, 126, 130
\gls . . 2, 3–9, 14–21, 25–35, 47–52, 70–76,
81–88, 93–100, 105, 115, 126, 130–138, 142
\glsabbrvscfont 95, 96, 127
\glsaccsupp 14, 127
see also \xglsaccsupp

\glsadd . 116, 127
format . 116

\glsaddeach 116, 127
\glsaddkey 11, 12, 127
\glsaddstoragekey . 11, 12, 56, 127, 137
see also \glsxtrprovidestoragekey

\glsbibdata . see also resource options &
\GlsXtrLoadResources
\glscategory 9, 127
\glscurrententrylabel 14, 91, 114, 127
\glscurrentfieldvalue . . 13, 114, 116,
127, 134, 135
\glsdefaulttype 66, 127
\glsdefpostdesc 91, 114, 127, 136
\glsdefpostlink 14, 88, 128, 137
\glsdefpostname 14, 91, 128, 137
\glsdesc . 86, 128
\glsdisp 47, 50, 128
see also \glslink

\GlsEntryCounterLabelPrefix . 79, 128
\glsentrydesc 2, 4–10, 22–26, 52, 71, 82,
85, 128
\Glsentryname 8, 11, 128
\glsentryname 8, 10, 12, 49, 85, 128
\glsentryplural 14, 128
\glsentrysymbol . 10, 11, 12, 86, 97, 105,
115, 128
\glsentrytext 14, 128

147

Index

\glsentryuseri 11, 128
\glsentryuserii 11, 129
\glsentryuseriii 11, 129
\glsentryuseriv 11, 129
\glsentryuserv 11, 129
\glsentryuservi 11, 129
\glsextrapostnamehook . . . 91, 116, 129
\glsfmtfirst 94, 129
\glsfmtfull 94, 129
\glsfmtlong 94, 95, 129
\glsfmtname 94, 129
\glsfmtshort 94, 129, 135
\glsfmttext 94, 129
\glshypernumber 115, 130
\glsifcategory 9, 70, 130
\glsignore 116, 130
\glslabel 85, 86, 130
\glslink 47, 49, 50, 126–130
see also \glsdisp

format 115, 116
hyperoutside 98
prefix . 70
textformat 84, 100

\glsnamefont 89, 90, 130
\glsnoexpandfields 26, 45, 130
\glsnumberformat 115, 130
\GLSpl . 3, 130
\Glspl . 3, 130
\glspl 2, 7, 8, 30, 130
\glspostdescription . . . 72, 91, 92, 130
\glsreset 29, 131
\glsresetentrycounter 66, 80, 131
\glssetcategoryattribute 14, 131
\glssetwidest 69, 131, 132
\glsshowtarget 71, 131
\glssymbol 9, 11, 12, 36, 50, 52, 70, 81–88,
97, 98, 105, 115, 131
\glssymbolsgroupname 106, 131
\glstextformat 81, 83, 84, 98, 131
\glstreedefaultnamefmt 90, 131
\glstreegroupheaderfmt 90, 131
\glstreenamefmt 90, 131
see also \glstreegroupheaderfmt,
\glstreenavigationfmt &

\glstreedefaultnamefmt
\glstreenavigationfmt 131, 132
\glstreenonamedesc 65, 132
\glstreepredesc 65, 132
\glsunset 100, 132, 138
\glsupdatewidest 69, 125, 132
see also \glssetwidest &
\eglsupdatewidest

\glsuppercase 96, 132
\glsuseri 11, 132
\glsuserii 11, 132
\glsuseriii 11, 132
\glsuseriv 11, 132
\glsuserv 11, 132
\glsuservi 11, 133
\glsxtrabbreviationfont . . 82, 83, 84,
98, 133
\glsxtrabbrvtype 66, 133
\GlsXtrDualField 116, 133
\GlsXtrEnableInitialTagging . 33, 34,
133, 138
\glsxtrentryfmt 49, 50, 133
\GlsXtrExpandedFmt 98, 100, 133
\glsxtrfmt 49, 50, 133
see also \glsxtrfmtdisplay

\glsxtrfmt* 49, 50, 133
see also \glsxtrfmtdisplay

\glsxtrfmtdisplay 50, 133
\GlsXtrFmtField 48, 50, 133
\GlsXtrForeignText 42, 134
\GlsXtrForeignTextField 42, 134
\GlsXtrForUnsetBufferedList 100, 134
\glsxtrfull 30, 36, 129, 134
\glsxtrfullsep 43, 134
\glsxtrglossentry 71, 72–78, 89,
134, 138
\glsxtrglossentryother . . . 72, 76, 78,
134, 138
\glsxtrgroupfield 68, 134
\GlsXtrIfFieldCmpNum 134
see also \GlsXtrIfFieldNonZero

\GlsXtrIfFieldEqNum 134
see also \GlsXtrIfFieldNonZero &
\GlsXtrIfFieldCmpNum

148

Index

\GlsXtrIfFieldEqStr 13, 135, 136
\GlsXtrIfFieldEqXpStr 13, 135
\GlsXtrIfFieldNonZero 135
see also \GlsXtrIfFieldEqNum

\GlsXtrIfFieldUndef 135, 139
see also \ifglsfieldvoid

\glsxtrifhasfield 13, 20, 114, 116,
127, 135
see also \GlsXtrIfFieldUndef

\glsxtrifhasfield* 13, 135, 140
see also \GlsXtrIfFieldUndef

\GlsXtrIfHasNonZeroChild-
Count . 66, 135
see also \GlsXtrIfFieldNonZero

\glsxtrifinmark 96, 135, 137
\glsxtriflabelinlist 70, 136
\GlsXtrIfUnusedOrUndefined . . 8, 136
see also \ifglsused &
\glsxtrifwasfirstuse

\glsxtrifwasfirstuse 8, 14, 87, 88, 136
\GlsXtrIfXpFieldEqXpStr 13, 136
\GlsXtrLoadResources . . 104, 105, 107,
112–119, 136
see also resource options & \glsbibdata

\glsxtrlong 30, 36, 136
\glsxtrnewnumber 67, 136
\glsxtrnewsymbol . . . 4, 46, 66, 113, 136
\glsxtrparen 43, 136
\glsxtrpostdesc〈category〉 91, 136
\glsxtrpostdescgeneral . . 91, 136, 137
\glsxtrpostlinkAddDescOnFirst-
Use . 88, 136, 137
\glsxtrpostlinkAddSymbolDescOn-
FirstUse . 88, 137
\glsxtrpostlinkAddSymbolOnFirst-
Use . 88, 97, 137
\glsxtrpostlink〈category〉 . 85, 128, 137
\glsxtrpostname〈category〉 . 91, 128, 137
\glsxtrprovidestoragekey 137
\glsxtrregularfont . 82, 83, 84, 98, 137
\glsxtrresourcefile 136, 137
see also resource options &
\GlsXtrLoadResources

\glsxtrRevertTocMarks 96, 137

\glsxtrsetgrouptitle 56, 138
\glsxtrshort 30, 35, 36, 138
\GlsXtrStandaloneGlossaryType . . 76,
79, 138
\GlsXtrStandaloneSubEntry-
Item . 78, 138
\GlsXtrStartUnsetBuffering 100,
134, 138
see also \GlsXtrForUnsetBufferedList

\GlsXtrStopUnsetBuffering . 100, 138
see also \GlsXtrForUnsetBufferedList

\glsxtrtagfont 33, 138
see also \GlsXtrEnableInitialTagging

\glsxtrusefield 12, 69, 138
\glsxtruserfield 37, 42, 138, 139
\glsxtruserparen 39, 138
\glsxtrword 31, 139
\glsxtrwordsep 31, 32, 139

H

hierarchical entry 60
homograph . 60, 63
\hyperbf 115, 139

I

\ifcsundef 39, 139
\ifdefempty 43, 139
\ifglsfieldvoid 139
see also \GlsXtrIfFieldUndef

\ifglshaschildren 65, 139
\ifglshasdesc 65, 139
see also \ifglshassymbol &
\ifglshassuppressedesc

\ifglshasfield 12, 20, 127, 140
see also \glsxtrifhasfield &
\GlsXtrIfFieldUndef

\ifglshasparent 59, 78, 140
\ifglshassuppressedesc 140
see also \ifglshasdesc

\ifglshassymbol 12, 140
see also \ifglshasdesc,
\glsxtrifhasfield &
\GlsXtrIfFieldUndef

\ifglsused 8, 140

149

Index

see also \GlsXtrIfUnusedOrUndefined
& \glsxtrifwasfirstuse

\IfTrackedDialectHasMapping 39, 140
ignored glossary 67, 68
ignored record 116, 130
\input . 104, 140

J

\jobname 105, 140

L

\label 128, 140–143
see also \ref & \pageref

link text 2, 15, 47–50, 73, 81, 84, 97, 98, 131,
133, 137
location list 55, 58, 116
\longnewglossaryentry 4, 9, 18, 91, 140
\longnewglossaryentry* 18, 91,
104, 141
longtable . 69
lower case 11, 31, 77, 84, 112, 119

M

moving argument 93

N

\newabbreviation 4, 9, 15, 16, 27, 28, 31,
66, 83, 104, 133, 141
\newacronym . . 16, 27, 28, 66, 83, 124, 141
\newglossary* 67, 141
\newglossaryentry . . . 1, 2, 4, 9, 27, 103,
104, 127, 137, 141
\newignoredglossary 68, 141
\newignoredglossary* 68, 141
\newterm . 67, 141
non-regular . 8, 82
\nopostdesc 140, 141

O

\omicron 113, 141

P

package options
abbreviations 66, 67
accsupp . 14
acronyms . 66
counterwithin 76
debug . 71, 131
entrycounter . 63, 66, 71, 76, 78, 128,

131, 143, 144
index . 67, 141
nomain . 66
nopostdot 130
nostyles . 53
numbers 67, 136
postpunc 72, 91, 131
record 20, 58, 104, 115
shortcuts . 30
style . 52
stylemods 53, 92
subentrycounter 63, 71, 76, 128
symbols 46, 66, 131, 136
undefaction 9, 19, 20, 104

packages
accsupp 14, 123, 127, 144
babel 4, 38–41, 97, 98
datatool . 5
datetime2 . 41
etoolbox . 39
fontenc . 95
glossaries . . a, 1–5, 9–16, 27, 39, 54–56,

65, 67, 92, 93, 106, 115, 123, 131
glossaries-accsupp 14, 15
glossaries-extra a, 2, 4, 9–19, 27, 28, 42,

46, 48, 53–56, 67, 71, 73, 80, 88, 93,
94, 123, 131

glossaries-extra-bib2gls 104, 113
glossaries-extra-stylemods . 53, 69, 90,

92, 130
glossaries-prefix 16
glossary-bookindex 55
glossary-tree 69, 90
hyperref 1, 47, 48, 72, 115, 134
inputenc . 4, 5

150

Index

mfirstuc . 4, 93
mhchem . 53
polyglossia . 39
siunitx . 44, 45
slantsc . 95
soul . 99
tracklang 39–43, 123, 126
xcolor . 72

\pageref 140, 142
parent entry . 60
\pgls . 17, 142
post-description hook 18, 72, 91, 114
post-link hook 8–14, 35, 36, 44, 52, 85,
86–88, 97
post-name hook 14, 71, 72, 90, 91, 116
\printglossary 68, 142
\printunsrtglossaries 67, 68, 141, 142
\printunsrtglossary 52, 55, 56, 63,
67–76, 89, 104, 105, 116, 142

nonumberlist 116
prefix . 70
style . 52
target . 68
targetnameprefix 70
title . 52, 68
toctitle . 52
type 52, 67, 76

\printunsrtglossary* 68, 142
\printunsrtglossaryentryprocess-
hook . 69, 142
\printunsrtglossarypredoglos-
sary . 69, 142
\printunsrtglossaryskipentry 69, 142
\protect . 23, 142
\providecommand 34, 142

R

record . 115
see also ignored record

\ref . 140, 143
see also \label

regular 8, 28, 82–84
resource options

abbreviation-sort-fallback . 112

break-at . 113
category 105, 119
description-case-change 90
dual-field 116, 133
entry-type-aliases 118, 119
field-aliases 114–119
group . 105
name-case-change 78, 90, 110
save-child-count 65, 135, 139
selection 105, 117
short-case-change 112
sort . 105, 115
sort-field 115
src 105, 117–119
symbol-sort-fallback 113, 114

resource set 12, 142
robust 4, 21, 22, 25

S

\section 21, 93, 143
sentence case
\setabbreviationstyle . . . 27, 112, 143
\setupglossaries 63, 143
\si . 44, 45, 143
SI unit . 28
subsequent use . 8
supertabular . 69

T

\tableofcontents 93, 137, 143
tabular . 69
\textbf 90, 115, 143
\textit . 90, 143
see also \emph

\textsc 84, 95, 112, 127, 143
theglossary . 69
\theglossaryentry 76, 143
\theHglossaryentry 76, 144
title case
TOC 21, 23, 52, 77, 93–96, 125, 143
\TrackedDialectClosestSubMatch . 42,
43, 144
\TrackedLanguageFromDialect 40, 144
TUG . 28, 82, 83

151

Index

U

\ul . 99, 144
\underline 99, 115, 144
upper case 8–14, 50, 72, 77, 90, 96, 110, 126,
128, 132
\usepackage 1, 144

V

variant 2, 3, 8, 14, 28, 100

X

\xglsaccsupp 127, 144
see also \glsaccsupp

152

	Introduction
	Labels
	First Use
	Categories
	Adding Extra Information
	Accessibility Support
	Prefixes
	Spaces
	Undefined References
	Robust, Fragile and Expandable Commands

	Abbreviations
	Only Long or Only Short
	Plural Abbreviations
	Abbreviation Markup
	Dotted Abbreviations
	Translations

	Symbols
	Functions
	Dealing with Automated Case-Changing

	Displaying the Definition
	Listing the Terms (Glossary)
	Groups and Locations
	Homographs and Hierarchical Terms
	Multiple Glossaries
	Redisplaying or Filtering a Glossary
	Hyperlink Targets

	Stand-alone Definitions
	Numbering Top-Level Entries
	Stand-alone Hierarchical Entries

	Changing the Formatting
	Post-Link Category Hooks
	Glossary Name and Description Formatting
	Post-Name and Post-Description Hooks

	Problematic Areas
	Headings and Captions
	Nesting
	Shortcut Commands or Active Characters
	Formatting Commands that Need Direct Access to the Text
	Buffering Changes to the First Use Flag

	Incorporating bib2gls
	The .bib Format
	Defining Terms with Optional Descriptions
	Defining Abbreviations
	Defining Symbols

	Indexing
	Aliasing Fields and Entry Types

	Command Summary
	Index
	Symbols
	A
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	X

