
TkDVI: A Tcl/Tk-based TEX DVI Previewer

Anselm Lingnau
Fachbereich Informatik (ABVS)

Johann Wolfgang Goethe-Universität Frankfurt, Germany
E-Mail: lingnau@tm.informatik.uni-frankfurt.de

Abstract

Application-level scripting is a powerful method for structuring software. This paper intro-
duces TkDVI, a TEX DVI previewer based on the Tcl/Tk scripting language and graphics toolkit.
After a brief TEXnical introduction, we present the design and major components of the previewer,
pointing out the specific advantages gained by using Tcl/Tk. A number of extensions and future
projects are also discussed.

1 Introduction

In spite of the recent predominance of direct-manipulation word processing tools, markup-based
document production systems like TEX [4] and LATEX [8] are still going strong. In fact, support for
international fonts, modern output formats like Adobe PDF [9] and convenient freely-available so-
lutions for many different typesetting problems have made LATEX in particular a strong contender in
today’s typesetting world.

One area where the TEX community lags behind what is possible on modern systems concerns
previewing—the ability to display the typeset output on a bitmapped screen in order to proof-
read the content or check the formatting. For the most part, previewers for TEX’s DVI (for device-
independent) file format have contented themselves with showing individual pages from a DVI file,
possibly displaying PostScript illustrations as well by means of external rendering engines, but, e. g,
navigation facilities have been rudimentary at best. Even fairly obvious extensions like the ability to
show “spreads” of adjacent pages in a book are far less widespread than they ought to be. The main
reason for this seems to be that DVI previewers, while not complicated programs per se, are often
(as an examination of some of the freely available ones will illustrate) fairly inscrutable and difficult
to adapt and extend by people other than the original authors. This may be partly due to the fact
that the programs are generally written in systems programming languages like C, for speed and
portability, and that, while these goals are usually achieved, flexibility and extensibility at the user
interface level often suffer in the process. (This is a problem that is by no means particular to the area
of DVI display software.)

For a Tcl/Tk hacker, the obvious approach to this problem is to try and come up with an im-
plementation of DVI previewing for use in Tcl/Tk programs. There are various ways in which a
DVI previewer can benefit from this: If the DVI display functions are suitably encapsulated and
made available at the scripting language level, it is easy to use them as “building blocks” for more
sophisticated things such as the two-page spread display mentioned above. Since many other, unre-
lated building blocks are available to Tcl—for example, access to the World-Wide Web via an HTTP
module—the previewer can be extended in various interesting ways with relatively little effort. Fi-
nally, since TEX includes a provision for putting arbitrary material in a DVI file, the TEX output itself
can be given access to Tcl to support features such as primitives for simple graphics, inclusion of
graphics files, or even interactive extensions such as hyperlinks, sound and animation.

This paper introduces TkDVI, a DVI previewer based on Tcl/Tk. After a brief introduction to TEX
output and its interpretation, we present the design and implementation of the major components of
TkDVI, pointing out the specific advantages gained by using Tcl and Tk. The paper closes with an
exposition of interesting future projects and ideas.

1



2 DVI Files: A Brief Overview

DVI (short for device-independent—and not to be confused with Intel’s digital video file format that
uses the same abbreviation) is the canonical output format of TEX. It describes a typeset document
by giving instructions to a “virtual machine” for every page. The virtual machine maintains a notion
of “current position” on the page, and the instructions mostly consist of commands that change
this position or place glyphs or rules there. Besides registers for the current position, the virtual
machine implements a few more registers for optimization purposes; the content of all registers can
be pushed on or popped off a stack to make regular movement easier. There are a few additional
commands that deal with font management and the inclusion of arbitrary strings in the DVI file for
the benefit of specialized DVI processing software. DVI file also contain a preamble and a postamble
giving information about the file as a whole, like a global magnification factor or the maximum stack
depth necessary for the virtual machine to process the file. A full explanation of the DVI format is
given in [5].

It is important to note that DVI files do not contain any information about the glyphs of a partic-
ular font—they just contain the font name and the scale that the font is to be used “at”. (When TEX
was invented, scalable fonts were not yet widely available or used, so from the point of view of TEX,
Times Roman at 10pt and Times Roman at 10pt scaled by a factor of 1.2 are two different fonts.) The
actual bit maps giving the glyph shapes of the characters need to come from elsewhere, and that is
totally up to the DVI rendering program. Traditionally, a companion program to TEX called META-
FONT would be used to generate bitmapped fonts from algebraic descriptions of the glyph shapes,
and it is customary for DVI processors to be able to read these bitmapped fonts, which are typically
in a compressed format called PK [12]. Of course, DVI processing programs are free to use whatever
source of fonts is convenient, and there are various DVI renderers that use PostScript Type 1 fonts
or even TrueType fonts instead of or in addition to PK-format bitmapped fonts. (There are tools that
will generate appropriate PK fonts from Type 1 or TrueType fonts for the use of renderers that can-
not access the scalable formats directly.) A discussion of the merits of these different approaches is
outside the scope of this paper.

The TEX program itself, when typesetting, concerns itself only with the metrics of the glyphs in
a font rather than their appearance. It considers every glyph as a box of given dimensions, and
these boxes are put together with “glue” (varying amounts of white space) to form lines, paragraphs
and pages. It is important to note that the box for a given glyph is usually roughly coincident with
a “bounding box” for the glyph in the sense that all the pixels of the glyph are contained within
its box, but this is not necessarily the case; for example, an italic “f ” often exceeds the dimensions
specified for its box as visible to TEX. TEX obtains the metrics it uses for typesetting from special
“TFM” (or TEX font metric) files. In addition to character dimensions, TFM files contain ligature tables
(for transformation of certain character pairs such as “f”-”f” into special single-character glyphs) and
kerning tables (which optimize the spacing of pairs of adjacent characters such as “AV” or “OT”).

A fairly new addition to TEX are “virtual fonts” [6], which make it possible to re-encode other
fonts or generate new glyphs on the fly by pulling glyphs from other fonts (possibly with scaling)
and combining them into new characters. Glyphs in virtual fonts are represented by short snippets
of “DVI machine code” largely similar to that found in DVI files proper. To TEX, virtual fonts are
presented via ordinary TFM files, but DVI renderers must be able to process the actual character
definitions, which are contained in “VF” files. Virtual fonts are essential for processing PostScript
Type 1 fonts in LATEX, among other things.

The basic unit of measurement in TEX is the “scaled point”, which is 1/65536 of a printer’s point,
of which there are 72.27 to the inch (PostScript uses what TEX calls “big points”—72 to the inch). So
one scaled point, at 5.3 nm (less than the wavelength of visible light) is a much smaller dimension
than current printing technology can handle. One consequence of this that DVI rendering programs
need to deal with is that the positions given in a DVI file must necessarily be rounded to the much
coarser resolutions that available technology gives us (such as 600 DPI for popular low-cost laser
printers). Unfortunately, while the human eye cannot discern a simple difference of a few pixels at
600 DPI, shifted glyphs within a word due to rounding errors are quite obvious (and undesirable).
The TEX approach to this problem is to maintain the “pixel” position on the page independently

2



from the “official” position measured in scaled points. While a single word is typeset (defined as a
sequence of characters separated by “small” spaces according to a notion of “small” dependent on the
current font size), glyphs are positioned according to their widths measured in output device pixels
rather than their widths measured in scaled points. The accumulated difference between the device
pixel position and the position from the DVI file is carried along until the next inter-word space,
where a correction is, again, invisible. There is a canonical algorithm for this which is explained
in [7].

Another important observation is that DVI files contain no provision for graphics other than ob-
long rules, which are generally used for horizontal or vertical lines. There are no primitives for lines
of arbitrary slope, curves, circles, filled shapes or anything—a restriction that probably stems from
the capabilities of the phototypesetters available to Knuth when TEX was developed. However, there
is a “back door”: TEX contains a \special{ argument} command whose argument is written literally
to the DVI file. Many DVI renderers have used this to implement additional graphic primitives as
well as inclusion of graphic files such as GIF or PostScript. In the meantime, there have been various
proposals for standards for extending the graphics capabilities of TEX DVI files, but no consensus has
been reached [10]; however, attempts to introduce a certain amount of abstraction at the document
level, e. g., for LATEX, have been moderately successful [3].

Having concluded this whirlwind tour of the technicalities of TEX output, we can now summarize
the requirements on a DVI rendering program such as a previewer:

DVI file format The program must be able to open a DVI file, obtain any pertinent information
describing the file as a whole, to locate a given page in the file and to “execute” the virtual
machine code for that page, keeping track of the proper values of all the virtual machine’s
registers etc.

Fonts The program must be able to locate the PK (or whatever) files giving the bit maps for the
glyphs used in the document. In the absence of a suitable file, the font’s TFM file should be used
to be able to introduce the proper amount of white space that would otherwise be occupied by
the unavailable characters. If possible, a generic font can be used to show at least the characters
that are supposed to show up, if not the correct glyphs. Virtual fonts should be supported.

Rounding The program must implement the canonical rounding algorithm for pixel positions (or
something equivalent).

Graphics It would be nice if the program could deal with the most popular styles of specifying
graphics, such as PostScript inclusion. (Depending on the availability of a PostScript engine
such as Ghostscript, this may be quite a difficult job.)

3 The Architecture of TkDVI

The main goal behind the TkDVI project is to provide not only a state-of-the-art TEX previewer, but
also a flexible platform for experiments with DVI previewing in general. The DVI-handling func-
tionality should be packaged in a manner that would make it usable not only by the TkDVI program,
but by other Tcl/Tk programs that want to handle DVI files (one might imagine a World-Wide Web
browser offering transparent support for both HTML and DVI documents). It would be even bet-
ter if the basic functionality could be made available in a library that would not rely on direct help
from Tcl, in order to be usable with other programming languages as well. For example, Tk is pop-
ular as a graphics toolkit for other languages such as Perl, Python or Scheme, and the design of the
DVI-handling code in TkDVI should not preclude its use with Tk in a non-Tcl environment.

The main functional units within TkDVI (see figure 1) consist of a DVI file handler, a DVI code
handler, a DVI code interpreter, the font subsystem and a renderer which is specific to the targeted
graphics system. The DVI file handler is responsible for loading DVI files and making their content
accessible to the DVI code handler. The DVI code handler, on the other hand, locates individual
pages within a glob of DVI code (usually, but not restricted to, the content of a DVI file) and exports

3



DVI
File

Handler

DVI
Code

Handler

DVI
Code

Interpreter

Font
subsystem

RendererTcl interface (“glue”)

Application (“TkDVI”)

PK

VF

TFM

Figure 1: Main functional units within TkDVI. The arrows denote the direction of procedure calls.

DVI
File

Handler

DVI
Code

Handler

DVI
Code

Interpreter

Font
subsystem

Renderer

Application (“TkDVI”)

PK VF TFM

Tcl interface (“glue”)

Tcl

Tcl-aware C

C (library)

wish

Tcl
extension

(dynamically
loadable)

Figure 2: Implementation structure of TkDVI

an interface for finding particular pages by page number. This in turn is used by the DVI code inter-
preter, which parses and executes DVI code and calls user-specified routines to deal with positioning
glyphs and rules on a page and executing \special commands. The DVI code interpreter calls the
font subsystem to obtain the metric information for rendering glyphs; the font subsystem also sup-
plies glyph bitmaps and metrics to the rendering system. All these subsystems—file handler, code
handler and code interpreter—are designed to support multiple instances of files, code and inter-
preters. This makes it easy to display multiple pages from multiple DVI files in multiple windows.
The font subsystem maintains a pool of loaded fonts which can be shared between DVI interpreters,
thus a font that is used in several different DVI files needs to be loaded in memory only once.

The rendering subsystem’s task is to display glyphs and rules at appropriate positions on the
page, and to interpret \special commands found in the DVI file. All the knowledge of the output
device is encapsulated here. TkDVI’s renderer is, of course, designed with Tk and X11 in mind,
but it would be straightforward to re-target it to a different graphics system or use the underlying
functionality as the basis for a printer driver.

For most of the DVI-handling subsystems there is “glue code” to make their functionality avail-
able to Tcl programs. This is necessary to connect TkDVI’s user interface—which is written in Tcl—to
the actual DVI-handling code, but another important aspect of this is to be able to exercise the various
parts together and in isolation for debugging. Tcl contains support for regression testing, and one of
the goals of TkDVI is to allow extensive automatic testing of the DVI-handling parts. Therefore there
are various Tcl commands and subcommands that allow examination and consistency checks of the
internal C language datastructures. TkDVI comes with a regression test suite which is unfortunately
not as complete as it could be, but is a great boon even in its current state.

4 The Implementation of TkDVI

4.1 Overview

From the implementation point of view, TkDVI can be divided into two parts: the user interface (in
Tcl) and the underlying DVI machinery (in the C language). The latter can be further subdivided into

4



the actual DVI-handling code and the Tcl-specific interface code (Fig. 2). The idea is to separate the
Tcl-specific code from the general DVI-handling code in order to make it easier for interested parties
to provide bindings to other scripting languages such as Perl or Python (the author, sadly, lacks the
time to perform his own experiments but would be happy to hear from anybody attempting this).

We will examine the various subsystems outlined in the previous section one after the other, and
point out some of the peculiarities and implementation decisions underlying each.

4.2 The DVI File and Code Handlers

TkDVI draws a distinction between DVI files and DVI interpreters. In particular, more than one DVI
interpreter can work on the same DVI file, which is necessary to be able to display the same file sev-
eral times without having to load it into memory more than once. TkDVI makes a further distinction
between DVI files and DVI code, where a DVI file is viewed mostly as an unstructured chunk of bytes,
and “DVI code” is an abstraction that knows about individual pages, the parameters used to set up
appropriate scaling for the metrics and so on. This separation is not strictly necessary for the oper-
ation of TkDVI, but it takes into account the notion that DVI code does not necessarily come from a
DVI file. For example, it would be possible to use TkDVI as part of a near-WYSIWYG TEX implemen-
tation where a TEX compiler and previewer are more tightly coupled as usual, or to use TkDVI as a
back-end for a simple interactive word processor based on TEX fonts. At the moment there is no API
support for this but it may be introduced in a later version as the need arises.

The most important aspect of the DVI file handler is a function which is responsible for loading a
file by name. Since it is possible to access the same file several times, the function checks whether the
file is already open and, if this is the case, returns a new reference to it without opening it a second
time. For efficiency, on systems that support the mmap() system call, the DVI file is mapped directly
into the TkDVI process’s virtual address space. It can then be treated as a big random-access array
of bytes, which is much more convenient than reading it byte-wise and seeking back and forth on
the file. TkDVI also keeps track of when a file was loaded, in order to be able to find out if the file
has been updated (e. g., by a TEX run) and to reload the file contents if necessary. There is a callback
mechanism to notify users of the file in this case—for example, if pages from the file are currently
being displayed they need to be re-rendered. There is also (among other things) a function that
“closes” a DVI file; the file is only removed from memory when it has been closed as many times as
it was loaded before.

Activities beyond making the DVI file contents accessible are left to the DVI code handler. The
DVI code handler is usually invoked after a DVI file has been opened. It locates individual pages
in the file and pre-scans the file for font definitions and \special commands (see below). It is
important to note that the code is scanned from the front, so the mechanism can deal with DVI files
that have not yet been completely written out. (The current Web2C TEX implementation contains a
largely-undocumented facility for using a socket to pass DVI output to another program [2]; since
it is simple to write socket servers in Tcl this will be investigated further in due course.) During
the pre-scan, the DVI code handler constructs a “page table” which allows random access to every
page according to its absolute position in the sequence of pages that makes up the DVI file. It also
translates from TEX page numbers as found in the DVI file to absolute page numbers; this is important
since TEX page numbers are not necessarily unique in a file.

4.3 The DVI Interpreter

A DVI interpreter operates on pages of DVI code as furnished by the DVI code handler. It is usually
called from the renderer (see below) whenever a DVI page must be displayed, for example because
the content of a window needs to be refreshed or updated. The DVI interpreter serves as a “virtual
machine” that executes DVI operation codes for movement, placing of glyphs and rules and so on.
Its main task is to keep track of the current position on the page both in terms of DVI dimensions
(usually TEX “scaled points”) and in terms of pixel positions of the output device; the more difficult
job of actually rendering glyphs and rules is delegated back to the renderer by means of callback
functions. Font metrics are obtained from TFM files as required, and the canonical algorithm is used

5



to avoid ugly pixel position mismatches in sequences of glyphs. Virtual fonts, which are essentially
DVI code “macros”, are implemented by recursive calls to the DVI interpreter from within itself. This
means that the maximum stack depth as specified in the DVI file may not be sufficient to actually
render the document; for this reason the size of the actual stack is increased by “a bit”, and if this
isn’t enough it can also be increased further as the need arises, while the interpreter is running.

4.4 The Font Subsystem

Both the DVI interpreter and the renderer need access to font information. While the DVI interpreter
uses the width of glyphs for position updates, the renderer must be able to construct the actual glyphs
in order to display them on the page. The TkDVI font subsystem maintains a “font repository” which
is capable of holding different types of fonts at different resolution and making metrics and glyph
information available to other parts of the code. Currently, TkDVI supports PK fonts and virtual
fonts directly; it can read TEX font metric (TFM) files to obtain correct positioning if a needed font is
not available. The font subsystem is designed to be extensible, so it would not be difficult in principle
to support other font formats such as GF (METAFONT’s immediate output format), PostScript Type 1
or TrueType (possibly via the FreeType library for which there is Tcl support); the only condition is
that there must be some means of converting the external font representation to a bitmap, which
can then be passed to the renderer. As with DVI files, the same font can be used simultaneously by
many DVI interpreters working from a single copy in memory. The font subsystem uses the standard
“Kpathsea” library [1] to locate font files in the file system according to a specification of the output
device’s resolution and METAFONT mode; Kpathsea also converts Type 1 or TrueType fonts to PK
fonts as needed, so they can be used indirectly by TkDVI.

4.5 The Renderer

DVI support for Tk can be implemented in two different ways. The more obvious method uses a
“DVI widget”, which is similar to other Tk widgets such as the button , text or canvas widgets in
that it occupies an X11 window of its own as a first-class member of a Tk interface. (This approach
was used in a former prototype of TkDVI.) Another possibility is to implement DVI support as a
Tk image type, which is then available through Tk’s image create command. In this method, DVI
pages do not appear as widgets but can be included in all Tk widgets where a Tk image is allowed,
such as the button , label , or, most notably, the canvas widget. The main advantage of this ap-
proach is that several DVI pages can share the same canvas , and can also be mixed with the more
usual canvas features such as structured graphics items, other images or even full-blown embedded
Tk widgets. For example, it is possible to embed forms or interactive graphs in a DVI page.

The TkDVI renderer is based on boilerplate code from the Tk distribution and implements both a
set of data structures and callback functions required by Tk for the management of an image type and
another set of callback functions for use by the underlying DVI interpreter. Each DVI image “mas-
ter” has an associated DVI interpreter and a “current page” which it displays, possibly in multiple
different windows at the same time. The current page number can be queried and changed from Tcl
to allow paging back and forth in the DVI code. The TkDVI renderer works in a manner similar to the
popular xdvi previewer; it uses comparatively high-resolution fonts—normally fonts for a 600-dpi
laser printer—internally but scales the glyphs down for display by an arbitrary integer scaling factor.
Anti-aliasing is employed to improve the quality of the scaled glyphs.

The main problem with TkDVI’s images is that they are opaque; their background is filled with
the background color specified for the widget. It would be nice if one could set a “transparent” back-
ground such that only the character glyphs would be painted, similar to the other canvas graphics
items such as rectangles which support -background {} , but this is difficult due to the way glyphs
are put on the page. Right now, in order to anti-alias the glyphs, the renderer uses X images where
the color for each pixel is determined by interpolating between the background and foreground col-
ors of the image. These images are then transferred to the page. In order to support “transparent”
display; the glyph-to-X-image mechanism would need to be rethought.

6



Figure 3: The TkDVI User Interface: Single-page mode (left), Overview mode (right)

4.6 The User Interface

TkDVI’s user interface is patterned loosely on the gv GhostScript front-end by Johannes Plass [11].
For example, it sports a “page selector” that displays a document’s page numbers and lets the user
jump to any page by clicking on its number with the mouse. It is also possible to select individual
pages for printing using dvips . A DVI image is displayed in a big window and can be scrolled
either by means of scroll bars or by directly dragging the window contents. A mouse button pops
up a “magnifier” similar to that in xdvi , so part of the page can be examined more closely; various
sizes of magnifier are accessible by holding the Shift or Control keys when the button is pressed. It is
interesting to note that the enlarged image is implemented by opening a new DVI image in another
window displaying the same page of the same file, but without shrinking. This window is designated
an “override-redirect” window—it remains under TkDVI’s control rather than being taken over by
the X11 window manager—and tracks the current position on the shrunken page just as in xdvi .
Even though all the event handling and window positioning is passed through Tcl, this is not visibly
slower than the corresponding feature in xdvi . There are buttons to page back and forth, and the
DVI window can be scrolled and paged using key shortcuts as well.

Another unusual feature of TkDVI’s user interface is the display of two-page spreads and “over-
views” showing an array of tiny page images. The former uses a double-width window and allows
the viewer to judge the appearence of two facing pages as in a book, while the paging mechanism
adjusts to this by moving two pages at a time rather than one. The latter gives a high-level overview
of a document that makes it easy to survey the placement of floating objects, while allowing the user
to move easily to any displayed page simply by clicking on it. All of this is made possible through
the judicious distribution of Tk DVI images on a canvas.

The possibility of superimposing Tk structured graphics on a DVI image is exemplified by the
“measuring device”. A position on the page can be fixed by a mouse click; subsequent dragging of
the mouse shows a “rubber line” from the current position to the original point, while the distance
from the current position to the original is displayed in a choice of units of measurement. This is
easily implemented at the Tcl level using appropriate button press, release and motion bindings.

The author is not entirely happy with the way the interface has turned out; fortunately Tcl makes
it easy to experiment with alternative styles, and it is expected that TkDVI’s user interface will grav-
itate towards one more like that of Adobe Acrobat Reader (while trying to avoid some of that pro-

7



gram’s drawbacks).
The ease with which the program’s user interface can be enhanced through Tcl cannot be over-

stated. For instance, after a presentation on LATEX-based hypertext features at EuroTeX’99, including
the PDF feature of “bookmarks” that make it easy to jump to the beginning of chapters or sections in
the document, an experimental implementation of DVI-based bookmarks for TkDVI could be com-
pleted during the conference, in the space of about two hours. The amount of work this would have
taken for a C-based previewer like xdvi is unpleasant to contemplate, but Tcl lends itself well to
casual user-interface hacks such as this.

5 \special Commands

An enticing feature of a Tcl-based previewer is more flexible handling of TEX \special commands,
which can be used to communicate directly with a DVI driver from a TEX manuscript. In TkDVI,
the execution of \special s is in the domain of the renderer, which must supply a callback func-
tion to the DVI interpreter for the purpose. TkDVI’s renderer understands a number of \special
commands directly and calls a Tcl procedure from the user interface to handle the rest. This makes it
possible to include arbitrary Tcl code in \special commands.

The most obvious application for this is to push out graphics inclusion to the Tcl side of the pro-
gram, where it can be performed using canvas primitives, Jan Nijtmans’ Img extension, or external
programs such as Ghostscript, but it also opens the way to DVI files containing forms, interactive
elements or World-Wide Web links. Of course it must be considered that device-specific extensions
such as these go against the notion of a “device-independent” file format, but they can nevertheless
be useful in some circumstances. In particular, inclusion of PostScript graphics would be a very de-
sirable feature, if only for compatibility to existing programs like xdvi . It turns out that the facilities
of the Img extension are difficult to use directly for this purpose: Img renders PostScript by invoking
an external Ghostscript process for each image which generates a “portable pixmap” (PPM) file cor-
responding to the PostScript input. This PPM file is then read by Tk using the existing method for the
format. To support PostScript graphics at a level comparable to xdvi , it should be possible to honor
the scaling and rotation specifications given for an embedded PostScript file in the DVI \special ,
but this is partly outside the facilities of Img . Besides, for a document containing lots of embedded
pictures, forking an external PostScript interpreter for every single image would be very inefficient.
The xdvi previewer renders PostScript by sending commands to a single instance of Ghostscript (or
another Postscript engine) which then outputs directly to xdvi ’s X11 window. While this approach
is not without its problems even in xdvi —for example, if one switches to another page while the ex-
ternal Ghostscript process is busy rendering an image, chances are that one will end up with half the
picture on the new page—it would be even more difficult to support for TkDVI, due to the double-
buffering nature of the Tk canvas and the fact that many pages may be displayed simultaneously.
Possibly the most promising approach to this problem would be to adopt an intermediate solution
where a single Ghostscript process would be employed to render pictures directly into off-screen
pixmaps, which could then be displayed using the standard Tk image mechanisms. Such a method
could be packaged as a Tk image type external to TkDVI and would probably be useful to other
programs as well.

Another straightforward application of the \special mechanism are “source specials”, which
correlate locations in the DVI file with input file names and lines and make it possible to jump from
a position in the DVI window to the approximate place in the corresponding TEX manuscript. For
this, the previewer must know how to communicate the input file name and line number from the
\special to the editor, and Tcl makes this easy to do and configure.

An important issue in connection with arbitrary Tcl statements in DVI files concerns security:
what if a DVI file contains evil Tcl commands that will, say, try to format a viewer’s hard disk?
The answer to this is to arrange for Tcl code from DVI files to be executed in a safe Tcl interpreter
from which potentially dangerous facilities have been removed. It is still possible to arrange for
limited access to Tk for this code, so the Tcl code in a \special could, for example, display graphics
within a specifically designated area on the page. The issues involved in this are similar to the issues

8



surrounding programs such as the Tcl/Tk WWW browser plugin.

6 Tcl-ish issues

Nowadays, with various “flavors” of Tcl/Tk in use ranging from vintage 7.x/4.x to the most up-to-
date, it is often difficult for extension writers to decide which version of Tcl/Tk to target. TkDVI
requires at least Tcl/Tk 8.0 because it uses, as far as possible, the new “objectified” interface for the
glue code between Tcl and the internal DVI support procedures. Tk is not yet fully “objectified”, and
while a Tcl_Obj interface to the image subsystem has been released in Tk 8.3, at the time of writing
this paper the image code in the TkDVI renderer is still written to the old interface. TkDVI has been
tested with versions of Tcl/Tk ranging from 8.0 to 8.2, and no version-related problems could be
detected.

Another interesting issue is the management of extensions. Notionally, TkDVI consists of five
different modules. While all of these could be compiled and linked into individually loadable ex-
tensions, their interconnectedness makes this a bit silly. Right now all of TkDVI’s C code ends up in
a single loadable extension, which is the simplest approach; however, it would be desirable to split
off the Tk-related parts so that DVI tasks not related to rendering could be handled in a non-GUI
program. This would make TkDVI’s DVI-interpreting code more useful in a wider range of appli-
cations. The main obstacle to this is a general difficulty in setting up appropriate mechanisms for
compilation: Earlier versions of TkDVI used the libtool machinery to automate building sharable
libraries on various platforms, and this did not allow libraries that depended on other libraries being
built, as would have been the case if the Tk and Tcl portions of the previewer had been separate. The
current version no longer uses libtool (the abolition of which simplified the build environment to
an amazing degree), but the separation has not yet been reinstated. The author follows with great
interest the development of the TEA framework for compiled extensions to Tcl, and hopes to be able
to make the C portions of TkDVI TEA-compliant as soon as possible.

Finally, a recently-introduced feature of Tcl, stub libraries, make it easier to decouple compiled
extensions from the particular versions of Tcl they have been compiled for. No work has yet been
done to utilize this for TkDVI, but the author is fairly confident that this will be taken care of during
the TEAification of the package.

TkDVI currently consists of approximately 8400 lines of C code (including comments) and about
1100 lines of Tcl. Of the Tcl code, approximately 750 lines deal with the “browser”, the main TkDVI
user interface, and most of the rest (150 lines) is the implementation of the gv -style page selection
widget.

7 Future Plans and Possibilities

While TkDVI is already quite usable as a program, work on it is by no means finished. The most
glaring omission to date (March 2000) is the lack of a mechanism for the inclusion of PostScript
graphics.

At the C language level, an interesting area to look at deals with color. The requirements for
color management are set out succinctly in [13], and work is ongoing to re-cast and extend TkDVI’s
\special mechanism in the light of that paper. Basic color support has been implemented on a
prototypical basis, but limitations in the anti-aliasing procedure make it difficult to support cases
which are easily handled in a program such as dvips .

The user interface offers many fascinating possibilities, mainly through the flexibility of Tcl/Tk.
Some ideas that have been thrown around include an annotation mechanism for DVI files where a
viewer could mark up and comment the DVI material in different colors. The marks and comments
would then be written to another file which could be sent back to the original author. In connection
with “source specials”, this would make for a very powerful copyediting environment.

Color and a user interface modified for full-screen display would make TkDVI into a powerful
presentation tool, especially for mathematical material, which is notoriously mishandled by other
such programs. This could be augmented with animations, multimedia etc. through \special

9



commands. Since Tcl/Tk can handle multiple X11 displays at the same time, it would also be possible
to “project” such a presentation onto a number of screens in a classroom, controlled from the teacher’s
workstation.

Many of these applications can be supported by conventional DVI previewers only through mas-
sive development work at the systems programming level. A scripting language such as Tcl brings
such experiments within the compass of people who do not usually fancy hacking the innards of a
DVI previewer. The author would be pleased to hear from people who have used TkDVI in interest-
ing and unforeseen ways.

http://www.tm.informatik.uni-frankfurt.de/˜lingnau/tkdvi/

References

[1] Karl Berry. Kpathsea library. GNU Info file; see, for example, ftp://ftp.dante.de/
tex-archive/systems/unix/ , October 1997.

[2] Karl Berry. Web2c. GNU Info file; see, for example, ftp://ftp.dante.de/tex-archive/
systems/unix/ , December 1997.

[3] Michel Goossens, Sebastian Rahtz, and Frank Mittelbach. The LATEX Graphics Companion: Illus-
trating Documents with TEX and PostScript. Addison-Wesley, Reading, MA, 1997.

[4] Donald E. Knuth. The TEXbook. Addison-Wesley, Reading, MA, 1984.

[5] Donald E. Knuth. TEX: The Program. Addison-Wesley, Reading, MA, 1986.

[6] Donald E. Knuth. Virtual fonts: more fun for grand wizards. TUGboat, 11(1):13–23, 1990.

[7] Donald E. Knuth and David R. Fuchs. TEXware. Stanford Computer Science Report 1097, Stan-
ford University, April 1986. See in particular §84 and §85 of “DVItype”, which is available, e. g.,
from ftp://ftp.dante.de/tex-archive/systems/knuth/texware/.

[8] Leslie Lamport. LATEX, A Document Preparation System. Addison-Wesley, Reading, MA, 1986.

[9] Thomas Merz. Postscript & Acrobat/PDF: Applications, Troubleshooting and Cross-Platform Publish-
ing. Springer, 1997.

[10] NTG TEX future working group. TEX in 2003: Proposal for a \special standard. In Proc. of the
19th Annual TEX Users Group Meeting, pages 181–188, August 1998.

[11] Johannes Plass. gv (PostScript viewer). See http://wwwthep.physik.uni-mainz.de/
˜plass/gv/ .

[12] Tomas Rokicki. Packed (PK) font file format. TUGboat, 6(3):115–120, November 1985.

[13] Tomas Gerhard Rokicki. Driver support for color in TEX: Proposal and implementation. TUG-
boat, 15(3):205–212, September 1994.

10

http://www.tm.informatik.uni-frankfurt.de/~lingnau/tkdvi/
ftp://ftp.dante.de/tex-archive/systems/unix/
ftp://ftp.dante.de/tex-archive/systems/unix/
ftp://ftp.dante.de/tex-archive/systems/unix/
ftp://ftp.dante.de/tex-archive/systems/unix/
ftp://ftp.dante.de/tex-archive/systems/knuth/texware/.
http://wwwthep.physik.uni-mainz.de/~plass/gv/
http://wwwthep.physik.uni-mainz.de/~plass/gv/

	Introduction
	DVI Files: A Brief Overview
	The Architecture of TkDVI
	The Implementation of TkDVI
	Overview
	The DVI File and Code Handlers
	The DVI Interpreter
	The Font Subsystem
	The Renderer
	The User Interface

	special Commands
	Tcl-ish issues
	Future Plans and Possibilities

