ucharclasses v2.6

Mike “Pomax” Kamermans

October 21, 2022

Contents
1 Introduction

2 Use
2.1 Opverriding ucharclass transitions

3 Problems with RTL languages

4 Commands
4.1 \setTransitionTo[2]
4.2 \setTransitionFrom[2]
43 \setTransitions[3]
44 \setTransitionsForXXXX[2]
45 \setDefaultTransitions[2]

5 Code

6 Package options and Unicode blocks

1 Introduction

Sometimes you don't want to have to bother with font switching just because you're us-
ing languages that are distinct enough to use different Unicode blocks, but aren't covered
by the polyglossia package. Where normal word processing packages such as MS, Star-
or OpenOffice pretty much handle this for you, IAIgX (because it needs you to tell it what
to do) has no default behaviour for this, and so we arrive at a need for a package that does
this for us. You already discovered that regular IXIgX has no understanding of Unicode
(in fact, it has no understanding of 8-bit characters at all, it likes them in seven bits in-
stead), and ended up going for Xe(La)TeX as your TeX compiler of choice, which means
you now have two excellent resources available: fontspec, and ucharclasses.

The first of these lets you pick fonts based on what your system calls them, without
needing to rewrite them as MetaFont files. This is convenient. This is good. The second
lets you define what should happen when we change from a character in one Unicode
block to a character in another. This is also convenient, and paired with fontspec it offers
automatic fontswitching in the same way that normal Office applications take care of this
for you. With one big difference: you stay in control. In an Office application, if at some
point you need the switch rule to use a completely different rule, that's just too bad for
you. In Xe(La)TeX, you stay on top of things and still get to say exactly what happens,
and when.

For instance, this document has no explicit font codes in the text itself. Instead, there
are a few Unicode block transition rules defined, which all say “when entering block
..., use fontspec to change the font to ...”. As such, typesetting the following list in the
appropriate fonts just works:

English: This is an English phrase (using Palatino Linotype)
Japanese: HAZEMN D I A (using Ume Mincho)

Thai: guyanwsinguldlua (using IrisUPC)

Sinhala: mdesmdc dm 57 On Bwsim yodxie (using Iskoola Pota)
Malayalam: m1e368816S Galo@M @06 ? (using Arial Unicode MS)
and even domino tiles, E& (2 B8 BE EE EX (usin ‘ oe UI S mbol),

or mahjong tiles: (F] . DHEHE B E 8] (using Segoe UI Emoji)

However, be aware that this only “just works” for Unicode blocks. If you are working
with typographically overlapping languages, such as combining English and Vietnamese
in one document, things get a lot more complex if you want one font for English and
another for Vietnamese. Both of these languagese use Latin blocks, so it is inherently
impossible to tell which language is intended based on which Unicode block a character
in a word belongs to.

As an example, this document uses one rule for applying a font for general CJK, and
an override with a different font for all Japanese-specific CJK characters. This causes a
problem for Chinese, because both Japanese and Chinese mostly use characters from the
"CJK Unified Ideographs" block, but most Japanese fonts contain fewer characters than
are necessary to typeset Chinese:

Chinese, using the Japanese CJK font, which may have gaps: Z#JEF. 2. . (uses
Ume Mincho, which does not contain the three Chinese-specific characters used in
that phrase)

We can get around this by explicitly setting the font to one that supports Chinese,
turning off the switching rules for the stretch of Chinese text, using {\uccoff + a fontspec
rule + the text we wanted to typeset + \uccon}. This gives us: I EFIEEDE (This now
explicitly uses Han Nom A).

2 Use

In order to get this all to work, the only thing that had to be incidated was a set of tran-
sition rules in the preamble:

\usepackage{fontspec}

\newfontfamily{\defaultfont}{Code2000}
\newfontfamily{\latinfont}{Palatino Linotype}
\newfontfamily{\cjkfont}{HAN NOM A}
\newfontfamily{\japanesefont}{Ume Minchol}
\newfontfamily{\unifiedCJKfont}{SimSun-ExtB}
\newfontfamily{\thaifont}{IrisUPC}
\newfontfamily{\sinhalafont}{Iskoola Pota}
\newfontfamily{\malayalamfont}{Arial Unicode MS}
\newfontfamily{\dominofont}{Segoe UI Symbol}
\newfontfamily{\mahjongfont}{Segoe UI Emoji}

\usepackage [CJK, Latin, Thai, Sinhala, Malayalam,
DominoTiles, MahjongTiles]{ucharclasses}

\setDefaultTransitions{\defaultfont}{}

\setTransitionsForLatin{\latinfont}{}
\setTransitionsForCJK{\cjkfont}{}
\setTransitionsForJapanese{\japanesefont}{}
\setTransitionTo{CJKUnifiedIdeographsExtensionB}{\unifiedCJKfont}
\setTransitionTo{Thai}{\thaifont}
\setTransitionTo{Sinhala}{\sinhalafont}
\setTransitionTo{Malayalam}{\malayalamfont}
\setTransitionTo{DominoTiles}{\dominofont}
\setTransitionTo{MahjongTiles}{\mahjongfont}

By default, ucharclasses is agnostic with regard to what you want inserted at the start
or end of Unicode blocks, so while using this package for font switching is the most
obvious application, you could also use it for far more creative purposes.

2.1 Overriding ucharclass transitions

If you need to “override” ucharclass transition rules (for instance, you want a custom font
for a bit of cross-Unicode-block text), you will want to temporarily disable and reenabled
XeTeX's interchartoks state. You can do this in three ways:

1. call [\ XeTeXinterchartokstate = 0] before, and [\ XeTeXinterchartokstate = 1] after
you're done,

2. call the macros \disableTransitionRules before, and \enableTransitionRules after
you're done, or

3. call \uccoff before, and \uccon after you're done.

This last option is mainly there because it's nice and short, and is more convenient in
a scoped environment {\ uccoff such as this\ uccon} where you only want to override the
transition behaviour within a paragraph. If you need it disabled for a few blocks of text
instead, the full name commands are probably a better choice, because it makes your .tex
more readable. As the base XeTeX command uses the unl&TgXy “... = ...” construction,
it's best to avoid it outside of the preamble (and when using ucharclasses, should not be
in the preamble at all).

3 Problems with RTL languages

The overlapping block problem is especially notable when using RTL/LTR rules for lan-
guages such as Arabic or Hebrew. While you would want to be able to specify something
along the lines of:

\ setTransitionsForArabics{\ arabicfont\ setRTL}{\ setLTR}

this will not work, because Arabic (and Hebrew, and other RTL languages) has things
like spaces in it, and so rather than ending with a full sentence that starts with \setRTL,
then the Arabic text, and then finally \setLTR, every word in the Arabic sentence will be
wrapped by \setRTL and \setLTR, effectively getting the typesetting all wrong, because
going from Arabic to a space character “leaves” the Arabic block, so the transition rule
for leaving the Arabic block is applied.

If you need script support, rather than Unicode blocks, you may want to have a look
at the polyglossia package instead. You can try to combine the two packages by relying
on \uccoff and textbackslash uccon to turn off Unicode block transitions inside regions
of text, but this may not always work, or may have interesting interaction side-effects.

4 Commands

4.1 \setTransitionTo[2]

This command has two arguments:

1. The name of the Unicode class to which the transition should apply (see 'Unicode
blocks' list)
2. The code you want used when entering this Unicode block

4.2 \setTransitionFrom[2]

This command has two arguments:

1. The name of the Unicode class to which the transition should apply (see 'Unicode
blocks' list)
2. The code you want used when exiting this Unicode block

4.3 \setTransitions[3]

This command has three arguments:

1. The name of the Unicode class to which the transition should apply (see 'Unicode
blocks' list)

2. The code you want used when entering this Unicode block

3. The code you want used when exiting this Unicode block

4.4 \setTransitionsForXXXX][2]

There are a number of these commands, pertaining to particular “informal groups”: col-
lections of Unicode blocks which can be considered part of a single meta-block. Available
informal groups (the names of which replace the XXXX in the section-stated command)
are:

Arabics
CanadianSyllabics
CherokeeFull
Chinese

CJK

Cyrillics
Devanagari
Diacritics
EthiopicFull
GeorgianFull
Greek
Japanese
Korean

Latin
Mathematics
MongolianFull
MyanmarFull
Phonetics
Punctuation
SundaneseFull
Symbols
SyriacFull
VedicMarks

Yi

Furthermore, these commands have two arguments:

1. The code you want used when entering blocks from the command's informal group

2. The code you want used when exiting blocks from the command's informal group
4.5 \setDefaultTransitions[2]

This is a blanket command that lets you set up the same to and from transition rules for
all blocks in one go. It has (fairly obviously) two arguments:

1. The code you want used when entering any Unicode block
2. The code you want used when exiting any Unicode block

5 Code

The code relies on running through individual definition blocks for each Unicode blocks,
conditioned to whether ucharclasses is loaded with package options or not:

\newif\if@overrideClassLoading
\newcommand{\overrideClassLoading}{\@overrideClassLoadingtrue
\let\overrideClassLoading\relax}

\def\do#1#2#3{\DeclareOption{#1}/
{\overrideClassLoading\expandafter\let\csname enable#l\endcsname\@emptyl}}

% We execute the list with this definition of \do

\AllClasses

The classes are automatically numbered by using the \newXeTeXintercharclass com-
mand, and every time a new class is defined, the class counter goes up. After all desired
classes have been defined, the code iterates over the class numbers from lower bound to
upper bound.

The block loading code is defined as follows:

\chardef\@classstart=\xe@alloc@intercharclass

\providecommand\@gobblethree [3]{}
\def\do#1{Y%
\ifcsname enable#1\endcsname
\expandafter\@defineUnicodeClass
\else
\expandafter\@gobblethree
\fi{#1}}

\def\@defineUnicodeClass#1#2#3{/,
\if@ucharclassverbose\typeout{Defining #1 Class}\fi
\expandafter\newXeTeXintercharclass\csname #1Class\endcsname
\count@=#2
\loop
\if@ucharclassverbose

\typeout{\XeTeXcharclass\number\count@=
\expandafter\string\csname #1Class\endcsnamel},
\fi
\XeTeXcharclass\count@=\csname #1Class\endcsname
\ifnum\count@<#3
\advance\count@\@ne
\repeat

And the transition commands are defined as follows:

\def\setTransitionsFor#1#2#3{Y%
\ifcsname enable#1\endcsname
\count@=\Q@classstart
\loop\ifnum\count@<\@classend
\advance\count@\@ne
\ifnum\count@=\csname #1Class\endcsname\else
\XeTeXinterchartoks\count@ \csname #1Class\endcsname={#2}},
\XeTeXinterchartoks\csname #1Class\endcsname \count@={#3}}
\fi
\repeat
\XeTeXinterchartoks\@ucharclass@boundary\csname #1Class\endcsname={#2}}
\XeTeXinterchartoks\csname #1Class\endcsname\@ucharclass@boundary={#31}7
\else
\if@ucharclassverbose
\PackageWarningNoLine{ucharclasses}{Class #1\MessageBreak
not loaded}’
\fi
\fi
}

\def\setTransitionTo#1#2{
\ifcsname enable#1\endcsname
\count@=\@classstart
\loop\ifnum\count@<\@classend
\advance\count®@\@ne
\ifnum\count@=\csname #1Class\endcsname\else
\XeTeXinterchartoks\count@ \csname #1Class\endcsname={#2}/,
\fi
\repeat
\XeTeXinterchartoks\Qucharclass@boundary\csname #1Class\endcsname={#21}7,
\else
\if@ucharclassverbose
\PackageWarningNoLine{ucharclasses}{Class #1\MessageBreak
not loaded},
\fi
\fi
}

\def\setTransitionFrom#1#2{%
\ifcsname enable#1\endcsname

\count@=\Q@classstart

\loop\ifnum\count@<\@classend
\advance\count@\@ne
\ifnum\count@=\csname #1Class\endcsname\else

\XeTeXinterchartoks\csname #1Class\endcsname \count@={#2}/

\fi

10

\repeat

\XeTeXinterchartoks\csname #1Class\endcsname\Qucharclass@boundary={#21}7
\else

\if@ucharclassverbose

\PackageWarningNoLine{ucharclasses}{Class #1\MessageBreak
not loaded},

\fi

\fi
}

The broad level \setTransitionsFor(InformalGroupName)[2] commands are essen-
tially wrapper commands, calling \setTransitionsFor for each blocks that is in the infor-
mal group. For Arabic, for instance, uses the following code:

\def\doclass#1{%
\expandafter\noexpand\csname setTransitionsFor#1\endcsname{####1}{####2}}
\begingroup\edef\x{\endgroup
\noexpand\newcommand\noexpand\setDefaultTransitions[2]{%
\ClassGroups}}\x

\doclass{Arabics}

11

6 Package options and Unicode blocks

The following Unicode blocks are available for use in transition rules (corresponding to
Unicode version 15.0), as well as for use as package options when you want ucharclasses
to only load those classes that you know are used in your document.

Starting with XeTeX version 0.99994 (available in TeXLive 2016), the number of \ Xe-
TeXcharclass registers was extended from 256 to 4096; some not so important blocks are
thus provided only for this and newer versions; in the list below, those blocks are put
into parentheses.

(Adlam) (Carian)

AegeanNumbers CaucasianAlbanian

(Ahom) Chakma

AlchemicalSymbols Cham

AlphabeticPresentationForms Cherokee

(AnatolianHieroglyphs) CherokeeSupplement
AncientGreekMusicalNotation (ChessSymbols)
AncientGreekNumbers (Chorasmian)

AncientSymbols CJKCompatibility

Arabic CJKCompatibilityForms
ArabicExtended A CJKCompatibilityldeographs
ArabicExtendedB CJKCompatibilityldeographsSupplement
ArabicExtendedC CJKRadicalsSupplement
ArabicMathematical AlphabeticSymbols CJKStrokes
ArabicPresentationFormsA CJKSymbolsAndPunctuation
ArabicPresentationFormsB CJKUnifiedIdeographs
ArabicSupplement CJKUnifiedIdeographsExtensionA
Armenian CJKUnifiedIdeographsExtensionB
Arrows CJKUnifiedIdeographsExtensionC
Avestan CJKUnifiedIdeographsExtensionD
Balinese CJKUnifiedIdeographsExtensionE
Bamum CJKUnifiedIdeographsExtensionF
BamumSupplement CJKUnifiedIdeographsExtensionG
BasicLatin CJKUnifiedIdeographsExtensionH
BassaVah CombiningDiacriticalMarks

Batak CombiningDiacriticalMarksExtended
Bengali CombiningDiacriticalMarksForSymbols
(Bhaiksuki) CombiningDiacriticalMarksSupplement
BlockElements CombiningHalfMarks

Bopomofo CommonIndicNumberForms
BopomofoExtended ControlPictures

BoxDrawing Coptic

Brahmi CopticEpactNumbers

BraillePatterns CountingRodNumerals

Buginese Cuneiform

Buhid CuneiformNumbersAndPunctuation

ByzantineMusicalSymbols

12

CurrencySymbols

CypriotSyllabary
(CyproMinoan)

Cyrillic

CyrillicExtended A
CyrillicExtendedB
CyrillicExtendedC
CyrillicExtendedD
CyrillicSupplement
Deseret

Devanagari
DevanagariExtended
DevanagariExtended A
Dingbats

(DivesAkuru)

(Dogra)

DominoTiles

(Duployan)
(EarlyDynasticCuneiform)
EgyptianHieroglyphs
(EgyptianHieroglyphFormatControls)
Elbasan

(Elymaic)

Emoticons

Enclosed Alphanumerics
Enclosed AlphanumericSupplement
EnclosedCJKLettersAndMonths
EnclosedldeographicSupplement
Ethiopic

EthiopicExtended
EthiopicExtended A
EthiopicExtendedB
EthiopicSupplement
GeneralPunctuation
GeometricShapes
GeometricShapesExtended
Georgian
GeorgianExtended
GeorgianSupplement
Glagolitic
GlagoliticSupplement
(Gothic)

Grantha

GreekAndCoptic
GreekExtended

Gujarati

(GunjalaGondi)

Gurmukhi

13

HalfwidthAndFullwidthForms
HangulCompatibilityJamo
HangulJamo
HangulJamoExtended A
HangulJamoExtendedB
HangulSyllables
(HanifiRohingya)
Hanunoo

(Hatran)

Hebrew

Hiragana
IdeographicDescriptionCharacters
IdeographicSymbolsAndPunctuation
Imperial Aramaic
(IndicSiyagNumbers)
InscriptionalPahlavi
InscriptionalParthian
IPAExtensions

Javanese

Kaithi
(KaktovikNumerals)
KanaExtended A
KanaExtendedB
KanaSupplement

Kanbun

KangxiRadicals

Kannada

Katakana
KatakanaPhoneticExtensions
(Kawi)

KayahLi

(Kharoshthi)
(KhitanSmallScript)
Khmer

KhmerSymbols

Khojki

Khudawadi

Lao

LatinExtended Additional
LatinExtended A
LatinExtendedB
LatinExtendedC
LatinExtendedD
LatinExtendedE
LatinExtendedF
LatinExtendedG
LatinSupplement

Lepcha

LetterlikeSymbols

Limbu

LinearA

LinearBldeograms
LinearBSyllabary

Lisu

(LisuSupplement)

(Lycian)

(Lydian)

Mahajani

MahjongTiles

(Makasar)

Malayalam

Mandaic

(Manichaean)

(Marchen)

(MasaramGondi)

Mathematical AlphanumericSymbols
MathematicalOperators
(MayanNumerals)

(Medefaidrin)

MeeteiMayek
MeeteiMayekExtensions
MendeKikakui

MeroiticCursive
MeroiticHieroglyphs

Miao
MiscellaneousMathematicalSymbolsA
MiscellaneousMathematicalSymbolsB
MiscellaneousSymbols
MiscellaneousSymbolsAnd Arrows
MiscellaneousSymbolsAndPictographs
MiscellaneousTechnical

Modi

ModifierToneLetters

Mongolian

MongolianSupplement

Mro

(Multani)

MusicalSymbols

Myanmar

MyanmarExtended A
MyanmarExtendedB

(Nabataean)

(NagMundari)

(Nandinagari)

14

(Newa)

NewTaiLue

NKo

NumberForms
(NyiakengPuachueHmong)
(Nushu)

Ogham

OIChiki

(OldHungarian)
(OldItalic)
(OldNorthArabian)
(OldPermic)

OldPersian

(OldSogdian)
(OldSouthArabian)
(OldTurkic)

(OldUighur)
OpticalCharacterRecognition
Oriya
OrnamentalDingbats
(Osage)

Osmanya
(OttomanSiyaqNumbers)
PahawhHmong
(Palmyrene)

PauCinHau

PhagsPa

(PhaistosDisc)
Phoenician
PhoneticExtensions
PhoneticExtensionsSupplement
PlayingCards
PrivateUseArea
(PsalterPahlavi)

Rejang
RumiNumeralSymbols
Runic

Samaritan

Saurashtra

Sharada

Shavian
(ShorthandFormatControls)
Siddham

Sinhala
SinhalaArchaicNumbers
SmallFormVariants
SmallKanaExtension

(Sogdian)

SoraSompeng

(Soyombo)
SpacingModifierLetters
Sundanese
SundaneseSupplement
SuperscriptsAndSubscripts
Supplemental ArrowsA
Supplemental ArrowsB
Supplemental ArrowsC
SupplementalMathematicalOperators
SupplementalPunctuation
SupplementalSymbolsAndPictographs
(SupplementaryPrivateUseAreaA)
(SupplementaryPrivateUseAreaB)
(SuttonSignWriting)

SylotiNagri
SymbolsAndPictographsExtended A
(SymbolsForLegacyComputing)
Syriac

SyriacSupplement

Tagalog

Tagbanwa

Tags

TaiLe

TaiTham

TaiViet

TaiXuanJingSymbols

Takri

Tamil

(TamilSupplement)

(Tangsa)

(Tangut)

(TangutComponents)
(TangutSupplement)

Telugu

Thaana

Thai

Tibetan

Tifinagh

Tirhuta

(Toto)
TransportAndMapSymbols
Ugaritic
UnifiedCanadianAboriginalSyllabics

Vai

VedicExtensions
VerticalForms

(Vithkugqi)

(Wancho)

WarangCiti

(Yezidi)

YiRadicals

YiSyllables
YijingHexagramSymbols
(ZanabazarSquare)
(ZnamennyMusicalNotation)

UnifiedCanadianAboriginalSyllabicsExtended
UnifiedCanadianAboriginalSyllabicsExtended A

15

In addition, the informal blocks for use as package option are:

Arabics
CanadianSyllabics
CherokeeFull
Chinese

CJK

Cyrillics
Devanagari
Diacritics
EthiopicFull
GeorgianFull
Greek
Japanese
Korean

Latin
Mathematics
MongolianFull
MyanmarFull
Phonetics
Punctuation
SundaneseFull
Symbols
SyriacFull
VedicMarks

Yi

16

	Introduction
	Use
	Overriding ucharclass transitions

	Problems with RTL languages
	Commands
	\setTransitionTo[2]
	\setTransitionFrom[2]
	\setTransitions[3]
	\setTransitionsForXXXX[2]
	\setDefaultTransitions[2]

	Code
	Package options and Unicode blocks

