\luadirect

The luacode package

Manuel Pégourié-Gonnard <mpg@elzevir.fr>

v1.2a 2012/01/23

Abstract

Executing Lua code from within TEX with \directlua can sometimes be tricky: there
is no easy way to use the percent character, counting backslashes may be hard, and Lua
comments don’t work the way you expect. This package provides the \luaexec command
and the luacode (*) environments to help with these problems, as well as helper macros and
a debugging mode.

Contents

1 Documentation 1
1.1 Luacodein ETEX o . e 1
1.2 Helper macros.o e 3
1.3 Debugging e e e e 3

2 Implementation 3
2.1 Preliminaries o o o e e e e e 4
2.2 Internal code e 5
2.3 Public macros and environmentso e e e 7

3 Test file 8

1 Documentation

1.1 Lua code in BETEX

For an introduction to the most important gotchas of \directlua, see lualatex-doc.pdf.
Before presenting the tools in this package, let me insist that the best way to manage a non-
trivial piece of Lua code is probably to use an external file and source it from Lua, as explained
in the cited document.

First, the exact syntax of \directlua has changed along version of LuaTgX, so this package
provides a \luadirect command which is an exact synonym of \directlua except that it doesn’t
have the funny, changing parts of its syntax, and benefits from the debugging facilities described
below (1.3)."

The problems with \directlua (or \luadirect) are mainly with TEX special characters.
Actually, things are not that bad, since most special characters do work, namely: _, =, &, $, {, }.
Three are a bit tricky but they can be managed with \string: \, # and ~. Only 7% is really hard

1 And expands in two steps instead of one. If you don’t know what it means, then you hopefully don’t need to.

mailto:mpg@elzevir.fr

\luaexec

luacode

luacodex*

to obtain. Also, TEX macros are expanded, which is good since it allows to pass information
from TEX to Lua, but you must be careful and use only purely expandable macros.

The \luaexec command is similar to \luadirect but with a few additional features:> \\
gives a double backslash (see note below) \% a percent character, and ~ just works. For single
backslashes, \string is still needed. Also, TEX macros are expanded.

The luacode environment is similar to \luaexec, except that you can now use % and # directly
(but \% and \# also work) and the line breaks are respected, so that you can use line-wise Lua
comments in the normal way, without mistakenly commenting the rest of the chunk.

Only the backslash and the braces keep their special meaning, so that macros still work as
usual, and you still need to use \string to get a single backslash.

The variant luacodex goes further and makes even backslash a normal character, so that
you don’t need any trick to obtain a single backslash. On the other end, macros don’t work any
more. So, the content of a luacodex* is interpreted exactly as if it were in a normal Lua file,
directly fed to the Lua interpreter without any TEX intervention.

The following table summarizes how to use special characters with the various commands
and environments.

\luadirect \luaexec luacode luacodex*

Macros Yes Yes Yes No
Single backslash \string\ \string\ \string\ Just \
Double backslash ~ \string\\ \\ A\ A\
Tilde \string~ ~ ~ ~
Sharp \string# \# # (or \#) #
Percent No easy way \% % (or \%) yA
TEX comments Yes Yes No No
Lua line comments No No Yes Yes

Backslashes and Lua strings. In the table and descriptions above, “double backslash” means
that the Lua interpreter will see a double backslash. It may then turn it into a single backslash
in the context of a Lua string delimited by single or double quotes as opposed to a Lua string
delimited by brackets, see Programming in Lua section 2.4. Similarly, a single backslash may or
may not be interpreted as starting an escape sequence. For example:

\begin{luacode}

a = "\\" -- a contains a single backslash

b = [[\\]] -- b contains two backslashes

c = "\\\\" -- ¢ contains two backslashes too

d = "line one\nline two" -- d contains a newline character
e = [[single\nline]] -- e contains no newline character
\end{luacode}

The alert reader may notice that in the case of \luadirect and \luaexec, single backslashes
are a bit weird. For example with

\luaexec{texio.write_nl("line one\string\nline two")}

2And one major drawback: it is not purely expandable. See previous note.

http://www.lua.org/pil/2.4.html

luacodestar

\luastring

\luastringN
\luastring0

\LuaCodeDebugOn
\LuaCodeDebug0ff

TEX will see \nline as a control sequence which is the “argument” of \string and the Lua
interpreter will consider only \n as an escape sequence, and line as independent characters. In
practice, this should not have any unwanted consequences (except perhaps on the sanity of the
reader).

Technical notes on environments. The environments will not work inside the argument of a
command (just as with verbatim commands and environments). Also, you are supposed to leave
a space (or end-of-line) after the \begin{luacode} or \begin{luacodex}, which is probably
a natural thing to do anyway. Finally, if you wish to define derived environments, you’ll need
to use \luacode ...\endluacode instead of the usual \begin \end pair in your environment’s
definition. For the stared variant, use \luacodestar and \endluacodestar.

The test file (section 3, or test-luacode.tex in the same directory as this document) pro-
vides stupid but complete examples.

1.2 Helper macros

As mentioned in the previous section, except for trivial pieces of codes (or examples) it is good
practice to keep all your Lua code in separate .lua files and then use \luadirect only to
require() or dofile() it and define BTEX wrappers for some functions, eg:

\newcommand*\foo [2]{\1luadirect{foo ("#1", #2)}}

This way, problems with TEX special characters are avoided, since most of the Lua is never seen
by TEX. Unfortunately, there is still potential for problems. For example \foo{a"b}{2} will
cause the Lua interpreter to complain since the " in #1 will end the string; we want the Lua
interpreter to see "a\"b" as the first argument.

Fortunately, LuaTEX offers a primitive that does exactly what we need: escape characters
that need to be escaped in a Lua string. Unfortunately, it has a very long name (especially in
the prefixed form available in ITEX): \luatexluaescapestring. Also, you need to think to
use quotes in addition to this primitive. So this package provides a shorter version: \luastring
that also include the quotes, so a safer version of \foo might be defined as

\newcommand*\foo [2]{\1luadirect{foo(\luastring{#1}, #2)}}

It should be noted that the argument of \luastring is fully expanded® before being turned
into a Lua string. In case where such an expansion is unwanted, two variants are provided:
\luastringN for no expansion, and \luastring0 for one-level expansion (of the first token)
only.

1.3 Debugging

The commands \luadirect and \luaexec as well as the environments luacode and luacodex
can optionally print the Lua code as it will be seen by the Lua interpreter in the log file before exe-
cuting it. The feature is disabled by default and can be turned on and off using \LuaCodeDebugOn
and \LuaCodeDebug0ff (which obey the usual TEX scoping rules).

2 Implementation

1 (xtexpackage)

3If you don’t know what this means, just skip this paragraph.

2.1 Preliminaries

Catcode defenses.

2 \begingroup\catcodeb6l\catcode48\catcode32=10\relax’ = and space
\catcode123 1 ¥% {
\catcodel25 2 % }
\catcode 35 6 % #
\toksO{\endlinechar\the\endlinechar},
\edef\x{\endlinechar13}j,
\def\y#1 #2 {/
\toksO\expandafter{\the\toksO \catcode#1 \the\catcode#1}%
\edef\x{\x \catcode#1 #2}}/

W

© 0 N & u

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

36 \ProvidesPackage{luacode}[2012/01/23 v1.2a lua-in-tex helpers (mpg)]
Make sure LuaTgX is used.

\y 13
\y 61
\y 32
\y 123
\y 125
\y 35
\y 64
\y 39
\y 40
\y 41
\y 42
\y 45
\y 46
\y 47
\y 91
\y 93
\y 94
\y 96
\y 126

5
12
10

1

)
h
h
h

2 %

13

h
)
h
h
h
h
h
h
h
h
h
h
h
h

carriage return

space
{
}
#
@ (letter)

)

* N~

P e T N

[

\toksO\expandafter{\the\toksO \relax\noexpand\endinputl}y,

\edef\y#1{\noexpand\expandafter\endgroup’
\noexpand\ifx#1\relax \edef#1{\the\toksO}\x\relax/
\noexpand\else \noexpand\expandafter\noexpand\endinput,
\noexpand\fi}%

35 \expandafter\y\csname luacode@sty@endinput\endcsnamey,

Package declaration.

37 \RequirePackage{ifluatex}

38 \ifluatex\else

\PackageError{luacode}{LuaTeX is required for this package. Aborting.}{’
This package can only be used with the LuaTeX engine\MessageBreak
(command ‘lualatex’). Package loading has been stopped\MessageBreak

39
40
41
42
43

to prevent additional errors.}
\expandafter\luacode@sty@endinput
44 \fi

Use luatexbase for catcode tables.

45 \RequirePackage{luatexbase}

2.2 Internal code

Produce Lua code printing debug info for the given argument.

46 \newcommand \luacode@printdbg [1] {%
47 texio.write_nl(’log’,

48 ’-- BEGIN luacode debug (on input line \the\inputlineno)’)
49 texio.write_nl(’log’, "\luatexluaescapestring{#1}")

50 texio.write_nl(’log’,

51 ’—— END luacode debug (on input line \the\inputlineno)’)
52 }

Execute a piece of Lua code, possibly printing debug info. maybe@printdbg will be either
printdbg or gobble, see user macros.

53 \newcommand \luacode@dbg@exec [1] {%
54 \directlua {

55 \luacode®@maybe@printdbg{#1}
56 #1

57 Yh

58 }

Execute a piece of code, with shortcuts for double-backslash, percent and tilde, and trying to
preserve newlines. This internal macro is long so that we can use in the environment, while the
corresponding user command will be short. Make sure ~ is active.

59 \begingroup \catcode‘\~\active \expandafter\endgroup
60 \@firstofone{
61 \newcommand \luacode@execute [1] {%

62 \begingroup

63 \escapechar92

64 \newlinechar10

65 \edef\\{\string\\}/

66 \edef~{\string~}%

67 \let\%=\1luacode@percentchar

68 \let\#=\1luacode@sharpchar

69 \expandafter\expandafter\expandafter\endgroup
70 \luacode@dbg@exec{#1}}

71}

Catcode 12 percent and sharp characters for use in the previous command.

72 \begingroup \escapechar\m@ne \edef\aux{\endgroup

73 \unexpanded{\newcommand\luacode@percentchar}{\string\%}/
74 \unexpanded{\newcommand\luacode@sharpchar }{\string\#}/,
75 Faux

Generic code for environments; the argument is the name of a catcode table. We’re normally
inside a group, but let’s open a new one in case we're called directly rather that using \begin.
Define the end marker to be \end{<envname>} with current catcodes.

76 \newcommand*\luacode@begin [1] {%

77 \begingroup

78 \escapechar92

79 \luatexcatcodetable#l\relax

80 \edef\luacode@endmark{\string\end{\@currenvir}}}

81 \expandafter\def \expandafter\luacode@endmark \expandafter{%
82 \luatexscantextokens \expandafter{\luacode@endmark}}’

83 \luacode@grab@body}

We'll define the body grabber in a moment, but let’s see how the environment ends now.

84 \newcommand\luacode@end{%

85 \edef\luacode@next{%

86 \noexpand\luacode@execute{\the\luacode@lines}y,
87 \noexpand\end{\@currenvir}}y

88 \expandafter\endgroup

89 \luacode@next}

It is not possible to grab the body using a macro with delimited argument, since the end
marker may contains open-group characters, depending on the current catcode regime. So we
collect it linewise and check each line against the end marker.

Storage for lines.

90 \newtoks\luacode@lines
91 \newcommand*\luacode@addline [1] {%
92 \luacode@lines\expandafter{\the\luacode@lines#1~~J}}

Loop initialisation. Set endlinechar explicitely so that we can use it as a delimiter (and later
when writing the code to Lua). Eat up the first token which is supposed to be a (catcode 12)
\endlinechar character token.

93 \newcommand \luacode@grab@body [1] {%
94 \luacode@lines{}

95 \endlinechar10

96 \luacode@grab@lines}

The actual line-grabbing loop.

97 \long\def\luacode@grab@lines#1~~J{%
98 \def\luacode@curr{#1}%

99 \luacode@strip@spaces

100 \ifx\luacode@curr\luacode@endmark

101 \expandafter\luacode@end

102 \else

103 \expandafter\luacode@addline\expandafter{\luacode@currl}y,
104 \expandafter\luacode@grab@lines

105 \fi}

Strip catcode 12 spaces from the beginning of the token list inside \luacode@curr. First we
need catcode 12 space, then we procede in the usual way.

106 \begingroup\catcode32 12 \expandafter\endgroup

107 \@firstofone{\newcommand\luacode@spaceother{ }}

108 \newcommand \luacode@strip@spaces {%

109 \expandafter\luacode@strip@sp@peek\luacode@curr\@nil}
110 \newcommand \luacode@strip@sp@peek {%

111 \futurelet\@let@token\luacode@strip@sp@look}

112 \newcommand \luacode@strip@sp@look {%

113 \expandafter\ifx\luacode@spaceother\@let@token

114 \expandafter\@firstoftwo

115 \else

116 \expandafter\@secondoftwo

117 \fi{%

118 \afterassignment\luacode@strip@sp@peck
119 \let\@let@token=

120 %

121 \luacode@strip@sp@def

122 }}

123 \@ifdefinable \luacode@strip@sp@def \relax
124 \def \luacode@strip@sp@def #1\@nil{Y

125 \def\luacode@curr{#1}}

Finally, we need a custom catcode table for the default environment: everything other, except
backslash, braces and letters which retain their natural catcodes.

Be carefull about the name of the macro for setting catcode ranges which is currently changing
in luatexbase. The group here doesn’t matter since catcode table settings are always global.

126 \newluatexcatcodetable \luacode@table@soft
127 \begingroup

128 \ifdefined\SetCatcodeRange \else

129 \let\SetCatcodeRange\setcatcoderange

130 \fi

131 \setluatexcatcodetable \luacode@table@soft {%
132 \luatexcatcodetable\CatcodeTableOther
133 \catcode 92 0

134 \catcode 123 1

135 \catcode 125 2

136 \SetCatcodeRange {65}{90} {11}

137 \SetCatcodeRange {97}{122}{11}

138

139 \endgroup

2.3 Public macros and environments
Debugging.

140 \newcommand \LuaCodeDebugOn {\let \luacode@maybe@printdbg \luacode@printdbg}
141 \newcommand \LuaCodeDebugOff {\let \luacode@maybe@printdbg \@gobble}
142 \LuaCodeDebug0ff

The \luadirect and \luaexec macros.

143 \@ifdefinable\luadirect {\let\luadirect\luacode@dbg@exec}
144 \newcommand*\luaexec [1] {\luacode@execute{#1}}

Environments using different catcode tables.

145 \newenvironment {luacode} {\luacode@begin\luacode@table@soft} {}
146 \newenvironment {luacode*} {\luacode@begin\CatcodeTableOther} {}
147 \newcommand \luacodestar {\@nameuse{luacode*}}

148 \def \endluacodestar {\@nameuse{endluacodex}}

Helper macros

149 \newcommand \luastring [1] {"\luatexluaescapestring{#1}"}
150 \newcommand \luastring0 [1] {\luastring{\unexpanded\expandafter{#1}}}
151 \newcommand \luastringN [1] {\luastring{\unexpanded{#1}}}

We're already done!

152 \luacode@sty@endinput
153 (/texpackage)

3 Test file

TODO: this test files requires manual checking that the output (pdf and log file) is correct; this
should be fixed.

154 («xtestlatex)

155 \documentclass{minimal}
156 \usepackage{luacode}
157 \begin{document}

158

159 \newcommand\foo{3}

160

161 \ (

162 \luadirect{

163 texio.write_nl("Special chars: _ ~ & $ { } working.\string\n"
164 .. "Backslashes need a bit of care.\string\n"

165 .. "Sharps and tildes too: # doubled, but \string# and \string~")
166 % a tex comment: no easy way to get a %

167 tex.sprint ("\string\\pi \string\\neq", tostring(math.pi))

168 % we can use TeX macros

169 tex.sprint("-", math.sqrt(\foo))

170}

171 \)

172

173

174\ (

175 \luaexecq{

176 texio.write_nl("Special chars: _ ~ & $ { } ~ working.\string\n"
177 .. "Backslashes still need a bit of care.\string\n"

178 .. "Single sharps are easier now: \#")

179 % a tex comment: we also get a % below

180 tex.sprint ("\\pi \\neq ", tostring(math.pi):gsub(’\%.’, ’+°))
181 % we can use TeX macros

182 tex.sprint("-", math.sqrt(\foo))

183}

184 \)

185

186 \ [

187 \begin{luacode}

188 texio.write_nl("Special chars: _ ~ & $ { } ~ # J working.\string\n"
189 .. "Only backslashes still need a bit of care.\string\n")

190 -- a lua comment: we could use \% below, too

191 tex.sprint ("\\pi \\neq ", tostring(math.pi):gsub(’%.’, ’+’))
192 -- we can use TeX macros

193 tex.sprint("-", math.sqrt(\foo))

194 \end{luacode}

195 \]

196

197 \[

198 \begin{luacodex}

199 texio.write_nl("Special chars: _ ~ & $ { } ~ # % \\ working.\n")
200 -- a lua comment: the backlash is doubled as in normal Lua code
201 tex.sprint ("\\pi \\neq ", tostring(math.pi):gsub(’%.’, ’+’))
202 -- no way to use a TeX variable here

203 \end{luacodex}

204 \]

205

206 \newenvironment{mathluacode} { \[\luacode }H \endluacode \] }
207 \newenvironment{mathluacode*}{ \[\luacodestar }{ \endluacodestar \] }
208

209 \begin{mathluacode}

210 local foo = "A full line.\string\n"

211 tex.sprint("\\pi \\neq ", tostring(math.pi):gsub(’%.’, ’+’))
212 -- a lua comment: we could have used \% above, too

213 tex.sprint("-", math.sqrt(\foo))

214 \end{mathluacode}

215

216 \begin{mathluacode*}
217 local foo_bar = "A full line.\n"

218 tex.sprint("\\pi \\neq ", tostring(math.pi):gsub(’%.’, ’+’))
219 -- a lua comment: no way to use a TeX variable here

220 \end{mathluacode*}

221

222 \begin{luacode*}
223 function myfunc(str)

224 assert (type(str) == ’string’)
225 tex.sprint (-2, str)

226 end

227 \end{luacodex}

228

229 \newcommand*\mymac [1] {\texttt{\luadirect{myfunc(\luastring{#1})}}\par}
230 \mymac{abc}

231 \mymac{123}

232 \mymac{a"b\string\nc’d}

233

234 \def\mac{\onelevel}

235 \def\onelevel{fully expanded}

236 string : \texttt{\luadirect{myfunc(\luastring \mac)2}}\par
237 string0: \texttt{\luadirect{myfunc(\luastringO\mac)2}}\par
238 stringN: \texttt{\luadirect{myfunc(\luastringN\mac)l}}\par
239

240 \LuaCodeDebugOn

241 \luadirect {local foo = ’bar’ .. \luastring{a"b’c}}
242 \luaexec {local foo = ’bar\%\#’ .. \luastring{a"b’cl}}
243 \begin{luacode}

244 local foo = ’bar’

245 local baz = 12 % 2

246 assert(\luastring\mac == ’fully expanded’)

247 -- assert(\luastringO\mac == ’\\onelevel’)

248 -- assert(\luastringN\mac == ’\\mac’)

249 \end{luacode}

250

251 \LuaCodeDebug0ff
252 \luadirect{local rem = ’dbg should be disabled here’}
253

Now track spurious spaces. This is the only part that is automatically checked, using grep in
the Makefile.

254 \tracingcommands1
255 \1luadirect{local fool}V
256 \luaexec{local fool}%
257 \begin{luacode}

258 local foo

259 \end{luacode}

260 \begin{luacode*}

261 local foo

262 \end{luacode*}

263 \tracingcommandsO
264

265 \end{document}

266 (/testlatex)

10

	Documentation
	Lua code in LaTeX
	Helper macros
	Debugging

	Implementation
	Preliminaries
	Internal code
	Public macros and environments

	Test file

