The xpeek package*

Joel C. Salomon
(joelesalomon@gmail.com»

Released 2012/08/15

Abstract

The xpeek package provides functions for defining & managing commands which,
like the familiar \xspace, “peek” ahead at what follows them in the input stream.
They compare this token against a stored list and choose an action depending on
whether there was a match.

Contents

1 Introduction 2

2 Documentation 3
2.1 Match- & Ignore-Lists 4
2.2 Peek-ahead L L 4
2.3 Collecting Ignored Tokens 4
2.4 Searching Through Token-Lists 5

3 Example 5

4 xpeek Implementation 6
4.1 Match- & Ignore-Lists 6
4.2 Peek-ahead L §
4.3 Collecting Ignored Tokens 7
4.4 Searching Through Token-Lists 7

5 Test Suite 8
5.1 Set-Up: Wrapping \Expect 8
5.2 Emulating \xspace 8

*This file describes release v0.2, last revised 2012/08/15.

TThe original code is due to Enrico “egreg” Gregorio, based on an answer he gave to a question of mine
on TEX.SX; see <http://tex.stackexchange.com/a/59542/2966>. Enrico, Joseph Wright, Bruno Le Floch,
& Clemens Niederberger helped iron out the implementation; Bruno also wrote the initial version of the
documentation and the near-final version of much of the code. See (http://tex.stackexchange.com/q/
63568/2966), <http://tex.stackexchange.com/q/63971/2966, & <http://thread.gmane.org/gmane.comp.
tex.latex.latex3/2894».

mailto:joelcsalomon@gmail.com
http://tex.stackexchange.com
http://tex.stackexchange.com/a/59542/2966
http://tex.stackexchange.com/q/63568/2966
http://tex.stackexchange.com/q/63568/2966
http://tex.stackexchange.com/q/63971/2966
http://thread.gmane.org/gmane.comp.tex.latex.latex3/2894
http://thread.gmane.org/gmane.comp.tex.latex.latex3/2894

Change History 9

Index 9

1 Introduction

This package provides functions for defining \xspace-like commands. Such commands
“peek” ahead into the input stream to see what follows their invocations; their behavior
varies depending on what it is that comes next.

Probably the most common BTEX command of this sort is \textit. It looks ahead at
the token following its argument and decides whether to insert italic correction afterward.
Table 1 compares the use of \textit against using the font-switch command \itshape
with & without explicit italic correction. Notice how \textit seems to just “do the right

{\itshape halfl}hearted halfhearted (overlap)

{\itshape half\/}hearted halfhearted (correct)

\textit{half}hearted halfhearted (correctly including italic correction)
by {\itshape half}. by half. (correct)

by {\itshape half\/}. by half. (too wide)

by \textit{half}. by half. (correctly omitting italic correction)

Table 1: Automatic italic correction with \textit

thing” when it comes to inserting or omitting italic correction.
It is, unfortunately, not hard to confuse \textit. As an example, consider the
following code:

\NewDocumentCommand \naif {} {\textit{ma\"\i f}}
He was a true \naif.

This yields
He was a true naif.

So far, so good. But using this macro in middle of a sentence may produce results the
naive user does not expect. For example, try

He was such a \naif he expected this example to work.
yielding
He was such a naifhe expected this example to work.
Oops. We forgot that command words eat the spaces that follow them.
This is usually the point where TEXperts explain about following command words
with explicit spaces, e.g., writing “such a \naif\ he ...”, or following such commands
with an empty group, “such a \naif{} he ...”, e.g.

Others, more pragmatically-inclined, will mention the xspace package. This is the
sort of use-case it was developed for, after all, so let’s try it:

\NewDocumentCommand \naif {} {\textit{ma\"\i fl}\xspace}
He was such a \naif he expected this example to work.

This produces
He was such a naif he expected this example to work.

Even “such a naif” can get the right result sometimes.
But you see, there’s a kinda hitch.! Recall the first time we used the macro:

He was a true \naif.
Now it yields this:
He was a true naif.

Notice that ugly space between the f and the period? That’s italic correction being added
where it doesn’t belong.

The trouble lies in how IXTEX implements the \textit logic. The macro is clever
enough to look ahead, seeking for short punctuation (e.g., the comma & period) which
should not be preceded by italic correction. What the macro finds first, though, is that
invocation of \xspace we added. That’s not one of the “no italic correction” tokens, so
the correction gets added and the sentence looks ugly.

That’s where this package comes in.

(As a side note, Phillip G. Ratcliffe’s foreign package, bundled with both MiKTEX
and TEX Live and available from CTAN at <http://ctan.org/pkg/foreigny, is an excellent
tool for this sort of foreign-word macro and was one of the inspirations for this package.)

Commands generated via the tools the xpeek package provides can peek ahead in
the input stream, like \textit and \xspace, checking whether the next token is on their
match-list. What xpeek adds is the ability to ignore certain tokens during that peek-
ahead. These ignored tokens are not lost; the scan-ahead routine saves them and they
are restored when the command executes.

2 Documentation

At this point in the development of xpeek, only one set of follower-dependent functions
is defined. Later versions will provide tools for defining such function sets.

1Cue Malcolm Reynolds: “Don’t complicate things.”

http://ctan.org/pkg/foreign

\g_xpeek_matchlist_tl
\g_xpeek_ignorelist_tl

\xpeek_after:nw

\xpeek_collect_do:nn

2.1 Match- & Ignore-Lists

\tl_gput_right:Nn \g_xpeek_(list)_tl {(tokens)}
\tl_gremove_all:Nn \g_xpeek_(list)_tl {(tokens)}

These two token-lists are the heart of xpeek.

The match-list is similar to xspace’s exceptions list or IXTEX’s \nocorrlist list for
suppressing italic correction.

The functionality enabled by the ignore-list, on the other hand, is the raison d’étre of
this package. For example, if I TEX’s \textit had an ignore-list and the token \xspace
were in that list, then the definition

\NewDocumentCommand \naif {} {\textit{ma\"\i f}\xspace}

from the example above would have worked properly: \textit would have ignored the
\xspace, looked past it & seen the period, and therefore omitted italic correction. When
that was done, \xspace would execute; it too would see the period, and therefore would
not insert a space.

2.2 Peek-ahead

\xpeek_after:nw {(code)} (token)

Similar to expl3’s \peek_after:Nw, this sets the test variable \1_peek_token to {token)
then executes the {(code)}. The (token) remains in the input stream.

2.3 Collecting Ignored Tokens

\xpeek_collect_do:nn {(ignore-1list)} {(operation)} (the rest of the input-stream)

This collects all leading tokens in the input stream which are in the ignore-list, and passes
them as an argument to the operation. For example, the invocation

\xpeek_collect_do:nn { abc } { \foo \bar } caada

will collect the leading “caa” from the input stream and pass those tokens as an argument
to the operation “\foo \bar”. Ie., the code above is equivalent to this:

\foo \bar { caa } da

(Note that it’s \bar within the {{operation)} that gets the collected tokens as an argu-
ment.)

\xpeek_if_in:NNTF

2.4 Searching Through Token-Lists

\xpeek_if_in:NNTF \(haystack) \(needle) {(true-code)} {(false-code)}

Among the variants of \t1_if_in:Nn(TF) defined in expl3, the form \t1l_if_in:NNTF is
missing. But that’s the form needed in this package, in constructions like this:

\xpeek_if_in:NNTF \g_xpeek_matchlist_tl \1_peek_token
{(true-code)} {(false-code)}

So we define it ourselves.

3 Example

As a demonstration, here’s an example of using the xpeek facilities to implement correct
automatic italic correction a la \textit.

We set the match-list equal to IHTEX’s default \nocorrlist; as mentioned above,
\xspace needs to be in the ignore-list:

\tl_gset:Nn \g_xpeek_matchlist_tl { , . }
\tl_gset:Nn \g_xpeek_ignorelist_tl { \xspace }

(Note that this does not require \xspace to be defined; it merely ensure that the macro
will work correctly if it is defined.)

Next, we declare the new italicization command \xit. It calls \xpeek_collect_-
do:nn to collect any instances of \xspace that might follow the invocation. These are
saved, but ignored for the time being.

It’s within the {({code)} argument to \xpeek_collect_do:nn, between \group_-
begin: and \group_end:, that the italicization happens. Before we return to the default
font, though, the code checks whether \1_peek_token is in the ignore-list; it then decides
whether to include italic correction.

Recall next that the last command within the {(code)} is what will get the collected
tokens as an argument. Since we want to keep \xspace if it’s there, we finish up the code
with \use:n, which simply puts its argument into the input stream.

Here’s the code:

\NewDocumentCommand \xit {m}
{
\xpeek_collect_do:nn \g_xpeek_ignorelist_tl
{

\group_begin:

\itshape #1

\xpeek_if_in:NNTF \g_xpeek_matchlist_tl \1_peek_token
{r{\/1?

\group_end:

\use:n

Finally, define the command we tried to make work in the introduction, and see
whether we’ve made it work:

\NewDocumentCommand \naif {} {\xit{na\"\i f}\xspace}
He was a true \naif.
He was such a \naif he expected this example to work.

The code above yields this result:

He was a true naif. He was such a naif he expected this example to work.

And work it does.

4 xpeek Implementation

1 (*package)
(@@=xpeek)

N}

s \RequirePackage{expl3, xparse}

+ \ProvidesExplPackage
s {xpeek} {2012/08/15} {0.2}
6 {Define commands that peek ahead in the input stream}

4.1 Match- & Ignore-Lists

\g_xpeek_matchlist_tl Define the lists.
\g_xpeek_ignorelist_tl , \tl_new:N \g_xpeek_matchlist_tl
s \tl_new:N \g_xpeek_ignorelist_tl

(End definition for \g_xpeek_matchlist_tl and \g_xpeek_ignorelist_tl These variables are docu-
mented on page /.)

4.2 Peek-ahead

\xpeek_after:nw Define a function (AKA “token-list”) to hold the code passed in.
o \tl_new:N \1__xpeek_code_tl
Store the argument in \1__xpeek_code_t1, then defer to \peek_after:Nw

10 \cs_new_protected:Npn \xpeek_after:nw #1
11 {

12 \tl_set:Nn \1__xpeek_code_t1l {#1}

13 \peek_after:Nw \1__xpeek_code_tl

14 }

(End definition for \xpeek_after:nw This function is documented on page 4.)

4.3 Collecting Ignored Tokens

\xpeek_collect_do:nn #1 : Tokens to collect from the input stream
#2 : The operation to be performed on the collected tokens
#3 : The next token on the input stream (for __xpeek_collect_do:nnn).
Define a list to save collected tokens in.
15 \tl_new:N \1__xpeek_collected_tokens_tl
Clear list and defer to auxiliary function.
16 \cs_new_protected:Npn \xpeek_collect_do:nn #1#2
17 {
18 \tl_clear:N \1__xpeek_collected_tokens_tl
19 __xpeek_collect_do:nnn {#1} {#2} {}
20 }
Recursively consume tokens from the input stream so long as they match the collect-list,
then apply the operation to the collected tokens. The last matching token will not yet
have been collected, so pass it to the operation as well. (If there were no matching tokens,
#3 will be the empty argument that was passed by \xpeek_collect_do:nn.)
21 \cs_new_protected:Npn __xpeek_collect_do:nnn #1#2#3

22 {

2 \xpeek_after:nw

24 {

25 \xpeek_if_in:NNTF #1 \1_peek_token

26 {

27 \tl_put_right:Nn \1__xpeek_collected_tokens_tl {#3}
28 __xpeek_collect_do:nnn {#1} {#2}

29 }

30 {

31 #2 { \1__xpeek_collected_tokens_tl #3 }
32 }

33 }

34 }

(End definition for \xpeek_collect_do:nn This function is documented on page 4.)

4.4 Searching Through Token-Lists

\xpeek_if_in:NNTF #1 : Token-list to search through (the “haystack”)
#2 : Token to search for (the “needle”)
Define an internal flag.
55 \bool_new:N \1__xpeek_bool
Map the “haystack”, searching for the “needle”.
36 \prg_new_protected_conditional:Npnn \xpeek_if_in:NN #1#2 { TF }
37 {
: \bool_set_false:N \1__xpeek_bool
39 \tl_map_inline:Nn #1
40 {
a1 \token_if_eq_charcode:NNT #2 ##1
42 {

\ExpectIdenticalWidths

43 \bool_set_true:N \1__xpeek_bool
44 \t1l_map_break:

45 }

46 }

a7 \bool_if:NTF \1__xpeek_bool

48 { \prg_return_true: } { \prg_return_false: }
49 }

(End definition for \xpeek_if_in:NNTF This function is documented on page 5.)

so (/package)

5 Test Suite

The test suite below is run automatically when this document is produced. It can also
be run separately by executing

latex xpeek-test

at the command prompt.

1 (testsuite)\documentclass{article}

> (testsuite)\usepackage{xparse, expl3, xpeek, gstest}

s (testsuite)\begin{document}
(

4+ (*tests)

5.1 Set-Up: Wrapping \Expect

Since the commands xpeek helps produce are not expandable, directly comparing their
outputs is not feasible. Instead, typeset two versions into boxes and have gstest compare
these boxes’ widths. (Thanks to Heiko Oberdiek for this technique; see <http://tex.
stackexchange.com/q/67192/2966).)
s \ExplSyntaxOn
6 \NewDocumentCommand \ExpectIdenticalWidths { m m }
7o

\hbox_set:Nn \1_tmpa_box {#1}
9 \hbox_set:Nn \1_tmpb_box {#2}

10 \Expect

11 * {\dim_use:N \box_wd:N \1_tmpa_box}
12 * {\dim_use:N \box_wd:N \1_tmpb_box}
JER

12 \ExplSyntax0ff
(End definition for \ExpectIdenticalWidths)

5.2 Emulating \xspace

Define a simple analogue to \xspace.

s \ExplSyntaxOn
16 \tl_const:Nn \c_xsp_exceptions_tl { ,;:.!7 }
17 \NewDocumentCommand \xsp {}

http://tex.stackexchange.com/q/67192/2966
http://tex.stackexchange.com/q/67192/2966

19 \xpeek_collect_do:nn \c_empty_tl

20 {

21 \xpeek_if_in:NNTF \c_xsp_exceptions_tl \1_peek_token
2 {r{~17

23 }

24 }

>s \ExplSyntaxOff

Test \xsp, ensuring that it is space-factor—agnostic.

2 \begin{qstest}{Emulating \xspace}{xpeek}

27 \ExpectIdenticalWidths{foo
s \ExpectIdenticalWidths{foo.
20 \ExpectIdenticalWidths{FO0O.
20 \ExpectIdenticalWidths{foo.
51 \ExpectIdenticalWidths{F0O.
3> \end{qgstest}

33 (/tests)
4 (testsuite)\end{document}

w

bar}{foo\xsp bar}

bar}{foo\xsp. bar}
bar}{F00\xsp. bar}
bar}{foo.\xsp bar}
bar}{F00.\xsp bar}

N.B. The stand-alone test-suite will not produce any output, only a log file.

Change History

Version 0.1
General: First useful version

Index

Version 0.2
General: Added test-suite

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
__xpeek_collect_do:nnn 15, 19, 21, 28
E
\Expect 10

\ExpectIdenticalWidths
5, 6, 27, 28, 29, 30, 31

\ExplSyntaxOff 14, 25
G
\g_xpeek_ignorelist_tl 4, 7,8
\g_xpeek_matchlist_tl 4, 0,7

\1__xpeek_bool
\1__xpeek_code_tl
\1__xpeek_collected_tokens_tl
15, 15, 18, 27, 31

35, 35, 38, 43, 47
9,9, 12, 13

\l_peek_token 21, 25
X

\xpeek_after:nw 4, 9, 10, 23

\xpeek_collect_do:nn 4, 15,16, 19

\xpeek_if_in:NN 36

\xpeek_if_in:NNTF 5, 21, 25, 35

	Contents
	1 Introduction
	2 Documentation
	2.1 Match- & Ignore-Lists
	2.2 Peek-ahead
	2.3 Collecting Ignored Tokens
	2.4 Searching Through Token-Lists

	3 Example
	4 xpeek Implementation
	4.1 Match- & Ignore-Lists
	4.2 Peek-ahead
	4.3 Collecting Ignored Tokens
	4.4 Searching Through Token-Lists

	5 Test Suite
	5.1 Set-Up: Wrapping \Expect
	5.2 Emulating \xspace

	Change History
	Index
	Symbols
	E
	G
	L
	X

