
The xoptarg Package
Josselin Noirel

http://www.jnoirel.fr/

22nd April 2007 (v1.0)

Abstract
Because they rely on the \futurelet primitive, the macros with optional

arguments cannot be expandable. However, it is possible to make them expandable
if there is at least one mandatory argument (see ‘Limitations’).

Contents
Introduction 1

Usage 2
Defining commands . 2
Changing the prefix . 2

Limitations 2

Introduction
Normal macros are expandable:

\newcommand*{\cmda}[1]{1. #1 2. #1 3. #1 4. #1}
\newcommand*{\cmdb}[3]{[#1#2#3 #1#3#2 #2#1#3 #2#3#1 #3#1#2 #3#2#1]}

‘Expandable’ means that if you print them on the terminal with \typeout

\typeout{\cmda{Test}...and \cmdb{T}{h}{e} rest}

it will result in the processed message which is printed during the compilation:

1. Test 2. Test 3. Test 4. Test...and [The Teh hTe heT eTh ehT] rest

But, commands defined to take an optional argument behave differently. The code:

\newcommand*{\cmdc}[2][X](#1,#2)
\typeout{\cmdc[A]{B} \cmdc{C}}

prints the unprocessed

\cmdc[A]{B} \cmdc{C}

and not (A,B) (X,C)! (Of course, in typesetting context, it doesn’t make any difference. . .
the interest of the package lies in the expandability in moving-argument contexts.) The
xoptarg helps you to make your macros expandable even when they take an optional
argumen (see ‘Limitations’ though).

1

http://www.jnoirel.fr/

Usage
Defining commands
Your macros, including those that take an optional argument can be expandable provided
they also take at least one mandatory argument1. Practically spoken, your command,
when it takes an optional argument, must take at least two arguments in total2.

Load the package with

\usepackage{xoptarg}

then, instead of using \newcommand, use \xnewcommand

\xnewcommand*{〈command〉}[n][〈default〉]{〈definition〉}

This is the same syntax as \newcommand’s and it works even if the command does take
any optional argument. A normal, non-expandable, macro is defined when you define
a macro that takes one optional argument and no mandatory one. A warning is issued
to inform you that it won’t be possible to make it expandable3.

Changing the prefix
This package uses newcommand that allows a more sophisticated syntax:

\xnewcommand[〈prefix〉]{〈command〉}[n][〈default〉]{〈definition〉}

For instance, to define a macro globally, use

\xnewcommand[\global]{〈command〉}{〈definition〉}

(But \newcommand would do the job as well, as newcommand improves it also.)

Limitations
The limitations of the package are the following:

• To be expandable, the macros with an optional argument must have at least one
mandatory argument.

• The mandatory arguments must be surrounded by braces in this case.

• There is no \rexnewcommand command.

1 If your macros don’t take any optional argument, the standard behaviour prevails so that you don’t
to have to worry about them. The ‘at least one mandatory argument’ condition applies only when
the macro takes an optional argument.

2 A second requirement is that the mandatory arguments be surrounded by explicit braces {...}.
3 The command will be made robust using \protected if ε-TEX is available.

2

	Introduction
	Usage
	Defining commands
	Changing the prefix

	Limitations

