t-angles.sty *

(Diagram macros for tangles and braided Hopf algebras)

Yu. Bespalov V. Lyubashenko

Version 14.08.2006

Contents

1	Introduction	1
	Usage	1
	Acknowledgments	
	Main features	
2	Macros in pictures	3
	Straight lines and nodes	3
	(Under/over)crossings. Braiding and symmetry	4
	(Co)pairings.	4
	Morphisms. Frame and dash boxes	4
	(Co)multiplications and cocycles	5
	(Co)actions	5
	Compositions	5
3	Examples	6
4	Development	6
	History and versions	6
	Directions for modification	7
\mathbf{A}	Exercises	7

1 Introduction

Usage:

<pre>\usepackage[emtex]{t-angles} (for emtex drivers, dviwin, dvips, yap)</pre>	or	<pre>\usepackage{t-angles} ≡ \usepackage[TPIC]{t-angles} (for TPIC drivers such as dviwin, xdvi, dvips, yap, dvipdfm, kdvi)</pre>
--	----	---

*t-angles.sty is available from http://www.math.ksu.edu/~lub/ or from CTAN

To use with kluwer.cls add the option kluwer :

\usepackage[emtex,kluwer]{t-angles} or \usepackage[kluwer]{t-angles} .

The main option TPIC is executed by default. It can be overwritten by the antagonistic option <code>emtex</code>. These two options give slightly different *.dvi output, when they are used with LATEX. The package works also with pdfLATEX. In this case both options produce identical *.pdf output. Actually, the third option <code>pdflatex</code> is executed in this case automatically. You should not type <code>\usepackage[pdflatex]{t-angles}</code> in your file unless you want to prohibit its use with LATEX. Another way to produce *.pdf file is to apply <code>dvipdfm</code> to the *.dvi output, obtained with the TPIC option.

Under pdfIAT_EX the information about slanted lines is stored in a file *.emp and read on the following pass. Consequently, the changes made in a tangle diagram are not reflected immediately in the *.pdf output. You may need several ($\simeq 2$) runs of pdfIAT_EX to see the final picture.

Acknowledgments

An optional parameter for (co)actions is proposed by Bernhard Drabant. The file t-angles.sty contains parts of emlines2.sty by Georg Horn and Eberhard Mattes and parts of eepic.sty by Conrad Kwok. PDF implementation of emT_EX specials is due to Hans Hagen. We have incorporated his conT_EXt support macros 'emT_EX specials to PDF conversion' from supp-emp.tex distributed with TeT_EX. These parts of the code are used in the three options: emtex , TPIC and pdflatex respectively. To understand them the reader is invited to read comments in the original works. In order to distinguish between ordinary LAT_EX and pdfLAT_EX modes, Heiko Oberdiek's package ifpdf.sty is loaded.

Main features:

• The environments

$\{\texttt{tangle}\}$	are arrays with	$\{array\}\{1\}$	(left)
$\{\texttt{tanglec}\}$	Ū.	$\{array\}\{c\}$	(centered)
$\{\texttt{tangler}\}$	one or more	$\{array\}\{r\}$	(right)
$\{\texttt{tangles}\}$	column style:	$\{array\}$	(any)

respectively. Likewise {array}, the {tangles} environment allows an optional argument t or b to align the upper base line or the bottom of the tangle with the exterior base line: \begin{tangles}[b]{l*3cr}.

- \unitlens is the global length parameter. Default value is 10 pt .
- \hstretch and \vstretch are relative length parameters, horizontal and vertical stretch:

set to an integer number of percents before the beginning of a tangle.

Default settings are \hstretch 100 and \vstretch 100. The commands \hstretch and \vstretch should be used only outside of tangle environments (with an exception of embedded tangle environments).

- The commands \hstr{<number>} , \vstr{<number>} can be used inside tangle environments instead of \hstretch<number> , \vstretch<number> . They will act within their LATEX scope.
- The height of every row is 2 \unit or \unit if the command \hh (see below) is used; the widths of standard fragments are 0, .5, 1, 2, 3 or 4 \unith
- The command \h obeys to $\square T_E X$ scope rules. The command \H acts in the same way as \h but put at the beginning of a row works for the whole row in the {tangles} environment.
- \bullet The style understands the commands **\thinlines** and **\thicklines** .
- The command \step[<number>] is used to produce horizontal space \kern <number> \unith and works in any mode (inside and outside of the tangle environment).

- Vertical spacing before the next row is produced by \\[{vertical_space}] with optional argument (like in standard {array} environment).
- The command **\object#1** is used to put the object **#1** directly over or under the end of the string (inside and outside of the {tangle} environment). It adds a vertical space below or above as required. More space can be added as above.

The command $\operatorname{Put}(x_coord,y_coord)$ [binding_point] <object> puts <object> into the intended position and works in {tangle[cs]} environment like a combination of put and $\operatorname{Makebox}$. Coordinates are integers, measured in .1 unith , .1 unitv units; binding_point is a combination of two letters lcr and tcb according to the usual LAT_EX rules.

The commands \nodeu	#1, \noded#1,	$\nodel#1,$	$\noder#1,$	\n	oderu#1,			
\noderd#1, \nodelu	#1, $\nodeld#1$	produce zero	boxes and put	#1	into the			
corresponding position.								
	\vsti	\vstretch 200 \hstretch 200						
The picture	\begi	in{tangle}						
	\node	eu.\noded.\nod	del.\noder.					
is described by the lines:	\node	<pre>\noderu.\noderd.\nodelu.\nodeld.</pre>						
\end{tangle}								

2 Macros in pictures

Straight lines and nodes

 \bullet The commands id , n , s , node , unit , counit work also in hh-mode .

			Ī		•	•	9	L
\id	∖idash	∖n	\s	\nd	\sd	\node	\unit	\counit

The command \FillCircDiam denotes the filled circle diameter. It is set to an integer between 1 and 9 (here the measure unit is 0.1 \unith). Default value is 3.

- The command \hln <number> produces horizontal line on <number> \unith .
- Argument of \ne , \nw , \se , \sw , \ned , \nwd , \sed , \swd is 0,1,2,3 or 4; 0 produces empty box and other produce (dash) lines with horizontal projections equal <argument> \unith cribbed into 1×2 box. The commands \ne , \nw , \se , \sw produce 1×1 box in hh-mode .

• All the following commands work in hh-mode and produce the similar diagrams in $.5 \times 1$ boxes.

(Under/over)crossings. Braiding and symmetry

The following crossings and dashed crossings are shown in normal mode.

The commands X, XX, x, xx work in hh-mode and produce similar diagrams of half width and height $(1 \times 1 \text{ boxes})$.

(Co)pairings.

The commands ev, coev work in hh-mode and produce the similar diagrams of half width and height (.5×1 boxes). For convenience in hh-mode $hev \equiv ev$ and $hev \equiv ev$.

Morphisms. Frame and dash boxes

• The commands \dbox#1#2, \ffbox#1#2, \obox#1#2, \tbox#1#2 put \$#2\$ in the middle of #1×2 (or #1×1 in hh-mode) box with dash, rectangle, oval frame or without frame.

For example, the text \begin{tangles}{rcl} \HH\obox 10&&\obox 10\\ \HH\d&&\dd\\ &\hhstep\obox 3V\hhstep& \end{tangles}

produces

(Co)multiplications and cocycles

The commands cu, cu*, cd, cd* work in hh-mode and produce the similar diagrams of half width and height (.5×1 boxes). For convenience in hh-mode $hcu \equiv cu$ and $hcd \equiv cd$.

(Co)actions

Commands lu, ld, ru, rd have optional parameter [#1] which equals to width of the box:

3 Examples

Note the use of optional argument [b] to align the subtangles at the bottom.

4 Development

History and versions

The style was produced by the first author in 1994. It was completely modified and essentially improved by the second author in 1997 for real–life applications in [1].

- 04.04.99→20.04.00 The output of commands \tu#1, \td#1, \ro#1, \coro#1, \Ro#1, \coRo#1 slightly differs. Now they fit their boxes.
- 20.04.00 \rightarrow 10.09.00 Dashed crossings are represented by the commands \xd, \xxd, \hxd, \hxd, \hxd.
- $10.09.00 \rightarrow 22.04.06$ It is possible to use the package with pdfIATEX.

 $22.04.06 \rightarrow 14.08.06$ Behaviour of the package with pdfeLATEX of MiKTEX 2.5 is corrected.

References

Yu. N. Bespalov, T. Kerler, V. V. Lyubashenko, and V. G. Turaev, *Integrals for braided Hopf algebras*, J. Pure and Appl. Algebra **148** (2000), no. 2, 113–164, Available as http://arXiv.org/abs/q-alg/9709020.

Directions for modification

- In the future some problems can be solved by introducing global (logical) parameters that switch configuration and behavior of certain families of commands in questionable situations.
- To adopt commands like in {picture} environment to produce special fragments of one time use.
- To make the second argument of the command \Put(#1)[#2]#3 optional.
- To produce command index for this manual.
- To add possibility to change size of circle in circled morphisms (in particular, to turn morph into a special case of 0).

Suggestions are welcome.

A Exercises

How to produce the following ?

