
The collect package∗

Jonathan Sauer
jonathan.sauer@gmx.de

2004/09/10

Abstract

This file describes the collect package that makes it possible to collect
text for later use.

Contents

1 Introduction 1

2 Usage 2
2.1 collect . 2
2.2 Other environments . 3

3 Examples 3
3.1 collect . 3
3.2 Other environments . 4

4 Creating your own environment 4

5 Notes 5

6 Implementation 5
6.1 Main environments and macros . 5

6.1.1 collect . 5
6.1.2 Other environments . 7

6.2 Internal environments and macros 7

1 Introduction

Suppose you are writing the specification of a programming language. Then you
will surely insert definitions of the grammar (i.e. using the syntax package). Most

∗This document corresponds to collect.sty v0.9, dated 2004/09/10.

1

likely you will insert the grammar for i.e. loops, conditions et cetera in the appro-
priate chapter, but for easy implementation of a parser, you will want to include
the complete grammar as an appendix, so that one does not have to collect the
complete grammar from the bits in each chapter.

Of course you could do this by hand using the copy-and-paste facility of your
text editor. But this is cumbersome and errorprone if you modify the grammar
afterwards, i.e. for a second version.

This package provides the collect environment that typesets its contents and
collects it for later use as well.

In other situations you will want to save the contents of an environment in a
macro. Then the collectinmacro environment should do the trick.

2 Usage

General note If an environment exists in a normal and a starred form (i.e.
collect and collect*), then the former does not typeset the environment con-
tents, while the latter typesets it. Note, too, that the normal and the starred
version of an environment often have a different number of parameters.

Stripping of spaces All environments strip any leading space before the start
of the text and any trailing space after the end of the text. Trailing \pars (i.e.
resulting from a blank line at the end of the environment) are not removed.

2.1 collect

You can define several collections. Each collection can be used indepen-
dently to collect text across the document. You define a collection using
\definecollection, use it in the collect and collect* environment and typeset
it using \includecollection.

Note The name of the collection is used as the suffix of the file that stores the
collection (the complete name is 〈jobname〉.〈name)〉. So you should not name a
collection tex, log, dvi, pdf and so on.

Note You can only include a collection after completely collecting it. If you
include it and continue to collect afterwards, the collection will be cleared after
its inclusion.

This can be used to recycle a collection: Use it in the first part of your document
to collect text, typeset this text using \includecollection and then reuse the
collection in the second part of your document to collect new text which will finally
be typeset using \includecollection a second time.

Usage: \definecollection {〈name〉}.\definecollection

Defines a collection of the name 〈name〉.
Usage: \begin{collect*} {〈name〉} {〈before〉} {〈after〉} {〈beforecol〉} {〈aftercol〉}collect*

. . . \end{collect*}.

2

Collects the text inside the environment in the collection 〈name〉. Then type-
sets the text. 〈name〉 must have been defined using \definecollection.

〈before〉 and 〈after〉 are tokens inserted before and after the environment con-
tents in the collection as well as the typeset text.

〈beforecol〉 and 〈aftercol〉 are tokens inserted before and after the environ-
ment contents only in the collection. This can be used to insert a section head-
ing (〈beforecol〉) and a backref to the section where the text has been collected
(〈aftercol〉).

Note The collect* environment uses a temporary file 〈jobname〉.tmp to tem-
porarily store the environment contents and include it afterwards.1

Usage: \begin{collect} {〈name〉} {〈beforecol〉} {〈aftercol〉} . . . \end{collect}.collect

Collects the text inside the environment in the collection 〈name〉. Does not
typeset the text (therefore, the two parameters 〈before〉 and 〈after〉 are missing);
except for that, this environment is identical to collect*.

Usage: \includecollection {〈name〉}. Includes the collection 〈name〉. Af-\includecollection

terwards, the collection is reset.
You can include the collection before it is actually collected in the same way

you can include a table of contents at the beginning of your document. Simply
say \includecollection and then use the collect* or collect environment to
collect text. Then run LATEX on your file twice. (the first time to collect the text,
the second time to put it in the document using \includecollection)

2.2 Other environments

Usage: \begin{collectinmacro} {〈macro〉} {〈before〉} {〈after〉} . . . \end{collectinmacro}.collectinmacro

Collects the contents of an environment inside a macro 〈macro〉 without type-
setting it. If 〈macro〉 has been defined prior to using this environment, its previous
meaning is lost. The new definition is global.

〈before〉 and 〈after〉 are tokens inserted before and after the environment con-
tents in the macro.

Important note This environment differs slightly from collect and collect*:
Some macros, i.e. \verb, do not work correctly when 〈macro〉 is used later on.2

3 Examples

3.1 collect

\begin{collect*}{tst}{Before\par}{\par After}{Before file\par}{\par After file}

This is a test

\end{collect*}

1This way, catcode changes inside the environment are honored.
2As the catcodes have already been set when collecting the contents and cannot be changed

afterwards, at least not without eTEX.

3

This results in the following text typeset directly:

Before

This is a test

After

And following text is typeset when the collection tst is included using \includecollection{tst}:

Before file

Before

This is a test

After

After file

3.2 Other environments

\begin{collectinmacro}{\collectedtext}{Before\par}{\par After}

This is a test

\end{collectinmacro}

This results in no text typeset directly and the following text stored in the macro
\collectedtext:

Before\par This is a test\par After

4 Creating your own environment

You can create your own environment based on any of the environments in this
package, i.e. to create a grammarpart environment to typeset part of a grammar.

You can for example say:

\definecollection{gra}

\newenvironment{grammarpart}[1]{%

\@nameuse{collect*}{gra}{%

\emph{Start of grammar ‘#1’}\par%

}{%

\par\emph{End of grammar}\par%

}{%

\subsection{#1}%

}{%

\par See some section in the text.

}%

}{%

\@nameuse{endcollect*}%

}

4

This will create a grammarpart environment with one parameter, the part of the
grammar defined. (i.e. ‘Identifiers’) At the start of the environment the text ‘Start
of grammar 〈part〉’ will be typeset, followed by the grammar (the contents of the
environment), and finally a line ‘End of grammar ’ will be added.

When including the collected grammar parts using \includecollection each
grammar part will be prefixed by a subsection heading bearing the grammar part
as its title and suffixed by ‘See some section in the text.’ (this could be extended
to include a backref using \ref〈label〉)

Note If you use any of the environments inside a custom environment to af-
terwards collect text with this custom environment (as in the example of the
grammarpart environment above), you must not begin and end it using \begin
and \end, or the environment contents will not be collected correctly. You
must use \@nameuse{〈environment〉} and \@nameuse{end〈environment〉} as in
the example above, or, if the environment is not starred, \〈environment〉 and
\end〈environment〉.

Note You still can use the environments of this package inside other environ-
ments (i.e. a itemize environment) without any problems.

5 Notes

• If you use any of the environments inside your own environment, note that
the end of the environment is executed, but not included in the collected text!
(that’s why the the environments collect* and collectinmacro have two
parameters for including text before and after the environment, 〈before〉 and
〈after〉).

6 Implementation

6.1 Main environments and macros

6.1.1 collect

\definecollection Usage: \definecollection {〈name〉}
Defines a collection 〈name〉.
This macro allocates a \newwrite CE@@〈name〉@out and defines a \newif

CE@@〈name〉open.
1 \newcommand{\definecollection}[1]{%

2 \@ifundefined{CE@@#1@out}{%

3 \expandafter\newwrite\csname CE@@#1@out\endcsname%

4 \expandafter\newif\csname ifCE@@#1@open\endcsname%

5 \csname CE@@#1@openfalse\endcsname%

6 }{%

7 \PackageError{collect}{Collection ‘#1’ has already %

5

8 been defined}{\@ehc}%

9 }%

10 }

collect* Usage: \begin{collect*} {〈name〉} {〈before〉} {〈after〉} {〈beforecol〉} {〈aftercol〉}
. . . \end{collect*}.

11 \newenvironment{collect*}[5]{%

12 \global\toks@{}%

13 \def\CE@file{#1}%

14 \def\CE@preenv{#2}%

15 \def\CE@postenv{#3}%

16 \def\CE@prefileenv{#4}%

17 \def\CE@postfileenv{#5}%

18 \CE@get@env@body@start%

19 }{%

What are we doing? We make sure the collection is open, then we save
〈beforecol〉, 〈before〉, the collected environment contents, 〈after〉 and 〈aftercol〉
in the collection file.

20 \CE@ensure@opened{\CE@file}%

21 \edef\@tempa{\csname CE@@\CE@file @out\endcsname}%

22 \immediate\write\@tempa{\CE@meaning\CE@prefileenv}%

23 \immediate\write\@tempa{\CE@meaning\CE@preenv}%

24 \immediate\write\@tempa{\the\toks@}%

25 \immediate\write\@tempa{\CE@meaning\CE@postenv}%

26 \immediate\write\@tempa{\CE@meaning\CE@postfileenv}%

Now we repeat the same thing, but with the temporary file and writing only
〈before〉, the collected environment contents and 〈after〉. Then we include the
temporary file.

Why so complicated, as we have the contents of the environment in \toks@?
Because the catcodes might not be correct, i.e. if \verb is used inside the environ-
ment. So we have to read the environment contents again, which without eTEX is
only possible using a temporary file.

27 \immediate\openout\CE@tmp@out=\jobname.tmp%

28 \immediate\write\CE@tmp@out{\CE@meaning\CE@preenv}%

29 \immediate\write\CE@tmp@out{\the\toks@}%

30 \immediate\write\CE@tmp@out{\CE@meaning\CE@postenv}%

31 \immediate\closeout\CE@tmp@out%

32 \@input{\jobname.tmp}%

33 \par%

34 }

collect Usage: \begin{collect} {〈name〉} {〈beforecol〉} {〈aftercol〉} . . . \end{collect}.

35 \newenvironment{collect}[3]{%

36 \global\toks@{}%

37 \def\CE@file{#1}%

38 \def\CE@prefileenv{#2}%

6

39 \def\CE@postfileenv{#3}%

40 \CE@get@env@body@start%

41 }{%

As this environment, contrary to collect*, does not typeset its contents, we
only write to the collection file:

42 \CE@ensure@opened{\CE@file}%

43 \edef\@tempa{\csname CE@@\CE@file @out\endcsname}%

44 \immediate\write\@tempa{\CE@meaning\CE@prefileenv}%

45 \immediate\write\@tempa{\the\toks@}%

46 \immediate\write\@tempa{\CE@meaning\CE@postfileenv}%

47 }

\includecollection Usage: \includecollection {〈name〉}.
Includes the collection 〈name〉 which must have been defined previously using

\definecollection. Afterwards, the collection is cleared.

48 \newcommand{\includecollection}[1]{%

49 \CE@ensure@closed{#1}%

50 \@input{\jobname.#1}%

51 }

6.1.2 Other environments

collectinmacro Usage: \begin{collectinmacro} {〈macro〉} {〈before〉} {〈after〉} . . . \end{collectinmacro}.
Collects the contents of an environment inside a macro.

52 \newenvironment{collectinmacro}[3]{%

53 \def\CE@destmacro{#1}%

54 \def\CE@postenv{#3}%

We initialize the result with 〈before〉:
55 \toks@{#2}%

56 \CE@get@env@body@start%

57 }{%

We add 〈after〉:
58 \toks@\expandafter\expandafter\expandafter{%

59 \expandafter\the\expandafter\toks@\CE@postenv}%

Finally we globally define 〈macro〉 to contain the collected contents:

60 \expandafter\expandafter\expandafter%

61 \gdef\expandafter\CE@destmacro\expandafter{\the\toks@}%

62 \toks@{}%

63 }

6.2 Internal environments and macros

We allocate a new \newwrite for the processing of a temporary file:

64 \newwrite\CE@tmp@out

7

\CE@get@env@body@start Starts the collecting of the contents of an environment. (the environment starts
immediately after the macro)
65 \def\CE@get@env@body@start{%

66 \let\@tempa\CE@get@env@body%

We may have to gobble leading spaces, therefore we check the first character
in the environment:
67 \futurelet\@tempb\CE@get@env@body@start@%

68 }

\CE@get@env@body@start@ Support macro for \CE@get@env@body@start. Checks if the next token is a space,
then calls \CE@get@env@body@start@@. Otherwise, the collecting of the environ-
ment contents is started.
69 \def\CE@get@env@body@start@{%

\@sptoken contains a single space and is defined in ltdefns.dtx:
70 \ifx\@tempb\@sptoken%

71 \expandafter\CE@get@env@body@start@@%

72 \else%

73 \expandafter\CE@get@env@body%

74 \fi%

75 }

\CE@get@env@body@start@@ Support macro for \CE@get@env@body@start@. Gobbles up any space follow-
ing the macro, then start the collecting of the environment contents using
\CE@get@env@body.
76 \def\CE@get@env@body@start@@{%

77 \afterassignment\CE@get@env@body%

78 \let\@tempb= %

79 }

\CE@get@env@body Usage: \CE@get@env@body {〈body〉} \end {〈envname〉}.
To ensure proper initialization, this macro should not be called directly; instead

\CE@get@env@body@start should be called.
First we change the catcode of Q to 3 (math switch) in order to have a really

unique character for parameter matching later on.3 We do this in a group in order
to easily restore the catcode later on and make all macro definitions global:
80 \bgroup

81 \catcode‘\Q=3

Now we begin the macro:
82 \long\gdef\CE@get@env@body#1\end#2{%

Right at the beginning of the macro, we are at an \end (and #1 contains the
contents prior to it). We check if it ends the current environment (#2 contains the
name of the environment ended):
83 \def\@tempb{#2}%

84 \ifx\@tempb\@currenvir%

3Taken from ‘Around the bend 15’

8

Yes, it ends the current environment. We add the contents to \toks@ and
are done. But we do not add the contents directly as there may be a trailing
space left (multiple spaces have been collapsed into one space by TEX). So we
call \CE@get@env@body@ using delimited parameters (note that Q has catcode 3,
therefore a normal Q is not matched).

What exactly is going on here? Suppose we have the text

Hello World_

(the _ denotes the trailing space). Then \CE@get@env@body@ is called like this:

\CE@get@env@body@Hello World Q Q

\CE@get@env@body@ matches the parameters like this: #1 is ‘Hello World’; leaving
_Q (added by the call from \CE@get@env@body) in the input. \CE@get@env@body@
then calls \CE@get@env@body@@ using #1 and Q, resulting in the call:

\CE@get@env@body@@Hello WorldQ Q

\CE@get@env@body@@ matches its parameter like this: #1 is ‘Hello World’ again,
and #2 is the second Q.

But what happened to the space between the two Qs? As #2 is not a delimited
parameter, TEX skips spaces after matching the first Q until it reaches the second
Q, thus gobbling up the space inbetween.4

Now suppose we have the text

Hello World

without any trailing space. Then \CE@get@env@body@ is called like this:

\CE@get@env@body@Hello WorldQ Q

\CE@get@env@body@ matches its parameters like this: #1 is ‘Hello WorldQ’.
\CE@get@env@body@ then calls \CE@get@env@body@@ using #1 and Q, resulting
in the call:

\CE@get@env@body@@Hello WorldQQ

\CE@get@env@body@@ matches its parameter like this: #1 is ‘Hello World’ with-
out the trailing ‘Q’, and #2 is the second Q. The only difference to the situation
described above is the missing space between the two Qs.

4c.f. TEXbook chapter 20.

9

Remember that the ‘Q’ is always ‘Q’ with catcode 3, thus no ‘Q’ in the envi-
ronment contents is matched.

85 \CE@get@env@body@#1Q Q%

86 \def\@tempa{\end{#2}}%

87 \else

No, it ends another environment. We add the contents as well as the
\end〈environment〉 to \toks@. Then we continue collecting:

88 \toks@\expandafter{\the\toks@#1\end{#2}}%

89 \fi%

90 \@tempa%

91 }

\CE@get@env@body@ Support macro for \CE@get@env@body. See \CE@get@env@body for explanations.

92 \long\gdef\CE@get@env@body@#1 Q{%

93 \CE@get@env@body@@#1Q%

94 }

\CE@get@env@body@@ Support macro for \CE@get@env@body@. See \CE@get@env@body for explanations.

95 \long\gdef\CE@get@env@body@@#1Q#2{%

96 \toks@\expandafter{\the\toks@#1}%

97 }

Finally we end the group, thus restoring the catcode of Q:

98 \egroup

\CE@meaning Usage: \CE@meaning {〈macro〉}.
Expands to the meaning of 〈macro〉.

99 \long\def\CE@meaning#1{%

100 \expandafter\strip@prefix\meaning#1%

101 }

\CE@ensure@opened Usage: \CE@ensure@opened {〈name〉}.
Ensures that the file for collection 〈name〉 is opened.

102 \def\CE@ensure@opened#1{%

103 \@ifundefined{ifCE@@#1@open}{%

104 \PackageError{collect}{Collection ‘#1’ has not been defined}{\@ehc}%

105 }{%

106 \csname ifCE@@#1@open\endcsname\else%

107 \expandafter\immediate\expandafter\openout%

108 \csname CE@@#1@out\endcsname=\jobname.#1%

109 \expandafter\global\csname CE@@#1@opentrue\endcsname%

110 \fi%

111 }%

112 }

10

\CE@ensure@closed Usage: \CE@ensure@closed {〈name〉}.
Ensures that the file for collection 〈name〉 is closed.

113 \def\CE@ensure@closed#1{%

114 \@ifundefined{ifCE@@#1@open}{%

115 \PackageError{collect}{Collection ‘#1’ has not been defined}{\@ehc}%

116 }{%

117 \csname ifCE@@#1@open\endcsname%

118 \expandafter\immediate\expandafter\closeout%

119 \csname CE@@#1@out\endcsname%

120 \expandafter\global\csname CE@@#1@openfalse\endcsname%

121 \fi%

122 }%

123 }

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed, the ones underlined to the code line of the definition, the rest to the code
lines where the entry is used.

Symbols
\@sptoken 70

A
\afterassignment . . 77

C
\CE@destmacro . . . 53, 61
\CE@ensure@closed .

. 49, 113
\CE@ensure@opened .

. 20, 42, 102
\CE@file 13,

20, 21, 37, 42, 43
\CE@get@env@body . .

. . . . 66, 73, 77, 80
\CE@get@env@body@ 85, 92
\CE@get@env@body@@ .

. 93, 95

\CE@get@env@body@start

. . . . 18, 40, 56, 65
\CE@get@env@body@start@

. 67, 69
\CE@get@env@body@start@@

. 71, 76
\CE@meaning

. 22, 23, 25, 26,
28, 30, 44, 46, 99

\CE@postenv
. 15, 25, 30, 54, 59

\CE@postfileenv . . .
. . . . 17, 26, 39, 46

\CE@preenv . . 14, 23, 28
\CE@prefileenv

. . . . 16, 22, 38, 44
\CE@tmp@out . . 27–31, 64
collect (environment)

. 3, 35

collect* (environ-
ment) 2, 11

collectinmacro (envi-
ronment) . . 3, 52

D
\definecollection 1, 2

E
environments:

collect* 2, 11
collectinmacro 3, 52
collect 3, 35

I
\includecollection 3, 48

Q
\Q 81

11

