The SASnRdisplay package

Lars Madsen*

December 1, 2017

Introdution

The SASnRdisplay package acts as a frontend to the versatile listings package in order assist the
user in typesetting SAS or R code or output. The package replaces the similar SASdisplay package,
which was only available to my local users.

Please be aware that SASnRdisplay is not fully compatible with SASdisplay, the default settings
are different and some macros are named differently.

Acknowledgements

I'd like to thank Ulrike Fischer for hints about some very useful features in the caption package,
Heiko Oberdiek for his help with hyperref details. Plus a thanks to Jergen Granfeldt and Preben
Bleesild for answering my various questions about details within the R or SAS languages.

Loaded package

The following packages will be loaded (without any options): listings, xkeyval, xcolor, etoolbox,
caption, needspace. If you need to pass options to these packages, load them before the SASnRdisplay
package.

Contents
1 Interface 3
1.1 Environments 3
1.2 Input fromexternal files 3
1.3 Sniplets 3
1.4 Packageoptions 3
2 Configuration 4
2.1 Titles 4
2.2 Handling listings configuration of our environments and macros 5
2.3 Configuration FAQ/Examples o 5
231 Font. e 5
232 Colors 6
233 Frames 6
234 Captions 7
235 Keywords 8
2.3.6 Escapeto IEX e 8
2.3.7 Inputencodings (e.g. UTF8) 9
238 Other e 9

*Email: daleif@math.au.dk, v0.95 2017/12/01

3 Examples
3.1 SAS

4 Default style settings for R and SAS
4.1 Style settings forR

4.1.1
4.1.2
4.1.3

Rconfigurationstyles L

Ruser styles
R collector styles . .

4.2 Style settings for SAS . . .

4.2.1
4.2.2
4.2.3
4.2.4

Bibliography

SAS configurationstyles L. Lo o

SAS user styles . . .
SAS collector styles
Extra SAS keywords

11
11
12

13
13
13
14
14
15
15
16
17
18

19

1 Interface

1.1 Environments

\begin{env}[{options)]

\end{env}

Each environment support an optional [{options)] argument. The (options) part should be listings
related configuration.

SAScode, SAScode*
For typesetting SAS code. The starred version is not automatically numbered.

SASoutput, SASoutput*
Similar for SAS output. Note that it might be an idea to decrease the width of the SAS out-
put from within the SAS programme.

Rcode, Rcode*
Typesets R code

Routput, Routput*
Typesets R output

1.2 Input from external files
General syntax:
\macro[{options)]{(filename)}

Available macros:

\inputSAScode, \inputSAScodex*
Similar to the SAScode(*) environment, but get the data from external file.

\inputSASoutput, \inputSASoutputx*
Similar to the SASoutput(*) environment.

\inputRcode, \inputRcodex*
Similar to the Rcode(*) environment.

\inputRoutput, \inputRoutput=*
Similar to the Rcode(*) environment.

1.3 Sniplets
To typeset inline sniplets we provide

\SASinline

\Rinline

They both behave like \verb, thus one can write
\Rinline[{options)]|x <- 34|

Note that for \SASinline, key words are marked, i.e. it is SAS aware. This is not the case for R.

1.4 Package options

‘\usepackage[(options)]{SASanisplay}

Available options:

danish
Loads Danish translations for some keywords. (Executed by default)
english
Similar for English.
grayscale
Changes some build in colors to monochrome.
countbysection
Force counters to be dominated by the section counter.

countbychapter
Force counters to be dominated by the chapter counter. This is the default if \chapter exist,
otherwise countbysection will be used.

consecutive
Use this if you just want consecutive numbering throughout, that is the number of say SAS
code, is not reset at every new chapter or section.

countbylistings
Here we will leave the counters alone and just use the one that comes with listings. This
(of course) disables countbysection, countbychapter and consecutive.

noautotitles-r, noautotitles-sas
Do not automatically add a number to any of the code and outputs. It can still be added
manually by using the caption={(text)} option.

needspace=(length)
This issue a \needspace{(length)} before each code or output environmnt or inclusion macro.
It will ensure that if there is less than (length) space left on the page, a page break is issued
before the construction start.

This feature is enabled by default with a default (length) of 3\baselineskip.

noneedspace
This disables the needspace feature.

sweave
Overloads the Sweave package, i.e. it makes the Sinput and Scode environments behave as
the Rcode environment , and the Soutput like the Routput environment.

If Sinput should have a slightly different look than Rcode, then use the Sinput style to
add your extra configuration. (The Sweave package typesets the contents of the Sinput env
to be in the typewriter/monospace font plus italic, whereas we just set it in typewriter/-
monospace.)

sasweave
Similar for the sasweave package, adding this options, we will overwrite SASinput, SASoutput
and SAScode environments with our versions. Note you will have to load SASnRdisplay after
the SasWeave package.!

Please note: This option has not been throughly tested. Please let me know if it works
as advertised.

(other)
Other options will be passed on to the listings package.

2 Configuration

As a frontend to listings, the configuration is based upon listings styles, i.e. collections of listings
configurations. These are applied in left to right fashion, the last configuration loaded takes
precedence.

2.1 Titles

These macros holds the titles for the four types of displays. English:

1Because SasWeave use the same environment names as we do.

4

\renewcommandx*\SnRRcodename{R~code}
\renewcommandx*\SnRSAScodename{SAS~code}
\renewcommand*\SnRRoutputname{R~output}

\ renewcommand*\SnRSASoutputname{SAS~output}

And for Danish:

\renewcommandx*x\SnRRcodename{R-kode}
\renewcommand*\SnRSAScodename{SAS-kode}

\ renewcommand*\SnRRoutputname{R-udskrift}
\renewcommand*\SnRSASoutputname{SAS-udskrift}

Note if you are using babel and the babel option to SASnRdisplay, then these names are added to
the language setup, and thus if you want to change then you will have to add your changes to the
language setup as well.

2.2 Handling listings configuration of our environments and macros

The listings configuration we use in this package is based on the listings concept of styles. A
style is basically just giving a collection of listings key-value sets a more convenient name. At
first glance, this may seem a tedious method for configuration instead of giving various features
macro names and letting the user change those macros. Been there, done that. Given the shear
number of listings options, this would make configuration very un-flexible.

The general listings syntax for styles is

\lstdefinestyle{(name)}{
(key-value set)
}

One drawback is that if (name) already exist, then you will replace the contents of this style.
Currently there is no manner in which to add to a style.

Thus it is a rather bad idea to provide the configuration as one long style, because then chang-
ing a small thing, would require the user to retype the rest of the configuration. Instead we split
the configuration into smaller themed pieces. The user then have a choice of either overwriting
one of these pieces or override a special user style which is executed as the last style (and thus
overwrites any former style).

The settings can be seen in Section 4. The styles are broken into smaller pieces. In some cases
it make sense to change one of these smaller pieces, in other cases it is easier to add stuff to the
provided (name)-(type)-user styles.

2.3 Configuration FAQ/Examples

Here follows a list of FAQs as to how one would make some configuration changes. Again we
remind the user, that it is not possible to add to a listings style. Thus you will have to add all
your setting for, say, r-user, into one single call to \lstdefinestyle.

2.3.1 Font
'd like to change the font size

The gereral fontsize (not comments) is handled by the keyword basicstyle, so you can change
the font size for SAS code in two ways,

\lstdefinestyle{sas-code-user}{
basicstyle=\ttfamily\footnotesize

}

or by overwriting the default SAS code font setting:

5

\lstdefinestyle{sas-code-fonts}{
basicstyle = \ttfamily\small,
}

2.3.2 Colors

The default colors are SnRFrame » « for the frame, and SnRBG » « for the background. If the
grayscale option is used, the mentioned colored are mapped on to SnRFrameGray »mmi« and SnRBGGray

» «,

I'd like other colors

We automatically load the xcolor package for colors, so we refer that package for details. If you
just want to change, say, the background color, try (after SASnRdisplay)

\definecolor{SnRBG}{gray}{0.8} ‘

for a gray tone (1 means white). If one loads the xcolor package before SASnRdisplay, then one can
pass certain options to it and get access to a lot of color names, a survey of these can be found in
the xcolor manual, [1].

The two default colores are defined as

\definecolor{SnRBG} {rgb}{0.94,0.97,1}
\definecolor{SnRFrame}{rgb}{0.79,0.88,1}

I'd like different colors for code and output

Since the (name)-(type)-user styles are executed at the very end of the configuration, it will be
suitable to add them there. Here is how to make the SAS code have a blue background while
leaving the SAS output with the default.

\lstdefinestyle{sas-code-user}{
backgroundcolor = \color{blue},

}

Note: Remember that there will only be one sas-code-user, thus if you have several configura-
tions to add to it, collect them in one such \lstdefinestyle.

How about the color of the text

This can be seen in three different ways: regular text, comments and keyword. (In our case
keywords only apply to SAS code.) This means that colors will have to be inserted into say the
basicstyle key to change the basic font color. Here is instead how to make all SAS comments
green, note that we have to copy the rest of the font settings for SAS comments, as we cannot add
to a setting.

\lstdefinestyle{sas-code-user}{
commentstyle = \normalfont\slshape\ttfamily\footnotesize\color{green},

¥

When dealing with SAS keywords one can even add different colors to separate groups of key-
words, though this is a bit out of our scope in this manual.

2.3.3 Frames

Listings supports a number of different types of frames, see the manual ([2]) for details.

6

I like the settings from the old SASdisplay package with the line above and below

Here we choose to simply overwrite a frame style.

\lstdefinestyle{r-frame}{
frame = lines,
framesep = 0.5em,
framerule = 1mm, % thickness of the rule
}
No rules

‘ \lstdefinestyle{r-frame}{} ‘

A user may want to experiment with the keys x(left|right)margin and framex{left|right|top|
bottom)margin.

2.3.4 Captions

This is not a configuration as such but rather a hint to how one adds a caption.
If the noautotitles is not activated, all non-starred environments and input macros will get

an automatic caption, including a number. If one wish to add extra text use the following to the
options of the environment or input macro.

‘ caption={(My text)}

Remember the {} pair around the text.

In this version of SASnRdisplay ‘list of ...” are not supported due to technical difficulties.

If you want to configure captions related to listings, please use

\captionsetup[lstlisting]{{options)}

For example, in this document we use

\captionsetup[lstlisting]{
font=small,
labelfont=bf

}

to make the label text bold, and the entire caption text in \small.

Note that numbered construction without a caption are typeset as Name Num, with a caption
this change into Name Num: Caption.

I do not like numbers, but I'd like to add some titling info for some of my code.

If you do not want to use the auto numbering scheme, then use the noautotitles-sas or noautotitles-r
package options. Then to add just a title, add the following to the (options)

title={My title text}

It is simular to the caption option, but has no numbers or preceeding text.

How do I refer to code or output?

First of all, as with floats, it is the caption that provide the number that one can refer to. So as
long as the code or output is numbered, then one can just add

‘ label=(keyname)

to the environment or inclusion macro (options).

You can of course also add a label even if it is not numbered, then \ref{{key)} will just not be
weldefined. But \pageref{{key)} will!

2.3.5 Keywords
In a presentaion, I'd like to highlight a word

See the emph and emphstyle keys. Here is an example.

\begin{SAScodex} [emph={INSIGHT}, emphstyle=\color{red}\bfseries]
PROC INSIGHT DATA data=fisk;
\end{SAScodex}

resulting in

PROC INSIGHT DATA data=fisk;

How do I disable the keyword marking?

You could either specify en empty language, i.e. language= to eithor the {options) or to a global
style.
Or you could redefine the keyword style:

keywordstyle=

I typeset SAS code, but keywords are not being marked!?

This is usually because the mono space font (i.e. the font behind \ttfamily) does not support
boldface (as that is the default manner which we mark keywords).

One such example is the default IXTEX font: Computer Modern. Its mono space has no bold
version.

Solutions: see http://www.tug.dk/FontCatalogue/typewriterfonts.html, you will need to look
for fonts that are shown to support \bfseries.

In this manual we use beramono. Another interesting solution is to use

‘ \renewcommand\ttdefault{txtt}

2.3.6 Escape to KTEX

This is a very handy feature and can e.g. be used to get formatted I&TgX code inside, say, a com-
ment. For example using

escapeinside=| |,

means that if one write [a_{ij}| in a comment one would get a;; typeset in the output.
A feature like this is not enabled by default. Though a user can always add it globally to the
settings of his/her document, say using

\lstdefinestyle{sas-code-user}{
escapeinside=| |,

¥

It does not have to be » | « that is the escape character.
It can be locally disabled by adding

‘ escapeinside={},

in the (options) for the environment or the input macro.

The listings manual, [2, Section 4.14] list other features related to escaping back to normal IATEX
formatting.

http://www.tug.dk/FontCatalogue/typewriterfonts.html

2.3.7 Input encodings (e.g. UTF8)
I keep getting errors when I include my program, something about undefined chars!?

The problem here is that listings cannot cope with so-called two two-byte characters, listings
needs to do a lot of parsing which may break when dealing with e.g. two-byte UTF8 chars (es-
sentially all non-acsii chars).

At the moment, no-one have made a UTF8 compatible version of listings, so we need to cope
somehow.

We will be assuming you are working with UTE8 files (both on the LaTeX side, and any includ-
ing source code), UTF8 is recommended nowadays, so we will ignore working purely in latinl
(which listings has no issues with at all).

First scenario: Assuming all your listings presented material comes from external sources,
e.g. they are inputted, and assuming your UTF8 sources code is compatible with the latinl en-
coding (aka Western European languages), then you can simply additionally use the package
listingsutf8. It extends the file inclusion feature and extend the input encoding syntax. Add
listingsutf8 to your preamble, and using

\lstdefinestyle{r-include-code-user}{
inputencoding=utf8/latinl
}

will attempt to auto convert the included code into latinl before handing it off to listings. See
[4] for a bit more details.

Another solution, which works very well is using the the literate option. The value of this key
is read in triples, and is basically saying, if you see this char, typeset this instead. Here is an
example with the Danish seod:

\lstdefinestyle{r-code-user}{
literate={2}{\ae}1%
{£}{\AE}1%
{z}{\0}1%
{B}{\0}1%
{3}{\aa}1%
{R}{\AA}1,%

(add the comma after the last one). There are several examples on http://tex.stackexchange.com
if you search for “listings literate”.

As for the syntax of the triple: {(input)}{(typeset output)}{{length)}.

2.3.8 Other
I'd like to have line numbers

Here is how to add line numbers to all R code.

\lstdefinestyle{r-code-user}{
numbers = left,
numberstyle = \tiny

}

Line numbers can be configured further, see section 4.8 in the listings manual, [2].

Line numbers can be very handy when displaying source code. For output, it might not be
that relevant.

It is possible to actually label and refer to specific lines in a piece of code, see section 7 in the
listings manual, [2].

http://tex.stackexchange.com

I have many blank lines, can some be ignored?

Yes with the emptylines key. It determine the number of consecutive blank lines to allow in the
output. By default listings will already ignore blank lines at the end of what ever is shown. To
show only one blank line in the output for R, try

\lstdefinestyle{r-user}{
emptylines=1,

}

If you are also using line numbers, you may want to use

\lstdefinestyle{r-user}{
emptylines=x1,

}

then the line numbers ‘jump’ correctly in regards to the blank lines.

Can also blank space at the start of lines be ignored?

Of course, that key is called gobble, its value will indicate the number of characters to eat (from
the left). Note that it will not distinguish between spaces and non-spaces, it will just eat a set
number of characters at the start of each line.

By the way, can one control the width of the SAS output from within a SAS programme?

Yes, try the »OPTIONS LS=80;« setting.

Can I show sniplets of code?
Sure. See the firstline and lastline keys or the linerange. They cannot be set globally, so can

only be added into environment or input macro options.

There is also an experimental feature where instead of line numbers one specify certain strings
inside the external file. This can be quite handy if the contents of the external file may change.’
Section 5.7 in the listings manual ([2]) has more details.

The quotes look odd in my code listings, can it look more like keyboard keys?

Of course. Add the textcomp package, and issue

\lstdefinestyle{r-user}{
upquote=true,

}

\lstdefinestyle{sas-user}{
upquote=true,

}

I use the Sweave package and overload the look using SASnRdisplay. . I'd like Sinput to look more like
the default in Sweave.

This can be done by using the extra Sinput style to overload the basic style:

\lstdefinestyle{Sinput}{
basicstyle = \ttfamily\itshape
}

2Then one does not have to manually change the line number references all the time.

10

3 Examples
3.1 SAS

inline: \SASinline|RANGE xxx| results in RANGE xxx.

Personally I often add »... « around inline sniplets to indicate where they start and end. Sadly
this is apparently not something one can add into the inline macro definition because of its \verb-
like nature.

SAS code 3.1: Test of caption

PROC INSIGHT DATA data=fisk;
SCATTER x1 x2 x3 x4 x5 x dosis vgt;
RUN;

OUTPUT

QUIT; /% a standard SAS comment x/

was typeset via

\begin{SAScode}[caption={Test of caption}]
PROC INSIGHT DATA data=fisk;

SCATTER x1 x2 x3 x4 x5 * dosis vgt;

RUN;

OUTPUT

QUIT; /* a standard SAS comment x*/
\end{SAScode}

whereas

SAS output 3.1

TABLE OF NIVEAU BY SUBJECT

NIVEAU SUBJECT

Frequency |

Percent |

Row Pct |

Col Pct |kem |mat |mus | samf | Total

--------- T e e s SRR 3

h | 0 | 1] 1] 0 | 2
| 0.060 | 20.00 | 20.00 | 0.00 | 40.00
| 0.00 | 560.00 | 50.00 | 0.00 |
| 0.00 | 50.00 | 100.00 | 0.00 |

--------- L s e S s

m | 0 | 1] 0 | 1| 2
| 0.00 | 20.00 | 0.00 | 20.00 | 40.00
| 0.00 | 50.00 | 0.00 | 50.00
| 0.00 | 50.00 | 0.00 | 100.00

--------- L s e T

o | 1] 0 | 0| 0 | 1
| 20.00 | 0.00 | 0.00 | 0.00 | 20.00
| 100.00 | 0.00 | 0.00 | 0.00 |
| 100.00 | 0.00 | 0.00 | 0.00 |

--------- L e s e 3

Total 1 2 1 1 5

20.00 40.00 20.00 20.00 100.00

comes from

\begin{SASoutput}
TABLE OF NIVEAU BY SUBJECT

NIVEAU SUBJECT

FrequencyPercent
Row Pct Col Pct kem mat mus samf Total

11

--------- B T s s TR

h 0 11 0 2 0.00 20.00 20.00 0.00 40.00
0.00 50.00 50.00 0.00 0.00 50.00 100.00 0.00

--------- L T T T Yy Ry

m 0 10 1 2 0.00 20.00 0.00 20.00 40.00
0.00 50.00 0.00 50.00 0.00 50.00 0.00 100.00

--------- L T T T Yy Ry

) 1 0 0 O 1 20.00 0.00 0.00 0.00 20.00
100.00 0.0 0.00 0.00 100.00 0.00 0.00 0.00

--------- L T T T Yy Ry

Total 1 2 1 1 5

20.00 40.00 20.00 20.00 100.00

\end{SASoutput}

3.2 R

\Rinline|x <- a| resultin x <-a

R code 3.1: With just one blank line showing, plus line numbers. Note we only show the first 25 lines.

S
chunk number 1:

HHEH e m e m m

maxlike <- function(x) {
b <- 0.5%(sqrt((sum(x)/length(x))"2 + 4x(sum(x"~2)/length(x))) - sum(x)/length(x))

a <- rep(0,200)
for(n in 1:200) {
aln] <- maxlike(rnorm(n,1,1))

}

#HE#HH #H## ## #H## ## #

chunk number 3:
fgg e dedaddsaaddd e ddsddi
plot(a, type="1",xlab="stikprevestgrrelse_n",

main="mle_indrammet_af_.025_og_.975 fraktiler_i_asymptotisk_ford.",

was typeset via

\inputRcode[

emptylines=x1,

numbers=left,

numberstyle=\tiny,

caption={With just one blank line showing, plus line numbers. Note we
only show the first 25 lines.},

linerange=1-25

1{opg_G17.R}

R output 3.1: Copied from an Sweave result.

[1] 0.0495

12

is just sumple use of the Routput environment.

4 Default style settings for R and SAS
4.1 Style settings for R

Note how there are three user styles. The style r-user apply to both R code and R output, whereas
r-code-user and r-output-user apply only to code and output respectively. This means that if,
say, the user want to change the framing to a line above and below instead of the default box, the
user can either overwrite the r-frame style, or the r-user style.

The style settings are divided into three separate groups: (a) the settings themselves, (b) user
styles and (c) collector styles, which are just a common name and loading order for other styles
and

4.1.1 R configuration styles

Style: r-vskips

\lstdefinestyle{r-vskips}{

aboveskip = 10pt plus 3pt minus 5pt,

belowskip = 10pt plus 3pt minus 5pt,

belowcaptionskip = 7pt,

lineskip = Opt plus 0.1lem, % help with blank lines and page stretch

}

Style: r-fonts

\lstdefinestyle{r-fonts}{
basicstyle = \small\ttfamily,
1

The font is the base font for the rest. If for example one make use of emphstyle=, then one will get
the basicstyle plus bold face (if possible) for things that are emphasized.

Style: r-chars-and-breaks

\lstdefinestyle{r-chars-and-breaks}{
columns = fixed, % chars vertivally aligned

breaklines, % lines can be broken

breakatwhitespace, % at white space

extendedchars = true, % special chars allowed, be aware of utf8
}

Style: r-markup

\lstdefinestyle{r-markup}{ % this only make sense for code

language = R, % R lang added 2017/12/01

commentstyle = \normalfont\slshape\ttfamily\footnotesize,
}

R lang setting was added 2017/12/01 and requires a listings newer from 2015 or later.

Style: r-frame

\lstdefinestyle{r-frame}{
frame = single, % single frame all the way round, box broken at page break
framesep = 0.5em, % sep from frame to text

}

13

Style: r-colors

\lstdefinestyle{r-colors}{
backgroundcolor = \color{SnRBG},
rulecolor \color{SnRFrame},

}

The colors being used as standard have special names. By default they are in color. If the
monochrome option is issued they are mapped onto SnRBGGray and SnRFrameGray, the later being
black by default.

Style: r-inline

\lstdefinestyle{r-inline}{

basicstyle = \ttfamily,

language = R, % R lang added 2017/12/01
}

Note that by default, the inline style for \Rinline, shares nothing with the rest of the R configu-
ration and is loaded on its own.
R lang setting was added 2017/12/01 and requires a listings newer from 2015 or later.

4.1.2 R user styles

These are all empty by default. There are two types of these: (i) styles applying to both types
(code and output) in one go, and (ii) ones that are specific to either code or output. We also have
a third level file include versus in document. The more specific the name, the later it will come in
the collector styles (i.e. its settings will apply last).

Style: r-user — user stuff for everything R

‘ \lstdefinestyle{r-user}{}

Style: r-code-user — only for R code

‘ \lstdefinestyle{r-code-user}{}

Style: r-output-user — only for R output

‘ \lstdefinestyle{r-output-user}{}

These three apply only to inclusion macros. Can be handy to specify an input encoding for, say,
all included code files.

Style: r-include-user

‘ \lstdefinestyle{r-include-user}{}

Style: r-include-code-user

‘ \lstdefinestyle{r-include-code-user}{}

Style: r-include-output-user

‘ \lstdefinestyle{r-include-output-user}{}

4.1.3 R collector styles

Please note the calling sequence.

14

Style: r-style — all common code for R

\lstdefinestyle{r-style}{

style = r-vskips, % vertical spacing

style = r-fonts, % fonts

style = r-colors, % colors

style = r-chars-and-breaks, % special chars and line breaks
style = r-frame, % framing

style = r-user, % user defined configuration

Style: r-code — specific for R code

\lstdefinestyle{r-code}{
style = r-style,
style = r-markup,
style = r-code-user,

o°

markup only make sense for code

}

Style: r-output — specific for R output

\lstdefinestyle{r-output}{
style = r-style,
style = r-output-user,

}

Next we have the extra styles used for inclusion macros. They are the same as for R code and R
output, with the addition of two extra styles.

Style: r-include-code

\lstdefinestyle{r-include-code}{
style = r-code,
style = r-include-user,
style = r-include-code-user,

}

Style: r-include-output

\lstdefinestyle{r-include-output}{
style r-output,
style = r-include-user,
style = r-include-output-user,

}

4.2 Style settings for SAS

The structure is similar to the one used for R, though the font settings are split in two.
4.2.1 SAS configuration styles

Style: sas-inline

\lstdefinestyle{sas-inline}{

basicstyle = \ttfamily,
style = sas-more-keywords,
language = SAS,

}

15

Style: sas-vskips

\lstdefinestyle{sas-vskips}{

aboveskip = 10pt plus 3pt minus 5pt,

belowskip = 10pt plus 3pt minus 5pt,

belowcaptionskip = 7pt,

lineskip = Opt plus 0.1lem, % help with blank lines and page stretch

Style: sas-colors

\lstdefinestyle{sas-colors}{
backgroundcolor = \color{SnRBG},
rulecolor \color{SnRFrame},

Style: sas-code-fonts

\lstdefinestyle{sas-code-fonts}{
basicstyle = \ttfamily\small,
}

Style: sas-output-fonts

\lstdefinestyle{sas-output-fonts}{
basicstyle = \ttfamily\footnotesize,

}

Note how we actually split the font settings in two. This is because it is common to have SAS
code and SAS output i different font sizes. As R output is not that common, this split has not
been made with R, it will be up to the user.

Style: sas-chars-and-breaks

\lstdefinestyle{sas-chars-and-breaks}{
columns = fixed, % chars vertivally aligned
breaklines, lines can be broken
breakatwhitespace, s at white space
extendedchars = true, % special chars allowed, be aware of utf8

o°

°

Style: sas-markup

\lstdefinestyle{sas-markup}{

language = SAS,

keywordstyle = \bfseries,

comment = [s1{/*}{*/},
commentstyle = \slshape\footnotesize,

}

Note that only the /x...x/ style SAS comments are supported for styling. The *...; syntax is
not supported. Also note we had to change the SAS settings for listings otherwise we would be
unable to style SAS comments.

Style: sas-frame

\lstdefinestyle{sas-frame}{
frame = single,
framesep = 0.5em,

}

4.2.2 SAS user styles

16

Style: sas-user — user stuff for everything SAS

‘ \lstdefinestyle{sas-user}{}

Style: sas-code-user — only for SAS code

‘ \lstdefinestyle{sas-code-user}{}

Style: sas-output-user —only for SAS output

‘ \lstdefinestyle{sas-output-user}{}

These three apply only to inclusion macros. Can be handy to specify an input encoding for, say,
all included code files.

Style: sas-include-user

‘ \lstdefinestyle{sas-include-user}{}

Style: sas-include-code-user

‘ \lstdefinestyle{sas-include-code-user}{}

Style: sas-include-output-user

‘ \lstdefinestyle{sas-include-output-user}{}

4.2.3 SAS collector styles

Style: sas-style — all common code for SAS

\lstdefinestyle{sas-style}{
style = sas-vskips,
style = sas-frame,
style = sas-colors,
style = sas-chars-and-breaks,
style = sas-user,

Style: sas-code — specific for SAS code

\lstdefinestyle{sas-code}{
style = sas-style,
style = sas-code-fonts,
style = sas-markup, % there is no markup of the output
style = sas-more-keywords, % has to come after markup when loading styles
style = sas-code-user,

Style: sas-output — specific for SAS output

\lstdefinestyle{sas-output}{
style = sas-style,
style = sas-output-fonts,
style = sas-output-user,

}

Style: sas-include-code

\lstdefinestyle{sas-include-code}{
style = sas-code,
style = sas-include-user,
style = sas-include-code-user,

}

17

Style: sas-include-output

\lstdefinestyle{sas-include-output}{
style = sas-output,
style = sas-include-user,
style = sas-include-output-user,

}

4.2.4 Extra SAS keywords

Jorgen Granfeldt supplied extra SAS keywords to supplement those supported by listings. The
keywords are found in SASnRdisplay.cfg and is labelled as the sas-more-keywords style. Note that
even though not required by SAS, all supported keywords are written in upper case. JG explains
that this is encouraged because that it makes it easier to tell the difference between build in SAS
commands and user supplied (lower case) variables and procedure names.

Please note that we also change a list of other keywords, otherwise we will be unable to style
SAS comments.

Here is the current list.

Style:sas—more—keywords,frorn SASnRdisplay.cfg

\lstdefinestyle{sas-more-keywords}{%
morekeywords={SASAUTOS, LABEL},
morekeywords={PROC, INSIGHT,SCATTER,QUIT, FORMAT, VALUE},
morekeywords={DISCRIM,WCOV,WSSCP,METHOD, POOL},
morekeywords={DATALINES,WITH,OPTIONS,GPLOT,LS,PS},
morekeywords={SYSLIN, INSTRUMENTS, ENDOGENOUS, EXOGENOUS, IDENTITY,%
WEIGHT,OLS,2SLS,LIML,SUR,ITSUR,3SLS,IT3SLS, FIML,MELO},
morekeywords={MODEL,OUT, STDR,STDP,H,R, STUDENT,RSTUDENT, PRESS, %
ucL,LCL,UCLM,LCLM,CL},
morekeywords={FREQ, TABLES},
morekeywords={GLM, CLASS, LSMEANS ,MANOVA,MTEST, REG, PRINTE, %
FILENAME, GOPTIONS,DEV,CTEXT,GACCESS,NOPRINT,CONTRAST, ESTIMATE, RANDOM},
morekeywords={SS1,552,5S3,5SSD,S54,CLI,CLM, CLPARM},
morekeywords={NOUNI,OUTPUT},
morekeywords={E,E1,E2,E3,SOLUTION, TEST},%
morekeywords={IML,USE,READ,ALL,INTO,PRINT, COLNAME,ROWNAME, CREATE,%
FROM, APPEND},
morekeywords={MIXED,DDFM, REPEATED, PARMS, PRIOR,ALPHA, TYPE},
morekeywords={GREPLAY,NOFS,NOBYLINE,IGOUT,TC, TEMPLATE, TREPLAY, GOUT},
morekeywords={GSFMODE, TARGETDEVICE,ROTATE, CBACK, GUNIT,HTITLE,HTEXT,%
FTEXT,CSYMBOL , ANNOTATE},
morekeywords={SYMBOL,SYMBOL1,SYMBOL2,SYMBOL3,SYMBOL4,SYMBOL5,SYMBOL6,%
SYMBOL7,SYMBOL8},
morekeywords={LEGEND1, LEGEND2, LEGEND3, ANGLE},
morekeywords={INTERPOL,I},
morekeywords={AXIS,AXIS1,AXIS2,AXIS3,AXIS4,AXIS5,AXIS6,AXIS7,AXIS8,%
HAXIS,VAXIS,ORDER},
morekeywords={MINOR,WIDTH,COLOR,GPLOT,PLOT,OVERLAY},
morekeywords={I,V,L,H,C,ANGLE,NOLEGEND, USS, OF},
morekeywords={TITLE, TITLELl, TITLE2, TITLE3, TITLE4, TITLE5, TITLE6},
morekeywords={PRINCOMP,COV},
morekeywords={GSFNAME, GSASFILE,INCLUDE},
morekeywords={GENMOD, LINK, FWDLINK, INVLINK,ASSESS, ASSESSMENT, OBSTATS,%
SCALE,DSCALE, PSCALE},
morekeywords={TYPE1,TYPE3,WALD,WALDCI,b XVARS},
morekeywords={DIST,TOTAL,NOINT,OFFSET},
morekeywords={0DS, LISTING,ParameterEstimates,RESDEV,STDRESDEV,%
PREDICTED,RESCHI,RESLIK,STDRESCHI},
morekeywords={XBETA,STDXBETA, LOWER, UPPER,HESSWGT},
morekeywords={FWDLINK, INVLINK, VARIANCE,DEVIANCE},
morekeywords=[7]1{P},
keywordstyle=[7]{\normalfont\ttfamily},

18

o°

Listings setup for SAS include / and * in the keyword list,
meaning we cannot style comments in SAS, we therefore remove
remove them from the keyword list
otherkeywords={!, !=,~,$,\&,_,<,>=,=<,>},

| !

o°

o°

Bibliography

[1] Uwe Kern, Extending BTEX’s color facilities: the xcolor package, 2016. CTAN: /macros/latex/contrib/

xcolor/.
[2] Various, The listings Package, 1996—2015. CTAN: /macros/latex/contrib/listings/.

[3] Philipp Lehman, Joseph Wright, The etoolbox Package — An e-TeX Toolbox for Class and Pack-
age Authors, 2017. CTAN: /macros/latex/contrib/listings/etoolbox.

[4] Heiko Oberdiek, The listingsutf8 package, 2016. CTAN: /macros/latex/contrib/oberdiek/.

[5] Axel Sommerfelt, Customizing captions of floating environments using the caption package,
2011. CTAN: /macros/latex/contrib/caption.

19

http://mirror.ctan.org//macros/latex/contrib/xcolor/
http://mirror.ctan.org//macros/latex/contrib/xcolor/
http://mirror.ctan.org//macros/latex/contrib/listings/
http://mirror.ctan.org//macros/latex/contrib/listings/etoolbox
http://mirror.ctan.org//macros/latex/contrib/oberdiek/
http://mirror.ctan.org//macros/latex/contrib/caption

	1 Interface
	1.1 Environments
	1.2 Input from external files
	1.3 Sniplets
	1.4 Package options

	2 Configuration
	2.1 Titles
	2.2 Handling listings configuration of our environments and macros
	2.3 Configuration FAQ/Examples
	2.3.1 Font
	2.3.2 Colors
	2.3.3 Frames
	2.3.4 Captions
	2.3.5 Keywords
	2.3.6 Escape to LaTeX
	2.3.7 Input encodings (e.g. UTF8)
	2.3.8 Other

	3 Examples
	3.1 SAS
	3.2 R

	4 Default style settings for R and SAS
	4.1 Style settings for R
	4.1.1 R configuration styles
	4.1.2 R user styles
	4.1.3 R collector styles

	4.2 Style settings for SAS
	4.2.1 SAS configuration styles
	4.2.2 SAS user styles
	4.2.3 SAS collector styles
	4.2.4 Extra SAS keywords

	Bibliography

