
The SageTEX package∗

Dan Drake and others†

January 11, 2023

1 Introduction

Why should the Haskell and R folks have all the fun? Literate Haskell is a popular
way to mix Haskell source code and LATEX documents. (Actually any kind of
text or document, but here we’re concerned only with LATEX.) You can even
embed Haskell code in your document that writes part of your document for you.
Similarly, the R statistical computing environment includes Sweave, which lets
you do the same thing with R code and LATEX.

The SageTEX package allows you to do (roughly) the same thing with the Sage
mathematics software suite (see http://sagemath.org) and LATEX. (If you know
how to write literate Haskell: the \eval command corresponds to \sage, and the
code environment to the sageblock environment.) As a simple example, imagine
in your document you are writing about how to count license plates with three
letters and three digits. With this package, you can write something like this:

There are 26 choices for each letter, and 10 choices for

each digit, for a total of $26^3 \cdot 10^3 =

\sage{26^3*10^3}$ license plates.

and it will produce

There are 26 choices for each letter, and 10 choices for each digit, for
a total of 263 · 103 = 17576000 license plates.

The great thing is, you don’t have to do the multiplication. Sage does it for you.
This process mirrors one of the great aspects of LATEX: when writing a LATEX
document, you can concentrate on the logical structure of the document and trust
LATEX and its army of packages to deal with the presentation and typesetting.
Similarly, with SageTEX, you can concentrate on the mathematical structure (“I
need the product of 263 and 103”) and let Sage deal with the base-10 presentation
of the number.

A less trivial, and perhaps more useful example is plotting. You can include a
plot of the sine curve without manually producing a plot, saving an EPS or PDF

∗This document corresponds to SageTEX v3.6.1, dated 2022/08/21.
†Package’s website: github.com/sagemath/sagetex.

1

http://www.haskell.org/haskellwiki/Literate_programming
http://tug.org/pracjourn/2008-1/zahn/
http://sagemath.org
https://github.com/sagemath/sagetex

file, and doing the \includegraphics business with the correct filename yourself.
If you write this:

Here is a lovely graph of the sine curve:

\sageplot[width=.75\textwidth]{plot(sin(x), x, 0, 2*pi)}

in your LATEX file, it produces

Here is a lovely graph of the sine curve:

1 2 3 4 5 6

1.0

0.5

0.5

1.0

Again, you need only worry about the logical/mathematical structure of your
document (“I need a plot of the sine curve over the interval [0, 2π] here”), while
SageTEX takes care of the gritty details of producing the file and sourcing it into
your document.

But \sageplot isn’t magic I just tried to convince you that SageTEX makes
putting nice graphics into your document very easy; let me turn around and warn
you that using graphics well is not easy, and no LATEX package or Python script
will ever make it easy. What SageTEX does is make it easy to use Sage to create
graphics; it doesn’t magically make your graphics good, appropriate, or useful.
(For instance, look at the sine plot above—I would say that a truly lovely plot
of the sine curve would not mark integer points on the x-axis, but rather π/2, π,
3π/2, and 2π. Incidentally, you can do this in Sage: do sage.plot.plot? and
look for ticks and tick_formatter.)

Till Tantau has some good commentary on the use of graphics in the “Guide-
lines on Graphics” section of the pgf manual (chapter 7 of the manual for version
3.1.9). You should always give careful thought and attention to creating graphics
for your document; I have in mind that a good workflow for using SageTEX for
plotting is something like this:

2

https://pgf-tikz.github.io/pgf/pgfmanual.pdf
https://pgf-tikz.github.io/pgf/pgfmanual.pdf

1. Figure out what sort of graphic you need to communicate your ideas or
information.

2. Fiddle around in Sage until you get a graphics object and set of options that
produce the graphic you need.

3. Copy those commands and options into SageTEX commands in your LATEX
document.

The SageTEX package’s plotting capabilities don’t help you find those Sage
commands to make your lovely plot, but they do eliminate the need to muck
around with saving the result to a file, remembering the filename, including it into
your document, and so on. In section 3, we will see what what we can do with
SageTEX.

2 Installation

SageTEX needs two parts to work: a Python module known to Sage, and a LATEX
package known to TEX. These two parts need to come from the same version
of SageTEX to guarantee that everything works properly. As of Sage version
4.3.1, SageTEX comes included with Sage, so you only need to make sagetex.sty,
the LATEX package, known to TEX. Full details of this are in the Sage tutorial
at doc.sagemath.org/html/en/tutorial/sagetex.html in the obviously-named
section “Make SageTEX known to TEX”. Here’s a brief summary of how to do that:

� Copy sagetex.sty to the same directory as your document. This always
works, but requires lots of copies of sagetex.sty and is prone to version
skew.

� Copy the directory containing sagetex.sty to your home directory with a
command like

cp -R $SAGE ROOT/local/share/texmf ~/

where $SAGE ROOT is replaced with the location of your Sage installation.

� Use the environment variable TEXINPUTS to tell TEX to search the directory
containing sagetex.sty; in the bash shell, you can do

export TEXINPUTS=$SAGE ROOT/local/share/texmf//:

You should again replace $SAGE ROOT with the location of your Sage instal-
lation.

The best method is likely the second; while that does require you to recopy
the files every time you update your copy of Sage, it does not depend on your
shell, so if you use, say, Emacs with AucTEX or some other editor environment,
everything will still work since TEX’s internal path-searching mechanisms can find
sagetex.sty.

Note that along with sagetex.sty, this documentation, an example file, and
other useful scripts are all located in the directory $SAGE ROOT/local/share/texmf.

3

http://doc.sagemath.org/html/en/tutorial/sagetex.html

2.1 SageTEX and TEXLive

SageTEX was included in TEXLive, which seemed nice, except that the Python
module and LATEX package for SageTEX need to be synchronized and the Python
module in Sage was much easier to update than the LATEX style file in TEXLive.
If you are so unlucky as to be using a version of TEXLive that includes SageTEX,
I strongly recommend using SageTEX only from what is included with Sage and
ignoring what’s included with TEXLive.

2.2 The noversioncheck option

As of version 2.2.4, SageTEX automatically checks to see if the versions of the
style file and Python module match. This is intended to prevent strange version
mismatch problems, but if you would like to use mismatched sources, you can—at
your peril—give the noversioncheck option when you load the SageTEX package.
Don’t be surprised if things don’t work when you do this.

If you are considering using this option because the Sage script complained and
exited, you really should just get the LATEX and Python modules synchronized.
Every copy of Sage since version 4.3.2 comes with a copy of sagetex.sty that is
matched up to Sage’s baked-in SageTEX support, so you can always use that. See
the SageTEX section of the Sage tutorial.

2.3 Using TEXShop

Starting with version 2.25, TEXShop includes support for SageTEX. If you
move the file sage.engine from ~/Library/TeXShop/Engines/Inactive/Sage

to ~/Library/TeXShop/Engines and put the line

%!TEX TS-program = sage

at the top of your document, then TEXShop will automatically run Sage for you
when compiling your document.

Note that you will need to make sure that LATEX can find sagetex.sty using
any of the methods above. You also might need to edit the sage.engine script
to reflect the location of your Sage installation. TEXShop includes further doc-
umentation in the ~/Library/TeXShop/Engines/Inactive/Sage folder; be sure
to check out the “About Sage” PDF there, which has good advice on setting up
things so that typesetting SageTEX-ified documents works automatically, and so
that it continues to work when you upgrade your Sage installation.

2.4 Other scripts included with SageTEX

SageTEX includes several Python files which may be useful for working with
“SageTEX-ified” documents. At this point they have likely bitrotted but are, for
now, included for archaeological purposes.

The remote-sagetex.py script allows you to use SageTEX on a computer that
doesn’t have Sage installed; see section 5 for more information.

4

http://doc.sagemath.org/html/en/tutorial/sagetex.html
http://www.uoregon.edu/~koch/texshop/

Also included are makestatic.py and extractsagecode.py, which are con-
venience scripts that you can use after you’ve written your document. See
section 4.7 and section 4.8 for information on using those scripts. The file
sagetexparse.py is a module used by both those scripts. These three files are
independent of SageTEX. If you install from a spkg, these scripts can be found in
$SAGE ROOT/local/share/texmf/.

3 Usage

Let’s begin with a rough description of how SageTEX works. Naturally the very
first step is to put \usepackage{sagetex} in the preamble of your document.
When you use macros from this package and run LATEX on your file, along with
the usual zoo of auxiliary files, a .sage file is written with the same basename as
your document. This is a Sage source file that uses the Python module from this
package and when you run Sage on that file, it will produce a .sout and a .scmd

file. The .sout file contains LATEX code that, when you run LATEX on your source
file again, will pull in all the results of Sage’s computation.

The sagecommandline environment additionally logs the plain sage commands
and output furthermore in a .scmd file.

All you really need to know is that to typeset your document, you need to run
LATEX, then run Sage, then run LATEX again.

Also keep in mind that everything you send to Sage is done within one Sage
session. This means you can define variables and reuse them throughout your
LATEX document; if you tell Sage that foo is 12, then anytime afterwards you can
use foo in your Sage code and Sage will remember that it’s 12—just like in a
regular Sage session.

Now that you know that, let’s describe what macros SageTEX provides and
how to use them. If you are the sort of person who can’t be bothered to read
documentation until something goes wrong, you can also just look through the
example.tex file included with this package.1

WARNING! When you run LATEX on a file named 〈filename 〉.tex, the file
〈filename 〉.sagetex.sage is created—and will be automatically overwritten
if it already exists. If you keep Sage scripts in the same directory as your
SageTEX-ified LATEX documents, use a different file name!

WARNING! Speaking of filenames, SageTEX really works best on files whose
names don’t have spaces or other “funny” characters in them. SageTEX should
work on such files—and you should let us know if it doesn’t—but it’s safest to
stick to files with alphanumeric characters and “safe” punctuation (i.e., nothing
like <, ", !, \, or other characters that would confuse a shell).

1Then again, if you’re such a person, you’re probably not reading this, and are already fiddling
with example.tex. . .

5

The final option On a similar note, SageTEX, like many LATEX packages, accepts
the final option. When passed this option, either directly in the \usepackage

line, or from the \documentclass line, SageTEX will not write a .sage file. It will
try to read in the .sout file so that the SageTEX macros can pull in their results.
However, this will not allow you to have an independent Sage script with the same
basename as your document, since to get the .sout file, you need the .sage file.

3.1 Inline Sage

\sage{〈Sage code〉} takes whatever Sage code you give it, runs Sage’s latexsage

function on it, and puts the result into your document.
For example, if you do \sage{matrix([[1, 2], [3,4]])^2}, then that macro

will get replaced by

\left(\begin{array}{rr}

7 & 10 \\

15 & 22

\end{array}\right)

in your document—that LATEX code is exactly exactly what you get from doing

latex(matrix([[1, 2], [3,4]])^2)

in Sage.
Note that since LATEX will do macro expansion on whatever you give to \sage,

you can mix LATEX variables and Sage variables! If you have defined the Sage
variable foo to be 12 (using, say, the sageblock environment), then you can do
something like this:

The prime factorization of the current page number plus foo

is $\sage{factor(foo + \thepage)}$.

Here, I’ll do just that right now: the prime factorization of the current page
number plus 12 is 2 · 32. (Wrong answer? See footnote.2) The \sage command
doesn’t automatically use math mode for its output, so be sure to use dollar signs
or a displayed math environment as appropriate.

\sagestr{〈Sage code〉} is identical to \sage, but is does not run Sage’s latex\sagestr

function on the code you give it; it simply runs the Sage code and pulls the result
into your LATEX file. This is useful for calling functions that return LATEX code;

2Is the above factorization wrong? If the current page number plus 12 is one larger than the
claimed factorization, another Sage/LATEX cycle on this source file should fix it. Why? The first
time you run LATEX on this file, the sine graph isn’t available, so the text where I’ve talked about
the prime factorization is back one page. Then you run Sage, and it creates the sine graph and
does the factorization. When you run LATEX again, the sine graph pushes the text onto the next
page, but it uses the Sage-computed value from the previous page. Meanwhile, the .sage file
has been rewritten with the correct page number, so if you do another Sage/LATEX cycle, you
should get the correct value above. However, in some cases, even that doesn’t work because of
some kind of TEX weirdness in ending the one page a bit short and starting another.

6

see the example file distributed along with SageTEX for a demonstration of using
this command to easily produce a table.

If you are doing modular arithmetic or string formatting and need a percent\percent

sign in a call to \sage (or \sageplot), you can use \percent. Using a bare
percent sign won’t work because LATEX will think you’re starting a comment and
get confused; prefixing the percent sign with a backslash won’t work because then
“\%” will be written to the .sage file and Sage will get confused. The \percent

macro makes everyone happy.
Note that using \percent inside the verbatim-like environments described in

section 3.3 isn’t necessary; a literal “%” inside such an environment will get writ-
ten, uh, verbatim to the .sage file.

3.1.1 Arguments with side effects

Be careful when feeding \sage and \sagestr arguments that have side effects,
since in some situations they can get evaluated more than once; see section 4.1.

3.2 Graphics and plotting

\sageplot[〈ltx opts〉][〈fmt〉]{〈graphics obj 〉, 〈keyword args〉} plots the given\sageplot

Sage graphics object and runs an \includegraphics command to put it into
your document. It does not have to actually be a plot of a function; it can be any
Sage graphics object. The options are described in Table 1.

Option Description
〈ltx options〉 Any text here is passed directly into the optional

arguments (between the square brackets) of an
\includegraphics command.

〈fmt〉 You can optionally specify a file extension here; Sage
will then try to save the graphics object to a file with
extension fmt. If not specified, SageTEX will save to
EPS and PDF files; if saving to those formats does
not work, SageTEX will save to a PNG file.

〈graphics obj 〉 A Sage object on which you can call .save() with a
graphics filename.

〈keyword args〉 Any keyword arguments you put here will all be put
into the call to .save().

Table 1: Explanation of options for the \sageplot command.

This setup allows you to control both the Sage side of things, and the LATEX
side. For instance, the command

\sageplot[angle=30, width=5cm]{plot(sin(x), 0, pi), axes=False,

chocolate=True}

will run the following command in Sage:

7

sage: plot(sin(x), 0, pi).save(filename=autogen, axes=False,

chocolate=True)

Then, in your LATEX file, the following command will be issued automatically:

\includegraphics[angle=30, width=5cm]{autogen}

You can specify a file format if you like. This must be the second optional
argument, so you must use empty brackets if you’re not passing anything to
\includegraphics:

\sageplot[][png]{plot(sin(x), x, 0, pi)}

The filename is automatically generated, and unless you specify a format, both
EPS and PDF files will be generated. This allows you to freely switch between
using, say, a DVI viewer (many of which have support for automatic reloading,
source specials and make the writing process easier) and creating PDFs for posting
on the web or emailing to colleagues. SageTEX will fall back to creating a PNG
file for any graphics object that cannot be saved as an EPS or PDF file; this is
useful for three dimensional plot objects, which currently cannot be saved as EPS
or PDF files.

If you ask for, say, a PNG file (or if one is automatically generated for you as
described above), keep in mind that ordinary latex and DVI files have no support
for PNG files; SageTEX detects this and will warn you that it cannot find a suitable
file if using latex.3 If you use pdflatex, there will be no problems because PDF
files can include PNG graphics.

When SageTEX cannot find a graphics file, it inserts this into your document:

??

That’s supposed to resemble the image-not-found graphics used by web browsers
and use the traditional “??” that LATEX uses to indicate missing references.

You needn’t worry about the filenames; they are automatically generated and
will be put into the directory sage-plots-for-filename.tex. You can safely
delete that directory anytime; if SageTEX can’t find the files, it will warn you to
run Sage to regenerate them.

WARNING! When you run Sage on your .sage file, all files in the
sage-plots-for-〈filename 〉.tex directory will be deleted! Do not put any
files into that directory that you do not want to get automatically deleted.

3We use a typewriter font here to indicate the executables which produce DVI and PDF files,
respectively, as opposed to “LATEX” which refers to the entire typesetting system.

8

The epstopdf option One of the graphics-related options supported by
SageTEX is epstopdf. This option causes SageTEX to use the epstopdf com-
mand to convert EPS files into PDF files. Like with the imagemagick option,
it doesn’t check to see if the epstopdf command exists or add options: it just
runs the command. This option was motivated by a bug in the matplotlib PDF
backend which caused it to create invalid PDFs. Ideally, this option should never
be necessary; if you do need to use it, file a bug!

This option will eventually be removed, so do not use it.

3.2.1 3D plotting

Right now there is, to put it nicely, a bit of tension between the sort of graphics
formats supported by latex and pdflatex, and the graphics formats supported
by Sage’s 3D plotting systems. LATEX is happiest, and produces the best output,
with EPS and PDF files, which are vector formats. Tachyon, Sage’s 3D plotting
system, produces bitmap formats like BMP and PNG.

SageTEX will automatically fall back to saving plot objects in PNG format
if saving to EPS and PDF fails, so it should automatically work with 3D plot
objects. However, since latex does not support PNGs, when using 3D plotting
(and therefore a bitmap format like PNG), SageTEX will always issue a warning
about incompatible graphics if you use latex, provided you’ve processed the .sage
file and the PNG file exists. The only exception is if you’re using the imagemagick
option below.

The imagemagick option As a response to the above issue, the SageTEX pack-
age has an imagemagick option. If you specify this option in the preamble of your
document with the usual “\usepackage[imagemagick]{sagetex}”, then when
you are compiling your document using latex, any \sageplot command which
requests a non-default format will cause the SageTEX Python script to convert the
resulting file to EPS using the Imagemagick convert utility. It does this by exe-
cuting “convert filename.EXT filename.eps” in a subshell. It doesn’t add any
options, check to see if the convert command exists or belongs to Imagemagick—it
just runs the command.

The resulting EPS files are not very high quality, but they will work. This
option is not intended to produce good graphics, but to allow you to see your
graphics when you use latex and DVI files while writing your document.

3.2.2 But that’s not good enough!

The \sageplot command tries to be both flexible and easy to use, but if you are
just not happy with it, you can always do things manually: inside a sagesilent

environment (see the next section) you could do

your special commands

x = your graphics object

x.save(filename=myspecialfile.ext, options, etc)

9

and then, in your source file, do your own \includegraphics command. The
SageTEX package gives you full access to Sage and Python and doesn’t turn off
anything in LATEX, so you can always do things manually.

3.3 Verbatim-like environments

The SageTEX package provides several environments for typesetting and executing
blocks of Sage code.

Any text between \begin{sageblock} and \end{sageblock} will be typesetsageblock

into your file, and also written into the .sage file for execution. This means you
can do something like this:

\begin{sageblock}

var(’x’)

f(x) = sin(x) - 1

g(x) = log(x)

h(x) = diff(f(x) * g(x), x)

\end{sageblock}

and then anytime later write in your source file

We have $h(2) = \sage{h(2)}$, where h is the derivative of

the product of f and g.

and the \sage call will get correctly replaced by sin (1)−1. You can use any Sage or
Python commands inside a sageblock; all the commands get sent directly to Sage.

This environment is like sageblock, but it does not typeset any of the code;sagesilent

it just writes it to the .sage file. This is useful if you have to do some setup in
Sage that is not interesting or relevant to the document you are writing.

This environment is the opposite of the one above: whatever you type willsageverbatim

be typeset, but not written into the .sage file. This allows you to typeset psue-
docode, code that will fail, or take too much time to execute, or whatever.

Logically, we now need an environment that neither typesets nor executescomment

your Sage code. . . but the verbatim package, which is always loaded when using
SageTEX, provides such an environment: comment. Another way to do this is to
put stuff between \iffalse and \fi.

There is one final bit to our verbatim-like environments: the indentation. The\sagetexindent

SageTEX package defines a length \sagetexindent, which controls how much the
Sage code is indented when typeset. You can change this length however you like
with \setlength: do \setlength{\sagetexindent}{6ex} or whatever.

This environment allows you to include doctest-like snippets in your documentsageexample

that will be nicely typeset. For example,

10

\begin{sageexample}

sage: 1+1

2

sage: factor(x^2 + 2*x + 1)

(x + 1)^2

\end{sageexample}

in your document will be typeset with the Sage inputs in the usual fixed-width
font, and the outputs will be typeset as if given to a \sage macro, as you see
below:

sage: 1+1

2

sage: factor(x^2 + 2*x + 1)

(x+ 1)
2

When typesetting the document, there is no test of the validity of the out-
puts (that is, typesetting with a typical LATEX-Sage-LATEX cycle does not do
doctesting), but when using the sageexample environment, an extra file named
“myfile_doctest.sage” is created with the contents of all those environments; it
is formatted so that Sage can doctest that file. You should be able to doctest your
document with “sage -t myfile_doctest.sage”. (This does not always work;
if this fails for you, please contact the sage-support group.)

If you would like to see both the original text input and the typeset output,
you can issue \renewcommand{\sageexampleincludetextoutput}{True} in your
document. You can do the same thing with “False” to later turn it off. In the
above example, this would cause SageTEX to output both (x + 1)^2 and (x+ 1)2

in your typeset document.
Just as in doctests, multiline statements are acceptable. The only limitation

is that triple-quoted strings delimited by """ cannot be used in a sageexample

environment; instead, you can use triple-quoted strings delimited by ’’’.
See the example.tex file for many examples and more explanation.
The initial implementation of this environment is due to Nicolas M. Thiéry.

This environment is similar to the sageexample environment in that it allowssagecommandline

you to use SageTEX as a pretty-printing command line, or to include doctest-like
snippets in your document. The difference is that the output is typeset as text,
much like running Sage on the command line, using the lstlisting environ-
ment. In particular, this environment provides Python syntax highlighting and
line numbers. For example,

\begin{sagecommandline}

sage: t = 1+1

sage: for i in range(101): # multiline input example

....: t+=1

11

sage: t

103

sage: factor(x^2 + 2*x + 1)

\end{sagecommandline}

becomes

1sage: t = 1+1

2sage: for i in range (101): # multiline input example

3....: t+=1

4sage: t

5103

6sage: factor(x^2 + 2*x + 1)

7(x + 1)^2

You have a choice of either explicitly providing the Sage output or leaving it up
to the computer to fill in the blanks. Above, the output for t was provided, but
the output for the factor() command wasn’t. Moreover, any Sage comment that
starts with an “at” sign is escaped to LATEX. In particular, you can use \label

to mark line numbers in order to \reference and \pagereference them as usual.
See the example file to see this mechanism in action.

If you prefer to typeset the output in LATEX, you can set

\renewcommand{\sagecommandlinetextoutput}{False}

which produces

8sage: var(’a, b, c’);

9sage: (a*x^2+b*x+c).solve(x)[
x = −b+

√
b2 − 4 ac

2 a
, x = −b−

√
b2 − 4 ac

2 a

]

The Sage input and output is typeset using the listings package with the
styles SageInput and SageOutput, respectively. If you don’t like the defaults
you can change them. It is recommended to derive from DefaultSageInput and
DefaultSageOutput, for example

\lstdefinestyle{SageInput}{style=DefaultSageInput,

basicstyle={\color{red}}}

\lstdefinestyle{SageOutput}{style=DefaultSageOutput,

basicstyle={\color{green}}}

makes things overly colorful:

10sage : p i . n (100)
113.1415926535897932384626433833

12

3.4 Pausing SageTEX

Sometimes when you are writing a document, you may wish to temporarily turn
off or pause SageTEX to concentrate more on your document than on the Sage
computations, or to simply have your document typeset faster. You can do this
with the following commands.

Use these macros to “pause” and “unpause” SageTEX. After issuing this macro,\sagetexpause

\sagetexunpause SageTEX will simply skip over the corresponding calculations. Anywhere a \sage

macro is used while paused, you will simply see “(SageTEX is paused)”, and any-
where a \sageplot macro is used, you will see:

SageTEX is paused; no graphic

Anything in the verbatim-like environments of section 3.3 will be typeset or not
as usual, but none of the Sage code will be executed.

Obviously, you use \sagetexunpause to unpause SageTEX and return to the
usual state of affairs. Both commands are idempotent; issuing them twice or more
in a row is the same as issuing them once. This means you don’t need to precisely
match pause and unpause commands: once paused, SageTEX stays paused until it
sees \sagetexunpause and vice versa.

4 Other notes

Here are some other notes on using SageTEX.

4.1 Using the sage macro inside align (and similar) environ-
ments

The align, align*, and some other “fancy” math environments in the amsmath

package do some special processing—in particular, they evaluate everything inside
twice. This means that if you use \sage or \sagestr inside such an environment,
it will be evaluated twice, and its argument will be put into the generated .sage

file twice—and if that argument has side effects, those side effects will be executed
twice! Doing something such as popping an element from a list will actually pop
two elements and typeset the second. The solution is to do any processing that
has side effects before the align environment (in a sagesilent environment, say)
and to give \sage or \sagestr an argument with no side effects.

Thanks to Bruno Le Floch for reporting this.

13

4.2 Using sage inside caption

If you want to use \sage inside the \caption for a figure, you’ll need to prepend
it with \protect, because (in TEX parlance) the \sage macro is not “robust”.
For example:

\caption{this figure illustrates why $2 + 2 = \protect\sage{2 + 2}$.}

4.3 Using SageTEX with TeXworks

On Linux and OS X, it’s easy to get the TEXworks editor to work with SageTEX.
You will define a new “typesetting engine” following these directions. First, in
some convenient location, create a shell script with these contents:

#!/bin/sh

pdflatex $1.tex

sage $1.sagetex.sage

pdflatex $1.tex

Name it sagetex-engine or something similar. Then, in the Edit → Preferences
menu, click the + button in the Processing tools section. Give the new tool a
good name, like “SageTeX”. In the Program space, browse to your script. Click
the + for the Arguments and type $basename in the resulting box.

Then, back in your document, you should be able to select SageTex in the
typesetting engine dropdown menu and then typeset.

(You can also replace ”sage” above with the sagetex-run script—see sec-
tion 7.1.)

4.4 Using Beamer

The beamer package does not play nicely with verbatim-like environments unless
you ask it to. To use code block environments in a beamer presentation, do:

\begin{frame}[fragile]

\begin{sageblock}

sage stuff

more stuff \end{sageblock}

\end{frame}

For some reason, beamer inserts an extra line break at the end of the environment;
if you put the \end{sageblock} on the same line as the last line of your code,
it works properly. See section 12.9, “Verbatim and Fragile Text”, in the beamer
manual. (Thanks to Franco Saliola for reporting this.)

beamer’s overlays and \sageplot also need some help in order to work to-
gether, as discussed in this sage-support thread. If you want a plot to only appear
in a certain overlay, you might try something like this in your frame:

14

https://www.tug.org/texworks/
https://github.com/TeXworks/texworks/wiki/AdvancedTypesettingTools#defining-new-typesetting-tools
http://groups.google.com/group/sage-support/browse_thread/thread/9a0a2d60ef1126fd

\begin{itemize}

\item item 1

\item item 2

\item \sageplot[height=4cm][png]{(plot_slope_field(2*x,(x,-4,4),

(y,-4,4))+(x^2-2).plot(-2,2))}

\end{itemize}

but the plot will appear on all the overlays, instead of the third. The solution is
to use the \visible macro:

\begin{itemize}

\item item 1

\item item 2

\item \visible<3->{\sageplot[height=4cm][png]{(plot_slope_field(2*x,(x,-4,4),

(y,-4,4))+(x^2-2).plot(-2,2))}}

\end{itemize}

Then the plot will only appear on the third (and later) overlays. (Thanks to
Robert Mař́ık for this solution.)

4.5 Using the rccol package

If you are trying to use the \sage macro inside a table when using the rccol

package, you need to use an extra pair of braces or typesetting will fail. That is,
you need to do something like this:

abc & {\sage{foo.n()}} & {\sage{bar}} \\

with each “\sage{}” enclosed in an extra {}. Thanks to Sette Diop for reporting
this.

4.6 Plotting from Mathematica, Maple, etc.

Sage can use Mathematica, Maple, and friends and can tell them to do plotting,
but since it cannot get those plots into a Sage graphics object, you cannot use
\sageplot to use such graphics. You’ll need to use the method described in
“But that’s not good enough!” (section 3.2.2) with some additional bits to get
the directory right—otherwise your file will get saved to someplace in a hidden
directory.

For Mathematica, you can do something like this inside a sagesilent or
sageblock environment:

mathematica(’myplot = commands to make your plot’)

mathematica(’Export["%s/graphicsfile.eps", myplot]’ % os.getcwd())

then put \includegraphics[opts]{graphicsfile} in your file.
For Maple, you’ll need something like

15

http://www.ctan.org/tex-archive/macros/latex/contrib/rccol/

maple(’plotsetup(ps, plotoutput=‘%s/graphicsfile.eps‘, \

plotoptions=‘whatever‘);’ % os.getcwd())

maple(’plot(function, x=1..whatever);’)

and then \includegraphics as necessary.
These interfaces, especially when plotting, can be finicky. The above com-

mands are just meant to be a starting point.

4.7 Sending SageTEX files to others who don’t use Sage

4.7.1 The 21st century way

CoCalc (cocalc.com/) has full support for SageTEX, is free to use, and has many
fantastic collaboration features. If you somehow want to collaborate on a SageTEX-
enabled TEXdocument with a colleague, using CoCalc is one of the best and easiest
ways to do it. You and your collaborators simply create an account, then make a
project for your collaboration, and add all the collaborators to the project. Then
you can all enjoy realtime collaborative editing, PDF previews, chat, and more.

4.7.2 The Nth century way, for N < 21

Using anything other than CoCalc, git, or similar tools these days seems pretty
primitive. If emailing .tex files back and forth seems perfectly reasonable to you,
or if you have to send a file to a journal, the easiest way is to simply include with
your document the following files:

1. sagetex.sty

2. the generated .sout and .scmd files

3. the sage-plots-for-〈filename 〉.tex directory and its contents

As long as sagetex.sty is available, your document can be typeset using any
reasonable LATEX system. Since it is very common to include graphics files with
a paper submission, this is a solution that should always work. (In particular, it
will work with arXiv submissions.)

There is another option, and that is to use the makestatic.py script included
with SageTEX. This script has been unmaintained for some time and likely won’t
work. If you want or need to use it and run into trouble, email the sage-support

group and let us know.
Use of the script is quite simple. Copy it and sagetexparse.py to the directory

with your document, and run

python makestatic.py inputfile [outputfile]

where inputfile is your document. (You can also set the executable bit of
makestatic.py and use ./makestatic.py.) This script needs the pyparsing mod-
ule to be installed.4 You may optionally specify outputfile; if you do so, the

4If you don’t have pyparsing installed, you can simply copy the file
$SAGE ROOT/local/lib/python/matplotlib/pyparsing.py into your directory.

16

https://cocalc.com/
https://groups.google.com/forum/#!forum/sage-support
https://groups.google.com/forum/#!forum/sage-support
http://pyparsing.wikispaces.com

results will be written to that file. If the file exists, it won’t be overwritten unless
you also specify the -o switch.

You will need to run this after you’ve compiled your document and run Sage
on the .sage file. The script reads in the .sout file and replaces all the calls to
\sage and \sageplot with their plain LATEX equivalent, and turns the sageblock
and sageverbatim environments into verbatim environments. Any sagesilent

environment is turned into a comment environment. Any sagecommandline envi-
ronment is turned into a lstlisting environment, typesetting the relevant part
of the .scmd file. The resulting document should compile to something identical,
or very nearly so, to the original file.

One large limitation of this script is that it can’t change anything while SageTEX
is paused, since Sage doesn’t compute anything for such parts of your document.
It also doesn’t check to see if pause and unpause commands are inside comments
or verbatim environments. If you’re going to use makestatic.py, just remove all
pause/unpause statements.

The parsing that makestatic.py does is pretty good, but not perfect. Right
now it doesn’t support having a comma-separated list of packages, so you can’t
have \usepackage{sagetex, foo}. You need to have just \usepackage{sagetex}.
(Along with package options; those are handled correctly.) If you find other pars-
ing errors, please let me know.

4.8 Extracting the Sage code from a document

(This script has the same unmaintained-and-probably-doesn’t-work status as
makestatic.py; see above.)

This next script is probably not so useful, but having done the above, this was
pretty easy. The extractsagecode.py script does the opposite of makestatic.py,
in some sense: given a document, it extracts all the Sage code and removes all the
LATEX.

Its usage is the same as makestatic.py.
Note that the resulting file will almost certainly not be a runnable Sage script,

since there might be LATEX commands in it, the indentation may not be correct,
and the plot options just get written verbatim to the file. Nevertheless, it might
be useful if you just want to look at the Sage code in a file.

5 Using SageTEX without Sage installed

(This script has the same unmaintained-and-probably-doesn’t-work status as
makestatic.py; see above.)

You may want to edit and typeset a SageTEX-ified file on a computer that
doesn’t have Sage installed. How can you do that? We need to somehow run
Sage on the .sage file. The included script remote-sagetex.py takes advantage
of Sage’s network transparency and will use a remote server to do all the compu-
tations. Anywhere in this manual where you are told to “run Sage”, instead of
actually running Sage, you can run

17

python remote-sagetex.py filename.sage

The script will ask you for a server, username, and password, then process all
your code and write a .sout file and graphics files exactly as if you had used a
local copy of Sage to process the .sage script. (With some minor limitations and
differences; see below.)

One important point: the script requires Python 2.6. It will not work with
earlier versions. (It will work with Python 3.0 or later with some trivial changes.)

You can provide the server, username and password with the command-line
switches --server, --username, and --password, or you can put that information
into a file and use the --file switch to specify that file. The format of the file
must be like the following:

hash mark at beginning of line marks a comment

server = "http://example.com:1234"

username = ’my_user_name’

password = ’s33krit’

As you can see, it’s really just like assigning a string to a variable in Python. You
can use single or double quotes and use hash marks to start comments. You can’t
have comments on the same line as an assignment, though. You can omit any of
those pieces of information information; the script will ask for anything it needs
to know. Information provided as a command line switch takes precedence over
anything found in the file.

You can keep this file separate from your LATEX documents in a secure location;
for example, on a USB thumb drive or in an automatically encrypted directory
(like ~/Private in Ubuntu). This makes it much harder to accidentally upload
your private login information to the arXiv, put it on a website, send it to a
colleague, or otherwise make your private information public.

5.1 Limitations of remote-sagetex.py

The remote-sagetex.py script has several limitations. It completely ignores the
epstopdf and imagemagick flags. The epstopdf flag is not a big deal, since it
was originally introduced to work around a matplotlib bug which has since been
fixed. Not having imagemagick support means that you cannot automatically
convert 3D graphics to eps format; using pdflatex to make PDFs works around
this issue.

5.2 Other caveats

Right now, the “simple server API” that remote-sagetex.py uses is not terribly
robust, and if you interrupt the script, it’s possible to leave an idle session running
on the server. If many idle sessions accumulate on the server, it can use up a lot of
memory and cause the server to be slow, unresponsive, or maybe even crash. For
now, I recommend that you only run the script manually. It’s probably best to not
configure your TEX editing environment to automatically run remote-sagetex.py

18

whenever you typeset your document, at least not without showing you the output
or alerting you about errors.

6 Implementation

There are two pieces to this package: a LATEX style file, and a Python module.
They are mutually interdependent, so it makes sense to document them both here.

6.1 The style file

All macros and counters intended for use internal to this package begin with “ST@”.

6.1.1 Initialization

Let’s begin by loading some packages. The key bits of sageblock and friends are
stol—um, adapted from the verbatim package manual. So grab the verbatim

package. We also need the fancyvrb package for the sageexample environment

1 \RequirePackage{verbatim}

2 \RequirePackage{fancyvrb}

and listings for the sagecommandline environment.

3 \RequirePackage{listings}

4 \RequirePackage{xcolor}

5 \lstdefinelanguage{Sage}[]{Python}

6 {morekeywords={False,sage,True},sensitive=true}

7 \lstdefinelanguage{SageOutput}[]{}

8 {morekeywords={False,True},sensitive=true}

9 \lstdefinestyle{DefaultSageInputOutput}{

10 nolol,

11 identifierstyle=,

12 name=sagecommandline,

13 xleftmargin=5pt,

14 numbersep=5pt,

15 aboveskip=0pt,

16 belowskip=0pt,

17 breaklines=true,

18 numberstyle=\footnotesize,

19 numbers=right

20 }

21 \lstdefinestyle{DefaultSageInput}{

22 language=Sage,

23 style=DefaultSageInputOutput,

24 basicstyle={\ttfamily\bfseries},

25 commentstyle={\ttfamily\color{dgreencolor}},

26 keywordstyle={\ttfamily\color{dbluecolor}\bfseries},

27 stringstyle={\ttfamily\color{dgraycolor}\bfseries},

28 }

29 \lstdefinestyle{DefaultSageOutput}{

19

30 language=SageOutput,

31 style=DefaultSageInputOutput,

32 basicstyle={\ttfamily},

33 commentstyle={\ttfamily\color{dgreencolor}},

34 keywordstyle={\ttfamily\color{dbluecolor}},

35 stringstyle={\ttfamily\color{dgraycolor}},

36 }

37 \lstdefinestyle{SageInput}{

38 style=DefaultSageInput,

39 }

40 \lstdefinestyle{SageOutput}{

41 style=DefaultSageOutput,

42 }

43 \providecolor{dbluecolor}{rgb}{0.01,0.02,0.7}

44 \providecolor{dgreencolor}{rgb}{0.2,0.4,0.0}

45 \providecolor{dgraycolor}{rgb}{0.30,0.3,0.30}

Unsurprisingly, the \sageplot command works poorly without graphics support.

46 \RequirePackage{graphicx}

The makecmds package gives us a \provideenvironment which we need, and we
use ifpdf and ifthen in \sageplot so we know what kind of files to look for.
Since ifpdf doesn’t detect running under XeTeX (which defaults to producing
PDFs), we need ifxetex. Hopefully the ifpdf package will get support for this
and we can drop ifxetex. We also work around ancient TEX distributions that
don’t have ifxetex and assume that they don’t have XeTeX.

47 \RequirePackage{makecmds}

48 \RequirePackage{ifpdf}

49 \RequirePackage{ifthen}

50 \IfFileExists{ifxetex.sty}{

51 \RequirePackage{ifxetex}

52 }{

53 \newboolean{xetex}

54 \setboolean{xetex}{false}}

Next set up the counters, default indent, and flags.

55 \newcounter{ST@inline}

56 \newcounter{ST@plot}

57 \newcounter{ST@cmdline}

58 \setcounter{ST@inline}{0}

59 \setcounter{ST@plot}{0}

60 \setcounter{ST@cmdline}{0}

61 \newlength{\sagetexindent}

62 \setlength{\sagetexindent}{5ex}

63 \newif\ifST@paused

64 \ST@pausedfalse

Set up the file stuff, which will get run at the beginning of the document, after we
know what’s happening with the final option. First, we open the .sage file:

65 \AtBeginDocument{\@ifundefined{ST@final}{%

66 \newwrite\ST@sf%

20

67 \immediate\openout\ST@sf=\jobname.sagetex.sage%

\ST@wsf We will write a lot of stuff to that file, so make a convenient abbreviation, then
use it to put the initial commands into the .sage file. The hash mark below gets
doubled when written to the file, for some obscure reason related to parameter
expansion. It’s valid Python, though, so I haven’t bothered figuring out how to
get a single hash. We are assuming that the extension is .tex; see the initplot

documentation on page 34 for discussion of file extensions. (There is now the
currfile package (http://www.ctan.org/pkg/currfile/) which can figure out
file extensions, apparently.) The “(\jobname.sagetex.sage)” business is there
because the comment below will get pulled into the autogenerated .py file (second
order autogeneration!) and I’d like to reduce possible confusion if someone is
looking around in those files. Finally, we check for version mismatch and bail if
the .py and .sty versions don’t match and the user hasn’t disabled checking. Note
that we use ^^J and not ^^J% when we need indented lines. Also, sagetex.py
now includes a version variable which eliminates all the irritating string munging
below, and later we can remove this stuff and just use sagetex.version.

68 \newcommand{\ST@wsf}[1]{\immediate\write\ST@sf{#1}}%

69 \ST@wsf{%

70 # -*- encoding: utf-8 -*-^^J%

71 # This file (\jobname.sagetex.sage) was *autogenerated* from \jobname.tex with

72 sagetex.sty version \ST@ver.^^J%

73 import sagetex^^J%

74 _st_ = sagetex.SageTeXProcessor(’\jobname’, version=’\ST@ver’, version_check=\ST@versioncheck)}}%

On the other hand, if the ST@final flag is set, don’t bother with any of the file
stuff, and make \ST@wsf a no-op.

75 {\newcommand{\ST@wsf}[1]{\relax}}}

\ST@dodfsetup The sageexample environment writes stuff out to a different file formatted so that
one can run doctests on it. We define a macro that only sets this up if necessary.

76 \newcommand{\ST@dodfsetup}{%

77 \@ifundefined{ST@diddfsetup}{%

78 \newwrite\ST@df%

79 \immediate\openout\ST@df=\jobname_doctest.sage%

80 \immediate\write\ST@df{r"""^^J%

81 This file was *autogenerated* from \jobname.tex with sagetex.sty^^J%

82 version \ST@ver. It contains the contents of all the^^J%

83 sageexample environments from \jobname.tex. You should be able to^^J%

84 doctest this file with "sage -t \jobname_doctest.sage".^^J%

85 ^^J%

86 It is always safe to delete this file; it is not used in typesetting your^^J%

87 document.^^J}%

88 \AtEndDocument{\immediate\write\ST@df{"""}}%

89 \gdef\ST@diddfsetup{x}}%

90 {\relax}}

\ST@wdf This is the compansion to \ST@wsf; it writes to the doctest file, assuming that

21

http://www.ctan.org/pkg/currfile/

is has been set up. We ignore the final option here since nothing in this file is
relevant to typesetting the document.

91 \newcommand{\ST@wdf}[1]{\immediate\write\ST@df{#1}}

Now we declare our options, which mostly just set flags that we check at the
beginning of the document, and when running the .sage file.

The final option controls whether or not we write the .sage file; the
imagemagick and epstopdf options both want to write something to that same
file. So we put off all the actual file stuff until the beginning of the document—
by that time, we’ll have processed the final option (or not) and can check the
\ST@final flag to see what to do. (We must do this because we can’t specify code
that runs if an option isn’t defined.)

For final, we set a flag for other guys to check, and if there’s no .sout file,
we warn the user that something fishy is going on.

92 \DeclareOption{final}{%

93 \newcommand{\ST@final}{x}%

94 \IfFileExists{\jobname.sagetex.sout}{}{\AtEndDocument{\PackageWarningNoLine{sagetex}%

95 {‘final’ option provided, but \jobname.sagetex.sout^^Jdoesn’t exist! No Sage

96 input will appear in your document. Remove the ‘final’^^Joption and

97 rerun LaTeX on your document}}}}

For imagemagick, we set two flags: one for LATEX and one for Sage. It’s important
that we set ST@useimagmagick before the beginning of the document, so that
the graphics commands can check that. We do wait until the beginning of the
document to do file writing stuff.

98 \DeclareOption{imagemagick}{%

99 \newcommand{\ST@useimagemagick}{x}%

100 \AtBeginDocument{%

101 \@ifundefined{ST@final}{%

102 \ST@wsf{_st_.useimagemagick = True}}{}}}

For epstopdf, we just set a flag for Sage.

103 \DeclareOption{epstopdf}{%

104 \AtBeginDocument{%

105 \@ifundefined{ST@final}{%

106 \ST@wsf{_st_.useepstopdf = True}}{}}}

By default, we check to see if the .py and .sty file versions match. But we let the
user disable this.

107 \newcommand{\ST@versioncheck}{True}

108 \DeclareOption{noversioncheck}{%

109 \renewcommand{\ST@versioncheck}{False}}

110 \ProcessOptions\relax

The \relax is a little incantation suggested by the “LATEX 2ε for class and package
writers” manual, section 4.7.

Pull in the .sout file if it exists, or do nothing if it doesn’t. I suppose we
could do this inside an AtBeginDocument but I don’t see any particular reason to
do that. It will work whenever we load it. If the .sout file isn’t found, print the

22

usual TEX-style message. This allows programs (Latexmk, for example) that read
the .log file or terminal output to detect the need for another typesetting run to
do so. If the “No file foo.sout” line doesn’t work for some software package,
please let me know and I can change it to use PackageInfo or whatever.

111 \InputIfFileExists{\jobname.sagetex.sout}{}

112 {\typeout{No file \jobname.sagetex.sout.}}

The user might load the hyperref package after this one (indeed, the hyperref
documentation insists that it be loaded last) or not at all—so when we hit the
beginning of the document, provide a dummy NoHyper environment if one hasn’t
been defined by the hyperref package. We need this for the \sage macro below.

113 \AtBeginDocument{\provideenvironment{NoHyper}{}{}}

6.1.2 The \sage and \sagestr macros

\ST@sage This macro combines \ref, \label, and Sage all at once. First, we use Sage to
get a LATEX representation of whatever you give this function. The Sage script
writes a \newlabel line into the .sout file, and we read the output using the \ref
command. Usually, \ref pulls in a section or theorem number, but it will pull in
arbitrary text just as well.

The first thing it does it write its argument into the .sage file, along with
a counter so we can produce a unique label. We wrap a try/except around the
function call so that we can provide a more helpful error message in case something
goes wrong. (In particular, we can tell the user which line of the .tex file contains
the offending code.) Note the difference between ^^J and ^^J%: the newline
immediately after the former puts a space into the output, and the percent sign
in the latter supresses this.

114 \newcommand{\ST@sage}[1]{\ST@wsf{%

115 try:^^J

116 _st_.current_tex_line = \the\inputlineno^^J

117 _st_.inline(\theST@inline, #1)^^J%

118 except:^^J

119 _st_.goboom(\the\inputlineno)}%

The inline function of the Python module is documented on page 35. Back in
LATEX-land: if paused, say so.

120 \ifST@paused

121 \mbox{(Sage\TeX{} is paused)}%

Otherwise. . . our use of \newlabel and \ref seems awfully clever until you load
the hyperref package, which gleefully tries to hyperlink the hell out of everything.
This is great until it hits one of our special \newlabels and gets deeply confused.
Fortunately the hyperref folks are willing to accomodate people like us, and give
us a NoHyper environment.

122 \else

123 \begin{NoHyper}\ref{@sageinline\theST@inline}\end{NoHyper}%

Now check if the label has already been defined. (The internal implementation of
labels in LATEX involves defining a macro called “r@@labelname”.) If it hasn’t, we

23

http://www.phys.psu.edu/~collins/software/latexmk-jcc/

set a flag so that we can tell the user to run Sage on the .sage file at the end of
the run.

124 \@ifundefined{r@@sageinline\theST@inline}{\gdef\ST@rerun{x}}{}%

125 \fi

In any case, the last thing to do is step the counter.

126 \stepcounter{ST@inline}}

\sage This is the user-visible macro; it runs Sage’s latex() on its argument.

127 \newcommand{\sage}[1]{\ST@sage{latex(#1)}}

\sagestr Like above, but doesn’t run latex() on its argument.

128 \newcommand{\sagestr}[1]{\ST@sage{#1}}

\percent A macro that inserts a percent sign. This is more-or-less stolen from the Docstrip
manual; there they change the catcode inside a group and use gdef, but here we
try to be more LATEXy and use \newcommand.

129 \catcode‘\%=12

130 \newcommand{\percent}{%}

131 \catcode‘\%=14

6.1.3 The \sageplot macro and friends

Plotting is rather more complicated, and requires several helper macros that ac-
company \sageplot.

\ST@plotdir A little abbreviation for the plot directory. We don’t use \graphicspath because
it’s apparently slow—also, since we know right where our plots are going, no need
to have LATEX looking for them.

132 \newcommand{\ST@plotdir}{sage-plots-for-\jobname.tex}

\ST@missingfilebox The code that makes the “file not found” box. This shows up in a couple places
below, so let’s just define it once.

133 \newcommand{\ST@missingfilebox}{\framebox[2cm]{\rule[-1cm]{0cm}{2cm}\textbf{??}}}

\sageplot This function is similar to \sage. The neat thing that we take advantage of is that
commas aren’t special for arguments to LATEX commands, so it’s easy to capture
a bunch of keyword arguments that get passed right into a Python function.

This macro has two optional arguments, which can’t be defined using LATEX’s
\newcommand; we use Scott Pakin’s brilliant newcommand package to create this
macro; the options I fed to his script were similar to this:

MACRO sageplot OPT[#1={width}] OPT[#2={notprovided}] #3

Observe that we are using a Python script to write LATEX code which writes Python
code which writes LATEX code. Crazy!

Here’s the wrapper command which does whatever magic we need to get two
optional arguments.

134 \newcommand{\sageplot}[1][]{%

135 \@ifnextchar[{\ST@sageplot[#1]}{\ST@sageplot[#1][notprovided]}}

24

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=graphicspath
http://tug.ctan.org/tex-archive/support/newcommand/

DVI or PDF?

Format provided?

STig EPS

no

IM option set?

Warn that DVI +
PNG = bad

no

STig EPS

yes

yes

DVI

Format provided?

STig PDF

no

STig #2

yes

PDF

Figure 1: The logic tree that \sageplot uses to decide whether to run
\includegraphics or to yell at the user. “Format” is the #2 argument to
\sageplot, “STig ext” means a call to \ST@inclgrfx with “ext” as the second
argument, and “IM” is Imagemagick.

The first optional argument #1 will get shoved right into the optional argument
for \includegraphics, so the user has easy control over the LATEX aspects of the
plotting. (Perhaps a future version of SageTEX will allow the user to specify in
the package options a set of default options to be used throughout.) The second
optional argument #2 is the file format and allows us to tell what files to look for.
It defaults to “notprovided”, which tells the Python module to create EPS and
PDF files. Everything in #3 gets put into the Python function call, so the user
can put in keyword arguments there which get interpreted correctly by Python.

\ST@sageplot Let’s see the real code here. We write a couple lines to the .sage file, including a
counter, input line number, and all of the mandatory argument; all this is wrapped
in another try/except.

136 \def\ST@sageplot[#1][#2]#3{\ST@wsf{try:^^J

137 _st_.current_tex_line = \the\inputlineno^^J

138 _st_.plot(\theST@plot, format=’#2’, _p_=#3)^^Jexcept:^^J

139 _st_.goboom(\the\inputlineno)}%

The Python plot function is documented on page 40.
Now we include the appropriate graphics file. Because the user might be

producing DVI or PDF files, and have supplied a file format or not, and so
on, the logic we follow is a bit complicated. Figure 1 shows what we do; for
completeness—and because I think drawing trees with TikZ is really cool—we
show what \ST@inclgrfx does in Figure 2. This entire complicated business is
intended to avoid doing an \includegraphics command on a file that doesn’t
exist, and to issue warnings appropriate to the situation.

If we are creating a PDF, we check to see if the user asked for a different
format, and use that if necessary:

140 \ifthenelse{\boolean{pdf} \or \boolean{xetex}}{

25

141 \ifthenelse{\equal{#2}{notprovided}}%

142 {\ST@inclgrfx{#1}{pdf}}%

143 {\ST@inclgrfx{#1}{#2}}}

Otherwise, we are creating a DVI file, which only supports EPS. If the user pro-
vided a format anyway, don’t include the file (since it won’t work) and warn the
user about this. (Unless the file doesn’t exist, in which case we do the same thing
that \ST@inclgrfx does.)

144 { \ifthenelse{\equal{#2}{notprovided}}%

145 {\ST@inclgrfx{#1}{eps}}%

If a format is provided, we check to see if we’re using the imagemagick option.
If not, we’re going to issue some sort of warning, depending on whether the file
exists yet or not.

146 {\@ifundefined{ST@useimagemagick}%

147 {\IfFileExists{\ST@plotdir/plot-\theST@plot.#2}%

148 {\ST@missingfilebox%

149 \PackageWarning{sagetex}{Graphics file

150 \ST@plotdir/plot-\theST@plot.#2\space on page \thepage\space

151 cannot be used with DVI output. Use pdflatex or create an EPS

152 file. Plot command is}}%

153 {\ST@missingfilebox%

154 \PackageWarning{sagetex}{Graphics file

155 \ST@plotdir/plot-\theST@plot.#2\space on page \thepage\space

156 does not exist. Plot command is}%

157 \gdef\ST@rerun{x}}}%

Otherwise, we are using Imagemagick, so try to include an EPS file anyway.

158 {\ST@inclgrfx{#1}{eps}}}}

Step the counter and we’re done with the usual work.

159 \stepcounter{ST@plot}}

\ST@inclgrfx This command includes the requested graphics file (#2 is the extension) with the
requested options (#1) if the file exists. Note that it just needs to know the
extension, since we use a counter for the filename. If we are paused, it just puts
in a little box saying so.

160 \newcommand{\ST@inclgrfx}[2]{\ifST@paused

161 \fbox{\rule[-1cm]{0cm}{2cm}Sage\TeX{} is paused; no graphic}

162 \else

163 \IfFileExists{\ST@plotdir/plot-\theST@plot.#2}%

164 {\includegraphics[#1]{\ST@plotdir/plot-\theST@plot.#2}}%

If the file doesn’t exist, we try one more thing before giving up: the Python module
will automatically fall back to saving as a PNG file if saving as an EPS or PDF
file fails. So if making a PDF, we look for a PNG file.

If the file isn’t there, we insert a little box to indicate it wasn’t found, issue a
warning that we didn’t find a graphics file, then set a flag that, at the end of the
run, tells the user to run Sage again.

165 {\IfFileExists{\ST@plotdir/plot-\theST@plot.png}%

26

Paused?

Insert “we’re paused” box

yes

Does EXT file exist?

Does a PNG file exist?

Making a PDF?

includegraphics PNG

yes
Warning:
DVI, PNG
incompatible

no

yes

Warn user to
rerun Sage

no

no

Use includegraphics

yes

no

Figure 2: The logic used by the \ST@inclgrfx command.

166 {\ifpdf

167 \ST@inclgrfx{#1}{png}

168 \else

169 \PackageWarning{sagetex}{Graphics file

170 \ST@plotdir/plot-\theST@plot.png on page \thepage\space not

171 supported; try using pdflatex. Plot command is}%

172 \fi}%

173 {\ST@missingfilebox%

174 \PackageWarning{sagetex}{Graphics file

175 \ST@plotdir/plot-\theST@plot.#2\space on page \thepage\space does not

176 exist. Plot command is}%

177 \gdef\ST@rerun{x}}}

178 \fi}

Figure 2 makes this a bit clearer.

6.1.4 Verbatim-like environments

\ST@beginsfbl This is “begin .sage file block”, an internal-use abbreviation that sets things up
when we start writing a chunk of Sage code to the .sage file. It begins with
some TEX magic that fixes spacing, then puts the start of a try/except block in
the .sage file—this not only allows the user to indent code without Sage/Python
complaining about indentation, but lets us tell the user where things went wrong.
The blockbegin and blockend functions are documented on page 36. The last
bit is some magic from the verbatim package manual that makes LATEX respect
line breaks.

179 \newcommand{\ST@beginsfbl}{%

27

180 \@bsphack\ST@wsf{%

181 _st_.current_tex_line = \the\inputlineno^^J%

182 _st_.blockbegin()^^Jtry:}%

183 \let\do\@makeother\dospecials\catcode‘\^^M\active}

\ST@endsfbl The companion to \ST@beginsfbl.

184 \newcommand{\ST@endsfbl}{%

185 \ST@wsf{except:^^J

186 _st_.goboom(\the\inputlineno)^^J_st_.blockend()}}

Now let’s define the “verbatim-like” environments. There are four possibilities,
corresponding to the two independent choices of typesetting the code or not, and
writing to the .sage file or not.

sageblock This environment does both: it typesets your code and puts it into the .sage file
for execution by Sage.

187 \newenvironment{sageblock}{\ST@beginsfbl%

The space between \ST@wsf{ and \the is crucial! It, along with the “try:”, is
what allows the user to indent code if they like. This line sends stuff to the .sage

file.

188 \def\verbatim@processline{\ST@wsf{ \the\verbatim@line}%

Next, we typeset your code and start the verbatim environment.

189 \hspace{\sagetexindent}\the\verbatim@line\par}%

190 \verbatim}%

At the end of the environment, we put a chunk into the .sage file and stop the
verbatim environment.

191 {\ST@endsfbl\endverbatim}

sagesilent This is from the verbatim package manual. It’s just like the above, except we
don’t typeset anything.

192 \newenvironment{sagesilent}{\ST@beginsfbl%

193 \def\verbatim@processline{\ST@wsf{ \the\verbatim@line}}%

194 \verbatim@start}%

195 {\ST@endsfbl\@esphack}

sageverbatim The opposite of sagesilent. This is exactly the same as the verbatim environ-
ment, except that we include some indentation to be consistent with other typeset
Sage code.

196 \newenvironment{sageverbatim}{%

197 \def\verbatim@processline{\hspace{\sagetexindent}\the\verbatim@line\par}%

198 \verbatim}%

199 {\endverbatim}

Logically, we now need an environment which neither typesets nor writes code
to the .sage file. The verbatim package’s comment environment does that.

28

sageexample Finally, we have an environment which is mostly-but-not-entirely verbatim; this
is the example environment, which takes input like Sage doctests, and prints out
the commands verbatim but nicely typesets the output of those commands. This
and the corresponding Python function are originally due to Nicolas M. Thiéry.

200 \newcommand{\sageexampleincludetextoutput}{False}

201 \newenvironment{sageexample}{%

202 \ST@wsf{%

203 try:^^J

204 _st_.current_tex_line = \the\inputlineno^^J

205 _st_.doctest(\theST@inline, r"""}%

206 \ST@dodfsetup%

207 \ST@wdf{Sage example, line \the\inputlineno::^^J}%

208 \begingroup%

209 \@bsphack%

210 \let\do\@makeother\dospecials%

211 \catcode‘\^^M\active%

212 \def\verbatim@processline{%

213 \ST@wsf{\the\verbatim@line}%

214 \ST@wdf{\the\verbatim@line}%

215 }%

216 \verbatim@start%

217 }

218 {

219 \@esphack%

220 \endgroup%

221 \ST@wsf{%

222 """, globals(), locals(), \sageexampleincludetextoutput)^^Jexcept:^^J

223 _st_.goboom(\the\inputlineno)}%

224 \ifST@paused%

225 \mbox{(Sage\TeX{} is paused)}%

226 \else%

227 \begin{NoHyper}\ref{@sageinline\theST@inline}\end{NoHyper}%

228 \@ifundefined{r@@sageinline\theST@inline}{\gdef\ST@rerun{x}}{}%

229 \fi%

230 \ST@wdf{}%

231 \stepcounter{ST@inline}}

sagecommandline This environment is similar to the sageexample environment, but typesets the
Sage output as text with Python syntax highlighting.

232 \newcommand{\sagecommandlinetextoutput}{True}

233 \newlength{\sagecommandlineskip}

234 \setlength{\sagecommandlineskip}{8pt}

235 \newenvironment{sagecommandline}{%

236 \ST@wsf{%

237 try:^^J

238 _st_.current_tex_line = \the\inputlineno^^J

239 _st_.commandline(\theST@cmdline, r"""}%

240 \ST@dodfsetup%

241 \ST@wdf{Sage commandline, line \the\inputlineno::^^J}%

29

242 \begingroup%

243 \@bsphack%

244 \let\do\@makeother\dospecials%

245 \catcode‘\^^M\active%

246 \def\verbatim@processline{%

247 \ST@wsf{\the\verbatim@line}%

248 \ST@wdf{\the\verbatim@line}%

249 }%

250 \verbatim@start%

251 }

252 {

253 \@esphack%

254 \endgroup%

255 \ST@wsf{%

256 """, globals(), locals(), \sagecommandlinetextoutput)^^Jexcept:^^J

257 _st_.goboom(\the\inputlineno)}%

258 \ifST@paused%

259 \mbox{(Sage\TeX{} is paused)}%

260 \else%

261 \begin{NoHyper}\ref{@sagecmdline\theST@cmdline}\end{NoHyper}%

262 \@ifundefined{r@@sagecmdline\theST@cmdline}{\gdef\ST@rerun{x}}{}%

263 \fi%

264 \ST@wdf{}%

265 \stepcounter{ST@cmdline}}

6.1.5 Pausing SageTEX

How can one have Sage to stop processing SageTEX output for a little while, and
then start again? At first I thought I would need some sort of “goto” statement in
Python, but later realized that there’s a dead simple solution: write triple quotes
to the .sage file to comment out the code. Okay, so this isn’t really commenting
out the code; PEP 8 says block comments should use “#” and Sage will read in the
“commented-out” code as a string literal. For the purposes of SageTEX, I think
this is a good decision, though, since (1) the pausing mechanism is orthogonal to
everything else, which makes it easier to not screw up other code, and (2) it will
always work.

This illustrates what I really like about SageTEX: it mixes LATEX and
Sage/Python, and often what is difficult or impossible in one system is trivial
in the other.

sagetexpause This macro pauses SageTEX by effectively commenting out code in the .sage file.
When running the corresponding .sage file, Sage will skip over any commands
issued while SageTEX is paused.

266 \newcommand{\sagetexpause}{\ifST@paused\relax\else

267 \ST@wsf{print(’SageTeX paused on \jobname.tex line \the\inputlineno’)^^J"""}

268 \ST@pausedtrue

269 \fi}

30

sagetexunpause This is the obvious companion to \sagetexpause.

270 \newcommand{\sagetexunpause}{\ifST@paused

271 \ST@wsf{"""^^Jprint(’SageTeX unpaused on \jobname.tex line \the\inputlineno’)}

272 \ST@pausedfalse

273 \fi}

6.1.6 End-of-document cleanup

We tell the Sage script to write some information to the .sout file, then check to
see if ST@rerun ever got defined. If not, all the inline formulas and plots worked,
so do nothing. We check to see if we’re paused first, so that we can finish the
triple-quoted string in the .sage file.

274 \AtEndDocument{\ifST@paused

275 \ST@wsf{"""^^Jprint(’SageTeX unpaused at end of \jobname.tex’)}

276 \fi

277 \ST@wsf{_st_.endofdoc()}%

278 \@ifundefined{ST@rerun}{}%

Otherwise, we issue a warning to tell the user to run Sage on the .sage file. Part
of the reason we do this is that, by using \ref to pull in the inlines, LATEX will
complain about undefined references if you haven’t run the Sage script—and for
many LATEX users, myself included, the warning “there were undefined references”
is a signal to run LATEX again. But to fix these particular undefined references,
you need to run Sage. We also suppress file-not-found errors for graphics files, and
need to tell the user what to do about that.

At any rate, we tell the user to run Sage if it’s necessary.

279 {\typeout{***}

280 \PackageWarningNoLine{sagetex}{there were undefined Sage formulas and/or

281 plots.^^JRun Sage on \jobname.sagetex.sage, and then run LaTeX on \jobname.tex

282 again}}

283 \typeout{***}}

6.2 The Python module

The style file writes things to the .sage file and reads them from the .sout file.
The Python module provides functions that help produce the .sout file from the
.sage file.

A note on Python and Docstrip There is one tiny potential source of confu-
sion when documenting Python code with Docstrip: the percent sign. If you have
a long line of Python code which includes a percent sign for string formatting and
you break the line with a backslash and begin the next line with a percent sign,
that line will not be written to the output file. This is only a problem if you begin
the line with a (single) percent sign; there are no troubles otherwise.

On to the code. Munge the version string (which we get from sagetex.dtx)
to extract what we want, then import what we need:

31

284 pyversion = ’ ’.join(__version__.strip(’[’).split()[0:2])

285 from sage.misc.latex import latex

286 from sage.repl.preparse import preparse

287 from six import PY3

288 import sys

289 import os

290 import os.path

291 import hashlib

292 import traceback

293 import subprocess

294 import shutil

295 import re

296 from collections import defaultdict

Define an exception class for version mismatches. I suppose I could just use
ValueError, but this is easy enough:

297 class VersionError(Exception):

298 pass

Sometimes our macros that write things to the .sout file get evaluated twice, most
commonly in the “fancy” AMS environments such as align and multline. So we
need to keep track of the counters we’ve seen so we don’t write labels to the .sout
file more than once. We have more than one kind of label, so a dictionary is the
natural way to store the counters we’ve seen for each kind of label. For convenience
let’s make a dictionary subclass for which (1) values default to −1, and (2) there’s
an increment(key) function that just increments the value corresponding to the
key.

299 class MyDict(defaultdict):

300 def __init__(self, *args, **kwargs):

301 defaultdict.__init__(self, *args, **kwargs)

302 self.default_factory = lambda: -1

303

304 def increment(self, key):

305 self[key] = self[key] + 1

Here’s a helper function used by doctest; it works ike j.join(xs), but ensures
exactly one copy of j between the strings in xs. Intended for j to be a single
character, particularly newline so that you can join things with no extra blank
lines.

306 def joinone(j, xs_):

307 if len(xs_) >= 2:

308 xs = ([xs_[0].rstrip(j)] +

309 [x.strip(j) for x in xs_[1:-1]] +

310 [xs_[-1].lstrip(j)])

311 else:

312 xs = xs_

313 return j.join(xs)

Another helper, used by commandline (and maybe, someday, doctest?). In each
line, we look for a possibly empty sequence of spaces followed by a non-whitespace

32

character, so we can distinguish between whitespace-only lines (which we ignore)
and lines that have no leading spaces.

One tiny possible problem: you might have a line of only, say, two spaces, but
perhaps the “real” lines all start with at least three spaces. Then you would, for
that line, do line[2:]. That seems like it might raise an error, since the line only
has indices 0 and 1, but Python’s indexing handles this perfectly: in that case,
line[2:] will be the empty string, which is fine for our purposes.

314 def strip_common_leading_spaces(s):

315 lines = s.splitlines()

316 lead = min(m.end() for m in

317 [re.match(’ *\S’, line) for line in lines]

318 if m is not None) - 1

319 return ’\n’.join(line[lead:] for line in lines)

6.2.1 The SageTeXProcessor class

The star of the show, as it were. We define a SageTeXProcessor class so that
it’s a bit easier to carry around internal state. We used to just have some global
variables and a bunch of functions, but this seems a bit nicer and easier.

320 class SageTeXProcessor():

If the original .tex file has spaces in its name, the \jobname we get is surrounded
by double quotes, so fix that. Technically, it is possible to have double quotes in
a legitimate filename, but dealing with that sort of quoting is unpleasant. And
yes, we’re ignoring the possibility of tabs and other whitespace in the filename.
Patches for handling pathological filenames welcome.

321 def __init__(self, jobname, version=None, version_check=True):

322 if version != pyversion:

323 errstr = """versions of .sty and .py files do not match.

324 {0}.sagetex.sage was generated by sagetex.sty version "{1}", but

325 is being processed by sagetex.py version "{2}".

326 Please make sure that TeX is using the sagetex.sty

327 from your current version of Sage; see

328 http://doc.sagemath.org/html/en/tutorial/sagetex.html.""".format(jobname,

329 version, pyversion)

330 if version_check:

331 raise VersionError(errstr)

332 else:

333 print(’**** WARNING! Skipping version check for .sty and .py files, and’)

334 print(errstr)

335 if ’ ’ in jobname:

336 jobname = jobname.strip(’"’)

337 self.progress(’Processing Sage code for {0}.tex...’.format(jobname))

338 self.didinitplot = False

339 self.useimagemagick = False

340 self.useepstopdf = False

341 self.plotdir = ’sage-plots-for-’ + jobname + ’.tex’

342 self.filename = jobname

33

http://tug.org/pipermail/xetex/2006-August/004712.html

343 self.name = os.path.splitext(jobname)[0]

344 autogenstr = """% This file was *autogenerated* from {0}.sagetex.sage with

345 % sagetex.py version {1}\n""".format(self.name, version)

Don’t remove the space before the percent sign above!
LATEX environments such as align evaluate their arguments twice after doing

\savecounters@, so if you do \sage inside such an environment, it will result in
two labels with the same name in the .sout file and the user sees a warning when
typesetting. So we keep track of the largest label we’ve seen so that we don’t write
two labels with the same name.

346 self.max_counter_seen = MyDict()

Open a .sout.tmp file and write all our output to that. Then, when we’re done,
we move that to .sout. The “autogenerated” line is basically the same as the lines
that get put at the top of preparsed Sage files; we are automatically generating
a file with Sage, so it seems reasonable to add it. Add in the version to help
debugging version mismatch problems.

347 self.souttmp = open(self.filename + ’.sagetex.sout.tmp’, ’w’)

348 self.souttmp.write(autogenstr)

In addition to the .sout file, the sagecommandline also needs a .scmd file. As
before, we use a .scmd.tmp file and rename it later on. We store the position so
that commandline can tell the listings package what lines in the .scmd file to
pull in.

349 self.scmdtmp = open(self.filename + ’.sagetex.scmd.tmp’, ’w’)

350 self.scmdtmp.write(autogenstr)

351 self.scmdpos = 3

progress This function just prints stuff. It allows us to not print a linebreak, so you can
get “start...” (little time spent processing) “end” on one line.

352 def progress(self, t,linebreak=True):

353 if linebreak:

354 print(t)

355 else:

356 sys.stdout.write(t)

357 sys.stdout.flush()

initplot We only want to create the plots directory if the user actually plots something.
This function creates the directory and sets the didinitplot flag after doing so.
We make a directory based on the LATEX file being processed so that if there are
multiple .tex files in a directory, we don’t overwrite plots from another file.

358 def initplot(self):

359 self.progress(’Initializing plots directory’)

We hard-code the .tex extension, which is fine in the overwhelming majority of
cases, although it does cause minor confusion when building the documentation. If
it turns out lots of people use, say, a ltx extension or whatever, We could find out
the correct extension, but it would involve a lot of irritating mucking around—on

34

comp.text.tex, the best solution I found for finding the file extension is to look
through the .log file. (Although see the currfile package.)

360 if os.path.isdir(self.plotdir):

361 shutil.rmtree(self.plotdir)

362 os.mkdir(self.plotdir)

363 self.didinitplot = True

inline This function works with \sage from the style file (see section 6.1.2) to put Sage
output into your LATEX file. Usually, when you use \label, it writes a line such
as

\newlabel{labelname}{{section number}{page number}}

to the .aux file. When you use the hyperref package, there are more fields in
the second argument, but the first two fields are the same. The \ref command
just pulls in what’s in the first field of the second argument, so we can hijack this
mechanism for our own nefarious purposes. The function writes a \newlabel line
with a label made from a counter and the text from running Sage on s.

When the user does \sage inside certain displayed math environments (align
is the most common culprit) this function will get called twice with exactly the
same arguments. We check to see what labels we’ve seen and immediately bail if
we’ve written this label before.

The labelname defaults to the the name used by the usual \sage inline macro,
but this function is also used by the sagecommandline environment. It’s impor-
tant to keep the corresponding labels separate, because \sage macros often (for
example) appear inside math mode, and the labels from sagecommandline con-
tain a lstlistings environment—pulling such an environment into math mode
produces strange, unrecoverable errors, and if you can’t typeset your file, you can’t
produce an updated .sagetex.sage file to run Sage on to produce a reasonable
.sagetext.sout file that will fix the label problem. So it works much better to
use distinct labels for such things.

We print out the line number so if something goes wrong, the user can more
easily track down the offending \sage command in the source file.

That’s a lot of explanation for a short function:

364 def inline(self, counter, s, labelname=’sageinline’):

365 if counter <= self.max_counter_seen[labelname]:

366 return

367 else:

368 self.max_counter_seen.increment(labelname)

369 if labelname == ’sageinline’:

370 self.progress(’Inline formula {0} (line {1})’.format(counter, self.current_tex_line))

371 elif labelname == ’sagecmdline’:

372 pass # output message already printed

373 else:

374 raise ValueError(’inline() got a bad labelname "{0}"’.format(labelname))

375 self.souttmp.write(r’\newlabel{@’ + labelname + str(counter) +

376 ’}{{%\n’ + s.rstrip() + ’}{}{}{}{}}\n’)

35

We are using five fields, just like hyperref does, because that works whether
or not hyperref is loaded. Using two fields, as in plain LATEX, doesn’t work if
hyperref is loaded.

savecmd Analogous to inline, this method saves the input string s to the souttmp file. It
returns the first and last line of the newly-added output so that commandline can
tell the listings package where to get stuff.

377 def savecmd(self, s):

378 self.scmdtmp.write(s.rstrip() + "\n")

379 begin = self.scmdpos

380 end = begin + len(s.splitlines()) - 1

381 self.scmdpos = end + 1

382 return begin, end

blockbegin

blockend

This function and its companion used to write stuff to the .sout file, but now they
just update the user on our progress evaluating a code block. The verbatim-like
environments of section 6.1.4 use these functions.

383 def blockbegin(self):

384 self.progress(’Code block (line {}) begin...’.format(self.current_tex_line), False)

385 def blockend(self):

386 self.progress(’end’)

splitsagecmds Given a string s of doctest-like Sage code, this function returns a list of tuples
(i, j, cmd), where cmd is a string representing a Sage command, with the initial
prompt and continuation lines stripped, i is the position in s where cmd starts,
and j is the starting position in s of the purported output from the command
that was included in s.

This is used by doctest and commandline, below.
For example, this turns the string

’’’

sage: 1+1

2

sage: y = 1729

sage: 10^3 + 9^3 == 12^3 + 1^3 == y

sage: gcd(9999999,

....: 123456)

3

sage: factor(x^2 + 2*x + 1)

(x + 1)^2

’’’

into

[(0, 18, ’1+1’),

(28, 51, ’y = 1729’),

(51, 95, ’10^3 + 9^3 == 12^3 + 1^3 == y’),

(95, 144, ’gcd(9999999,\n123456)’),

(154, 190, ’factor(x^2 + 2*x + 1)’)]

36

You can reconstruct the sequence of commands and their output with something
like

splitup = split_sage_cmds(s)

oldout = splitup[0][1]

print(’=’ * 50)

print(’==== Command:’)

print(s[splitup[0][0]:oldout])

for start, out, _ in splitup[1:]:

print(’==== Given output:’)

print(s[oldout:start])

print(’=’ * 50)

print(’==== Command:’)

print(s[start:out])

oldout = out

print(’==== Given output:’)

print(s[oldout:])

387 def split_sage_cmds(self, s):

388 prompt = ’\n’ + r’\s*sage: ’

389 oldcont = r’\s*\.\.\.’

390 cont = r’\s*\.\.\.\.: ’

Prepending a newline to s ensures that the list from re.split() begins with
something we can ignore—and so that the re.split() returns n+ 1 groups for n
matches, so therefore split and starts match up.

391 split = re.split(prompt, ’\n’ + s)[1:]

392 starts = [m.start() - 1 for m in re.finditer(prompt, ’\n’ + s)]

The prepended newline messes up the first element of starts, fix that:

393 starts[0] = re.search(prompt, s).start()

Now find where the outputs start. We need this because doctest() may or may
not print the outputs. The idea is: for each starting position, advance over the
prompt that we know is there, then look for the rightmost continuation marker
between the current prompt and the next one, and then look for the newline
following that. That position is where the output begins.

394 outputs = []

395 for i, j in zip(starts, starts[1:] + [len(s)]):

396 k = i + re.match(prompt, s[i:j]).end()

397 try:

398 k += [m.end() for m in re.finditer(cont, s[k:j])][-1]

399 except IndexError:

400 pass

401 end = s.find(’\n’, k)

402 outputs.append(end)

Now we take each command group, split it up, and look for all the continuation
lines. We append those, stripping off the continuation marks. We also do some

37

error checking so that users with documents that use the old ... continuation
marks get a reasonable error message.

403 ret = []

404 for start, end, g in zip(starts, outputs, split):

405 lines = g.splitlines()

406 cmd = lines[:1]

407 for line in lines[1:]:

408 has_old_cont = re.match(oldcont, line)

409 has_cont = re.match(cont, line)

410 if has_old_cont and not has_cont:

411 raise SyntaxError(""" SageTeX no longer supports "..." for line continuation in sagexample and

412 sagecommandline environments. Use "....:", which matches what the Sage

413 interpreter uses. See the documentation and example file in

414 SAGE_ROOT/venv/share/doc/sagetex.""")

415 if has_cont:

416 cmd.append(line[has_cont.end():])

417 ret.append((start, end, ’\n’.join(cmd)))

418 return ret

doctest This function handles the sageexample environment, which typesets Sage code
and its output. We call it doctest because the format is just like that for doctests
in the Sage library.

The idea is:

1. Get the literal text for each command, wrap that in SaveVerbatim, write
that (possibly with its associated output from the .tex file) to the sout file.

2. Accumulate a corresponding UseVerbatim and typeset output so that we
can call inline() at the end and pull in all this stuff.

3. For the output: try to eval() the processed command (the one with the
prompts and continuation marks stripped). If that succeeds, we run latex()

on it and display that below the verbatim text from above. If that fails, it’s
because you have a statement and not an expression—there’s no output from
such a thing (well, none that we can capture, anyway) so no need to typeset
output.

419 def doctest(self, counter, s, globals, locals, include_text_output):

420 self.progress(’Sage example {0} (line {1})’.format(counter, self.current_tex_line))

421 splitup = self.split_sage_cmds(s)

422 tex_strs = []

423 for i in range(len(splitup)):

424 boxname = ’@sageinline{}-code{}’.format(counter, i)

425 to_tmp = [r’\begin{SaveVerbatim}{’ + boxname + ’}’,

426 s[splitup[i][0]:splitup[i][1]]]

427 if include_text_output:

428 try:

429 to_tmp.append(s[splitup[i][1]:splitup[i+1][0]])

430 except IndexError:

431 to_tmp.append(s[splitup[i][1]:])

38

432 to_tmp.append(’\\end{SaveVerbatim}\n’)

433 self.souttmp.write(joinone(’\n’, to_tmp))

Now we build up something that we can send to inline(), which will pull it into
the document using its usual label mechanism.

The verbatim stuff seems to end with a bit of vertical space, so don’t start the
displaymath environment with unnecessary vertical space—the displayskip stuff
is from §11.5 of Herbert Voß’s “Math Mode”.

434 tex_strs.append(r’\UseVerbatim{’ + boxname + ’}’)

435 try:

436 result = eval(preparse(splitup[i][2]), globals, locals)

437 tex_strs += [r’\abovedisplayskip=0pt plus 3pt ’,

438 r’\abovedisplayshortskip=0pt plus 3pt ’,

439 r’\begin{displaymath}’,

440 latex(result),

441 r’ \end{displaymath}’]

442 except SyntaxError:

443 exec(preparse(splitup[i][2]), globals, locals)

444 self.inline(counter, ’\n’.join(tex_strs))

commandline This function handles the commandline environment, which typesets Sage code,
computes its output, and typesets that too. This is very similar to doctest and
I hope to someday combine them into one.

Even if I can’t refactor these two functions (and their associated environments)
into one, I would like to eliminate the .scmd file that this function uses, since
exactly the same bits of Sage code get written to both the .scmd file and the
_doctest.sage file. The reason this isn’t trivial is because we need to keep track
of which line number we’re on so that we can give the listings package a start
and end line to extract, and right now the _doctest.sage file is written to by
LATEX and we can’t track the line number.

In any case, here’s what we do: after splitting up the provided string using
split_sage_cmds, we iterate over each of the commands and:

1. Put the original input command into the .scmd file with savecmd.

2. Use the begin and end line numbers to append a lstinputlisting com-
mand to the TEX commands we’ll eventually hand off to inline.

3. Evaluate the command using eval() or exec, as necessary. If we’re doing
plain text format, we send the output to the .scmd file and add a TEX
command to pull that back in—if we need typeset output, then we just hit
the output with latex() and add that to the list of TEX commands.

Observe that we detect spaces in the filename and quote that for TEX if we need
to.

445 def commandline(self, counter, s, globals, locals, text_output):

446 self.progress(’Sage commandline {0} (line {1})’.format(counter, self.current_tex_line))

447 scmd_fn = self.name + ’.sagetex.scmd’

448 if ’ ’ in scmd_fn:

39

http://www.ctan.org/tex-archive/info/math/voss/mathmode/

449 scmd_fn = ’"{}"’.format(scmd_fn)

450

451 splitup = self.split_sage_cmds(s)

452 skip = r’\vspace{\sagecommandlineskip}’

453 tex_strs = [skip]

454 lstinput = r’\lstinputlisting[firstline={0},lastline={1},firstnumber={2},style=SageInput{escape}]{{{3}}}’

455 for i in range(len(splitup)):

456 orig_input = s[splitup[i][0]:splitup[i][1]]

457 begin, end = self.savecmd(strip_common_leading_spaces(orig_input.strip(’\n’)))

458 if ’#@’ in orig_input:

459 escapeoption = ’,escapeinside={\\#@}{\\^^M}’

460 else:

461 escapeoption = ’’

462 tex_strs.append(lstinput.format(begin, end, begin - 2, scmd_fn, escape=escapeoption))

463 try:

464 result = eval(preparse(splitup[i][2]), globals, locals)

465 if text_output:

466 begin, end = self.savecmd(str(result))

467 tex_strs.append(lstinput.format(begin, end, begin - 2, scmd_fn, escape=’’))

468 else:

469 tex_strs.append(r’\begin{displaymath}’ +

470 latex(result) +

471 r’\end{displaymath}’)

472 except SyntaxError:

473 exec(preparse(splitup[i][2]), globals, locals)

474 if ’displaymath’ not in tex_strs[-1]:

475 tex_strs.append(skip)

476 self.inline(counter, ’\n’.join(tex_strs), labelname=’sagecmdline’)

plot I hope it’s obvious that this function does plotting. It’s the Python counterpart
of \ST@sageplot described in section 6.1.3. As mentioned in the \sageplot code,
we’re taking advantage of two things: first, that LATEX doesn’t treat commas
and spaces in macro arguments specially, and second, that Python (and Sage
plotting functions) has nice support for keyword arguments. The #3 argument to
\sageplot becomes _p_ and **kwargs below.

477 def plot(self, counter, _p_, format=’notprovided’, **kwargs):

478 if not self.didinitplot:

479 self.initplot()

480 self.progress(’Plot {0} (line {1})’.format(counter, self.current_tex_line))

If the user says nothing about file formats, we default to producing PDF and
EPS. This allows the user to transparently switch between using a DVI previewer
(which usually automatically updates when the DVI changes, and has support for
source specials, which makes the writing process easier) and making PDFs.5

481 if format == ’notprovided’:

482 formats = [’eps’, ’pdf’]

483 else:

5Yes, there’s pdfsync, but full support for that is still rare in Linux, so producing EPS and
PDF is the best solution for now.

40

484 formats = [format]

485 for fmt in formats:

If we’re making a PDF and have been told to use epstopdf, do so, then skip the
rest of the loop.

486 if fmt == ’pdf’ and self.useepstopdf:

487 epsfile = os.path.join(self.plotdir, ’plot-{0}.eps’.format(counter))

488 self.progress(’Calling epstopdf to convert plot-{0}.eps to PDF’.format(

489 counter))

490 subprocess.check_call([’epstopdf’, epsfile])

491 continue

Some plot objects (mostly 3-D plots) do not support saving to EPS or PDF files
(yet), but everything can be saved to a PNG file. For the user’s convenience, we
catch the error when we run into such an object, save it to a PNG file, then exit
the loop.

492 plotfilename = os.path.join(self.plotdir, ’plot-{0}.{1}’.format(counter, fmt))

493 try:

494 _p_.save(filename=plotfilename, **kwargs)

495 except ValueError as inst:

496 if re.match(’filetype .*not supported by save’, str(inst)):

497 newfilename = plotfilename[:-3] + ’png’

498 print(’ saving {0} failed; saving to {1} instead.’.format(

499 plotfilename, newfilename))

500 _p_.save(filename=newfilename, **kwargs)

501 break

502 else:

503 raise

If the user provides a format and specifies the imagemagick option, we try to
convert the newly-created file into EPS format.

504 if format != ’notprovided’ and self.useimagemagick:

505 self.progress(’Calling Imagemagick to convert plot-{0}.{1} to EPS’.format(

506 counter, format))

507 self.toeps(counter, format)

toeps This function calls the Imagmagick utility convert to, well, convert something into
EPS format. This gets called when the user has requested the “imagemagick”
option to the SageTEX style file and is making a graphic file with a nondefault
extension.

508 def toeps(self, counter, ext):

509 subprocess.check_call([’convert’,\

510 ’{0}/plot-{1}.{2}’.format(self.plotdir, counter, ext), \

511 ’{0}/plot-{1}.eps’.format(self.plotdir, counter)])

We are blindly assuming that the convert command exists and will do the con-
version for us; the check_call function raises an exception which, since all these
calls get wrapped in try/excepts in the .sage file, should result in a reasonable
error message if something strange happens.

41

goboom When a chunk of Sage code blows up, this function bears the bad news to the
user. Normally in Python the traceback is good enough for this, but in this case,
we start with a .sage file (which is autogenerated) which itself autogenerates a
.py file—and the tracebacks the user sees refer to that file, whose line numbers are
basically useless. We want to tell them where in the LATEX file things went bad,
so we do that, give them the traceback, and exit after removing the .sout.tmp

and .scmd.tmp file.

512 def goboom(self, line):

513 print(’\n**** Error in Sage code on line {0} of {1}.tex! Traceback\

514 follows.’.format(line, self.filename))

515 traceback.print_exc()

516 print(’\n**** Running Sage on {0}.sage failed! Fix {0}.tex and try\

517 again.’.format(self.filename))

518 self.souttmp.close()

519 os.remove(self.filename + ’.sagetex.sout.tmp’)

520 self.scmdtmp.close()

521 os.remove(self.filename + ’.sagetex.scmd.tmp’)

522 sys.exit(int(1))

We use int(1) above to make sure sys.exit sees a Python integer; see ticket
#2861.

endofdoc When we’re done processing, we have some cleanup tasks. We want to put the
MD5 sum of the .sage file that produced the .sout file we’re about to write
into the .sout file, so that external programs that build LATEX documents can
determine if they need to call Sage to update the .sout file. But there is a
problem: we write line numbers to the .sage file so that we can provide useful
error messages—but that means that adding non-SageTEX text to your source file
will change the MD5 sum, and your program will think it needs to rerun Sage
even though none of the actual SageTEX macros changed.

How do we include line numbers for our error messages but still allow a program
to discover a “genuine” change to the .sage file?

The answer is to only find the MD5 sum of part of the .sage file. By design,
the source file line numbers only appear in (1) calls to goboom, (2) lines with
st.current_tex_line, and (3) pause/unpause lines, so we will strip those lines
out. What we do below is exactly equivalent to running

egrep -v ’^(_st_.goboom| ?_st_.current_tex_line|print(.SageT)’ filename.sage | md5sum

in a shell. The included sagetex-run uses this mechanism to, well, only run Sage
when necessary; see section 7.1.

523 def endofdoc(self):

524 sagef = open(self.filename + ’.sagetex.sage’, ’r’)

525 m = hashlib.md5()

526 for line in sagef:

527 if not line.startswith((" _st_.goboom",

528 "print(’SageT",

529 "_st_.current_tex_line",

42

http://trac.sagemath.org/sage_trac/ticket/2861#comment:5
http://trac.sagemath.org/sage_trac/ticket/2861#comment:5

530 " _st_.current_tex_line")):

531 if PY3:

532 m.update(bytearray(line,’utf8’))

533 else:

534 m.update(bytearray(line))

(The current_tex_line thing appears twice because it may appear indented one
space or not, depending on whether it’s used before blockbegin or not.)

535 s = ’%’ + m.hexdigest() + ’% md5sum of corresponding .sage file\

536 (minus "goboom", "current_tex_line", and pause/unpause lines)\n’

537 self.souttmp.write(s)

538 self.scmdtmp.write(s)

Now, we do issue warnings to run Sage on the .sage file and an external pro-
gram might look for those to detect the need to rerun Sage, but those warnings
do not quite capture all situations. (If you’ve already produced the .sout file
and change a \sage call, no warning will be issued since all the \refs find a
\newlabel.) Anyway, I think it’s easier to grab an MD5 sum out of the end of
the file than parse the output from running latex on your file. (The regular ex-
pression ^%[0-9a-f]{32}% will find the MD5 sum. Note that there are percent
signs on each side of the hex string.)

Now we are done with the .sout.tmp file. Close it, rename it, and tell the user
we’re done.

539 self.souttmp.close()

540 os.rename(self.filename + ’.sagetex.sout.tmp’, self.filename + ’.sagetex.sout’)

541 self.scmdtmp.close()

542 os.rename(self.filename + ’.sagetex.scmd.tmp’, self.filename + ’.sagetex.scmd’)

543 self.progress(’Sage processing complete. Run LaTeX on {0}.tex again.’.format(

544 self.filename))

7 Included Python scripts

Here we describe the Python code for SageTEX scripts, for running Sage only if
necessary, substituting in Sage outputs to produce a “static” file, and extracting
all Sage code from a .tex file.

7.1 sagetex-run

When working on a document that uses SageTEX, running Sage every time you
typeset your document may take too long, especially since it often is not necessary.
This script is a drop-in replacement for Sage: instead of

sage document.sagetex.sage

you can do

sagetex-run document.sagetex.sage

43

and it will use the MD5 mechanism described in the endofdoc macro (page 42).
With this, you can set up your editor (TEXShop, TEXWorks, etc) to typeset your
document with a script that does

pdflatex $1

sagetex-run $1

which will only, of course, run Sage when necessary.

545 """

546 Given a filename f, examines f.sagetex.sage and f.sagetex.sout and

547 runs Sage if necessary.

548 """

549

550 import hashlib

551 import sys

552 import os

553 import re

554 import subprocess

555 import shutil

556 import argparse

557

558 def argparser():

559 p = argparse.ArgumentParser(description=__doc__.strip())

560 p.add_argument(’--sage’, action=’store’, default=find_sage(),

561 help="Location of the Sage executable")

562 p.add_argument(’src’, help="Input file name (basename or .sagetex.sage)")

563 return p

564

565 def find_sage():

566 return shutil.which(’sage’) or ’sage’

567

568 def run(args):

569 src = args.src

570 path_to_sage = args.sage

571

572 if src.endswith(’.sagetex.sage’):

573 src = src[:-13]

574 else:

575 src = os.path.splitext(src)[0]

576

577 # Ensure results are output in the same directory as the source files

578 os.chdir(os.path.dirname(src))

579 src = os.path.basename(src)

580

581 usepackage = r’usepackage(\[.*\])?{sagetex}’

582 uses_sagetex = False

583

584 # If it does not use sagetex, obviously running sage is unnecessary.

585 if os.path.isfile(src + ’.tex’):

586 with open(src + ’.tex’) as texf:

44

587 for line in texf:

588 if line.strip().startswith(r’\usepackage’) and re.search(usepackage, line):

589 uses_sagetex = True

590 break

591 else:

592 # The .tex file might not exist if LaTeX output was put to a different

593 # directory, so in that case just assume we need to build.

594 uses_sagetex = True

595

596 if not uses_sagetex:

597 print(src + ".tex doesn’t seem to use SageTeX, exiting.", file=sys.stderr)

598 sys.exit(1)

599

600 # if something goes wrong, assume we need to run Sage

601 run_sage = True

602 ignore = r"^(_st_.goboom|print\(’SageT| ?_st_.current_tex_line)"

603

604 try:

605 with open(src + ’.sagetex.sage’, ’r’) as sagef:

606 h = hashlib.md5()

607 for line in sagef:

608 if not re.search(ignore, line):

609 h.update(bytearray(line,’utf8’))

610 except IOError:

611 print(’{0}.sagetex.sage not found, I think you need to typeset {0}.tex first.’

612 ’’.format(src), file=sys.stderr)

613 sys.exit(1)

614

615 try:

616 with open(src + ’.sagetex.sout’, ’r’) as outf:

617 for line in outf:

618 m = re.match(’%([0-9a-f]+)% md5sum’, line)

619 if m:

620 print(’computed md5:’, h.hexdigest())

621 print(’sagetex.sout md5:’, m.group(1))

622 if h.hexdigest() == m.group(1):

623 run_sage = False

624 break

625 except IOError:

626 pass

627

628 if run_sage:

629 print(’Need to run Sage on {0}.’.format(src))

630 sys.exit(subprocess.call([path_to_sage, src + ’.sagetex.sage’]))

631 else:

632 print(’Not necessary to run Sage on {0}.’.format(src))

633

634 if __name__ == "__main__":

635 run(argparser().parse_args())

45

7.2 sagetex-makestatic

Now the sagetex-makestatic:

636 """

637 Removes SageTeX macros from ‘inputfile’ and replaces them with the

638 Sage-computed results to make a "static" file. You’ll need to have run

639 Sage on ‘inputfile’ already.

640

641 ‘inputfile’ can include the .tex extension or not. If you provide

642 ‘outputfile’, the results will be written to a file of that name.

643 Specify ‘-o’ or ‘--overwrite’ to overwrite the file if it exists.

644

645 See the SageTeX documentation for more details.

646 """

647 import sys

648 import time

649 import os.path

650 import argparse

651

652 from sagetexparse import DeSageTex

653

654 def argparser():

655 p = argparse.ArgumentParser(description=__doc__.strip())

656 p.add_argument(’inputfile’, help="Input file name (basename or .tex)")

657 p.add_argument(’outputfile’, nargs=’?’, default=None, help="Output file name")

658 p.add_argument(’-o’, ’--overwrite’, action="store_true", default=False,

659 help="Overwrite output file if it exists")

660 p.add_argument(’-s’, ’--sout’, action="store", default=None,

661 help="Location of the .sagetex.sout file")

662 return p

663

664 def run(args):

665 src, dst, overwrite = args.inputfile, args.outputfile, args.overwrite

666

667 if dst is not None and (os.path.exists(dst) and not overwrite):

668 print(’Error: %s exists and overwrite option not specified.’ % dst,

669 file=sys.stderr)

670 sys.exit(1)

671

672 src, ext = os.path.splitext(src)

673 texfn = src + ’.tex’

674 soutfn = args.sout if args.sout is not None else src + ’.sagetex.sout’

All the real work gets done in the line below. Sorry it’s not more exciting-looking.

675 desagetexed = DeSageTex(texfn, soutfn)

This part is cool: we need double percent signs at the beginning of the line because
Python needs them (so they get turned into single percent signs) and because
Docstrip needs them (so the line gets passed into the generated file). It’s perfect!

676 header = ("%% SageTeX commands have been automatically removed from this file and\n"

46

677 "%% replaced with plain LaTeX. Processed %s.\n"

678 "" % time.strftime(’%a %d %b %Y %H:%M:%S’, time.localtime()))

679

680 if dst is not None:

681 dest = open(dst, ’w’)

682 else:

683 dest = sys.stdout

684

685 dest.write(header)

686 dest.write(desagetexed.result)

687

688 if __name__ == "__main__":

689 run(argparser().parse_args())

7.3 sagetex-extract

Same idea as sagetex-makestatic, except this does basically the opposite thing.

690 """

691 Extracts Sage code from ‘inputfile’.

692

693 ‘inputfile’ can include the .tex extension or not. If you provide

694 ‘outputfile’, the results will be written to a file of that name,

695 otherwise the result will be printed to stdout.

696

697 Specify ‘-o’ or ‘--overwrite’ to overwrite the file if it exists.

698

699 See the SageTeX documentation for more details.

700 """

701 import sys

702 import time

703 import os.path

704 import argparse

705

706 from sagetexparse import SageCodeExtractor

707

708 def argparser():

709 p = argparse.ArgumentParser(description=__doc__.strip())

710 p.add_argument(’inputfile’, help="Input file name (basename or .tex)")

711 p.add_argument(’outputfile’, nargs=’?’, default=None, help="Output file name")

712 p.add_argument(’-o’, ’--overwrite’, action="store_true", default=False,

713 help="Overwrite output file if it exists")

714 p.add_argument(’--no-inline’, action="store_true", default=False,

715 help="Extract code only from Sage environments")

716 return p

717

718 def run(args):

719 src, dst, overwrite = args.inputfile, args.outputfile, args.overwrite

720

721 if dst is not None and (os.path.exists(dst) and not overwrite):

47

722 print(’Error: %s exists and overwrite option not specified.’ % dst,

723 file=sys.stderr)

724 sys.exit(1)

725

726 src, ext = os.path.splitext(src)

727 sagecode = SageCodeExtractor(src + ’.tex’, inline=not args.no_inline)

728 header = ("#> This file contains Sage code extracted from %s%s.\n"

729 "#> Processed %s.\n"

730 "" % (src, ext, time.strftime(’%a %d %b %Y %H:%M:%S’, time.localtime())))

731

732 if dst is not None:

733 dest = open(dst, ’w’)

734 else:

735 dest = sys.stdout

736

737 dest.write(header)

738 dest.write(sagecode.result)

739

740 if __name__ == "__main__":

741 run(argparser().parse_args())

7.4 The parser module

Here’s the module that does the actual parsing and replacing. It’s really quite sim-
ple, thanks to the awesome Pyparsing module. The parsing code below is nearly
self-documenting! Compare that to fancy regular expressions, which sometimes
look like someone sneezed punctuation all over the screen.

742 import sys

743 import os

744 import textwrap

745 from pyparsing import *

First, we define this very helpful parser: it finds the matching bracket, and doesn’t
parse any of the intervening text. It’s basically like hitting the percent sign in
Vim. This is useful for parsing LATEX stuff, when you want to just grab everything
enclosed by matching brackets.

746 def skipToMatching(opener, closer):

747 nest = nestedExpr(opener, closer)

748 return originalTextFor(nest)

749

750 curlybrackets = skipToMatching(’{’, ’}’)

751 squarebrackets = skipToMatching(’[’, ’]’)

Next, parser for \sage, \sageplot, and pause/unpause calls:

752 sagemacroparser = r’\sage’ + curlybrackets(’code’)

753 sagestrmacroparser = r’\sagestr’ + curlybrackets(’code’)

754 sageplotparser = (r’\sageplot’

755 + Optional(squarebrackets)(’opts’)

756 + Optional(squarebrackets)(’format’)

757 + curlybrackets(’code’))

48

http://pyparsing.wikispaces.com

758 sagetexpause = Literal(r’\sagetexpause’)

759 sagetexunpause = Literal(r’\sagetexunpause’)

With those defined, let’s move on to our classes.

SoutParser Here’s the parser for the generated .sout file. The code below does all the parsing
of the .sout file and puts the results into a list. Notice that it’s on the order of
10 lines of code—hooray for Pyparsing!

760 class SoutParser():

761 def __init__(self, fn):

762 self.label = []

A label line looks like

\newlabel{@sageinline〈integer〉}{{〈bunch of LATEX code〉}{}{}{}{}}

which makes the parser definition below pretty obvious. We assign some names to
the interesting bits so the newlabel method can make the 〈integer〉 and 〈bunch
of LATEX code〉 into the keys and values of a dictionary. The DeSageTeX class
then uses that dictionary to replace bits in the .tex file with their Sage-computed
results.

763 parselabel = (r’\newlabel{@sageinline’

764 + Word(nums)(’num’)

765 + ’}{’

766 + curlybrackets(’result’)

767 + ’{}{}{}{}}’)

We tell it to ignore comments, and hook up the list-making method.

768 parselabel.ignore(’%’ + restOfLine)

769 parselabel.setParseAction(self.newlabel)

A .sout file consists of one or more such lines. Now go parse the file we were
given.

770 try:

771 OneOrMore(parselabel).parseFile(fn)

772 except IOError:

773 print(’Error accessing {}; exiting. Does your .sout file exist?’.format(fn))

774 sys.exit(1)

Pyparser’s parse actions get called with three arguments: the string that matched,
the location of the beginning, and the resulting parse object. Here we just add
a new key-value pair to the dictionary, remembering to strip off the enclosing
brackets from the “result” bit.

775 def newlabel(self, s, l, t):

776 self.label.append(t.result[1:-1])

DeSageTeX Now we define a parser for LATEX files that use SageTEX commands. We assume
that the provided fn is just a basename.

777 class DeSageTex():

778 def __init__(self, texfn, soutfn):

779 self.sagen = 0

49

780 self.plotn = 0

781 self.fn = os.path.basename(texfn)

782 self.sout = SoutParser(soutfn)

Parse \sage macros. We just need to pull in the result from the .sout file and
increment the counter—that’s what self.sage does.

783 strmacro = sagestrmacroparser

784 smacro = sagemacroparser

785 smacro.setParseAction(self.sage)

786 strmacro.setParseAction(self.sage)

Parse the \usepackage{sagetex} line. Right now we don’t support comma-
separated lists of packages.

787 usepackage = (r’\usepackage’

788 + Optional(squarebrackets)

789 + ’{sagetex}’)

790 usepackage.setParseAction(replaceWith(r"""% "\usepackage{sagetex}" line was here:

791 \RequirePackage{verbatim}

792 \RequirePackage{graphicx}

793 \newcommand{\sagetexpause}{\relax}

794 \newcommand{\sagetexunpause}{\relax}"""))

Parse \sageplot macros.

795 splot = sageplotparser

796 splot.setParseAction(self.plot)

The printed environments (sageblock and sageverbatim) get turned into
verbatim environments.

797 beginorend = oneOf(’begin end’)

798 blockorverb = ’sage’ + oneOf(’block verbatim’)

799 blockorverb.setParseAction(replaceWith(’verbatim’))

800 senv = ’\\’ + beginorend + ’{’ + blockorverb + ’}’

The non-printed sagesilent environment gets commented out. We could remove
all the text, but this works and makes going back to SageTEX commands (de-de-
SageTEXing?) easier.

801 silent = Literal(’sagesilent’)

802 silent.setParseAction(replaceWith(’comment’))

803 ssilent = ’\\’ + beginorend + ’{’ + silent + ’}’

The \sagetexindent macro is no longer relevant, so remove it from the output
(“suppress”, in Pyparsing terms).

804 stexindent = Suppress(r’\setlength{\sagetexindent}’ + curlybrackets)

Now we define the parser that actually goes through the file. It just looks for any
one of the above bits, while ignoring anything that should be ignored.

805 doit = smacro | senv | ssilent | usepackage | splot | stexindent |strmacro

806 doit.ignore(’%’ + restOfLine)

807 doit.ignore(r’\begin{verbatim}’ + SkipTo(r’\end{verbatim}’))

808 doit.ignore(r’\begin{comment}’ + SkipTo(r’\end{comment}’))

809 doit.ignore(r’\sagetexpause’ + SkipTo(r’\sagetexunpause’))

50

We can’t use the parseFile method, because that expects a “complete grammar”
in which everything falls into some piece of the parser. Instead we suck in the
whole file as a single string, and run transformString on it, since that will just
pick out the interesting bits and munge them according to the above definitions.

810 str = ’’.join(open(texfn, ’r’).readlines())

811 self.result = doit.transformString(str)

That’s the end of the class constructor, and it’s all we need to do here. You access
the results of parsing via the result string.

We do have two methods to define. The first does the same thing that \ref

does in your LATEX file: returns the content of the label and increments a counter.

812 def sage(self, s, l, t):

813 self.sagen += 1

814 return self.sout.label[self.sagen - 1]

The second method returns the appropriate \includegraphics command. It does
need to account for the default argument.

815 def plot(self, s, l, t):

816 self.plotn += 1

817 if len(t.opts) == 0:

818 opts = r’[width=.75\textwidth]’

819 else:

820 opts = t.opts[0]

821 return (r’\includegraphics%s{sage-plots-for-%s.tex/plot-%s}’ %

822 (opts, self.fn, self.plotn - 1))

SageCodeExtractor This class does the opposite of the first: instead of removing Sage stuff and leaving
only LATEX, this removes all the LATEX and leaves only Sage.

823 class SageCodeExtractor():

824 def __init__(self, texfn, inline=True):

825 smacro = sagemacroparser

826 smacro.setParseAction(self.macroout)

827

828 splot = sageplotparser

829 splot.setParseAction(self.plotout)

Above, we used the general parsers for \sage and \sageplot. We have to redo
the environment parsers because it seems too hard to define one parser object that
will do both things we want: above, we just wanted to change the environment
name, and here we want to suck out the code. Here, it’s important that we find
matching begin/end pairs; above it wasn’t. At any rate, it’s not a big deal to redo
this parser.

830 env_names = oneOf(’sageblock sageverbatim sagesilent’)

831 senv = r’\begin{’ + env_names(’env’) + ’}’ + SkipTo(

832 r’\end{’ + matchPreviousExpr(env_names) + ’}’)(’code’)

833 senv.leaveWhitespace()

834 senv.setParseAction(self.envout)

835

836 spause = sagetexpause

51

837 spause.setParseAction(self.pause)

838

839 sunpause = sagetexunpause

840 sunpause.setParseAction(self.unpause)

841

842 if inline:

843 doit = smacro | splot | senv | spause | sunpause

844 else:

845 doit = senv | spause | sunpause

846 doit.ignore(’%’ + restOfLine)

847

848 str = ’’.join(open(texfn, ’r’).readlines())

849 self.result = ’’

850

851 doit.transformString(str)

852

853 def macroout(self, s, l, t):

854 self.result += ’#> \\sage{} from line %s\n’ % lineno(l, s)

855 self.result += textwrap.dedent(t.code[1:-1]) + ’\n\n’

856

857 def plotout(self, s, l, t):

858 self.result += ’#> \\sageplot{} from line %s:\n’ % lineno(l, s)

859 if t.format != ’’:

860 self.result += ’#> format: %s’ % t.format[0][1:-1] + ’\n’

861 self.result += textwrap.dedent(t.code[1:-1]) + ’\n\n’

862

863 def envout(self, s, l, t):

864 self.result += ’#> %s environment from line %s:’ % (t.env,

865 lineno(l, s))

866 self.result += textwrap.dedent(’’.join(t.code)) + ’\n’

867

868 def pause(self, s, l, t):

869 self.result += (’#> SageTeX (probably) paused on input line %s.\n\n’ %

870 (lineno(l, s)))

871

872 def unpause(self, s, l, t):

873 self.result += (’#> SageTeX (probably) unpaused on input line %s.\n\n’ %

874 (lineno(l, s)))

8 The remote-sagetex script

Here we describe the Python code for remote-sagetex.py. Since its job is to
replicate the functionality of using Sage and sagetex.py, there is some overlap
with the Python module.

The #!/usr/bin/env python line is provided for us by the .ins file’s pream-
ble, so we don’t put it here.

875 from __future__ import print_function

876 import json

52

877 import sys

878 import time

879 import re

880 import urllib

881 import hashlib

882 import os

883 import os.path

884 import shutil

885 import getopt

886 from contextlib import closing

887

888 ###

889 # You can provide a filename here and the script will read your login #

890 # information from that file. The format must be: #

891 # #

892 # server = ’http://foo.com:8000’ #

893 # username = ’my_name’ #

894 # password = ’s33krit’ #

895 # #

896 # You can omit one or more of those lines, use " quotes, and put hash #

897 # marks at the beginning of a line for comments. Command-line args #

898 # take precedence over information from the file. #

899 ###

900 login_info_file = None # e.g. ’/home/foo/Private/sagetex-login.txt’

901

902

903 usage = """Process a SageTeX-generated .sage file using a remote Sage server.

904

905 Usage: {0} [options] inputfile.sage

906

907 Options:

908

909 -h, --help: print this message

910 -s, --server: the Sage server to contact

911 -u, --username: username on the server

912 -p, --password: your password

913 -f, --file: get login information from a file

914

915 If the server does not begin with the four characters ‘http’, then

916 ‘https://’ will be prepended to the server name.

917

918 You can hard-code the filename from which to read login information into

919 the remote-sagetex script. Command-line arguments take precedence over

920 the contents of that file. See the SageTeX documentation for formatting

921 details.

922

923 If any of the server, username, and password are omitted, you will be

924 asked to provide them.

925

926 See the SageTeX documentation for more details on usage and limitations

53

927 of remote-sagetex.""".format(sys.argv[0])

928

929 server, username, password = (None,) * 3

930

931 try:

932 opts, args = getopt.getopt(sys.argv[1:], ’hs:u:p:f:’,

933 [’help’, ’server=’, ’user=’, ’password=’, ’file=’])

934 except getopt.GetoptError as err:

935 print(str(err), usage, sep=’\n\n’)

936 sys.exit(2)

937

938 for o, a in opts:

939 if o in (’-h’, ’--help’):

940 print(usage)

941 sys.exit()

942 elif o in (’-s’, ’--server’):

943 server = a

944 elif o in (’-u’, ’--user’):

945 username = a

946 elif o in (’-p’, ’--password’):

947 password = a

948 elif o in (’-f’, ’--file’):

949 login_info_file = a

950

951 if len(args) != 1:

952 print(’Error: must specify exactly one file. Please specify options first.’,

953 usage, sep=’\n\n’)

954 sys.exit(2)

955

956 jobname = os.path.splitext(args[0])[0]

When we send things to the server, we get everything back as a string, including
tracebacks. We can search through output using regexps to look for typical trace-
back strings, but there’s a more robust way: put in a special string that changes
every time and is printed when there’s an error, and look for that. Then it is
massively unlikely that a user’s code could produce output that we’ll mistake for
an actual traceback. System time will work well enough for these purposes. We
produce this string now, and we it when parsing the .sage file (we insert it into
code blocks) and when parsing the output that the remote server gives us.

957 traceback_str = ’Exception in SageTeX session {0}:’.format(time.time())

parsedotsage To figure out what commands to send the remote server, we actually read in the
.sage file as strings and parse it. This seems a bit strange, but since we know
exactly what the format of that file is, we can parse it with a couple flags and a
handful of regexps.

958 def parsedotsage(fn):

959 with open(fn, ’r’) as f:

Here are the regexps we use to snarf the interesting bits out of the .sage file.
Below we’ll use the re module’s match function so we needn’t anchor any of these

54

at the beginning of the line.

960 inline = re.compile(r" _st_.inline\((?P<num>\d+), (?P<code>.*)\)")

961 plot = re.compile(r" _st_.plot\((?P<num>\d+), (?P<code>.*)\)")

962 goboom = re.compile(r" _st_.goboom\((?P<num>\d+)\)")

963 pausemsg = re.compile(r"print.’(?P<msg>SageTeX (un)?paused.*)’")

964 blockbegin = re.compile(r"_st_.blockbegin\(\)")

965 ignore = re.compile(r"(try:)|(except):")

966 in_comment = False

967 in_block = False

968 cmds = []

Okay, let’s go through the file. We’re going to make a list of dictionaries. Each
dictionary corresponds to something we have to do with the remote server, except
for the pause/unpause ones, which we only use to print out information for the
user. All the dictionaries have a type key, which obviously tells you type they
are. The pause/unpause dictionaries then just have a msg which we toss out to
the user. The “real” dictionaries all have the following keys:

� type: one of inline, plot, and block.

� goboom: used to help the user pinpoint errors, just like the goboom function
(page 41) does.

� code: the code to be executed.

Additionally, the inline and plot dicts have a num key for the label we write to
the .sout file.

Here’s the whole parser loop. The interesting bits are for parsing blocks because
there we need to accumulate several lines of code.

969 for line in f.readlines():

970 if line.startswith(’"""’):

971 in_comment = not in_comment

972 elif not in_comment:

973 m = pausemsg.match(line)

974 if m:

975 cmds.append({’type’: ’pause’,

976 ’msg’: m.group(’msg’)})

977 m = inline.match(line)

978 if m:

979 cmds.append({’type’: ’inline’,

980 ’num’: m.group(’num’),

981 ’code’: m.group(’code’)})

982 m = plot.match(line)

983 if m:

984 cmds.append({’type’: ’plot’,

985 ’num’: m.group(’num’),

986 ’code’: m.group(’code’)})

The order of the next three “if”s is important, since we need the “goboom” line
and the “blockbegin” line to not get included into the block’s code. Note that

55

the lines in the .sage file already have some indentation, which we’ll use when
sending the block to the server—we wrap the text in a try/except.

987 m = goboom.match(line)

988 if m:

989 cmds[-1][’goboom’] = m.group(’num’)

990 if in_block:

991 in_block = False

992 if in_block and not ignore.match(line):

993 cmds[-1][’code’] += line

994 if blockbegin.match(line):

995 cmds.append({’type’: ’block’,

996 ’code’: ’’})

997 in_block = True

998 return cmds

Parsing the .sage file is simple enough so that we can write one function and just
do it. Interacting with the remote server is a bit more complicated, and requires
us to carry some state, so let’s make a class.

RemoteSage This is pretty simple; it’s more or less a translation of the examples in
sage/server/simple/twist.py.

999 debug = False

1000 class RemoteSage:

1001 def __init__(self, server, user, password):

1002 self._srv = server.rstrip(’/’)

1003 sep = ’___S_A_G_E___’

1004 self._response = re.compile(’(?P<header>.*)’ + sep +

1005 ’\n*(?P<output>.*)’, re.DOTALL)

1006 self._404 = re.compile(’404 Not Found’)

1007 self._session = self._get_url(’login’,

1008 urllib.urlencode({’username’: user,

1009 ’password’:

1010 password}))[’session’]

In the string below, we want to do “partial formatting”: we format in the traceback
string now, and want to be able to format in the code later. The double braces
get ignored by format() now, and are picked up by format() when we use this
later.

1011 self._codewrap = """try:

1012 {{0}}

1013 except:

1014 print(’{0}’)

1015 traceback.print_exc()""".format(traceback_str)

1016 self.do_block("""

1017 import traceback

1018 def __st_plot__(counter, _p_, format=’notprovided’, **kwargs):

1019 if format == ’notprovided’:

1020 formats = [’eps’, ’pdf’]

1021 else:

56

1022 formats = [format]

1023 for fmt in formats:

1024 plotfilename = ’plot-%s.%s’ % (counter, fmt)

1025 _p_.save(filename=plotfilename, **kwargs)""")

1026

1027 def _encode(self, d):

1028 return ’session={0}&’.format(self._session) + urllib.urlencode(d)

1029

1030 def _get_url(self, action, u):

1031 with closing(urllib.urlopen(self._srv + ’/simple/’ + action +

1032 ’?’ + u)) as h:

1033 data = self._response.match(h.read())

1034 result = json.loads(data.group(’header’))

1035 result[’output’] = data.group(’output’).rstrip()

1036 return result

1037

1038 def _get_file(self, fn, cell, ofn=None):

1039 with closing(urllib.urlopen(self._srv + ’/simple/’ + ’file’ + ’?’ +

1040 self._encode({’cell’: cell, ’file’: fn}))) as h:

1041 myfn = ofn if ofn else fn

1042 data = h.read()

1043 if not self._404.search(data):

1044 with open(myfn, ’w’) as f:

1045 f.write(data)

1046 else:

1047 print(’Remote server reported {0} could not be found:’.format(

1048 fn))

1049 print(data)

The code below gets stuffed between a try/except, so make sure it’s indented!

1050 def _do_cell(self, code):

1051 realcode = self._codewrap.format(code)

1052 result = self._get_url(’compute’, self._encode({’code’: realcode}))

1053 if result[’status’] == ’computing’:

1054 cell = result[’cell_id’]

1055 while result[’status’] == ’computing’:

1056 sys.stdout.write(’working...’)

1057 sys.stdout.flush()

1058 time.sleep(10)

1059 result = self._get_url(’status’, self._encode({’cell’: cell}))

1060 if debug:

1061 print(’cell: <<<’, realcode, ’>>>’, ’result: <<<’,

1062 result[’output’], ’>>>’, sep=’\n’)

1063 return result

1064

1065 def do_inline(self, code):

1066 return self._do_cell(’ print(latex({0}))’.format(code))

1067

1068 def do_block(self, code):

1069 result = self._do_cell(code)

57

1070 for fn in result[’files’]:

1071 self._get_file(fn, result[’cell_id’])

1072 return result

1073

1074 def do_plot(self, num, code, plotdir):

1075 result = self._do_cell(’ __st_plot__({0}, {1})’.format(num, code))

1076 for fn in result[’files’]:

1077 self._get_file(fn, result[’cell_id’], os.path.join(plotdir, fn))

1078 return result

When using the simple server API, it’s important to log out so the server doesn’t
accumulate idle sessions that take up lots of memory. We define a close() method
and use this class with the closing context manager that always calls close()

on the way out.

1079 def close(self):

1080 sys.stdout.write(’Logging out of {0}...’.format(server))

1081 sys.stdout.flush()

1082 self._get_url(’logout’, self._encode({}))

1083 print(’done’)

Next we have a little pile of miscellaneous functions and variables that we want to
have at hand while doing our work. Note that we again use the traceback string
in the error-finding regular expression.

1084 def do_plot_setup(plotdir):

1085 printc(’initializing plots directory...’)

1086 if os.path.isdir(plotdir):

1087 shutil.rmtree(plotdir)

1088 os.mkdir(plotdir)

1089 return True

1090

1091 did_plot_setup = False

1092 plotdir = ’sage-plots-for-’ + jobname + ’.tex’

1093

1094 def labelline(n, s):

1095 return r’\newlabel{@sageinline’ + str(n) + ’}{{’ + s + ’}{}{}{}{}}\n’

1096

1097 def printc(s):

1098 print(s, end=’’)

1099 sys.stdout.flush()

1100

1101 error = re.compile("(^" + traceback_str + ")|(^Syntax Error:)", re.MULTILINE)

1102

1103 def check_for_error(string, line):

1104 if error.search(string):

1105 print("""

1106 **** Error in Sage code on line {0} of {1}.tex!

1107 {2}

1108 **** Running Sage on {1}.sage failed! Fix {1}.tex and try again.""".format(

1109 line, jobname, string))

1110 sys.exit(1)

58

Now let’s actually start doing stuff.

1111 print(’Processing Sage code for {0}.tex using remote Sage server.’.format(

1112 jobname))

1113

1114 if login_info_file:

1115 with open(login_info_file, ’r’) as f:

1116 print(’Reading login information from {0}.’.format(login_info_file))

1117 get_val = lambda x: x.split(’=’)[1].strip().strip(’\’"’)

1118 for line in f:

1119 print(line)

1120 if not line.startswith(’#’):

1121 if line.startswith(’server’) and not server:

1122 server = get_val(line)

1123 if line.startswith(’username’) and not username:

1124 username = get_val(line)

1125 if line.startswith(’password’) and not password:

1126 password = get_val(line)

1127

1128 if not server:

1129 server = raw_input(’Enter server: ’)

1130

1131 if not server.startswith(’http’):

1132 server = ’https://’ + server

1133

1134 if not username:

1135 username = raw_input(’Enter username: ’)

1136

1137 if not password:

1138 from getpass import getpass

1139 password = getpass(’Please enter password for user {0} on {1}: ’.format(

1140 username, server))

1141

1142 printc(’Parsing {0}.sage...’.format(jobname))

1143 cmds = parsedotsage(jobname + ’.sage’)

1144 print(’done.’)

1145

1146 sout = ’% This file was *autogenerated* from the file {0}.sage.\n’.format(

1147 os.path.splitext(jobname)[0])

1148

1149 printc(’Logging into {0} and starting session...’.format(server))

1150 with closing(RemoteSage(server, username, password)) as sage:

1151 print(’done.’)

1152 for cmd in cmds:

1153 if cmd[’type’] == ’inline’:

1154 printc(’Inline formula {0}...’.format(cmd[’num’]))

1155 result = sage.do_inline(cmd[’code’])

1156 check_for_error(result[’output’], cmd[’goboom’])

1157 sout += labelline(cmd[’num’], result[’output’])

1158 print(’done.’)

59

1159 if cmd[’type’] == ’block’:

1160 printc(’Code block begin...’)

1161 result = sage.do_block(cmd[’code’])

1162 check_for_error(result[’output’], cmd[’goboom’])

1163 print(’end.’)

1164 if cmd[’type’] == ’plot’:

1165 printc(’Plot {0}...’.format(cmd[’num’]))

1166 if not did_plot_setup:

1167 did_plot_setup = do_plot_setup(plotdir)

1168 result = sage.do_plot(cmd[’num’], cmd[’code’], plotdir)

1169 check_for_error(result[’output’], cmd[’goboom’])

1170 print(’done.’)

1171 if cmd[’type’] == ’pause’:

1172 print(cmd[’msg’])

1173 if int(time.time()) % 2280 == 0:

1174 printc(’Unscheduled offworld activation; closing iris...’)

1175 time.sleep(1)

1176 print(’end.’)

1177

1178 with open(jobname + ’.sage’, ’r’) as sagef:

1179 h = hashlib.md5()

1180 for line in sagef:

1181 if (not line.startswith(’ _st_.goboom’) and

1182 not line.startswith("print(’SageT")):

1183 h.update(bytearray(line,’utf8’))

Putting the {1} in the string, just to replace it with %, seems a bit weird, but if I
put a single percent sign there, Docstrip won’t put that line into the resulting .py

file—and if I put two percent signs, it replaces them with \MetaPrefix which is
when this file is generated. This is a quick and easy workaround.

1184 sout += """%{0}% md5sum of corresponding .sage file

1185 {1} (minus "goboom" and pause/unpause lines)

1186 """.format(h.hexdigest(), ’%’)

1187

1188 printc(’Writing .sout file...’)

1189 with open(jobname + ’.sout’, ’w’) as soutf:

1190 soutf.write(sout)

1191 print(’done.’)

1192 print(’Sage processing complete. Run LaTeX on {0}.tex again.’.format(jobname))

9 Credits and acknowledgments

According to the original README file, this system was originally done by Gon-
zalo Tornaria and Joe Wetherell. Later Harald Schilly made some improvements
and modifications. Many of the examples in the example.tex file are from Harald.

Dan Drake rewrote and extended the style file (there is effectively zero original
code there), made significant changes to the Python module, put both files into
Docstrip format, and wrote all the documentation and extra Python scripts.

60

Many thanks to Jason Grout for his numerous comments, suggestions, and
feedback. Thanks to Nicolas Thiéry for the initial code and contributions to the
sageexample environment and Volker Braun for the sagecommandline environ-
ment.

10 Copying and licenses

If you are unnaturally curious about the current state of the SageTEX package,
you can visit https://github.com/sagemath/sagetex. (The old Bitbucket and
Github dandrake repositories are deprecated.)

As for the terms and conditions under which you can copy and modify SageTEX:
The source code of the SageTEX package may be redistributed and/or modified

under the terms of the GNU General Public License as published by the Free
Software Foundation, either version 2 of the License, or (at your option) any later
version. To view a copy of this license, see http://www.gnu.org/licenses/ or
send a letter to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.

The documentation of the SageTEX package is licensed under the Creative
Commons Attribution-Share Alike 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105,
USA.

I am not terribly dogmatic about these licenses, so if you would like to do
something with SageTEX that’s not possible under these license conditions, please
contact me. I will likely be receptive to suggestions.

61

https://github.com/sagemath/sagetex
http://www.gnu.org/licenses/
http://creativecommons.org/licenses/by-sa/3.0/

Change History

v1.0

General: Initial version 1

v1.1

General: Wrapped user-provided
Sage code in try/except
clauses; plotting now has
optional format argument 1

v1.2

General: Imagemagick option;
better documentation 1

v1.3

\sageplot: Iron out warnings, cool
TikZ flowchart 24

v1.3.1

General: Internal variables
renamed; fixed typos 1

v1.4

General: MD5 fix, percent sign
macro, CTAN upload 1

v2.0

\ST@sageplot: Change to use only
keyword arguments: see issue 2
on bitbucket tracker 25

General: Add epstopdf option . . 22

Add final option 22

External Python scripts for
parsing SageTeX-ified
documents, tons of
documentation improvements,
sagetex.py refactored, include
in Sage as spkg 1

Fixed up installation section,
final final 2.0 3

Miscellaneous fixes, final 2.0
version 1

v2.0.1

General: Add TEXShop info 4

v2.0.2

goboom: Make sure sys.exit sees a
Python integer 42

v2.1

General: Add pausing support . . . 1

Get version written to .py file . . 1

v2.1.1

\ST@sage: Add ST@sage, sagestr,
and refactor. 23

General: Add typeout if .sout file
not found 23

endofdoc: Fix bug in finding md5
sum introduced by pause
facility 43

v2.2

General: Add remote-sagetex.py
script 1

Update parser module to handle
pause/unpause 48

v2.2.1

RemoteSage: Fix stupid bug in
do inline() so that we
actually write output to .sout
file . 56

v2.2.3

General: Rewrote installation
section to reflect inclusion as
standard spkg 3

v2.2.4

\ST@wsf: Add version mismatch
checking. 21

sageexample: Add first support for
sageexample environment . . . 29

v2.2.5

\ST@dodfsetup: Write
sageexample environment
contents to a separate file,
formatted for doctesting 21

doctest: Fix up spacing in
sageexample displaymath envs 39

v2.3

General: Add sagecommandline
environment 1

v2.3.1

General: Handle filenames with
spaces in SageTeXProcessor
and sagecommandline env. . . 33

v2.3.2

\sageplot: Remove “.75
textwidth” default option . . . 25

General: Improve version mismatch
check. Fixes trac ticket 8035. . 33

v2.3.3

\ST@wsf: Improve version
mismatch checking, include

62

Mercurial revision in version
string. 21

inline: check label name when
comparing against maximum
counter seen; trac ticket 12267 35

v3.0
doctest: sageexample and

sagecommandline now require
“...:” for continuation lines,
not “...”; matches the actual
Sage interpreter 39

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\% 129, 131
\’ 1117
\(. . . 602, 960–962, 964
\) 960–962, 964
\. 389, 390
\@bsphack . 180, 209, 243
\@esphack . 195, 219, 253
\@ifnextchar 135
\@ifundefined 65, 77,

101, 105, 124,
146, 228, 262, 278

\@makeother 183, 210, 244
\[. 581
\\ 432, 459,

800, 803, 854, 858
\] 581
\^ 183, 211, 245

\ 509, 510, 513, 516, 535

A
\abovedisplayshortskip

. 438
\abovedisplayskip . 437
\active . . . 183, 211, 245
\AtBeginDocument . .

. 65, 100, 104, 113
\AtEndDocument

. 88, 94, 274

B
\begin 123, 227,

261, 425, 439,
469, 807, 808, 831

\begingroup . . . 208, 242

\bfseries . . . 24, 26, 27

\blockbegin 383

\blockend 383

\boolean 140

C

\catcode 129,
131, 183, 211, 245

\color 25–27, 33–35

\commandline 445

comment (environment) 10

D

\d 960–962

\DeclareOption
. . 92, 98, 103, 108

\def 136, 188,
193, 197, 212, 246

\DeSageTeX 777

\do 183, 210, 244

\doctest 419

\dospecials 183, 210, 244

E

\else 122, 162,
168, 226, 260, 266

\end 123, 227, 261, 441,
471, 807, 808, 832

\endgroup 220, 254

\endofdoc 523

\endverbatim . . 191, 199

environments:

comment 10

sageblock . . . 10, 187

sagecommandline

. 11, 232
sageexample . 10, 200
sagesilent . . 10, 192
sageverbatim 10, 196

\equal 141, 144

F
\fbox 161
\fi 125, 172, 178, 229,

263, 269, 273, 276
\footnotesize 18
\framebox 133

G
\gdef 89, 124,

157, 177, 228, 262
\goboom 512

H
\hspace 189, 197

I
\IfFileExists

50, 94, 147, 163, 165
\ifpdf 166
\ifST@paused . . . 63,

120, 160, 224,
258, 266, 270, 274

\ifthenelse 140, 141, 144
\immediate 67,

68, 79, 80, 88, 91
\includegraphics . .

. 164, 821
\initplot 358
\inline 364

63

\InputIfFileExists . 111
\inputlineno . . 116,

119, 137, 139,
181, 186, 204,
207, 223, 238,
241, 257, 267, 271

J
\jobname 67,

71, 74, 79, 81,
83, 84, 94, 95,
111, 112, 132,
267, 271, 275, 281

L
\let 183, 210, 244
\lstdefinelanguage 5, 7
\lstdefinestyle . . .

. . 9, 21, 29, 37, 40
\lstinputlisting . . 454

M
\mbox 121, 225, 259

N
\n 319, 345,

376, 378, 388,
391, 392, 401,
417, 432, 433,
444, 457, 476,
513, 516, 536,
676, 677, 728,
729, 854, 855,
858, 860, 861,
866, 869, 873,
935, 953, 1005,
1062, 1095, 1146

\newboolean 53
\newcounter 55–57
\newif 63
\newlabel 375, 763, 1095
\newlength 61, 233
\newwrite 66, 78

O
\openout 67, 79
\or 140

P
\PackageWarning . . .

. 149, 154, 169, 174

\PackageWarningNoLine

. 94, 280

\par 189, 197

\parsedotsage 958

\percent 7, 129

\plot 477

\ProcessOptions . . . 110

\progress 352

\providecolor . . . 43–45

\provideenvironment 113

R

\ref 123, 227, 261

\relax 75, 90,
110, 266, 793, 794

\RemoteSage 999

\renewcommand 109

\RequirePackage 1–4,
46–49, 51, 791, 792

\rule 133, 161

S

\S 317

\s 388–390

\sage 6, 127, 752

sageblock (environ-
ment) . . . 10, 187

\SageCodeExtractor . 823

sagecommandline (envi-
ronment) 11, 232

\sagecommandlineskip

. . . . 233, 234, 452

\sagecommandlinetextoutput

. 232, 256

sageexample (environ-
ment) . . . 10, 200

\sageexampleincludetextoutput

. 200, 222

\sageplot . . 7, 134, 754

sagesilent (environ-
ment) . . . 10, 192

\sagestr . . . 6, 128, 753

\sagetexindent . 10,
61, 62, 189, 197, 804

\sagetexpause 13, 266,
266, 758, 793, 809

\sagetexunpause . . .
. 13, 270,
270, 759, 794, 809

sageverbatim (environ-
ment) . . . 10, 196

\savecmd 377
\setboolean 54
\setcounter 58–60
\setlength 62, 234, 804
\SoutParser 760
\space 150, 155, 170, 175
\splitsagecmds 387
\ST@beginsfbl

. . . . 179, 187, 192
\ST@df 78–80, 88, 91
\ST@diddfsetup 89
\ST@dodfsetup

. 76, 206, 240
\ST@endsfbl 184, 191, 195
\ST@final 93
\ST@inclgrfx . . 142,

143, 145, 158, 160
\ST@missingfilebox .

. 133, 148, 153, 173
\ST@pausedfalse 64, 272
\ST@pausedtrue 268
\ST@plotdir . . . 132,

147, 150, 155,
163–165, 170, 175

\ST@rerun 124,
157, 177, 228, 262

\ST@sage . . 114, 127, 128
\ST@sageplot . . 135, 136
\ST@sf 66–68
\ST@useimagemagick . 99
\ST@ver 72, 74, 82
\ST@versioncheck . .

. 74, 107, 109
\ST@wdf 91, 207, 214,

230, 241, 248, 264
\ST@wsf 68, 102, 106,

114, 136, 180,
185, 188, 193,
202, 213, 221,
236, 247, 255,
267, 271, 275, 277

\stepcounter
. 126, 159, 231, 265

T
\TeX . . 121, 161, 225, 259
\textbf 133
\textwidth 818

64

\thepage
. 150, 155, 170, 175

\theST@cmdline
. . . . 239, 261, 262

\theST@inline
. . . . 117, 123,
124, 205, 227, 228

\theST@plot . . . 138,
147, 150, 155,
163–165, 170, 175

\toeps 508

\ttfamily . 24–27, 32–35
\typeout . . 112, 279, 283

U
\usepackage 588, 787, 790
\UseVerbatim 434

V
\verbatim 190, 198
\verbatim@line 188,

189, 193, 197,

213, 214, 247, 248

\verbatim@processline

. 188,
193, 197, 212, 246

\verbatim@start . . .
. . . . 194, 216, 250

\vspace 452

W

\write . . . 68, 80, 88, 91

65

	Introduction
	Installation
	SageTeX and TeXLive
	The noversioncheck option
	Using TeXShop
	Other scripts included with SageTeX

	Usage
	Inline Sage
	Arguments with side effects

	Graphics and plotting
	3D plotting
	But that's not good enough!

	Verbatim-like environments
	Pausing SageTeX

	Other notes
	Using the sage macro inside align (and similar) environments
	Using sage inside caption
	Using SageTeX with TeXworks
	Using Beamer
	Using the rccol package
	Plotting from Mathematica, Maple, etc.
	Sending SageTeX files to others who don't use Sage
	The 21st century way
	The Nth century way, for N < 21

	Extracting the Sage code from a document

	Using SageTeX without Sage installed
	Limitations of remote-sagetex.py
	Other caveats

	Implementation
	The style file
	Initialization
	The sage and sagestr macros
	The sageplot macro and friends
	Verbatim-like environments
	Pausing SageTeX
	End-of-document cleanup

	The Python module
	The SageTeXProcessor class

	Included Python scripts
	sagetex-run
	sagetex-makestatic
	sagetex-extract
	The parser module

	The remote-sagetex script
	Credits and acknowledgments
	Copying and licenses

