*

The repltext package

Scott Pakin
scott+repl@pakin.org

September 25, 2020

1 Introduction

The repltext packages exposes to KTEX a relatively obscure PDF feature: replace-
ment text. When replacement text is specified for a piece of text, it is the re-
placement text, not the typeset text that is copied and pasted. Try selecting and
copying the following sentence and pasting it into some other document:

I love to eat celery.

If your PDF reader supports replacement text—Adobe Acrobat and Acrobat
Reader currently appear to be the only ones—the pasted text will say “ice cream”
instead of “celery”. Why is this useful? The PDF specification presents the following
usage model [I]:

Just as alternate descriptions can be provided for images and other
items that do not translate naturally into text ... replacement text
can be specified for content that does translate into text but that is
represented in a nonstandard way. These nonstandard representations
might include, for example, glyphs for ligatures or custom characters,
or inline graphics corresponding to letters in an illuminated manuscript
or to dropped capitals.

Hence, one might imagine using replacement text in a sentence such as,
Have you ever seen 4 perform live in concert?

although in the context of I#TEX, mathematical typesetting may present a more
practical use for replacement text:
>

n2

n=1

*This document corresponds to repltext v1.1, dated 2020/09/25.



2 Usage

The repltext package works only with pdfIATEX or Lual&TEX as it requires certain
primitives that only those TEX engines provide. To use repltext, simply include
\usepackage{repltext} in your document’s prologue. There are currently no
package options.

l \repltext {(replacement text)} {(general text)} ‘

This is the main command defined by repltext. It takes two arguments: the
replacement text that goes into the copy buffer and some arbitrary ITEX code to
which the replacement text corresponds. That KTEX code is typeset as normal;
only its behavior when copied and pasted is different.

The replacement text is included verbatim; no characters have any special
meaning to I¥TEX with the exception that curly braces must appear as properly
nested, open and close pairs. For example, \repltext{$7 or 50%}{seven bucks
or half the totall}, produces

seven bucks or half the total = $7 or 50%

Because of (replacement text)’s verbatim-like nature, if the “$” or “%” in the pre-
ceding \repltext command were backslashed, the replacement text would also
include a literal backslash.

3 Limitations

repltext’s most severe limitation is the dearth of PDF readers that support replace-
ment text: as far as I know, only Adobe Acrobat and Acrobat Reader. A secondary
limitation is that, in the Adobe programs, a selection backed by replacement text
extends only to the first space or kern. This can be somewhat disconcerting to a
person trying to select a piece of text. A workaround is to try to use only word-
for-word substitutions and to prevent kerning by inserting “{}” at kerning points
(which, alas, results in inferior typesetting). Contrast selecting “Zippy drinks
\repltext{fine wines}{Valvoline}.”

Zippy drinks Valvoline.
with “Zippy drinks \repltext{fine wines}{V{}alv{}oline}.”
Zippy drinks Valvoline.

Yet another limitation, again in the Adobe programs, is that spurious spaces
are sometimes, but not always, introduced into the copy buffer following a
\repltext. I have yet to determine the source of those spaces and whether a
workaround exists.



Finally, like \verb, \repltext does not behave as expected within an argument
to another macro. \repltext does not currently detect and warn if it is being
used as an argument, but the replacement text may be altered in surprising and
undesirable ways. Consider, for example, \fbox{\repltext{### BAD_BAD_BAD
###}r{terrible}}:

= ###H### BADBADBAD ###iti#

4 Implementation

This section presents the documented source code for repltext. Most users can
ignore this section.

\@ifdefined I find \@ifdefined a more natural construct than \@ifundefined.
1 \providecommand{\@ifdefined} [3] {\@ifundefined{#1}{#3}{#2}}

\repl@literal repltext needs a mechanism to insert literal PDF code. This varies by TEX engine
so we have to define \repl@literal on an engine-by-engine basis.

2 \@ifdefined{pdfliteral}{/

pdfXTEX

3 \let\repl@literal=\pdfliteral

4 Ho

5 \@ifdefined{pdfextension}{’

LualATEX

6 \protected\def\repl@literal{\pdfextension literally,

(G S VA

Other

8 \PackageError{repltext}{Unrecognized TeX enginel}{’

9 The repltext package currently works only with pdfLaTeX and\MessageBreak
10 LualaTeX.\space\space Please use of those engines to build your document.?
11 Yh

12 Y

13 Y

repltext additionally needs a mechanism to escape backslashes and parentheses
in a string to make it usable as a PDF string. This is easy in pdfEXTEX, which
provides \pdfescapestring. Unfortunately, to my knowledge, no other TEX en-
gine provides equivalent functionality. Rather than write our own function, we
leverage hyperref’s \Hy@pstringdef, which provides similar functionality.
14 \RequirePackage{etoolbox}
15 \AtEndPreamble{Y
16  \@ifpackageloaded{hyperref}{}{\RequirePackage{hyperref}}’
17 }



\repltext
\do

\repl@text@i

\replQ@text@ii
\repl@escaped

The \repl@text@ii macro invokes \scalebox, which is defined by the graphicx
package.
18 \RequirePackage{graphicx}

Replacement text is stored temporarily in \repl@text@toks.
19 \newtoks\repl@text@toks

The \repltext user macro nominally takes as arguments the replacement text and
its visual representation. However, we want the first argument to be interpreted
as text, not as INTEX code. For this to work, \repltext must in fact take no
arguments. Instead, it marks all characters with category code 12 (“other”) except
for curly braces, which retain their original roles. It ends by storing all characters
from “{” to “}” (i.e., what appears to the document author to be the first argument
to \repltext) in \repl@text@toks and transferring control to the \repl@text@i
macro.

20 \newcommand{\repltext}{%

21 \bgroup

22 \let\do=\@makeother

23 \dospecials

24 \catcode‘\{=1

25 \catcode‘\}=2

26 \afterassignment\repl@text@i

27 \global\repl@text@toks=%

28 }

The \repl@text@i macro ends the group begun by \repltext. Doing so restores
all characters to their previous category code. It then transfers control to the
\repl@text@ii macro.

29 \newcommand{\repl@text@i}{%

30 \egroup

31 \repl@text@ii

32}

\repl@text@ii is the macro that finally outputs something. It takes ordinary
KTEX code as its argument and writes a PDF marked-content sequence that uses
an ActualText entry to indicate that \repltext’s first argument (currently stored
in \repl@text@toks) is the replacement text for \repltext’s second argument
(\repl@text@ii’s #1 argument).

33 \newcommand{\repl@text@ii}[1]{%

34 \Hy@pstringdef\repl@escaped{\the\repl@text@toksl}/

35 \repl@literal{

36 /Span << /ActualText (\repl@escaped) >>
37 BDC

38  Yh

39 #1%

It seems that either Adobe Acrobat (or perhaps the PDF specification itself; I'm
not sure) requires the spanned item to include true PDF text, not just graphics. We



\prevrepl

therefore include a microscopic piece of text to satisfy that requirement without
being noticeable.
40 \scalebox{0.000001}{-}%

41  \repl@literal{EMC}%
42 }

For the author’s convenience we define \prevrepl to refer to the previous first
argument of \repltext, interpreted as ordinary IATEX code. It is intended
to be used in the second argument of \repltext to present typeset text that
can be copied and pasted like ITEX source, as in \repltext{$\sum_{i=1}"n
\frac{1}{n"2}$}{\prevrepl} (result: > " , - ).
Because \prevrepl requires \scantokens, this macro requires e-TEX. Fortu-
nately, all modern pdfIATEX and Lual4TEX engines include e-TEX support.
\prevrepl is not currently documented in the author documentation because
I'm not sure it’s a sufficiently useful macro to retain in repltext. For the time
being, I'm leaving it in on the off chance that someone requests a feature like
what \prevrepl provides.
43 \newcommand{\prevrepl}{%
44 \expandafter\scantokens\expandafter{\the\repl@text@toks}/,
45 }

References

[1] Adobe Systems, Inc., San Jose, California. Document Management—Portable
Document Format—Part 1: PDF 1.7 July 2008. ISO 32000-1 standard
document. Available from http://wwwimages.adobe.com/www.adobe.com/
content/dam/Adobe/en/devnet/pdf/pdfs/PDF32000_2008.pdf.

Change History

v1.0 General: Support modern
General: Initial version ........ Lual¥TEX versions .. ........
vl.l

\repl@literal: Add this macro ..

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols \@ifpackageloaded .

\@ifdefined . .. Ill,@ -


http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/PDF32000_2008.pdf
http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/PDF32000_2008.pdf

\@ifundefined . ...
\@makeother
\{

ActualText
\afterassignment
\AtEndPreamble

\do

graphicx (package) . . ..

H
\Hy@pstringdef

\pdfescapestring
\pdfextension ..

pdfEXTEX

BE

hyperref (package) . . ..

\pdfliteral
\prevrepl

\repl@text@i . .
\repl@text@ii
\repl@text@toks

.. '3.4 44

repltext (package) . [IH3

\repltext . @ Ié
\RequirePackage ...
.......
S
\scalebox ....... ,
\scantokens ...... E
\space ...........



	1 Introduction
	2 Usage
	3 Limitations
	4 Implementation
	References
	Change History
	Index
	Symbols
	A
	D
	E
	G
	H
	L
	M
	N
	P
	R
	S


