
The pbox package∗

Simon Law
sfllaw@sfllaw.ca

December 7, 2011

1 Introduction

Most skilled LATEX users are familiar with the various box commands. These
commands include \makebox, \framebox, \savebox, and \parbox. These boxes
takes a parameter that specifies the width of box to create. To simplify matters,
there are the \mbox, \fbox, and \sbox commands that fit the box created to the
size of its contents. Conspicuously absent, however, is a \pbox command.

2 A variable-width \parbox
At first glance, it seems quite inappropriate to create a \pbox command. After
all, the size of a multi-line box will most likely be limited by the \textwidth

or \columnwidth of the text it encloses. When a line of text is too long, it will
be wrapped by TEX’s own line-breaking algorithms. However, there are certain
circumstances where one would want a variable-width \parbox.

For example, you may want to align the top and bottom lines of multi-line
boxes. The simplest way to do this is with parbox commands with an arbitrary
width.

Hello
World! Bonjour

monde!

1 \parbox[b]{1.5cm}{Hello\\World!}%

2 \parbox[t]{1.5cm}{Bonjour\\monde!}

However, this is not convenient. It may take several attempts to guess the\pbox

correct width; and if there was ever a need to change the contents of the boxes,
then the hard-coded widths must be changed as well. It would ideal to have a box
that would collapse to the minimal required width.

Hello
World!Bonjour

monde!

1 \pbox[b]{0.5\textwidth}{Hello\\World!}%

2 \pbox[t]{0.5\textwidth}{Bonjour\\monde!}

∗Version v1.2, last revised 2011/12/07

1

Notice how the exclaimation mark and the capital B have no extra space
between each other, implying that \pbox creates minimal-width boxes.

If the provided width argument is smaller than the minimal-width, then \pbox

acts just like a regular \parbox. By minimal-width, we mean the width of the
unwrapped piece of text. You will have to put in line breaks, to make \pbox create
the tightest bounding box.

For instance, the following example tries to get \pbox to wrap its lines auto-
matically.

Hello
World! Bonjour

monde!

1 \pbox[b]{1.5cm}{Hello World!}%

2 \pbox[t]{1.5cm}{Bonjour monde!}

3 Determining minimum widths

This is all well and good, but how does one measure the width of one of these
boxes? Well, a rather painful way would be to use \settowidth in conjunction
with a \parbox. But it is far easier to do it with the new width commands.

The \settominwidth command works very similarly to the standard \settowidth\settominwidth

command.

\settowidth[max width]{cmd}{text} sets the value of the a length command
cmd equal to the width of the multi-line text. The optional argument
max width allows you to specify the maximum width that will be returned;
it defaults to \columnwidth.

To provide completeness for the calc package, the \widthofpbox command was\widthofpbox

implemented to complement the \widthof command.

\widthofpbox{text} returns the width of the multi-line text.

Here is an example:

I
need
support

1 I\\

2 need\\

3 support\\

4 \rule{\widthofpbox{I\\need\\support}}{0.4pt}

4 Limitations

Unfortunately, there are some limitations in this package. One of the intrinsic
limitations is that you cannot do anything in a \pbox that you could not do in a
\parbox. This seems quite reasonable, so it should not be a hardship.

Since \pbox is implemented using the tabular environment, there are some
things that cannot, and should not be used. You should note that errant & char-
acters within a \pbox do not generate meaningful error messages. As well, it is
unfortunate that \linebreak and \newline do not work as expected.

2

Since it is a box, you cannot use the verbatim environment within. I rec-
ommend that you use the fancyvrb package which contains the BVerbatim and
LVerbatim environments for typesetting boxed verbatim text.

Alas, I have also discovered that certain uses of \widthof and \widthofpbox

do not work within the docstrip environment.

3

5 Implementation

I use the standard calc package for general math. As well, I wish to support a
\widthofpbox command, so I will demand that the \widthof command exists as
well.

1 \RequirePackage{calc}

In order to perform \lengthtests and \equality tests, I need to include the
standard ifthen package. This also provides me with simple conditionals.

2 \RequirePackage{ifthen}

\settominwidth The minimum length is determined by the clever use of the tabular environment.
It knows how to calculate the minimum requisite width for a column, and the
way determines the end of a column is with its end of row command \\ . This
command is conveniently similar to the command typically used to break lines.

As you can see, #1 defaults to the width of a column. This will either be
\textwidth or the width defined by the twocolumn option, or even the multicol
package.

3 \newcommand{\settominwidth}[3][\columnwidth]{%

Here, I set the length command #2. Notice the argument to the tabular environ-
ment. I use @{} to eliminate any horizontal padding, and use the l alignment to
grab the width of the text in #3.

4 \settowidth{#2}{\begin{tabular}{@{}l@{}}#3\end{tabular}}%

Finally, I wish to make sure that the length I have set in #2 is not larger than the
maximum stored in #1.

5 \ifthenelse{\lengthtest{#1<#2}}{\setlength{#2}{#1}}{}}

\widthofpbox In order to find the width of a \pbox, I use the same tabular trick from
\settominwidth. I use the \widthof command in order to preserve its semantics
instead of trying to emulate them using my \settominwidth command.

I do not check against a maximum length here. Restricting this command to
a maximum length would mean that I throw away length information if the text
is too long.

6 \newcommand{\widthofpbox}[1]{%

7 \widthof{\begin{tabular}{@{}l@{}}#1\end{tabular}}}

\pbox

\pb@xi

\pb@xii

It is not possible to implement \pbox in a simple way. The command definition
commands in LATEX don’t afford you more than one optional parameter; however,
\parbox has three.

In order to faithfully simulate the three optional arguments, I must trick
LATEX in to catching three optional arguments [1]. Therefore \pbox, \pb@xi,
and \pb@xii are used to capture the optional arguments in the \pb@xargi,
\pb@xargii, and \pb@xargiii commands. These are then passsed to \pb@xiii

for actual processing.

8 \DeclareRobustCommand*{\pbox}[1][]{%

9 \def\pb@xargi{#1}%

4

10 \pb@xi}

11 \DeclareRobustCommand*{\pb@xi}[1][]{%

12 \def\pb@xargii{#1}%

13 \pb@xii}

14 \DeclareRobustCommand*{\pb@xii}[1][]{%

15 \def\pb@xargiii{#1}%

16 \pb@xiii}

\pb@xiii In order to create the final paragraph box, I parse out the two manditory argu-
ments. I then use the provided maximal length #1 to determine the actual width
of the \parbox.

17 \newlength{\pb@xlen}

18 \DeclareRobustCommand{\pb@xiii}[2]{%

19 \settominwidth[#1]{\pb@xlen}{#2}%

Since the default optional arguments are all empty, I should be able to just pass
them to \parbox. However, \parbox interprets empty optional values differently
than just non-existant optional values. So, I must make complicated decisions; if
an optional argument is empty, then I will just skip it..

20 \ifthenelse{\equal{\pb@xargi}{}}

21 {\parbox{\pb@xlen}{#2}}

22 {\ifthenelse{\equal{\pb@xargii}{}}

23 {\ifthenelse{\equal{\pb@xargiii}{}}

24 {\parbox[\pb@xargi]{\pb@xlen}{#2}}

25 {\parbox[\pb@xargi][][\pb@xargiii]{\pb@xlen}{#2}}}

26 {\ifthenelse{\equal{\pb@xargiii}{}}

27 {\parbox[\pb@xargi][\pb@xargii]{\pb@xlen}{#2}}

28 {\parbox[\pb@xargi][\pb@xargii][\pb@xargiii]{\pb@xlen}{#2}}}}%

Finally, I must clean up the optional arguments and remove their special mean-
ing. As well, I will terminate the \parbox I have created with an empty \makebox

in order to prevent the \def\pb@x...\relax commands from interfering with
other commands that expect \pbox to solely consist of a box.

29 \def\pb@xargi\relax

30 \def\pb@xargii\relax

31 \def\pb@xargiii\relax

32 \makebox[0pt]{}}

References

[1] Robin Fairbanks. “A command with two optional arguments.” TEX Fre-
quently Asked Questions. http://www.tex.ac.uk/cgi-bin/texfaq2html?

label=twooptarg (current 6 April 2003.)

5

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

P
\pb@xargi 9, 20, 24, 25, 27–29
\pb@xargii 12, 22, 27, 28, 30
\pb@xargiii 15, 23, 25, 26, 28, 31
\pb@xi . 8
\pb@xii . 8
\pb@xiii 16, 17
\pb@xlen 17, 19, 21, 24, 25, 27, 28

\pbox . 1, 8

S
\settominwidth 2, 3, 19

W
\widthof . 7
\widthofpbox 2, 6

Change History

v1.0
General: Initial release. 1

v1.1
General: Switch to GPLv3. 1
\settominwidth: Always return a

robust value. 4

v1.2

\settominwidth: Really fix the re-
sult. 4

6

