
preliminary draft, February 5, 2016 12:15 preliminary draft, February 5, 2016 12:15

TUGboat, Volume 0 (9999), No. 0 preliminary draft, February 5, 2016 12:15 1001

Paragraph designer with galley approach

Oleg Parashchenko

Abstract

The LATEX package paravesp controls the space above
and below paragraphs.

The python script parades.py generates para-
graph styles with support of space above, space be-
low and tabulators.

The system imposes the galley approach on the
document.

1 Introduction

One layout specification defined the space above and
below paragraphs. This is not how does TEX work.
To satisfy the requirement, the package paravesp
(PARAgraph VErtical SPace) was developed.

The solution imposes the galley approach on the
document. The paragraphs should be wrapped by a
tracking code, which controls how the matherial is
added into the TEX vertical list.

The paragraph designer appeared as a gener-
alization of the tracking code to other paragraph
properties. The user describes the formatting op-
tions in a python file. The program parades.py
converts the definitions into TEX code.

The system successfully works in the produc-
tion, but so far is limited to my needs. The complete
set of the paragraph properties is not a momentary
goal. A switch to the package xgalley from the
LATEX3 project might be a step in the future devel-
opment.

The article starts with the definition what the
space between paragraphs is and how it is imple-
mented. The example demonstrates the use of the
commands, which are then described using pseu-
docode.

The paragraph designer is first illustrated by
a sample LATEX fragment, which uses the paragraph
styles. For each three types of styles, there are given
a sample definition in Python and the result of trans-
lation to TEX code, with explanation. Finally, the
reference lists all the supported paragraph proper-
ties and the commands of the Python parades.py
tool.

The article concludes with information on how
to get the code and run it.

2 Space between paragraphs

The notion "space between paragraphs" can be de-
fined differently.

In one definition, the space between paragraphs
is the amount of additional space comparing to what
happens inside a paragraph. This is what the most
typesetting engines implement, and what is named
parskip in TEX. If the space between paragraphs
is set to zero, TEX still adds space baselineskip
minus prevdepth minus the height of the letters.

The definition of the package paravesp is: the
space between paragraphs is the distance between
the baseline of the preceeding paragraph and the
top of the next paragraph. The code cares that this
distance is larger than prevdepth.

The command \ParaSpaceAbove, which pre-
ceedes a paragraph, can’t know how much glue in-
duced by baselineskip will be added. Therefore,
the command disables this glue completely by set-
ting prevdepth to infinity.

The commands rely on automatic insertion of
parskip glue by TEX. This insertion doesn’t happen
if the next element in the vertical list is not a para-
graph but some box. In this case, make the space
manually using the command IssueParaSpace.

2.1 Usage

The package paravesp imposes restrictions on how
to construct a document. Otherwise it can’t guar-
antee the desired space above or below paragraphs.

• Switches between the vertical and horizontal
modes be controlled. TEX automation is par-
tially forbidden.

• The register \parskip belongs to the control-
ling code.

The guidelines for the controlling code are:

• At the end of a paragraph (after \par) use the
command \ParaSpaceBelow.

• At the begin of a paragraph, still in the vertical
mode, use \ParaSpaceAbove.



preliminary draft, February 5, 2016 12:15 preliminary draft, February 5, 2016 12:15

1002 preliminary draft, February 5, 2016 12:15 TUGboat, Volume 0 (9999), No. 0

• At the begin of a block content, for which TEX
will not insert \parskip automatically, use the
both \ParaSpaceAbove and \IssueParaSpace.
An example:

...
\ParaSpaceAbove{20pt}%
{\HeadingStyle Heading}\par
\ParaSpaceBelow{20pt}%
\ParaSpaceAbove{10pt}%
An usual paragraph of text...\par
\ParaSpaceBelow{10pt}%
\ParaSpaceAbove{10pt}%
Yet another usual paragraph of text...\par
\ParaSpaceBelow{10pt}%
\ParaSpaceAbove{20pt}\IssueParaSpace
\vbox{\fbox{Some info-box}}%
\ParaSpaceBelow{20pt}%
...

2.2 Technical details

Below is the simplified approximation what hap-
pens. The special cases are not shown.

After \ParaSpaceBelow{length}:
• vertical list is not changed
• parskip := length - prevdepth
• prevdepth is not changed

The command \ParaSpaceBelow splits its ar-
gument on two lengths, prevdepth and parskip.
This is a precaution for the case if the the next ele-
ment in the vertical list is not controlled by galley.
Thanks to the retained prevdepth, a possible layout
corruption is avoded.

After \ParaSpaceAbove{length}:
• vertical list: vskip -prevdepth,

penalty as before vskip
• parskip := max(length, old_length)
• prevdepth := -1000pt

After \IssueParaSpace:
• vertical list: vskip parskip,

penalty as before vskip
• parskip := 0pt
• prevdepth := -1000pt

After \IgnoreSpaceAboveNextPara:
• vertical list is not changed
• parskip := -0.01pt
• prevdepth is not changed

The special case is parskip less than 0pt, which
cancels the vertical spacing. It is useful when display

content (image, list etc) is the first element inside a
table cell.

3 Paragraph designer

The paragraph designer transforms Python objects
with desired paragraph properties into TEX code
which implements these properties.

The main benefit is that the paragraphs defini-
tions can be constructed in such way that the rep-
etitions (for example, font names) can be extracted
into common settings.

The system proposes that every block-level ele-
ment of a document should be wrapped into a com-
mand or an environment, which support the galley
approach. The suggested sorts of the paragraphs:

• long body text paragraphs, wrapped by an en-
vironment,

• short paragraphs, wrapped by a command, and

• short paragraphs with tabstops, also wrapped
by a command.

The document, made using this approach, looks
structured. Here is an example.

\HeadI{Universal Declaration of Human Rights}
\HeadII{Preamble}
\begin{para}Whereas recognition...\end{para}
\begin{para}Whereas disregard

and contempt...\end{para}
...
\HeadII{Article 14}
\begin{udhrlist}
\listitem{1}{Everyone has the right ...}
\listitem{2}{This right may not be invoked ...}
\end{udhrlist}

The sample is generated automatically from the
XML source. The generation script, the paragraph
styles as Python definition and .sty result, the re-
sult are included by the package in the directory
udhr.

3.1 Example: the command "HeadI"

Commands are recommended for small paragraphs,
such as headings and captions.

\HeadI{Universal Declaration of Human Rights}

A sample definition in Python:

add_style(ParagraphOptions(cmd=’HeadI’,
space_above=’20pt’,
space_below=’20pt’,
fontsize=’12pt’, baseline=’14pt’,
fontcmd=r’\fontseries{b}\selectfont’,
afterpar=r’\nobreak’,
))



preliminary draft, February 5, 2016 12:15 preliminary draft, February 5, 2016 12:15

TUGboat, Volume 0 (9999), No. 0 preliminary draft, February 5, 2016 12:15 1003

The properties of the paragraph are stored in-
side the object ParagraphOptions. Like in many
other programming languages, the backslash-symbol
(\) is a control symbol and should appear in strings
escaped (\\). An alternative as used in the example
is to prefix the string with "r", which disables the
control character.

The function add_style remembers the object
in the styles-list. At the end of the python script,
the objects in the list are converted to TEX code.

The result of the conversion:

\newcommand{\HeadI}[1]{{%
\fontsize{12pt}{14pt}\fontseries{b}\selectfont%
\ParaSpaceAbove{20pt}%
\noindent #1\par}%
\nobreak\ParaSpaceBelow{20pt}}

The pecularities are:

• The paragraph is created explicit with
\noindent #1\par.

• The text and the pre-paragraph settings are in-
side a group. This way the settings such as font
change work only for the given paragraph and
do not affect the rest of the text.

3.2 Example: the environment "para"

Environments are recommended to wrap paragraphs
in the text body.

\begin{para}Whereas recognition...\end{para}
\begin{para}Whereas disregard

and contempt...\end{para}

A sample definition in python:

add_style(ParagraphOptions(cmd=’paracmd’,
env=’para’,
space_above=’10pt plus1pt minus1pt’,
))

The result of the conversion in a sty-file:

\newenvironment{para}{%
\ParaSpaceAbove{10pt plus1pt minus1pt}%
\noindent \ignorespaces}
{\par\global\def\pd@after@para{%
\ParaSpaceBelow{0pt}}%
\aftergroup\pd@after@para}

The paragraph is started explicitely with the
command \noindent followed by \ignorespaces
and finished also explicitely with \par.

The changes inside an environment, including
post-paragraph settings, are local and automatically
discarded when the environment group is finished.
Therefore, using \aftergroup, the post-paragraph
settings are applied after the end of the environment.

3.3 Example: tabstops in "listitem"

Paragraph with tabstops are used to implement list
items, captions, table of content entries and similar
elements. The list paragraphs in the following ex-
ample have one tabstop to store the list numbering.
\listitem{1}{Everyone has the right ...}
\listitem{2}{This right

may not be invoked ...}
A sample definition in python:

add_style(ParagraphOptions(cmd=’listitem’,
moresetup=’\\interlinepenalty=150\\relax’,
space_above=’8pt’,
boxes=((’0cm’, ’0.5cm’),),
leftskip=’0.5cm’))
The argument boxes is a list of pairs. Each pair

gives the offset of the tabstop from left and the width
of the box. Due to pecularities of Python, one-
element lists of pairs should have an extra comma
inside.

The text of paragraphs should be tuned man-
ually to avoid overlapping with the tabstop boxes.
In this example the left margin is set to 0.5cm using
\leftskip. To get the margin right, I use \hsize.

The result of the conversion in a sty-file is com-
plicated:
\newcommand{\listitem}[2]{{%
\ParaSpaceAbove{8pt}%
\interlinepenalty=150\relax%
\noindent \advance\pd@leftskip by 0.5cm %
\hbox to 0pt{\hss\hbox to 0.5cm{#1\hss}%
\dimen0=0.5cm %
\advance\dimen0 by -0cm %
\advance\dimen0 by -0.5cm \hskip\dimen0}%
\the\everypar #2\par}%
\ParaSpaceBelow{0pt}}

The skeleton of the list paragraph are these el-
ements:
\noindent tabstops \everypar text \par

The use of \noindent and \par is clear. The
paragraph starts with the tabstop boxes, TEX does
not insert \everypar automatically, therefore the
code does it.

The token \pd@leftskip is a let-synonym for
\leftskip. In the right-to-left document you would
prefer to set the token to \rightskip.

A tabstop is constructed from two nested boxes.
The inner box gives the width of the tabstop and
aligns the content to the left:
\hbox to WIDTH{CONTENT \hss}

The outer box puts the inner box at the right
offset
\hbox to 0pt{\hss INNER_BOX%



preliminary draft, February 5, 2016 12:15 preliminary draft, February 5, 2016 12:15

1004 preliminary draft, February 5, 2016 12:15 TUGboat, Volume 0 (9999), No. 0

\dimen0=LEFTSKIP
\advance\dimen0 by -OFFSET
\advance\dimen0 by -WIDTH
\hskip\dimen0}%

The calculation is not obvious. The following
image provides the source for it.

The image reflects how the boxes, glues and
lengths are related. We see that offset+width+x
is leftskip, therefore x (\dimen0) is leftskip mi-
nus offset minus width.

4 Paragraph designer referense

Denomination. cmd, env, stylecmd. These are
the names for the generated commands and envi-
ronments.

An examples of cmd and env are already given.
The command for stylecmdmakes a character style,
which affects the font and doesn’t set the paragraph
properties (vertical spacing, tabulars etc).

A sample paragraph definition:

ParagraphOptions(cmd="Caption,
stylecmd="UseCaption", ...)

In a LATEX document you can write:

{\UseCaption Article 1.} All human beings
are born free and equal in dignity ...

All the three denominators can be mixed to-
gether at once. You must specify cmd even if you
don’t need it.

Fonts. fontsize, baseline, fontcmd.
The only supported font properties are its size

and baseline. The rest properties, such as width or
serie, should be manually defined in fontcmd:

ParagraphOptions(...,
fontcmd=r’\fontseries{b}\selectfont’,
...)

Dimensions. leftskip, hsize, space_above and
space_below.

The names are self-explaining.
The default value for space_above and also for

space_below is 0pt. It means that if you haven’t
given a value, then two consequent paragraphs will

touch each other, like if \nointerlineskip were
given between them.

Use the special value #natural to disable the
use of \ParaSpaceAbove or \ParaSpaceBelow and
activate instead the default TEX behaviour.
ParagraphOptions(...,

space_above=’#natural’,
space_below=’#natural’, ...)

Tuning. moresetup, afterpar, preamble_arg1,
preamble_arg2, preamble_arg3, preamble_arg4.

The content of moresetup is literally copied
into the style difinition at the end of the paragraph
setup, just before \noindent. A few ideas what can
be set in moresetup:

• A color of the paragraph text,
• \penalty to suggest a page break,
• \interlinepenalty for list item paragraphs,

to avoid a page breaks inside.
The content of afterpar is literally copied into

the style definition directly after {...\par}. This
place is good to put \nobreak or some other penalty.

The content of preamble_argN is copied liter-
ally into the style definition directly before #N. Pos-
sible applications:

• Add \ignorespaces if the text might contain
spuorious spaces at the beginning.

• For list item paragraphs, \hfil centers the tab-
ulator box content, \hfill aligns to the right.

Tabstops. Tabstops are hboxes of a given width
at given offset.
ParagraphOptions(...,

boxes=(
(OFFSET1,WIDTH1),
(OFFSET2,WIDTH2),
...,
(OFFSETn,WIDTHn)),

...)
Due to Python pecularities, one-element list of

lists should have an additional comma, otherwise
Python unwraps one level of parentheses. The cor-
rect way is:
ParagraphOptions(...,

boxes=((OFFSET,WIDTH),), # Comma inside
...)
All the offsets are relative to the left border of

the text flow.
The content of the boxes is left-aligned. To cen-

ter or right-align the content, add \hfil or \hfill
through the parameter preamble_argN.

Inheritance. The parameter parent uses an al-
ready existing paragraph object as the starting point



preliminary draft, February 5, 2016 12:15 preliminary draft, February 5, 2016 12:15

TUGboat, Volume 0 (9999), No. 0 preliminary draft, February 5, 2016 12:15 1005

for the paragraph being defined. The properties,
which are not specified in the new paragraph defini-
tion, are taken from the parent.
head_i = ParagraphOptions(

cmd=’HeadI’,
fontsize=’12pt’, baseline=’14pt’,
fontcmd=r’\fontseries{b}\selectfont’,
... )

ParagraphOptions(cmd=’HeadII’,
parent=head_i, # Inheritance
fontsize=’11pt’, baseline=’13pt’,
... )

In the example, the paragraph HeadII inherits
fontcmd from HeadI, but uses the custom font size
and baseline.

The infrastructure. A python file with defini-
tions (1) starts by importing the support code, (2)
continues with collecting the definitions and (3) fin-
ishes by the command to dump the TEX result.
from parades import * # 1

add_style(ParagraphOptions(...)) # 2
add_style(ParagraphOptions(...))
...
add_style(ParagraphOptions(...))

main(’paras’) # 3

The parameter of the function main (in this
example paras) is the name of the generated sty-
package as given by \ProvidesPackage.

5 Getting and running the code

All the files, including the example, are contained in
the CTAN package parades. Alternatevely, one can
download it on github or get the sources in the git
repository: https://github.com/olpa/tex, in the
folder parades.

Put the file paravesp.sty into a directory in
which TEX will find it. Put the file parades.py into
a directory in which Python will find it.

The paragraph generator runs from the com-
mand line.
$ python input-defs.py [output-defs.sty]

The script input-defs.py is the file with the
python definitions of the paragraphs. The optional
arguments is the name of the .sty-file with the gen-
erated TEX definitions. If the output file is not spec-
ified, the code is dumped to the standard output.

The directory udhr contains a sample project.
Refer to the file README in this directory for details
how to use it.

6 Conclusion

The paragraph designer helps both on the technical
and organization levels. On the technical level, it
helps generating code for paragraph styles. Writing
this code manually were an unpleasant error-prone
task:

• Space above and below a paragraph.
• Paragraphs with tabstops such as list items, ta-

ble of content entries, headers.
On the organization level, the python-scripts

allow to have a common code base and adapt it to
the needs of specific layouts.

The LATEX package paravesp can be used inde-
pendently of the paragraph designer to implement
vertical spacing.

There are problems with the package paravesp
and the paragraph designer:

• Many features are not implemented and some
need rework.

• The LATEX code written in the galley style is
too verbose to be typeset manually.
The paragraph designer is used in a production

system for years. The benefits compensate the prob-
lems.

https://github.com/olpa/tex

	Introduction
	Space between paragraphs
	Usage
	Technical details

	Paragraph designer
	Example: the command "HeadI"
	Example: the environment "para"
	Example: tabstops in "listitem"

	Paragraph designer referense
	Getting and running the code
	Conclusion

