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Abstract

The numerica-plus package defines commands to iterate functions of a single
variable, find fixed points of such functions, find the zeros or extrema of such
functions, and calculate the terms of recurrence relations.



Note:

e This document applies to version 3.0.0 of numerica-plus.

e Version 3 of numerica is required; (numerica requires amsmath and
mathtools).

e I refer many times in this document to Handbook of Mathematical Func-
tions, edited by Milton Abramowitz and Irene A. Stegun, Dover, 1965.
This is abbreviated to HMF, and often followed by a number like 1.2.3 to
locate the actual expression or value referenced.

o Version 3.0.0 of numerica-plus

is compatible with the additional features of numerica version 3.0.0,

including the decimal comma if the comma package option is used
with numerica;

amends and adds to documentation, including

a section on finding roots with Newton-Raphson iteration.
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Chapter 1

Introduction

Entering

\usepackage [<options>] {numerica}
\usepackage{numerica-plus}

in the preamble of your document makes available the commands

e \nmcIterate, a command to iterate a function (apply it repeatedly to
itself), including finding fixed points (values of  where f(x) = z);

e \nmcSolve, a command to find the zeros of functions of a single variable
(values of  for which f(x) = 0) or, failing that, local maxima or minima
of such functions;

e \nmcRecur, a command to calculate the values of terms in recurrence
relations in a single recurrence variable (like the terms of the Fibonacci
sequence or Legendre polynomials).

A main difference from version 2 of numerica-plus is that the package now does
not load numerica automatically but, rather, requires the user to explicitly call
numerica (with options if wanted). Version 3 of numerica is required, and must
be loaded before numerica-plus. With numerica loaded you get access to the
commands \nmcEvaluate (\eval), \nmcInfo (\info), \nmcMacros (\macros),
\nmcConstants (\constants), and \nmcReuse (\reuse); see the numerica doc-
umentation for details on the use of these commands. The numerica package
options, and particularly the comma and rounding options specifying the deci-
mal comma and default rounding value, apply in numerica-plus.

The commands of the present package all share the syntax of \nmcEvaluate.
I will discuss them individually in later chapters but turn first to a meaningful
example to illustrate their use and give a sense of ‘what they are about’.



1.1 Example of use: the rotating disk

Consider a disk rotating uniformly with angular velocity w in an anticlockwise
sense in an inertial system in which the disk’s centre 0 is at rest. Three distinct
points 1, 2, 3 are fixed in the disk and, in a co-rotating polar coordinate system
centred at 0, have polar coordinates (r;,6;) (i,57 = 1,2,3). Choose 01 as initial
line so that 6; = 0.

The cosine rule for solving triangles tells us that the time ¢;; in the underlying
inertial system for a signal to pass from point i to point j satisfies the equation

tij=c \/rf + 7% = 2rirjcos(0; — 0; + wtiy) = f(tiy),

where c is the speed of light and 4, j € {1,2,3}. (Equally, we could be describing
an acoustic signal between points on a disk rotating uniformly in a still, uniform
atmosphere — in which case ¢ would be the speed of sound.) Although the
equation doesn’t solve algebraically for the time ¢;;, it does tell us that ¢ = t;;
is a fized point of the function f. To calculate fixed points we use the command
\nmcIterate, or its short-name form \iter, with the star option, \iter*. For
\iter the star option means: continue iterating until a fixed point has been
reached and, as with the \eval command, suppress all elements from the display
save for the numerical result.

First, though, values need to be assigned to the various parameters. Suppose
we use units in which ¢ = 30, and w = 0.2 radians per second. To avoid having
to write these values in the vv-list every time, I have put in the preamble to
this document the statement

\constants{ ¢=30,\omega=0.2 }

For the polar coordinates of 1 and 3 I have chosen r; = 10, r3 = 20 and 05 = 0.2
radians (remember 6; = 0). To find a fixed point ¢;3 I give ¢ an initial trial value
1 (plucked from the air). Its position as the rightmost item in the vv-list tells
\iter that t is the iteration variable:

\iter*{ c"{-1F\sqrt{r_172+r_372-2r_1 r_3
\cos(\theta_3+\omega t)}
}[ r_1=10,r_3=20,\theta_3=0.2,t=1 ],
\quad\info{iter}.

—> 0.356899, 5 iterations. The short-name form of the \nmcInfo command
from numerica has been used to display the number of iterations required to
attain the fixed-point value.

To six figures, only five iterations are needed, which seems rapid but we can
check this by substituting ¢ = 0.356899 back into the formula and \eval-uating
it:

\eval*{ c {-1F\sqrt{r_1"2+r_372-2r_1 r_3
\cos(\theta_3+\omega t)}
}[ r_1=10,r_3=20,\theta_3=0.2,t=0.356899 ]



= 0.356899, confirming that we have indeed calculated a fixed point. That it
did indeed take only 5 iterations can be checked by omitting the asterisk from
the \iter command and specifying the total number of iterations to perform.
I choose do=7 to show not just the bHth iteration but also the next two just to
confirm that the result is stable. We shall view all 7: see=7. Because of the
length of the formula I have suppressed display of the vv-list by giving the key
vv an empty value:

\iter [do=7,see=7,vv=]
[ c™{-1X\sqrt{r_1"2+r_3"2-2r_1 r_3
\cos(\theta_3+\omega t)} \1}
[ r_1=10,r_3=20,\theta_3=0.2,t=1 ]

¢ I/r} + 13 — 2ryr3 cos(63 + wt) = 0.382355
— 0.357756
— 0.356928
— 0.3569
— 0.356899
— 0.356899
— 0.356899

The display makes clear that on the 5th iteration, the 6-figure value has been
attained.

Alternatively, we could use the \nmcRecur command (or its short-name form
\recur) to view the successive iterations, since an iteration is a first-order re-

currence: fni1 = f(fn):

\recur [env=multline*,vv=_{, \\ (vv)\\,
do=8,seel=0,see2=5]
{ f_{n+1}=c"{-1X\sqrt{r_1"2+r_3"2-2r_1 r_3
\cos(\theta_3+\omega f_{n})} }
[ r_1=10,r_3=20,\theta_3=0.2,f {0}=1 ]

=

frg1 = c_l\/r% + 12 —2ryr3cos(fs + wiy),
(7‘1 = 10,7“3 = 20,93 = O.2,f0 = 1)
— 0.356928, 0.3569, 0.356899, 0.356899, 0.356899

I have specified do=8 terms rather than 7 since the zero-th term (fp = 1) is
included in the count. I've chosen to view the last 5 of them but none prior to
those by writing see1=0,see2=5. Note the choice of environment and the vv
setting, pushing display of the vv-list and result to new lines and suppressing
equation numbering with the * on the multline.

Another and perhaps more obvious way to find the value of ¢13, is to look
for a zero of the function f(t) —¢. That means using the command \nmcSolve



(or its short-name form \solve). I shall do so with the star option \solvex
which suppresses display of all but the numerical result. A trial value for t is
required. I have chosen t=0:

\solve*{ c {-1}\sqrt{r_1"2+r_372-2r_1 r_3
\cos(\theta_3+\omega t)} - t }
[ r_1=10,r_3=20,\theta_3=0.2,t=0 1,
\quad \nmcInfo{solvel}.

= 0.356898, 1420 steps.

Nearly the same answer as before is attained but this time many more steps
have been required. This is to be expected. The \solve command uses the
bisection method, finding an interval where the function has opposite signs at
the end points and successively bisecting it to locate the zero between. Since
1/219 2 1/103, about 10 bisections are needed to determine 3 decimal places.
Hence we can expect about 20 bisections for a 6-decimal-place answer. The
particular form of the \nmcInfo command display, ‘1 + 20 steps’, indicates that
it took 1 search step to find an interval where the function had opposite signs
at the end points and, within that interval, 20 bisections to narrow the position
of the zero to 6-figures. I will discuss the discrepancy in the final figure in
Chapter 3; see §3.3.1.3.

1.1.1 Circuits

Okay, so we can calculate the time taken in the underlying inertial system for
a signal to pass from one point of the rotating disk to another. How long does
it take to traverse the circuit 1231, i.e. a signal from 1 to 2 to 3 and back to
1?7 That means forming the sum t15 + t23 + t31, which means calculating the
separate t;; and then using \eval to calculate their sum.

To simplify things, I assume a little symmetry. Let the (polar) coordinates
of 1 be (a,0), of 2 be (r,—6), and of 3 be (r,0): 2 and 3 are at the same radial
distance from the centre 0 and at the same angular distance from the line 01
but on opposite sides of it, 3 ahead of the line, 2 behind it. The rotation is
in the direction of positive 6. Rather than just calculate t15 + to3 + t31 for the
circuit 1231, I also calculate the time t13 + t32 + to; for a signal to traverse
the same circuit but in the opposite sense, 1321, and compare them (form the
difference).

Note that with 2 and 3 positioned as they are relative to 1, a signal against
the rotation from 3 to 1 takes the same time as a signal from 1 to 2 and, in the
sense of rotation, a signal from 2 to 1 takes the same time as a signal from 1
to 3, so that the round trip times are 2t15 + to3 and 2t13 + t32.



To see this, suppose the signal from 2 to 1 starts at time ¢ = 0; it reaches 1 at
a later time ¢’ when the disk has rotated through an angle wt’. Viewed from
the underlying inertial system, the signal path is a straight line from point 2
(r,—0) to point 1 (a,wt’) subtending an angle 6 + wt’ at the centre 0. But 3
(r,0 4+ wt’) at time ¢’ and 1 (a,0) at time ¢ = 0 also subtend an angle 6 + wt’ at
0 in the underlying inertial system. In the underlying inertial system the line
segments 193 and 291y are of equal length (indeed reflections of each other in
the bisector of the arc 191y) so that t13 = to;. Similarly, if a signal from 3 at
time ¢t = 0 reaches 1 at time ¢ = ¢’ then 391+ and 142 are of equal length
and t31 = t12.

1.1.1.1 Nesting commands

Analytically, both t2; and t13 are the same fixed point of the function of ¢

¢ 1/r? + a2 — 2racos(f + wt)

and t3; and t15 are the same fixed point of the function of ¢

¢ /12 4 a? — 2racos(f — wt).
To calculate 2t15 + to3 therefore means calculating

2\iter*{ c~{-1}\sqrt{a~2+r~2-2ar
\cos(\theta-\omega t)} }

+ \iter*{ c"{-1}\sqrt{2r~2-2r"2
\cos(2\theta+\omega t)} }

with the analogous expression for 2t13 + t32. But we can do the comparison of
round trip times ‘in one go’ by nesting the \iter* commands inside an \evalx*
command:

\eval*{ 7 circuit 1231
2\iter [var=t]{ c~{-1}\sqrt{a"2+r~2-2ar
\cos (\theta-\omega t)} }[8]
+ \iter[var=t]{ c"{-1}\sqrt{2r~2-2r"2
\cos(2\theta+\omega t)} }[8]
% circuit 1321
- 2\iter[var=t]{ c“{-1}\sqrt{a~2+r~2-2ar
\cos (\theta+\omega t)} }[8]
- \iter[var=t]{ c"{-1}\sqrt{2r~2-2r"2
\cos(2\theta-\omega t)} }[8]
}[ a=10,r=20,\theta=0.2,t=1 ]

= 0.034746 .



By itself this result is of little interest beyond seeing that numerica-plus can
handle the calculation. What s interesting is to find values of our parameters for
which the time difference vanishes — say values of 6, given the other parameters
and especially the value of r. Is there a circuit such that it takes a signal the
same time to travel in opposite senses around the circuit, despite the rotation of
the disk? Rather than nesting the \iter commands inside an \eval, we need
to nest them in a \solve command:

\solve[env=multline*,p=.,var=\theta,+=1]
{)% circuit 1231
2\times\iter [var=t,+=1]{ c~{-1}\sqrt{a~2+r~2-2ar
\cos(\theta-\omega t)} }
+ \iter [var=t,+=1]{ c"{-1}\sqrt{2r~2-2r~2
\cos(2\theta+\omega t)} }
% circuit 1321
2\times\iter [var=t,+=1]{ c~{-1}\sqrt{a~2+r~2-2ar
\cos(\theta+\omega t)} }
- \iter[var=t,+=1]1{ c"{-1F\sqrt{2r~2-2r"2
\cos(2\theta-\omega t)} }
}[ a=10,r=20,\theta=0.1,t=1 ][4]

=

2 x 0.5378 + 1.2213 — 2 x 0.6144 — 1.068 = 0,
(a=10,r=20,0 =0.1,t =1) — 6 = 1.0358.

One point to note here is the use of \times (in 2\times\iter). In this
example the formula is displayed — because of the use of the env setting,
env=multline*. Without the \times the result would have been the same but
the display of the formula would have juxtaposed the ‘2’s against the follow-
ing decimals, making it look as if signal travel times were 20.5378 and 20.6144
(and no doubt causing perplexity). The unfamiliar settings are discussed in the
relevant chapters below.

So this expression gives a value of Oa;—¢ for one value of r. The obvi-
ous next step is to create a table of such values, which can be done with the
\tabulate command from the associated package numerica-tables wrapped
around an expression like the one above. (For my own interest I have done
this. On a High St laptop it is not fast — plenty of time to make a nice hot
cup of tea.) But this is not a research paper on the rotating disk. I wished to
show how the different commands of numerica-plus can be used to explore a
meaningful problem. And although it looks as if a lot of typing is involved, once
¢ 1y/r2 + a2 — 2racos(f — wt) has been formed in BTEX and values specified
in the vv-list (and the \constants command in the preamble), much of the rest
is copy-and-paste with minor editing.




1.2 Shared syntax of the new commands

numerica-plus offers three new commands for three processes: \nmcIterate
(short-name form \iter) for iterating functions, \nmcSolve (short-name form
\solve) for finding the zeros or (local) extrema of functions, and \nmcRecur
(short-name form \recur) for calculating terms of recurrence relations. All
three commands share the syntax of \nmcEvaluate (or \eval) detailed in the
associated document numerica.pdf. When all options are used the command
looks like, for instance,

\nmcIterate*[settings]{expr.}[vv-1ist] [num. format]

You can substitute \nmcSolve, or \nmcRecur for \nmcIterate here. The argu-
ments are the same as those for \nmcEvaluate.

1. * optional switch; if present ensures a single number output with no for-
matting, or an appropriate error message if the single number cannot be
produced,;

2. [settings] optional comma-separated list of key=value settings for this
particular command and calculation;

3. {expr.} the only mandatory argument; the mathematical expression in
KTEX form that is the object of interest;

4. [vv-list] optional comma-separated list of wariable=value items; for
\iter and \solve the rightmost (or innermost) variable in the vv-list
may have special significance;

5. [num. format] optional format specification for presentation of the nu-
merical result (rounding, padding with zeros, scientific notation); boolean
output is suppressed for these commands.

The way the result is displayed follows the same pattern as for \nmcEvaluate
(see the associated document numerica.pdf), depending on whether a math
environment wraps around a command, is wrapped within a command, is in-
voked with the env setting, or is completely absent. And with version 3 of
numerica-plus, as in numerica, there is always the f setting which turns on
(f=1) and turns off (£=0) display of the formula. These matters are irrelevant
for the starred forms of commands, which give number-only results. Looking at
the various examples in the preceding section on the rotating disk you will see
illustrations of many of these different situations.

As well as the f setting, most of the settings available to the \eval command
are also available to the present commands although not all will be relevant or
have effect.! Refer to the associated document numerica.pdf for a discussion
of such settings. The ‘trick’ in version 2 of numerica and numerica-plus of

n particular the £f (multi-formula) setting has not, as yet, been implemented in version
3.0.0 of numerica-plus (in the interest of getting the whole revised numerica suite launched).

10



converting environments delimited by \[ and \]1) into multline environments
whenever the vv-list specification included a newline character (\\) has been
dispensed with. Now, if you want a multline or other environment, directly
specify it with the env setting. The enhanced handling of environments in
numerica version 3 means the * setting which was available in earlier versions
of numerica and numerica-plus to suppress equation numbering is now un-
necessary and has been removed (although its presence will not cause an error —
only leave a message in the log file and on the terminal). Starring the environ-
ment in the standard XTEX way, env=equation*, env=multline*, etc., does
the job.

In addition to the inherited settings, each of the numerica-plus commands
has settings of its own, discussed at the relevant parts of the following chapters.

Section 1.1 also provides examples of commands being nested. Nesting may
occur not only in the main argument of a command, but also in the vv-list,
or even the settings option. (The associated document numerica.pdf has an
example of the last possibility.)

11



Chapter 2

Iterating functions:
\nmcIterate

Only in desperation would one try to evaluate a continued fraction by stacking
fraction upon fraction upon fraction like so:

\eval{\[ 1+\frac{1}{1+\frac{1}{1+\frac{1}
{1+\frac{1}{1+\frac{1}{1+\frac{1}
{1\ frac{1}{1+\frac{1}{1+\frac{1}
{1+\frac{1}{1+\frac{1}
{1\ frac{1 {1333} 33333333 \1}

1+ - = 1.618026
1+ -
1+1+1+ T

1
1+3

numerica-plus provides a command for tackling problems like this sensibly. In
such problems a function is repeatedly applied to itself (iterated). This is done
through the command \nmcIterate or (short-name form) \iter.

2.1 Basic use

To evaluate the continued fraction we want to apply 1+ 1/z to itself repeatedly.
So, we wrap \iter around 1+1/x and give x an initial value 1 in the vv-list:

12



\iter{\[ 1+1/x \1}[x=1] —

1+1/z=2, (x=1)
— 1.5
— 1.666667
— 1.6
— 1.625

This hints that it might be heading in the direction of @ = 1.618034 but
clearly not enough iterations have been performed to confirm this. By default,
the \iter command performs 5 evaluations, the initial evaluation producing in
this instance the result 2, which then becomes the new value of x, producing
the first iteration proper and giving the value 1.5, which in turn becomes the
new value of x and so on. Also by default, \iter displays the first evaluation
and the results of the final 4.

Both these numbers, 5 and 4, are likely to be too small. They can be easily
changed with the do and see settings. Increasing the number of iterations in the
example to do=17 and the displayed results to see=5 shows how the iteration
of 1+ 1/z indeed stabilizes at 1.618034:

\iter[do=17,see=5]{\[ 1+1/x \]1}[x=1] —

1+1/z=2, (x=1)
... final 5 of 17:
— 1.618037
— 1.618033
— 1.618034
— 1.618034
— 1.618034

But iteration of functions is not limited to continued fractions. Particularly
since the emergence of chaos theory, iteration has become an important study
in its own right. Any function with range within its domain can be iterated —
repeatedly applied to itself. The cosine is an example:

\iter[do=201{\[ \cos x \1}[x=\pi/2] =

cosz =0, (x =m/2)
... final 4 of 20:
— 0.738369
— 0.739567
— 0.73876
— 0.739304

which displays the initial value and last four of 20 evaluations of cosx when
the initial value of z is 7. It looks as if the cosine is ‘cautiously’ approaching a
limit, perhaps around 0.738 or 0.739. We need to nearly double the number of
iterations to confirm that this is so (to the default 6 figures):

13



\iter[do=391{\[ \cos x \1}[x=\pi/2] =

cosz =0, (x =m/2)
... final 4 of 39:
— 0.739086
— 0.739085
— 0.739085
— 0.739085

The display is largely fixed, hard-coded, at least at this stage. It uses an array
environment. Whether it is centred or treated in an inline manner depends on
whether displaystyle or inline (or no) delimiters are used. Rather than using
explicit delimiters, the env setting can also be used (there are examples below).

As already noted, for a function to be iterated indefinitely, its range must
lie within or be equal to its domain. If even part of the range of a function
lies outside its domain then on repeated iteration there is a chance that a value
will eventually be calculated which lies in this ‘outside’ region. Iteration cannot
continue beyond this point and an error message is generated. As an example
consider the inverse cosine, \arccos. This can be iterated only so far as the
iterated values lie between +1 inclusive. If we try to iterate \arccos at 0 for
example, since cos %7‘(‘ = 0, arccos0 = 1.5708 (%77) so only a first iterate is
possible. But we could choose an initial value more carefully; 37 iterations of
the cosine at %Tl’ led to a fixed point 0.739085, so let’s choose 0.739085 as initial
point and perform 37 iterations:

\iter[do=37]1{\[ \arccos x \]}[x=0.739085] —

arccosx = 0.739085, (z = 0.739085)
... final 4 of 37:
— (0.644659
— 0.870219
— 0.515149
— 1.029615

The result of the 37th iteration is greater than 1. Thus increasing the number
of iterations to 38 should generate an error message:

\iter[do=38,see=4]1{\[ \arccos x \]1}[x=0.739085] ==-!!! 13£fp error
‘Invalid operation’ in: formula. !l

which it does. 13fp objects when asked to find the inverse cosine of a number

greater than 1.

2.1.1 Logistic map

The logistic map came to prominence with a 1976 paper by the biologist Robert
May. He examined the equation

Tpa1 = r2n(1 — xp),

14



where z, € [0,1] and represents the ratio of an existing population to the
maximum possible population. The intent is to capture two opposed effects: re-
production, with the rate of population increase proportional to the population
when the population is small (2,41 = rz,), and mortality, when the population
approaches the ‘carrying capacity’ of the environment (z,11 ~ r(1 —z,,) ).
The logistic map rz(1 —z) exhibits a variety of behaviours depending on the
value of r € (0,4). The Wikipedia article on the subject lists the following:

1. With 0 < r < 1, the population dies, independent of the initial population.

2. With 1 < r < 2, the population will quickly approach the value 1 —1/r,
independent of the initial population.

3. With 2 < r < 3, the population will also eventually approach the same
value 1 — 1/r, but first will fluctuate around that value for some time.
The rate of convergence is linear, except for r = 3, when it is dramatically
slow.

4. With r between 3 and 1 + /6 =~ 3.44949 the population will eventually
oscillate between two values z4 = (r+ 14 /(r —3)(r +1))/2r.

5. With r between 3.44949 and 3.54409 (approximately), from almost all
initial conditions the population eventually oscillates among four values.

6. With r beyond 3.54409, from almost all initial conditions, the population
eventually oscillates among 8 values, then 16, then 32, and so on. The
lengths of the intervals of r for each oscillation regime decrease rapidly;
the ratio between the lengths of successive bifurcation intervals approaches
the Feigenbaum constant § ~ 4.66920. This is an example of a period-
doubling cascade.

7. r =~ 3.56995, at the end of the period-doubling cascade, marks the onset
of chaos. Most values of r beyond this, from almost all initial conditions,
no longer yield periodic oscillations. Slight variations in the initial pop-
ulation value yield significantly different results over time, but there are
still certain isolated ranges of r (islands of stability) that show non-chaotic
behavior.

This is a rich landscape of possibilities to explore. For instance, with r = 3.2
we get a period-2 cycle, oscillating between x4 with values

\eval[sep=\ \text{and}\ ,p=.,ff]
{ (1/2r) [r+1+\sqrt{(r-3) (r+1)}] ,
(1/2r) [r+1-\sqrt{(r-3) (r+1)}] }[r=3.2]

= 0.799455 and 0.513045.

15



\iter[do=18,see=6]{\[ rx(1-x) \]1}[r=3.2,x=0.5] —

re(l —z) = 0.8, (r=3.2,2=0.5)
... final 6 of 18:
— 0.799455
— 0.513044
— 0.799455
— 0.513045
— 0.799455
— 0.513045

With r = 3.6 we get chaos. For initial value of « I have chosen neighbouring
values, 0.3 and 0.31:

\iter [env=\[,do=100,see=6]{ rx(1-x) }[r=3.6,x=0.3] —

re(l —z) = 0.756, (r=3.6,2=0.3)

... final 6 of 100:

— 0.849022

— 0.46146

— 0.894653

— 0.339297

— 0.807028

— 0.560641

\iter[env=\[,do=100,see=6]{ rx(1-x) }[r=3.6,x=0.31] —

re(l — ) = 0.77004, (r=3.6,2=0.31)

... final 6 of 100:

— 0.864724

— 0.421115

— 0.877598

— 0.386712

— 0.853797

— 0.44938

If you are using the decimal comma, make sure that the variables in the vv-list
are separated by semicolons rather than commas, otherwise puzzling errors are
almost certain to arise.

2.2 Star (*) option: fixed points

In some of the preceding examples, iteration eventually ended at a fized point —
a point x where f(x) = xz. Appending a star (asterisk) to the \iter command
is the signal for the \iter command to continue iterating until a fixed point
is reached at the specified rounding value, or some fixed maximum number
of iterations have been performed. The star overrides any value specified by
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the the do setting. It also overrides any elements of the display other than the
numerical result — meaning negative results display with a hyphen for the minus
sign unless \iter* is placed in a math environment.

Return to an earlier example, the continued fraction 1 + 1/x. Starring the
\iter command gives

\iter*{ 1+1/x }[x=1] = 1.618034,
and generalizing the example,
\iter*{ 1+a/x }[a=n(n+1),n=3,x=1] — 4

Indeed, trying in turn n = 0,1, 2, 3,4, 5 we see that when iterated 14+a/x — n+1.
A little invesigating shows that this is hardly surprising. If = is a point such
that
14 nn+1) .
T

then 22 —z —n(n+1) = 0. The quadratic factorizes: (z—(n+1))(z+n) = 0so
that, indeed, z = n+ 1 is a fixed point, as also — we learn — is x = —n, trivially.
There is nothing here that requires n to be an integer,

\iter*{ 1+a/x }[a=n(n+1),n=(\surd5-1)/2,x=1] = 1.618034,
but if we put n = 6, we get a message:

\iter*{ 1+a/x }[a=n(n+1),n=6,x=1] = !l No fixed point attained after
100 iterations of: formula. !l

It is easy to increase the 100 here to a larger value as we will do in a moment but
it is worth using the \info command from numerica to see what is happening.
For n = 1 and initial value x =1,

\iter*{1+a/x}[a=n(n+1) ,n=1,x=1],
we see that it takes \info{iter}

= 2, we see that it takes 23 iterations to attain a 6-figure fixed point; when
n = 2 for this same initial value it takes 41; ... ; and when n = 5 it takes 96.
The message when n = 6 is hardly surprising.

The maximum prevents \iter falling into an infinite loop or similar state.
We saw with the logistic map that there are parameter values that lead to 2-
cycles, 4-cycles, 8-cycles ... chaos, where iteration would continue indefinitely
if there were no safeguard like a specified maximum number of iterations. For
our case, however, it doesn’t look as if infinite loops of this kind are the problem.
We increase the maximum by using the setting max:

\iter* [max=150]{1+a/x} [a=n(n+1) ,n=6,x=1], taking \info{iter} —
7, taking 114 iterations,

and the fixed point is safely attained well within the bound of the new maximum.
Alternatively, we could have reduced the rounding value, say from the default
6 to 5:
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\iter*{1+a/x}[a=n(n+1) ,n=6,x=1] [5], taking \info{iter} = 7, taking
99 iterations.

A fixed point is attained — but with no room to spare. Generally, reducing the
rounding value is the other strategy to pursue when faced with the ‘No fixed
point attained’ message, and perhaps the better one initially. If there is no fixed
point after 100 iterations at some low rounding value — say 2 or 3 — then there
may well be no fixed point at all.

\iter determines that a fixed point has been attained when the difference
between successive iterations vanishes when rounded to the current rounding
value. This can lead to an error in the final digit: the difference may vanish
but the final value round away from the fixed point. To seek reassurance that
the fixed point really is the correct value you might wish to seek a fixed point
at a higher rounding value without changing the number of digits displayed.
The extra rounding is achieved by entering +=<integer> in the settings option,
where <integer> is the extra rounding desired.

For example, for the logistics map with r = 1.5 we expect a fixed point with
value

\eval{1-1/r}[r=1.5] = 0.333333,
and indeed
\iter*{rx(1-x)}[r=1.5,x=0.5] = 0.333334,

the expected value — if we ignore the final digit. So let’s use the + setting, to
demand that the difference between successive iterate values at 641 = 7 figures
vanishes. That should ensure the correct 6-figure fixed point is attained, and it
is:

\iter*[+=1]{rx(1-x)}[r=1.5,x=0.5] — 0.333333.

2.2.1 Use with \nmcInfo

We have already seen that the \nmcInfo command provides information on the
number of iterations necessary to attain a fixed point, especially how many are
required at a particular rounding value. That knowledge allows a good guess
as to whether a fixed point will be attained at a greater rounding value. Thus
when iterating the function

f(tij) = c_l\/ri2 + 7% = 2rirj cos(0; — 0; + wtij)

in §1.1 only 5 iterations were required to attain 6-figure accuracy for the fixed
point. That information came by following the \iter* command with \nmcInfo
(or \info) with the argument iter. And generally, for any ‘infinite’ process,
follow the command with an \info command if you want to know how many
‘steps’ — in the present case iterations — are required to achieve the result. So, if
5 iterations achieve 6-figure accuracy, presumably something like 10 iterations
will achieve 12-figure accuracy:
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\iter*{ c {-1F\sqrt{r_i"2+r_j 2-2r_i r_j
\cos(\theta_{ij}+\omega t)}
}[ r_i=10,r_j=20,\theta_{ij}=0.2,t=1 1[12]
,\quad\info{iter}.

= 0.356899026113 , 9 iterations. (Remember, numerica-plus knows the
values of ¢ and w from a \constants statement in the preamble.) And indeed
only 9 iterations suffice to achieve 12-figure accuracy:

\iter[env=\[,vv=,do =11,see=4]
{ c™{-1X\sqrt{r_i~2+r_j 2-2r_i r_j
\cos(\theta_{ij}+\omega t)}
}[ r_i=10,r_j=20,\theta_{ij}=0.2,t=1 1[12]

e \/ 7 412 = 2rrj cos(0;; + wt) = 0.382354696292
... final 4 of 11:
< 0.356899026114
< 0.356899026113
< 0.356899026113
< 0.356899026113

(Display of the vv-list has been suppressed with the setting vv=.)
Or again, with another example from earlier,

\iter*{\cos x}[x=\pi/2],\ \info{iter} = 0.739085, 37 iterations.

That suggests that around 2 x 37 = 74 iterations will give a 2 x 6 = 12-figure
answer, well within the cut-off figure of 100:

\iter*{\cos x}[x=\pi/2]1[12],\ \info{iter}. — 0.739085133215, 72

iterations.

2.3 Settings, saving results, errors,

The settings option is a comma-separated list of items of the form key = value.
Only some of the keys for \nmcEvaluate discussed in Chapter 5 of the asso-
ciated document numerica.pdf are relevant for \nmcIterate. Thus should a
quantity in the vv-list depend on the iteration variable, forcing an implicit mode
calculation, simply enter vv@=1 (alternatively, vvmode=1) in the settings option,
as with \eval:

\iter*[vve=1]{ f(x) }[f(x)=1+a/x,a=12,x=1] — 4.

Implicit in the example is the default multi-token setting xx=1 inherited from
\eval and ensuring that the multi-token variable f(z) is treated correctly.

We could add dbg=1 to the example — or just enter view — to get a glimpse
at the ‘innards’ of what is going on:
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\iter*[view,vv@=1]{ f(x) }[f(x)=1+a/x,a=12,x=1]
\info{iter}

=

function: \nmec_x

vv-list:  \nmc_x =1+a/x, a=12, x=1

stored: \nmc_x =3.999999832569298, a=12, x=4.000000223240948
fp-form:  (3.999999832569298)

LaTeX: 4

59 iterations

The multi-token variable f(x) has been changed to a single-token. The
difference between the two long ‘stored’ numbers is less than 5 in the 7th decimal
place, meaning a fixed point has been found. Since 59 iterations are required to
attain the fixed point at 6-decimal place accuracy, the values shown correspond
to the 60th iteration, the final iteration. Because the \iter command is the
starred form, the result that is fed to IMTEX is simply the fixed point 4 expressed
as a number. Remove the star, add do=60 and replace view with dbg=55 (or
equivalently dbg=5*11) in the settings option:

\iter [dbg=55,vv@=1,do=60]{ f(x) }[f(x)=1+a/x,a=12,x=1] —

stored: \nmec_y =3.999999832569298, a=12, x=4.000000223240948

LaTeX: $\begin {array}{r@{}1}&{}13,\mskip
12muplus6muminus9mu(f(x)=1+a/x,a=12,x=1)\\&\ldots \ \mbox {final\ 4\
of\ 60:}\\&\hookrightarrow 4\\&\hookrightarrow 4\\&\hookrightarrow
4\\&\hookrightarrow 4\end {array}$

Now the ITEX form is much fuller and the stored numbers exactly match those
of the starred form.

2.3.1 \nmcIterate-specific settings

In addition to the inherited settings there are some specific to \nmcIterate.
These are listed in Table 2.1.

2.3.1.1 Iteration variable

In nearly all of the examples so far, the iteration variable has been the rightmost
variable in the vv-list and has not needed to be otherwise specified. However
it is sometimes not feasible to indicate the variable in this way. In that case,
entering

var = <variable name>
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Table 2.1: Settings for \nmcIterate

key  type meaning initial
var token(s) iteration variable
+ int fixed point extra rounding 0
max int > 0 max. iteration count (fixed points) 100
do int >0 number of iterations to perform 5
see int >0 number of final iterations to view 4

int (0/1/2) form of result saved with \ 0

in the settings option enables the variable to be specified, irrespective of what
the rightmost variable in the vv-list is. Here, <variable name> will generally
be a character like x or t or a token like \alpha, but it could also be a multi-
token name like x' or \beta_{ij} (or even Fred if you so chose). Although the
iteration variable can be independently specified like this, it must still be given
an initial value in the vv-list — only now it need not be the rightmost variable.

In the following example the rightmost variable is n which is clearly not the
iteration variable:

\iter[var=x,do=40]{$ 1+a/x $}[x=n-1,a=n(n+1),n=2][*] —
1+a/x=17.000000, (x=n—1l,a=n(n+1),n=2)
... final 4 of 40:
— 3.000001
— 2.999999
— 3.000000
— 3.000000

2.3.1.2 Extra rounding for fixed-point calculations

The criterion used to signal the attainment of a fixed point is that the difference
between successive iterations vanishes when rounded to the current rounding
value. As already noted, because of rounding errors and the ‘round to even’
tie-breaking rule, this criterion may lead to error in the last digit. That can
be avoided by rounding to a greater number of digits than the actual rounding
value. This extra rounding is achieved by entering

+ = <integer>

in the settings option. By default this extra rounding is set to zero.

We have seen before that cosz starting at x = %77 takes 37 iterations to
reach a 6-figure fixed point 0.739085, about 6 iterations per decimal place. By
entering +=1 in the settings option the number of iterations is increased to 43,
6 more than 37 but, reassuringly, the 6-figure result that is displayed remains
unchanged:
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$ \iterx[+=1]{\cos x}[x=\pi/2] $,\ \info{iter} = 0.739085, 43
iterations.

2.3.1.3 Maximum iteration count for fixed-point searches

To prevent a fixed-point search from continuing indefinitely, perhaps because no
fixed point exists, there needs to be a maximum number of iterations specified
after which point the search is called off. By default this number is 100. To
change it enter

max = <positive integer>

in the settings option.

2.3.1.4 Number of iterations to perform

To specify the number of iterations to perform enter
do = <positive integer>

in the settings option. Note that if the * option is present this value will be
ignored and iteration will continue until either a fixed point or the maximum
iteration count is reached. By default do is set to 5. (Note that do can be set
to a greater number than the initial 100 setting of max; max applies only to the
starred form \iterx.)

2.3.1.5 Number of iterations to show

To specify the number of final iterations to show enter
see = <positive integer>

in the settings option. By default see is set to 4. Always it is the last see
iterations that are displayed. If see is set to an equal or greater value than do,
all iterations are shown. If the star option is used the see value is ignored.

2.3.2 Form of result saved by \nmcReuse

In version 2 of numerica-plus there was a setting reuse that determined the
content of what was saved with the \nmcReuse command. This has been re-
moved. Now it is only the last see values that are saved as a comma list. The
values stored in the list are each wrapped in braces. In this way no confusion
arises if the decimal comma is being used. For a fixed point calculation, it is
the fixed point as displayed that is saved.

\iter[do=12,see=4]
{\[ kx(1-x) \1}[k=3.5,x=0.5]
\reuse{logistic}
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kx(1 —x) = 0.875, (k=3.5,2=0.5)
... final 4 of 12:
— 0.874997
— 0.38282
— 0.826941
— 0.500884

whence $\logistic$ = 0.874997,0.38282,0.826941, 0.500884. (I have placed
\logistic between $ delimiters to get thin spaces after the commas.)

If you want to isolate just one member of the comma list, numerica-plus
offers the utility function \clitem (‘comma list item’) which acts on the control
sequence followed by a number:

\clitem\logistic 3 = 0.826941.

Use positive numbers for counting from the left, negative numbers for counting
from the right. Multi-digit numbers must be enclosed in braces. See §4.3.2.1
for more on the use of \clitem.

2.3.3 Errors

There is only one error specifically related to \nmcIterate and that is when the
number of iterations exceeds the specified maximum number in a fixed point
calculation. We have already met this in the earlier discussion of fixed points.
Another example is

\iter*{kx(1-x)}[k=3.5,x=0.5] = !ll No fixed point attained after 100
iterations of: formula. !!!

Other numerica errors can also afflict an iteration calculation. Again an exam-
ple of this was provided in §2.1 when we sought to iterate \arccos 38 times
rather than the previously successful 37:

\iter[do=38,see=4]1{\[ \arccos x \]1}[x=0.739085] ==-!!! 13£fp error
‘Invalid operation’ in: formula. !l

The 38th iterate is attempting to take the inverse cosine of a number greater
than 1; numerica objects.

2.4 Newton-Raphson method

This is a method for solving equations in one variable, say f(x) = 0, by iterating
the expression
f(zn)

Tn41 —
" f(zn)
where f’ is the derivative of f. numerica-plus does not automatically calculate

the derivative; given the function f the user needs to manually insert (the
analytic expression for) it.
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Fig. 2.1 depicts a situation where the
method works well. This will not always be
the case. If © = z is the zero (f(z) = 0) then
should the derivative vanish at z (f'(z) = 0)
there may well be problems. I give an example
below, after first giving a simple illustration
of the method.

Suppose f(x) = sinz; then f'(x) = Figure 2.1: N-R method
cosz. If the initial test value is 4, then
x —sinx/cosx = x — tanx is the expression to insert in the \iter* command:

\iter*{x-\tan x}[x=4], \info{iter} = 3.141593, 3 iterations,

which we recognize as the 6-figure value of 7, attained very quickly after only 3
iterations. To check this omit the asterisk:

x —tanx = 2.842179, (z =4)
— 3.150873
\iter [f=1]{x-\tan x}[x=4] — — 3.141592
— 3.141593
— 3.141593

But that is 4 iterations, not the claimed 3, before the correct value appears.
This is an example of the difference between successive values vanishing at the
6-figure rounding value, but the final digit being 1 shy of the correct value. If
we put +=1 in the settings and round to 7 figures, we get

x —tanx = 2.8421787, (z =4)
— 3.1508729
\iter[f=1,+=1]{x-\tan x}[x=4][7] = s 3.1415924
— 3.1415927
— 3.1415927

The difference between the 3rd and 4th values is 0.0000003 which rounds to 0
at 6 figures whereas 3.1415924 rounds to 3.141592.

We could also do the calculation in implicit mode (the f=1 in the settings
means the formula is part of the display and has nothing to do with the £ in
the main argument and vv-list):

\iter [f=1,vve=1]1{x-f(x)/f' (x)}[f(x)=\sin x,{f' (x)}=\cos x,x=4] —
x— f(x)/f(x) =2.842179, (f(x) =sinz,x =4)
— 3.150873
— 3.141592
— 3.141593
— 3.141593

where display of the derivative from the vv-list has been suppressed (by the
enclosing braces).
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Let’s tackle something less obvious, finding the roots of cosz coshx + 1.
(HMF Table 4.18 gives small tables of the first five roots in both cases; sub-
sequent roots are essentially cos™'(F1) = 3(2n & 1)7 since coshz is so large.)
Writing f(x) for the function, in both cases f’(x) = coszsinhx — sinz cosh z.
In the example, our initial test value is x=5. We save the result in the control
sequence \zilch and then check that it really does contain a zero of f(z) in the
final statement:

\iter*[vv@=1]{ x-f(x)/f'(x) }
[f(x)=\cos x\cosh x-1, {f'(x)}=
\cos x\sinh x-\sin x\cosh x,x=5][15],
\quad \info{iter}
\reuse[renew]{zilch} \macros{ \zilch } \par
\eval{\[\cos x\cosh x -1 \]1}[x=\zilch] [15]

= 4.730040744862704, 5 iterations

cosx coshz — 1 = —0.000000000000001, (z = 4.730040744862704)

It is remarkable that only 5 iterations are required for 15-place accuracy;
HMF gives only 6-figures, 4.7300407.

Of course, z = 0 is a zero of coszcoshz — 1, but f’(x) vanishes at zero and
the Newton-Raphson method fails there for that reason. Indeed it’s easy to
check that f/(0) = f”(0) = f”(0) = 0 and f*(x) = —4(f(x) + 1) meaning
f(0) = —4 and on repeated differentiation the pattern repeats. Thus the
Maclaurin series for f(x) near x = 0 is

B & (_1)n4nx4n B 2174 78
f@ =2 —ar =6 "mm

Any value of x close to 0 is going to give a value of f(x) = cosxcosha — 1
about 4 decimal places closer. Indeed, when trial values like z = 1, x = 0.5,
z = 0.3 and so on are used in the iteration of z — f(x)/f'(x), the iteration
converges on a series of ‘pseudo-zeros’ of f(z), all artifacts of the rapidity with
which cos z cosh x converges to 1 at x = 0.
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Chapter 3

Finding zeros and extrema:
\nmcSolve

numerica-plus provides a command, \nmcSolve (short-name form \solve),
for finding a zero of a function, should it have one. In the following example,

\solve[p]{\[ e {ax}-bx~2 \1}[a=2,b=3,{x}=0] —

e — bz? = —0.000002, (a=2,b=3) — z=—0.390647,

I have sought and found a solution z to the equation e®*/2 —bz? = 0 when a = 2

and b = 3, starting with a trial value x = 0, entered as the rightmost variable in
the vv-list (and em-braced since I don’t want this trial value displaying in the
presentation of the result). Although z has been found to the default six-figure
accuracy, it is evident that the function vanishes only to five figures. Let’s check:

\eval{$ bx~2 $}[b=3,x=x=-0.390647] —
ba? = 0.457815, (b= 3,z = —0.390647),
\eval{$ e {ax} $}[a=2,x=-0.390647] —
e =0.457813, (a = 2,2 = —0.390647);

the values agree save in the final digit.

This discrepancy in the final decimal place or places is a general feature of
solutions found by \solve. It is the value of z, not the value of f(z), that is
being found (in this case) to six figures. If the graph of a function crosses the
x-axis steeply then the x value (the zero) may be located to a higher precision
than the function value. Conversely, if the graph of a function crosses the x-
axis gently (at a shallow angle) then the function value will vanish to a greater
number of decimal places than the zero (the x value) is found to.

A second example, which we can check against values tabulated in HMF), is
to find a value of = that satisfies tanx = Az. In other words, find a zero of
tanz — Az. In the example \ is negative, so a trial value for x greater than /2
seems like a good idea. I've chosen x = 2.
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\solve{$ \tan x - \lambda x $}[\lambda=-1/0.8,{x}=2][6] —
tanz — Az = —0.00002, ()\ = —1/0.8) — x = 1.95857.

Table 4.19 of HMF lists values of x against A and this is the 5-decimal place
value tabulated there.

3.1 Extrema

A function may not have a zero; or, for the given initial trial value and initial step
in the search for a zero, there may be a local extremum in the way. In that case
numerica-plus may well locate the local extremum (maximum or minimum
but not a saddle point). For example for the quadratic (2x — 1)? + 3z + 1 the
\solve command gives the result

\solve[vv=]{$ (2x-1)"2+3x+1 $}[x=2] —
(2x — 1)2 +3x+1=1.9375 — x = 0.124999.

Since (22—1)2+3z+1 # 0 for any (real number) x, we deduce that the quadratic
takes a minimum value 1.9375 at x = 0.125 — easily confirmed analytically. This
particular minimum is a global minimum but in general any extremum found
is only local. The function may well take larger or smaller values (or vanish for
that matter) further afield.

It is also worth noting in this example the vv= in the settings option which
suppresses display of the vv-list. (The only member of the vv-list is the trial
value x=2 which we do not want to display.)

Note that the function for which a zero is being sought is not equated to
zero when entered in the \solve command. It is \solve{ f(x) }, not
\solve{ £(x)=0 }. This is precisely because it may be an extremum that
is found rather than a zero (if extremum or zero is found at all — think e®). The
display of the result makes clear which is which, equating f(x) to its value, zero
or extremum depending on what has been found, as you can see in the preceding
examples.

3.1.1 The search strategy

If you have some sense of where a function has a zero, then choose a trial
value in that vicinity. \solve uses a bisection method to home in on the zero.
It therefore needs two initial values. For the first it uses the trial value you
specify, call it a and for the second, by default, it uses a + 1. (The default value
1 for the initial step from the trial value can be changed in the settings option
with the setting dvar; see §3.3.) If f(a) and f(a + 1) have opposite signs then
that is good. Bisection of the interval [a, a + 1] can begin immediately in order
to home in on the precise point where f vanishes. Write b = a + 1.
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o Let ¢ = 1(a+b); if f(c) = 0 the zero is found; otherwise either f(a), f(c)
are of opposite signs or f(c), f(b) are of opposite signs. In the former case
write a; = a, by = ¢; in the latter case write a; = ¢, by = b and then
redefine ¢ = 2(a; + b1). Continue the bisection process, either until an
exact zero ¢ of f is reached (f(c) = 0) or a value c is reached where the
difference between a, 1 and b, 11 is zero at the specified rounding value.
(But note, f(c) may not vanish at that rounding value — the zero might
be elsewhere in the interval and f might cross the axis at a steep slope.)

However f(a) and f(b) = f(a + 1) may not have opposite signs. If we graph
the function y = f(z) and suppose f(a), f(b) are distinct but of the same sign,
then the line through the points (a, f(a)), (b, f(b)) will intersect the xz-axis to
the left of a or the right of b depending on its slope. We search always towards
the x-azis in steps of b — a (=1 with default values).

o If the line intersects the axis to the left of a then ¢ = a — (b — a) and
we set a; = ¢,b; = a; if the line intersects the axis to the right of b then
¢ =b+ (b—a) and we set by = ¢,a; = b. The hope is that by always
taking steps in the direction towards the z-axis that eventually f(c) will
be found to lie on the opposite side of the axis from f(a,) or f(b,), at
which point the bisection process begins.

¢ Of course this may not happen. At some point ¢ may lie to the left of a,,
but |f(c)] > |f(an)|, or ¢ may lie to the right of b, but |f(c)| > |f(bn)|.
The slope has reversed. In that case we halve the step value to %(b —a)
and try again in the same direction as before from the same point as before

(an or b, as the case may be).

o Should we find at some point that f(a,) = f(b,) then the previous strat-
egy does not apply. In this case we choose a,4; and b, at the quarter
and three-quarter marks between a,, and b,,. Either f(a,+1) and f(bpy1)
will differ and the previous search strategy can start again or we are on
the way to finding an extremum of f.

As already noted it is also possible that our function has neither zeros nor
extrema. To prevent the search continuing indefinitely, numerica uses a cut-off
value for the maximum number of steps pursued — by default set at 100.

3.1.2 Elusive extrema

The strategy ‘search always towards the x-axis’ has a consequence: it means
that a local maximum above the z-axis will almost certainly not be found, since
‘towards the x-axis’ pulls the search away from the maximum. Similarly a local
minimum below the z-axis will also not be found since ‘towards the z-axis’ pulls
the search away from the minimum.

One way of countering this elusiveness is to add a constant value (possibly
negative) to the function whose zeros and extrema are being sought. The zeros
of the function will change but the abscissae (2 values) of the extrema remain
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unchanged. If the constant is big enough it will push a local minimum above the
axis where it can be found or, for a negative constant, push a local maximum
below the axis where it can be found.

For example f(x) = 23—z has roots at —1,0, 1, a local maximum at 7% and

a local minimum at % To locate the minimum, I have added an unnecessarily
large constant k to f(z) (kK = 1 would have sufficed) and a start value at the

rightmost zero. Searching ‘towards the z-axis’ will take the search towards the
local minimum.

\solve{$ x"3-x+k $}[k=5,{x}=1] =
23 — x4+ k=4.6151, (k=5) - = =0.577351.

Checking, \eval{$\tfraci{\surd 3}$} — % = 0.57735. There is a dis-
crepancy in the 6th decimal place which can be eliminated by using the extra
rounding setting; see §3.3.1.3. The value of the local minimum of 23 — x is then
4.6151 — 5 = —0.3849.

Or, we can find the value of that local minimum value and the x value where
it occurs ‘in one go’ by nesting \solve within the vv-list of an \eval command:

\eval{$ x~3-x $}[x={\solve{y 3-y+k}[k=5,y=1]1}] —
2% —x = —0.3849, (z = 0.577351).

The braces around the \solve and its vv-list hide its square-brackets from the
parsing of the vv-list of the \eval command.

3.1.3 False extrema

A function which ‘has an infinity’ at a particular value can result in a false
extremum being found:

\solve{$ 1/x $}[x=-1/3] =
1/ = —3145728.00033, (= —1/3) — 2 = 0.

One needs to look for extrema with some awareness of how the function behaves.
‘Searching blind’ may lead to nonsense results. In this particular example,
changing the rounding value will show the supposed extremum jumping from
one large value to another and not settling at any particular value.

3.2 Star (*) option

A starred form of the \nmcSolve command gives a purely numerical result;
should it be negative it displays with a hyphen for the minus sign outside a math
environment. All other elements of the display are suppressed. When commands
are nested, numerica and associated packages treat an inner command as if it
were the starred form, whether the star is explicitly present or not. Returning
to a previous example,
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\solve*{$ \tan x - \lambda x $}[\lambda=-1/0.8,{x}=2][5] —
1.95857,

giving the zero and nothing more.

3.3 Settings option

The settings option is a comma-separated key-value list of items. The keys
discussed in the settings option for \nmcEvaluate discussed in the associated
document numerica.pdf are also available for \nmcSolve. The very first ex-
ample in this chapter used the punctuation option p (\solve[p]{\[... ) to
ensure a comma after the display-style presentation of the result. We also saw
in the quadratic example illustrating extrema the use of vv= with no value to
suppress display of the vv-list: \solve[vv=]1{$ ....

Putting dbg=1, or more simply, entering view in the settings option produces
a familiar kind of display. Using the function

ct — /a2 + b2 — 2abcos(B + wt)
from the rotating disk problem,

\solvel[view,var=t]
{$ ct-\sqrt{a~{2}+b~{2}-2ab\cos(\beta+\omega t)} $}
[a=10,b=20, \beta=1, {t}=0] [4]

=

function: ct-\sqrt {a"{2}+b"{2}-2ab\cos (\beta +\omega t)}

vv-list:  a=10, b=20, \beta =1, t=0

stored: a=10, b=20, \beta =1, t=0.601715087890625

fp-form:  (30)(0.601715087890625)-sqrt((10)™(2)+(20)"(2)-
2(10)(20)cos(((1)+(0.2)(0.601715087890625))))

LaTeX: Sct-\sqrt {a"{2}+b"{2}-2ab\cos (\beta +\omega t)}=-0.0007,\mskip
12muplus6muminus9mu(a=10,b=20,\beta =1)\protect \protect
\leavevmode@ifvmode \kern +.1667em\relax \to \protect \protect
\leavevmode@ifvmode \kern +.1667em\relax t=0.6017$

If that is too much information, understand that view (or dbg=1) for \nmcSolve
is equivalent to dbg=2*3%5%7*11. Entering dbg=2%3%5*7 for instance will trim
the KTEX expression from the debug display, and similarly, omitting other prime
factors from dbg will result in the corresponding element being absent from the
display. (The prime factors can be multiplied out if you wish; see Chapter 5 of
the associated document numerica.pdf.)
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3.3.0.1 Multi-line display of the result

By default the result is presented on a single line (unless the star option is being
used). This can be of the form function = function value, (vv-list) — variable
= result, where function value will either be 0 or close to it, or an extremum
of the function, and result will be the value of the wariable producing that
zero or extremum when substituted into the function. It takes only a slightly
complicated formula and only a few variables in the vv-list before this becomes
an overcrowded line, exceeding the line width and extending into and perhaps
beyond the margin. To split the display over two lines specify a multline or
multline* environment in the settings option (if you don’t want an equation
number use the starred form):

\solve[env=multline*,p=.]
{ ct-\sqrt{a~{2}+b~{2}-2ab\cos (\beta+\omega t)}
}[a=10,b=20, \beta=1,{t}=0] [4]

=

ct — \/a? 4 b2 — 2abcos(B + wt) = —0.0007,
(a=10,b=20,8=1) — t = 0.6017.

For a formula with a significantly longer vv-list you could introduce a third line
to display the arrow and result on by entering a specification like vv={, }\\ (vv) \\
in the settings option after the env setting.

In the example the function evaluates to —0.0007. Is this a zero or an
extremum? To find out, the calculation needs to be carried out to a higher
rounding value — which is the reason why \nmcSolve has an extra rounding
setting; see §3.3.1.3 below.

3.3.1 \nmcSolve-specific settings

In addition to inherited settings there are some settings specific to \nmcSolve.
These are listed in Table 3.1.

Table 3.1: Settings for \nmcSolve

key type meaning initial

var  token(s) equation variable

dvar real #0 initial step size 1

+ int extra rounding 0
max int >0 max. number of steps before cut off 100
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3.3.1.1 Equation variable

By default the equation variable is the rightmost variable in the vv-list. This
may not always be convenient. A different equation variable can be specified by
entering

var = <variable name>

in the vv-list. <variable name> will generally be a single character or token
but multi-token names are perfectly acceptable (with numerica’s default multi-
token setting; see the associated document numerica.pdf about this).

3.3.1.2 Initial step size

The vv-list contains the equation variable set to the initial trial value. But
\solve needs two initial values to begin its search for a zero or extremum; see
§3.1.1. Ideally, these values will straddle a zero of the function being investi-
gated. ‘Out of the box’, the second trial value is 1 more than the first: if the
equation variable is set to trial value a then the second value defaults to a + 1.
The ‘+1’ here can be changed by entering in the settings option

dvar = <non-zero real number>

For instance, dvar=-1, or dvar=\pi are two valid specifications of initial step
size. The notation is prompted by the use of expressions like x and x + dx for
two nearby points in calculus.

The initial step value may be too big or too small. An example where the
default step value is too big and a smaller one needs to be specified is provided
by Planck’s radiation function (HMF Table 27.2),

1
f(ZC) - ‘T5(€1/I _ 1)
From the (somewhat coarse-grained) table in HMF it is clear that there is a
maximum of approximately 21.2 when z is a little more than 0.2. This is a
maximum above the x-axis and hence ‘elusive’ in the sense of §3.1.2. To find it,
substract 100 (say) from the formula and again use the ability to nest commands
to display the result. In the example, I find in the vv-list of the \eval command
the value of x which maximizes the Planck radiation function, then calculate the
maximum in the main argument of the \eval command. Note the dvar=0.1 in
the settings option of the \solve command:

\eval [p=.1{\[ \fraci{x"5(e"{1/x}-1)} \1}
[ x={ \solveldvar=0.1]
{ \fraci{y 5(e~{1/y}-1)}-100 }[y=0.1] } ]

1

— = 21.201436 = 0.201405).
T L@ )
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The maximum is indeed a little over 21.2 and the z value a little more than 0.2.

The default dvar=1 is too big for this problem. From the table in HMF,
f£(0.1) = 4.540 and f(1.1) = 0.419. Thus for f(z)— 100 the ‘towards the z-axis’
search strategy would lead to negative values of = with the default dvar setting.

3.3.1.3 Extra rounding

\solve determines that a zero or an extremum has been reached when the differ-
ence between two successive bisection values vanishes at the specified rounding
value (the value in the final trailing optional argument of the \solve command;
6 by default). If our function is f(z) then |r,4+1 — 2| = 0 to the specified
rounding value and f(x,), f(zn+1) have opposite signs or at least one van-
ishes. Then (assuming x,, 1 > z, and continuity) there must be a critical value
Ze € [T, Tni1] such that f(z.) = 0 exactly. But in general the critical value .
will not coincide with x,, or x,,+1. If f(z) crosses the z-axis at a steep angle it
may well be that although f(z.) vanishes to all 16 figures, f(z,) and f(zn+1) do
not, not even at the (generally smaller) specified rounding value. For instance,
suppose f(z) = 1000z — 3000 and that our trial value is = e:

\solve [vv=]{$ 1000x-3000 $}[x=e] [4*] —>
1000z — 3000 = —0.0409 — x = 3.0000.

Although the difference between successive x values vanishes to 4 places of
decimals, f(z) does not, not even to 2 places. If we want the function to vanish
at the specified rounding value — 4 in the example — then we will need to locate
the zero more precisely than that.

This is the purpose of the extra rounding key in the settings option. Enter

+ = <integer>

in the settings option of the \solve command to add <integer> to the general
rounding value. By default, +=0.

With this option available it is easy to check that +=3 suffices in the example
to ensure that both z and f(z) vanish to 4 places of decimals,

\solve[+=3]{$ 1000x-3000 $}[x=e] [4*] —
1000z — 3000 = 0.0000, (z =e¢e) — = = 3.0000,

and that +=2 does not, i.e., we need to locate the zero to 4 + 3 = 7 figures to
ensure the function vanishes to 4 figures.

There is no need for the <integer> to be positive. In fact negative values
can illuminate what is going on. In the first of the following, the display is to
10 places but (+=-4) the calculation is only to 10 — 4 = 6 places. In the second,
the display is again to 10 places, but (+=-3) the calculation is to 10 —3 = 7
places.

\solve [+=-4]{$ 1000x-3000 $}[x=e] [10*] —

1000z — 3000 = —0.0008711259, (xz =e) — x = 2.9999991289,
\solve [+=-3]{$ 1000x-3000 $}[x=e] [10*] —

1000z — 3000 = —0.0000366609, (x =e¢) — = = 2.9999999633.
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Only in the second does f(z) = 1000z — 3000 vanish when rounded to 4 figures.
Returning to an earlier example (§3.3.0.1) in which it was not entirely clear
whether a zero or an extremum had been found, we can now resolve the con-
fusion. Use the extra rounding setting (and pad with zeros to emphasize the
4-figure display by adding an asterisk in the trailing optional argument):

\solve[env=multlinex,p=.,+=2]
{ ct-\sqrt{a~{2}+b~{2}-2ab\cos(\beta+\omega t)} }
[a=10,b=20, \beta=1,{t}=0] [4x*]

=

ct — /a2 + b2 — 2abcos(B + wt) = 0.0000,
(a=10,b=20,8=1) — t = 0.6017.

3.3.1.4 Maximum number of steps before cut-off

Once two function values have been found of different sign, bisection is guar-
anteed to arrive at a result. The problem is the search for two such values.
This may not terminate — think of a function like e* which lacks both zeros and
extrema. To prevent an infinite loop, \solve cuts off the search after 100 steps.
This cut-off value can be changed for a calculation by entering

max = <positive integer>

in the settings option.
To illustrate, we know that 1/ has neither zero nor extremum, but we do
not get an infinite loop — we get an error message if we attempt to ‘solve’ 1/x:

\solve{ 1/x }[x=1] = !l No zero/extremum found after 100 steps for

function: 1/z. !l

3.3.1.5 Form of result saved by \nmcReuse

\nmcReuse saves (only) the numerical result. Version 2 offered a setting reuse
providing a choice of what was saved. That has been removed in version 3.
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Chapter 4

Recurrence relations:
\nmcRecur

One of the simplest recurrence relations is that determining the Fibonacci num-
bers, fni2 = fany1 + fn, with initial values fo = f1 = 1. The command
\nmcRecur, short-name form \recur, allows calculation of the terms of this
sequence:

$ \nmcRecur[do=8,seel=8,...]

{ f_{n+2}=f {n+1}+f {n} }[f {1}=1,f {0}=1] $

=1,1, 2, 3,5, 8, 13, 21, ...

The recurrence relation is entered in the main argument (between braces),
the initial values in the vv-list trailing the main argument, and the display
specification is placed in the settings option: do=8 terms to be calculated, all
8 to be viewed (seel=8), and the display to be concluded by an ellipsis to
indicate that the sequence continues (those are three dots/periods/full stops in
the settings option, not an ellipsis glyph).

A more complicated recurrence relation determines the Legendre polynomi-
als:

(n+2)Pyyo(x) — (2n+ 3)xPryi(x) + (n+ 1)P,(x) = 0.

For the purposes of \recur we need P, ;2 expressed in terms of the lower order
terms:

Pata(a) = —— (@0 +3)2Pasa (0) = (1 1)Pa(a)

It is this standard form — the term to be calculated on the left, equated to an
expression involving a fixed number of lower-order terms on the right — that
numerica-plus works with. For Py(x) = 1, Pi(z) = z and 2 = 0.5, the terms
are calculated like this:

\recur [env=multline*,do=11,seel=4,see2=2,

vv={, \\ (vv)\\] { P_{n+2}(x)=\frac{1}{n+2}
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\Bigl((2n+3)xP_{n+1}(x)-(n+1)P_{n}(x)\Bigr) }
[P_{1}(x)=x,P_{0}(x)=1,x=0.5][7]

=

Prya() = —— (20 4+ 3P (z) — (n+ )Pa(a)),

n-+2
(Pi(x) =2, Py(z) = 1,2 =0.5)
1, 0.5, —0.125, —0.4375, ..., —0.2678986, —0.1882286

where Py(0.5) = —0.2678986 and Pj((0.5) = —0.1882286 are the last two dis-
played values (and to seven figures are the values listed in HMF Table 8.1).

The examples also illustrate a consistent response with other commands
of the numerica suite to math environments. For the Fibonacci sequence the
\recur command lay between $ delimiters and display of the formula was sup-
pressed. For the Legendre polynomials, multline* was specified in the settings
option and the formula was included in the display. (‘Formula show’, ‘formula
hide’ can also be set with the f=1, £=0 settings.) Note also the specification of
the vv-list in the second example, spreading the display over three lines, and
the see?2 setting, specifying how many terms to display. The first example dis-
plays a concluding ellipsis; the second example doesn’t. That is the result of
the presence of the ... (three periods) setting in the first example.

4.1 Notational niceties

More than any of the other commands in numerica and associated packages,
\nmcRecur depends on getting the notation into a standard form. At least at
this stage (version 3.0.0) of numerica-plus

o the terms of the recurrence must be subscripted: f,, P,(z) are examples;

¢ the recurrence relation is placed in the main (mandatory) argument of
\nmcRecur in the form: high-order term=function of consecutive lower-
order terms;

o the initial-value terms in the vv-list must occur left-to-right in the order
high to low order;

e the recurrence variable changes by 1 between successive terms.

The example for Legendre polynomials in particular shows what is required.
The Fibonacci example is simpler, since the recurrence variable does not occur
independently in the recurrence relation as it does with the Legendre polyno-
mials, although in both cases the recurrence variable is absent from the vv-list.
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4.1.1 Recurrence variable in the vv-list

The recurrence variable is required in the vv-list only when an implicit mode
calculation is undertaken. To that end write A and B for the coefficients 2n + 3
and n+1 respectively in the Legendre recurrence. A and B will now need entries
in the vv-list which means the recurrence variable will need a value assigned to
it there too, and we will need to add vv@=1 (or vvmode=1) to the settings option.

\recur [env=multline*,vvmode=1,do=11,seel=4,see2=2,
o= NN (vw) N\
{ P_{n+2} (x)=\frac{1}{n+2}
\Bigl (AxP_{n+1}(x)-BP_{n}(x)\Bigr) }
[P_{1}(x)=x,P_{0}(x)=1,x=0.5,A=2n+3,B=n+1,n=0]

=

Prsa(a) = s (AsPusa(a) — BR(@)).

(Pi(x)=2,Py(z)=1,2=05,A=2n+3,B=n+1,n=0)
1, 0.5, —0.125, —0.4375, ..., —0.267899, —0.188229, ...

Since the vv-list is evaluated from the right, the left-to-right high-to-low
ordering of the initial-value terms means the value of the lowest order term is
read first. Although numerica-plus depends on this order of occurrence of the
terms, they do not need to be consecutive as in the examples so far (although
it is natural to enter them in this way). numerica-plus reads the value of the
subscript of only the right-most term (the lowest order term), increments it by
1 when reading the next recurrence term to the left, and so on. The reading of
the subscript of the lowest order term in the vv-list provides the initial value of
the recurrence variable.

In the following example I have placed other items between P (x) and Py(x)
in the vv-list (but maintained their left-to-right order) and given the recurrence
variable n a ridiculous initial value 72/12. (Because of the order in which things
get done ‘behind the scenes’, some value is necessary so that the n in ‘B =n+1’
does not generate an ‘unknown token’ message.) The result is unchanged.

\recur [env=multline*,vvmode=1,do=11,seel=4,see2=2,
o=, NN (v ]
{ P_{n+2} (x)=\frac{1}{n+2}
\Bigl (AxP_{n+1}(x)-BP_{n}(x)\Bigr) }
[A=2n+3,P_{1}(x)=x,B=n+1,n=\pi~2/12,P_{0}(x)=1,x=0.5]

=

Pura(o) = -5 (AePuia(o) = BP,(2)).

(A=2n+3,P(z) =2,B=n+1,n=72/12,Py(z) = 1,2 = 0.5)
— 1, 0.5, —0.125, —0.4375, ..., —0.267899, —0.188229, ...
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4.1.2 Form of the recurrence relation

As noted earler, the form of the recurrence must be entered in the main argument
in the form: highest order term = function of consecutive lower order terms.
The number of lower order terms is the order of the recurrence. The Fibonacci
and Legendre polynomial recurrences are both second order and presented in
the form: term n + 2 = function of term n 4+ 1 and term n. We could equally
have done

\nmcRecur [p,do=8,seel=8,...]
{$ £ {n}=f {n-1}+f {n-2} $
[f_{1}=1,f_{0}=1]

= fo=fo1+f oo, (fi=1fo=1) —1,1,2 3,5, 8 13, 21, ..., where
now the recurrence is of the form term n = function of term n — 1 and term
n — 2, or (adjusting the coefficients as well as the recurrence terms),

\recur [env=multline*,p=.,do=10,seel=4,see2=2,
vv={, \\ (vv)\\]
{ P_{n+1}(x)=\frac{1}{n+1}
\Bigl((2n+1)xP_{n}(x)-nP_{n-1}(x)\Bigr) 2
[P_{2}(x)=-0.125,P_{1}(x)=x,x=0.5]

—

1
Poii(z) = | ((Qn + DazP,(x) — nPn,l(ac))7
(Po(x) = —0.125, P (z) = z,z = 0.5)
— 0.5, —0.125, —0.4375, —0.289062, ..., —0.267899, —0.188229.

The recurrence here is of the form term n + 1 = function of term n and term
n — 1. This last example has one further ‘wrinkle’. I've made P;(z) the lowest
order term and decreased the number of terms to calculate by 1 accordingly.

4.1.3 First order recurrences (iteration)

The recurrence relations for both the Fibonacci sequence and Legendre polyno-
mials are second order. There is no reason why the recurrence should not be
of third or higher order or, indeed, lower. A first order recurrence provides an
alternative means of iterating functions. \recur therefore provides a means to
display the results of an iteration in a different form from \iter.

Iterating 1 + a/x in this way, 16 terms gives the sequence

\recur [do=16,seel1=0,see2=3,...]1{$
x_{n+1}=1+a/x_{n}
$}[x_{0}=1,a=1]

= Xpy1 =1+a/x,, (xo=1,a=1) — 1.618037, 1.618033, 1.618034, ...
to be compared with the example near the start of Chapter 2. (That effected
15 iterations; this uses 16 terms because of the extra xg = 1 term.)
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4.2 Star (*) option

When the star option is used with the \nmcRecur command, only a single term,
the last, is presented as the result. Repeating the penultimate calculation, but
with the star option produces

\recur*[do=10]{ P_{n+1}(x)=\frac{1}{n+1}
\Bigl((2n+1)xP_{n}(x)-nP_{n-1}(x)\Bigr) }
[P_{2}(x)=-0.125,P_{1}(x)=x,x=0.5]

= -0.188229
With the exception of do, any settings are ignored in the display of the result.
The star option produces a purely numerical answer without any trimmings.

This seems something of a waste of the star option since it gives much the
same result as choosing do=10,seel1=0,see2=1 — not ezactly the same, since
math delimiters are involved here, but sufficiently similar to make me wonder
if I should change the starred form to apply only to those recurrences which
approach a limit. The starred form would then produce the limiting value
as its result (like \iter*). This is a possible change for future versions of
numerica-plus and should be borne in mind if using \recurx.

4.3 Settings

The settings option is a comma-separated list of items of the form key = value.
Because recurrence terms are necessarily multi-token, the multi-token key is
hard-coded in \recur to xx=1.

4.3.0.1 Multi-line formatting of result

When the \recur command wraps around math delimiters, the vv setting is
available to split display of the result over two or more lines. With the enhanced
treatment of environments in version 3 of numerica, some of which carries over
to numerica-plus, it is possible to spread a display over two lines simply by
specifying env=multline* (or env=multline if you want equation numbers).
The default vv-list specification in this case is vv={,}\\(vv) which pushes the
vv-list and sequence of calculated values to the second line. If two lines still
give a crowded result, vv={, }\\ (vv)\\ pushes the vv-list, centred, to a second
line and the sequence of values, right aligned, to a third. If you wanted only the
sequence of calculated values on a second line with the vv-list on the same line
as the formula then (for insance) vv={,}\qquad(vv)\\ achieves this:

\nmcRecur [do=8,seel=8, ...,vv={, }\qquad (vv)\\, x]
{$ £f_{n+2}=f_{n+1}+f_{n} $}
[£f_{1}=1,f_{0}=1]
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:>fn+2:fn+l+fnu (f1:17f0:1)
51,1, 2 35,8, 13, 21, ...

4.3.1 \nmcRecur-specific settings

In addition to the inherited settings there are some specific to \nmcRecur. These
are listed in Table 4.1.

4.3.1.1 Number of terms to calculate
By entering
do = <integer>

in the settings option you can specify how many terms of a recurrence to cal-
culate. The default is set to 7 (largely to show a sufficient number of terms
of the Fibonacci series to begin to be interesting). Note that <integer> will
generally not correspond to the subscript on the last term calculated since that
also depends on the value of the subscript of the lowest order term in the vv-list.

4.3.1.2 Number of terms to display
By entering
seel = <integerl>, see2=<integer2>

in the settings option, you can specify how many initial terms of the recurrence
and how many of the final terms calculated you want to view. If the sum of
these settings is less than the do setting, then the terms are displayed with an
intervening ellipsis. If the sum is greater than the do setting, then the values
are adjusted so that their sum equals the do setting and all terms are displayed.

The adjustment is preferentially to seel. Suppose do=7, seel=5, see2=4.
Then see?2 is left unchanged but seel is reduced to 7-4=3. If, say, do=7, seel=5,
see2=8, then see2 is reduced to 7 and seel to -1 (rather than zero, for technical
reasons).

The default value for seel is 3; the default value for see2 is 2.

Table 4.1: Settings for \nmcRecur

key type meaning default
do int> 0 number of terms to calculate 7
seel int>0 number of initial terms to display 3
see2 int>0 number of final terms to display 2

chars follow display of values with an ellipsis
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4.3.1.3 Ellipsis

Including three dots (periods, fullstops) in the settings option

ensures that a (proper) ellipsis is inserted after the final term is displayed. An
example is provided by the display of the Fibonacci sequence at the start of this
chapter. By default this option is turned off.

4.3.2 Form of result saved by \nmcReuse

In previous versions of numerica-plus it was possible to choose with the reuse
setting what was saved by the next \nmcReuse command. The reuse setting
has been discontinued in version 3 of numeric-plus. Now it is the last see2
values of the recurrence sequence which are saved as a comma list in which each
saved value is wrapped in braces in case the decimal comma is being used. (This
setting has no effect when the star option is used with \nmcRecur. In that case
only the numerical result of the final term calculated is saved.)
As an example,

\recur [env=multline*,p=.,vv@=1,do=11,seel=4,see2=2,
vv={, \\ (vv)\\]
{ P_{n+2} (x)=\frac{1}{n+2}
\Bigl (kxP_{n+1}(x)-(n+1)P_{n}(x)\Bigr) }
[k=2n+3,n=1,P_{1}(x)=x,P_{0}(x)=1,x=0.5]

\reuse{legendre}
—
Prsa() = — (kePoa(a) — (0 + DPo(x)
n+2x*n+2 TLrp41\T n n\T) |,
(k=2n+3,n=1,P(x) =2, P(z)=1,2=0.5)
— 1, 0.5, —0.125, —0.4375, ..., —0.267899, —0.188229.

Now check to see what has been saved:
$\legendre$ — —0.267899, —0.188229.

As you can see, the final two (because of see2=2) of the 11 Legendre polynomials
calculated (Py(z) is the first) have been saved.

4.3.2.1 Accessing individual terms

You may wish to gain access to individual members of the sequence of saved
values. numerica-plus provides the utility function \clitem for this purpose.’
It acts on the macro containing the comma list and a number specifying which
member of the sequence is to be recovered: 1 for the first (leftmost) item, 2 for
the second item, and so on.

n fact a wrapper around the expl3 function \clist_item:Nn.
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$\clitem\legendre 2$ — —0.188229

The $ delimiters ensure the minus sign displays correctly. Multi-digit numbers
need to be enclosed in braces. Negative integers give access to the end of the
sequence, -1 for the last (rightmost) item, -2 for the second last and so on. In
the present case,

$\clitem\legendre{-1}=\clitem\legendre 2§ — —0.188229 = —0.188229.

4.3.3 Orthogonal polynomials

I’ve used Legendre polynomials in examples above, but orthogonal polynomials
generally lend themselves to the \recur treatment. Quoting from HMF 22.7,
orthogonal polynomials f, satisfy recurrence relations of the form

ainfn+1(z) = (a2n + a3n2) fn(T) — aan fn-1(z),
or in the standard form required by \recur,

fosa (o) = 2B g () = S g ),
A1n A1n
HMF 22.7 provides a listing of the coefficients a;, for the polynomials of Ja-
cobi, Chebyshev, Legendre, Laguerre, Hermite and others, and tables for these
polynomials.
For example, Laguerre polynomials satisfy the recurrence

2n+1—=zx n
- L, _
n+1 (x) n+1

Ln+1($) = Lnfl(l‘).
with initial values Lo(xz) = 1 and Li(x) = 1 — 2. So let’s calculate the first 13
Laguerre polynomials for, say, * = 0.5:

\recur [env=multline*,do=13,seel=4,see2=2,
vv={, \\ (vv)\\]
{ L_{n+1}(x)=\frac{2n+1-x}{n+1}L_{n} (x)-
\frac{nHn+1}L_{n-1}(x) }
[L_{1}(x)=1-x,L_{0}(x)=1,%=0.5]

=
2n+1—2x n
L, = ———Lp(x) - ——Lp_1(x),
h(e) = T L @) = 2 L (@)
(Li(x) =1—x,Lo(z) = 1,2 =0.5)
— 1, 0.5, 0.125, —0.145833, ..., —0.313907, —0.23165

and for z = 5:
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\recur [env=multline*,p=.,do=13,seel=4,see2=2,
vv={, \\ (vv)\\]
{ L_{n+1}(x)=\frac{2n+1-x}{n+1}L_{n}(x)-
\frac{n}{n+1}L_{n-1}(x) 2}
[L_{1}&x)=1-x,L_{0}(x)=1,x=5]

—
n+l-x n
Lyti(z) = ni_’_an(x) - an—l(x);
(Li(z) =1—x2,Lo(z) = 1,2 =5)
— 1, —4, 3.5, 2.666667, ..., 0.107544, —1.448604.

The results (reassuringly) coincide with those provided in HMF Table 22.11.

4.3.4 Nesting

It is possible to use the \recur command within an \eval, \iter, or \solve
command, and indeed in \recur itself, but with this caveat: if \recur is
nested within another command, the initial terms of the recurrence — e.g.,
fi = 1,fo = 1, for the Fibonacci series, or Li(xz) = 1 — x, Lo(z) = 1 for
the Laguerre polynomials — must be located in the vv-list of that inner \recur
command. Other shared variables can often be shifted to the vv-list of the outer
command, but not these initial terms.

In the following example I multiply together (rather futilely) the third and
fourth members of the sequence of Laguerre polynomials for x = 5 (the an-
swer expected is $ \eval{3.5\times2.666667} $ —> 9.333334). Note that
although it is tempting to shift the shared vv-lists of the inner \recur* com-
mands to the vv-list of the outer \eval command, in fact only the x=5 entry
has been transferred:

\eval [p=.14{$
\recur [do=3]
{ L_{n+1}(x)=\frac{2n+1-x}{n+1}L_{n}(x)-
\frac{n}{n+1}L_{n-1}(x)}
[L_{1}x)=1-x,L_{0}(x)=1]
\times
\recur [do=4]
{ L_{n+1}x)=\frac{2n+1-x}{n+1}L_{n}(x)-
\frac{n}{n+1}L_{n-1}(x)}
[L_{1}(x)=1-x,L_{0}(x)=1]
$} [x=5]

= 3.5 X 2.666667 = 9.333334.
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The terms of a recurrence relation are multi-token variables but numerica re-
quires single tokens for its calculations. The problem for \recur is that the
terms in the recurrence relation in the main (mandatory) argument differ from
the terms in the vv-list: for instance f, in the main argument, f, in the vv-
list. If left like that, when numerica does its conversion from multi-token to
single token variables, f,, would not be found since it differs from fy. Hence a
crucial first step for \recur is to reconcile the different forms, which it does by
converting the forms in the vv-list to the forms in the recurrence in the main
argument. To be available for this form change, they must reside in the inner
vv-list. In the outer vv-list they would be inaccessible to the inner command.
*Hok

This suggests an alternative way of proceeding: write the inital values of the
recurrence terms in the same form in which they occur in the recurrence relation,
together with an initial value for the recurrence variable, e.g., fro41 =1, f, =
1,7 = 0. This is not how mathematicians write the initial values in recurrence
relations, which is why I did not pursue it, but it neatly sidesteps what is
otherwise an initial awkwardness.
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Chapter 5

Reference summary

5.1 Commands defined in numerica-plus

1. \nmcIterate, \iter
2. \nmcSolve, \solve
3. \nmcRecur, \recur
4

. \clitem

5.2 Settings for the three main commands

5.2.1 Settings for \nmcIterate

Settings keys for \nmcIterate:

key type meaning initial

var token(s) iteration variable

+ int fixed point extra rounding 0
max int >0  max. iteration count (fixed points) 100
do int >0 number of iterations to perform 5
see int >0 number of final iterations to view 4

5.2.2 Settings for \nmcSolve

Settings keys for \nmcSolve:

key type meaning initial

var  token(s) equation variable

dvar real #0 initial step size 1

+ int extra rounding 0
max int >0 max. number of steps before cut off 100
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5.2.3 Settings for \nmcRecur

Settings keys for \nmcRecur:

key type meaning initial

do int> 0 number of terms to calculate 7

seel int>0 number of initial terms to display 3

see2 int>0 number of final terms to display 2
chars follow display of values with an ellipsis
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