
The dcounter package∗

Alexander I. Rozhenko
rozhenko@oapmg.sscc.ru

2005/04/25

This package implements a concept of dynamic counters. The counter de-
clared as dynamic is really created at the first use and receives at that moment
the count style which was established by the \countstyle command. For ex-
ample, if \countstyle{section} is established, all dynamically created coun-
ters will be subordinated to section counter (i.e., reset to zero when section
counter is stepped) and their typesetting command \thefoo will be equal to
\thesection.\arabic{foo}. This package is compatible with calc package.

1 User Interface

To declare a dynamic counter 〈foo〉 you have to write\DeclareDynamicCounter

\DeclareDynamicCounter{〈foo〉}

If the 〈foo〉 counter does not exist, its name is added to the list of dynamic counters.
This allows create a counter at the first use with one of the following commands

\setcounter{〈foo〉}{〈number〉} \stepcounter{〈foo〉}
\addtocounter{〈foo〉}{〈number〉} \refstepcounter{〈foo〉}

If the 〈foo〉 counter exists, it will emulate the dynamic style. I use the following
trick for such counters: let \the〈foo〉 command empty and test it at the beginning
of document; if it is empty, the count style of this counter is redefined on the base
of dynamic style.1 This allows work with existing counters by the same manner
as with “true dynamic” counters.

To specify a count style you have to use the command\countstyle

\countstyle{〈counter〉}

The parameter 〈counter〉 have to be existing counter, or dynamic counter, or
empty. Empty 〈counter〉 means the plain count style without subordination. If
〈counter〉 not exists and is dynamic it is created here within the previously speci-
fied count style. The default count style is the plain style.

∗This file has version number v1.2, last revised 2005/04/25.
1This trick was added in version 1.2 of the package.

1



The \counstyle command has an optional parameter useful for special pur-
poses. If you want to create some counters in another style that is specified by
\countstyle command, you can write

\countstyle[〈list of counters〉]{〈another counter〉}

Here 〈list of counters〉 is the list of comma separated counters whose count style
you want to subordinate to 〈another counter〉. This command creates all unde-
fined counters of the list. The list may contain not only undefined counters but
also existing counters. If counter in the list exists, its count style will be modified
to be subordinated to 〈another counter〉. Note, that if this counter was subordi-
nated before to any other counter, the previous subordination will be rejected. For
example, let you want to use the book document class and set \Roman enumera-
tion of chapters, independent arabic enumeration of sections and to subordinate
enumeration of figures, tables and equations to the section counter. You can write

\documentclass{book}
\usepackage{dcounter}
\renewcommand\thechapter{\Roman{chapter}}
\countstyle[section]{}
\countstyle[figure,table,equation]{section}

After that the chapter counter will not affect on section counter, and all figure,
table, and equation numbers will typeset as \thesection.\arabic{foo}.

The command\DynamicCount

\DynamicCount{〈counter〉}

sets the count style for 〈counter〉 exactly the same as for dynamically created
counters and creates this counter if it is undefined. This command is internally
used in emulation of dynamic counters and in the \countstyle command with
optional parameter. Since version 1.2, this command is obsolete, but it is saved
for backward compatibility.

Note. All described commands are used in the preamble.

2 The Basic Implementation Part

\DCNT@list

\DCNT@elist

We begin from the initialization of the list of dynamic counters. \DCNT@list
contains a list of undeclared counters and \DCNT@elist contains a list of existing
counters that are declared as dynamic counters.
1 〈∗package〉
2 \def\DCNT@list{}

3 \def\DCNT@elist{}

4 \@onlypreamble\DCNT@elist

Their items will have the form \@elt{〈counter〉}

2



\DCNT@in The macro \DCNT@in{〈list〉}{〈yes〉}{〈no〉} tests the list of counters 〈list〉 to con-
tain the counter \DCNT@foo and after testing executes 〈yes〉-sequence if \DCNT@foo
found or 〈no〉-sequence if not. To restrict the scope of internal modifications made
by this macro we always enclose it into a group. While processing the list of coun-
ters the command executes \DCNT@noteq{〈counter〉} hook for every counter which
name is distinct from the tested name.
5 \def\DCNT@in#1#2#3{\@tempswafalse

6 \let\@elt\DCNT@elt #1%

7 \if@tempswa #2\else #3\fi

8 }

9 \def\DCNT@elt#1{\def\DCNT@name{#1}%

10 \ifx\DCNT@name\DCNT@foo \@tempswatrue \else \DCNT@noteq{#1}\fi

11 }

\DCNT@define The command \DCNT@define{〈command〉}{〈foo〉} tests the counter 〈foo〉 to be
undefined and, if it is true, tries to create it dynamically. After that it executes
〈command〉 with the 〈foo〉 parameter.
12 \def\DCNT@define#1#2{%

13 \@ifundefined{c@#2}%

14 {{\edef\DCNT@foo{#2}\let\DCNT@noteq\@gobble

15 \DCNT@in\DCNT@list{\newcounter{#2}\DCNT@the{#2}}{}%

16 }}{}%

17 #1{#2}%

18 }

\DCNT@the The command \DCNT@the{〈foo〉} redefines \the〈foo〉 command to typeset it in
the count style subordinated to \DCNT@main counter. It also adds the name 〈foo〉
to the resetting list of \DCNT@main counter.
19 \def\DCNT@the#1{%

20 \ifx\DCNT@main\@empty

21 \expandafter\xdef\csname the#1\endcsname

22 {\noexpand\@arabic \expandafter\noexpand \csname c@#1\endcsname}%

23 \else

24 \expandafter\xdef\csname the#1\endcsname

25 {\expandafter\noexpand \csname the\DCNT@main\endcsname

26 .\noexpand\@arabic \expandafter\noexpand \csname c@#1\endcsname}%

27 \@addtoreset{#1}\DCNT@main

28 \fi

29 }

30 \let\DCNT@main\@empty

3 The Preamble Only Commands

\DeclareDynamicCounter The following command tests the counter and adds it to the list of dynamic coun-
ters if it does not exist or to the list of emulated counters if it already exists. In
the last case, \the〈counter〉 command is defined as empty command. It will be
redefined later at the beginning of document.

3



31 \newcommand*{\DeclareDynamicCounter}[1]{%

32 \begingroup

33 \edef\DCNT@foo{#1}%

34 \ifx\DCNT@foo\@empty

35 \PackageError{dcounter}%

36 {Cannot declare a dynamic counter with empty name}{}%

37 \fi

38 \let\DCNT@noteq\@gobble

39 \@ifundefined{c@#1}%

40 {\DCNT@in\DCNT@list{}{\@cons\DCNT@list{{#1}}}}%

41 {\DCNT@in\DCNT@elist{}{\@cons\DCNT@elist{{#1}}}%

42 \expandafter\global\expandafter\let

43 \csname the#1\endcsname\@empty}%

44 \endgroup

45 }

46 \@onlypreamble\DeclareDynamicCounter

\countstyle Now we implement \countstyle command which redefines \DCNT@main macro to
new main counter. It tests the counter to be defined and tries to define it if not.
47 \newcommand{\countstyle}{\@ifnextchar[{\DCNT@lcstyle}{\DCNT@cstyle}}

48 \@onlypreamble\countstyle

49 \def\DCNT@cstyle#1{\edef\DCNT@foo{#1}%

50 \ifx\DCNT@foo\@empty \else

51 \DCNT@define\@gobble{#1}%

52 \@ifundefined{c@#1}{\@nocounterr{#1}}{}%

53 \fi

54 \let\DCNT@main\DCNT@foo

55 }

56 \@onlypreamble\DCNT@cstyle

The special variant of this command with optional parameter locally sets the spe-
cial count style and redefines all counters in list via the \DynamicCount command.
57 \def\DCNT@lcstyle[#1]#2{%

58 {\DCNT@cstyle{#2}\@for\@tempa:=#1\do{\DynamicCount\@tempa}}%

59 }

60 \@onlypreamble\DCNT@lcstyle

\DynamicCount The macro \DynamicCount{〈foo〉} modifies the count style of the counter 〈foo〉
and defines this counter if it is undefined.
61 \newcommand*{\DynamicCount}[1]{%

62 \@ifundefined{c@#1}%

63 {\newcounter{#1}}%

If the counter is already defined, we check all resetting lists and remove all refer-
ences to this counter.
64 {{\edef\DCNT@foo{#1}\let\DCNT@noteq\DCNT@add

65 \let\@elt\DCNT@remove \cl@@ckpt

66 }}%

67 \DCNT@the{#1}%

68 }

4



69 \@onlypreamble\DynamicCount

\DCNT@remove The \DCNT@remove{〈foo〉} command removes all references to \DCNT@foo counter
from the \cl@〈foo〉 list of counters.
70 \def\DCNT@remove#1{\expandafter\DCNT@remlist\csname cl@#1\endcsname}

71 \def\DCNT@remlist#1{%

72 {\let\@tempa\@empty \DCNT@in#1{\global\let#1\@tempa}{}}%

73 }

74 \@onlypreamble\DCNT@remove

75 \@onlypreamble\DCNT@remlist

\DCNT@add The \DCNT@add{〈counter〉} command locally adds \@elt{〈counter〉} to \@tempa.
76 \def\DCNT@add#1{%

77 \let\@elt\relax\edef\@tempa{\@tempa\@elt{#1}}\let\@elt\DCNT@elt

78 }

79 \@onlypreamble\DCNT@add

\DCNT@eltemu The \DCNT@emu{〈counter〉} command test \the〈counter〉 command to be empty
and redefines the counter in the dynamic style. This command is applied to all
existing counters that are emulated as dynamic counters.
80 \def\DCNT@emu#1{%

81 \expandafter\ifx\csname the#1\endcsname\@empty

82 \DynamicCount{#1}\fi

83 }

84 \@onlypreamble\DCNT@emu

4 Final Modifications

Finally, we modify \setcounter and \addtocounter commands. We do it at the
beginning of the document to avoid conflict with the calc package. If the list of
dynamic counters is empty, we delete all commands of the package. We also define
all dynamically emulated counters if their \the command is empty.
85 \AtBeginDocument{%

86 \ifx\DCNT@list\@empty

87 \@onlypreamble\DCNT@list

88 \@onlypreamble\DCNT@in

89 \@onlypreamble\DCNT@elt

90 \@onlypreamble\DCNT@define

91 \@onlypreamble\DCNT@the

92 \@onlypreamble\DCNT@main

93 \@onlypreamble\DCNT@name

94 \@onlypreamble\DCNT@foo

95 \@onlypreamble\DCNT@noteq

96 \else

97 \let\DCNT@setcounter\setcounter

98 \def\setcounter{\DCNT@define\DCNT@setcounter}

99 \let\DCNT@addtocounter\addtocounter

100 \def\addtocounter{\DCNT@define\DCNT@addtocounter}

5



101 \fi

102 {\let\@elt\DCNT@emu \DCNT@elist}%

103 }

104 〈/package〉

6


