
lsc.sty – Typesetting Live Sequence Charts

Bernd Westphal

February 23, 2006

Contents

1 Introduction 2

1.1 Supported LSC Language . 2
1.2 Typesetting MSCs and Sequence Diagrams 4
1.3 Related Styles . 4

1.3.1 MSC . 4
1.3.2 UML . 4

2 Preliminaries 4

3 LSC Environments 6

3.1 Full LSCs . 6
3.2 LSCs without Header . 7

4 Instance Lines 8

4.1 Ordinary Instance Lines . 8
4.2 Creation Instance Lines . 9
4.3 Instance Location and Footer Dimensions 10

5 Instance Line Segments 11

5.1 Ordinary Instance Line Segments 12
5.2 Environment Instance Line Segments 12

6 Messages 13

6.1 Asynchronous Messages . 13
6.2 Instantaneous Messages . 14
6.3 Self Messages . 15

7 Conditions 15

7.1 Narrow Conditions . 16
7.2 Wide Conditions . 16
7.3 Colourful Conditions . 17

8 Local Invariants 18

1

9 Timer Sets, Timer Resets, and Timeouts 20

10 Actions 21

11 Self Destructions 21

12 Coregions 22

13 Simultaneous Regions 23

14 Technicalities 24

14.1 Atoms . 24
14.2 Cuts . 25
14.3 Putting Stuff at the Current Location 27

15 Typesetting Play-Engine LSCs 28

15.1 Actors, Clocks, and Environments 28
15.2 Existential Symbolic Instances 28
15.3 Branching, Subcharts, and Loops 29

16 Tricks and Tweaks 30

16.1 Linewidth . 30
16.2 Scaling . 30

1 Introduction

The lsc.sty package provides means to typeset Live Sequence Charts. The
Live Sequence Charts (LSC) language is a variant of Message Sequence Charts
(MSC) [IT99]. It’s intended use is as a language to formalise requirements
on the communication in a (software or hardware) system under design. The
basic difference to MSCs is the addition of modalities to the elements of a chart
to distinguish mandatory from possible behaviour. For example, locations on
instance lines can be hot to indicate that progress is required to satisfy the LSC
(liveness) or cold to indicate that behaviour without progress is acceptable. This
is where the LSC language gets its name from.

1.1 Supported LSC Language

For further information on the original syntax, semantics, and pragmatics of the
LSC language see:

[DH01] Werner Damm and David Harel, LSCs: Breathing Life into Mes-

sage Sequence Charts, Formal Methods in System Design, 19(1):45–
80, July 2001.

The LSC language presented in this publication is (up to minor deviations in
style) fully supported by lsc.sty.

2

From the original language, two dialects emerged, each of them tailored for
a particular use of an LSC specification, i.e. a collection of single charts. The
dialect presented in

[Klo03] Jochen Klose, Live Sequence Charts: A Graphical Formalism for

the Specification of Communication Behaviour, PhD thesis, Carl von
Ossietzky Universität Oldenburg, 2003.

considers LSCs as the requirements specification language in a classical devel-
opment process where the system implementation is finally tested to satisfy the
requirements or, possibly better, a system model is formally verified to satisfy
the requirements.

To this end, the author added timers and timing intervals (also taken from
MSCs), local invariants to state requirements on spans of time in contrast to
conditions which apply only to single points of time, three activation modes,
and two interpretations, but doesn’t support scopes. The articles

[KW02] Jochen Klose and Bernd Westphal, Relating LSC Specifications

to UML Models, In: Hartmut Ehrig and Martin Große-Rhode (Eds.),
Proceedings of the Workshop Integration of Software Specification
Techniques (INT’02), pages 130–137, April 2002.

[DW05] Werner Damm and Bernd Westphal, Live and Let Die: LSC-

based Verification of UML-Models, Science of of Computer Program-
ming, 55(1–3):117–159, March 2005.

provide a further extension to so called dynamic binding instance lines.
The LSC language presented in these publications is (up to minor deviations

in style) fully supported by lsc.sty.

The dialect presented in

[HM03] David Harel and Rami Marelly, Come, Let’s Play: Scenario-

Based Programming Using LSCs and the Play-Engine, Springer-
Verlag, 2003.

is tailored for an approach called play-outplay-out. In this approach, the LSC
specification is the implementation. A tool called play-engine interprets an
LSC specification that has to be related to a GUI. If the GUI is operated by a
user, then the play-engine looks up its collection of LSCs and operates the GUI
accordingly, thus interacts with a user.

To this end, they added, for example, actor instance lines, actions to mod-
ify the system state and extended scopes to loops. They independently also
added symbolic instances, means to handle time and to exclude observations by
forbidden elements, and two interpretations.

The LSC language presented in [HM03] is not fully supported by lsc.sty,
and if supported, features are rendered in the style and terminology of [Klo03].
Section 15 discusses how some constructs of this LSC dialect can although be
typeset with some manual intervention using some special features lsc.sty.

3

1.2 Typesetting MSCs and Sequence Diagrams

As LSCs are a derivative of MSCs as are UML’s Sequence Diagrams (SDs), there
is a common sublanguage and MSCs or SDs from the common sublanguage may
well be typeset using lsc.sty.

But note that there are no plans to extend lsc.sty to full support of either
language. For MSCs, for example, there is an own LATEX style and SDs may
finally be supported by styles for typesetting UML diagrams.

1.3 Related Styles

As soon as lsc.sty reached some usable state – of course – it turned out that
there exist LATEX packages for typesetting variants of sequence diagrams from
which lsc.sty could have been derived from.

We briefly list and discuss the styles we’re aware of in the following sections.

1.3.1 MSC

Version 1.13 of the mscmsc.sty package1 by S. Mauw and V. Bos [MB01] claims
to support the full MSC2000 language.

The most obvious difference is that msc.sty seems to be able to compute
a layout on its own, i.e. it only takes a description of the dependencies in the
LSC, i.e. the user needn’t give precise positioning commands while manual
intervention is still possible.

In contrast, lsc.sty is more low level as it expects all layout to be given by
the user.

1.3.2 UML

For example, the pst-uml.sty package2 by M. Diamantini provides rudimen-
tary support for UML sequence diagrams.

2 Preliminaries

The macros provided by lsc.sty can be divided into three categories:

Environments. The FullLsc and Lsc environments draw LSC charts with
and without header, the lscinst and lsccreateinst environments draw
instances within LSCs, and the coregion and simregion environments
mark coregions and simultaneous regions within instances.

Atomic Commands. An atomic command directly draws an LSC element,
instance line segment, or annotation that is related to only a single loca-
tion. Examples are instance line segments, action boxes, or timer set/reset
and timeout.

1http://www.win.tue.nl/ sjouke/misc/mscpackage
2http://www.ensta.fr/ diam/latex/pst-uml/index.html

4

Inst

Cond

Inst

Cond

\begin{Lsc}{none}{1}{3}

\begin{lscinst}{\it Inst}

\lscLine{hot}{1}

\lscCond{hot}{\it Cond}

\lscLine{cold}{2}

\end{lscinst}

\end{Lsc}

Figure 1: Exploded view of a simple LSC.

Composite Commands. Composite commands draw LSC elements that are
related to more than one location. There are typically macros to set
the locations which are used within an instance line environment and
one macro which finally draws the element based on the set locations. A
typical example are the macros for messages which comprise one macro for
setting the sending location, one macro for setting the reception location,
and a macro which draws the message arrow.

Figure 1 illustrates the drawing principle. The LSC in the middle is the
result of the source on the right. To pinpoint the relation between commands
and graphics, we provide an exploded view on the left and connect graphics and
text by dotted lines.

In the example, the Lsc environment draws nothing as we use the quantifi-
cation ‘none’ (which is special to lsc.sty and not part of any LSC dialect) and
have no prechart. If we used ‘universal’ or ‘existential’, then the Lsc would
draw the solid or dashed frame around the body and if we had a prechart, Lsc
would draw the large dashed kandis.3 But although it doesn’t draw something,
it defines the pspicture environment enclosing the LSC and thereby defines
the box boundary. The size of the box is determined by the number of instance
lines (1 in the example) and their height (3 pstricks units in the example).

Within the Lsc environment, there is a single lscinst environment. It takes
one required argument, the instance name, and is responsible for drawing the
instance head and footer. A possible parameter controls the shape of the head
and the footer (cf. Section 4).

Within the lscinst environment, there are only atomic commands in the
example. The \lscLine command draws an instance line segment and ad-

3A kandis is a giant sugar crystal which plays a role in East Frisian tea ceremonies (first
the kandis, then the tea, and then slowly and carefully some cream). From the side a kandis
typically looks like a hexagon, i.e. like the shape used for rendering conditions and pre-charts.
Throughout this text, we use kandis to denote the hexagon shape.

5

vances vertical position by the segment length. The first parameter is either
‘hot’, ‘cold’, or ‘none’ and gives the temperature (or mode) of the location at
the beginning of the instance line segment (cf. Section 5 for the pseudo-mode
‘‘none’’). The second parameter is the instance line segment length. In the
example, we use pstricks units, but any length understood by pstricks will
do (cf. Section 5 for a discussion of environment instance line segments and
their optional parameter for timing intervals).

The \lscCond command draws a condition restricted to a single instance
line, also called narrow condition (cf. Section 7 for a discussion of narrow
vs. wide conditions). The first parameter is either ‘hot’ or ‘cold’ and gives
the mode, the second parameter is the condition expression. The \lscCond

command doesn’t advance the vertical position, that is, all atomic commands
different from instance line segments which are given between two instance line
segments are drawn at the same position and implicitly form a simultaneous re-
gion. The simregion environment can be used to make this explicit by drawing
a large dot at the shared location (cf. Section 13).

Note that the instance line segments in the LSC in the middle of Figure 1
are of different length according to the source on the right but appear to be
of roughly the same length. The reason for using different lengths is that the
first instance line segment spans from the bottom line of the instance header
frame to the top line of the condition kandis. The second instance line segment
spans from the top (!) line of the condition kandis to the bottom (!) line of the
footer, i.e. the beginning is hidden by the condition and the end is hidden by the
footer. The former hiding takes place because only after drawing an instance
line segment, all elements in the simultaneous region before it are “flushed”.
The footer is drawn after the last instance line segment has been drawn but
it is the only element whose bottom line is positioned at the current position.
Conditions, for example, are placed such that the top line lies at the current
position.

3 LSC Environments

The lsc.sty package provides two environments for LSCs, one for complete
LSC specifications and one omitting the header, in particular to typeset LSC
bodies only without enclosing frame.

3.1 Full LSCs

\begin{FullLsc}[prechartloc]{name}{ac}
{invariant | initial | iterative}
{strict | weak | permissive | }
{existential | universal}{nrinsts}{nrlocs}

. . .
\end{FullLsc}

6

The Lsc environment typesets full LSCs, i.e. LSC with a header giving the
name name, the activation condition ac, the activation mode (one of
‘invariant’, ‘initial’, or ‘iterative’), the interpretation, (one of ‘strict’,
‘weak’, ‘permissive’, or empty), and the quantification (either ‘universal’ or
‘existential’).

The optional first parameter gives the height of the pre-chart, nrinsts is the
(strictly positive) number of instances, and nrlocs the height of instance lines.

LSC: Name
AC: ActCond
AM: invariant I: permissive

Inst1 Inst2

\begin{FullLsc}%

{Name}{ActCond}%

{invariant}{weak}%

{existential}{2}{3}

\begin{lscinst}{Inst1}

\lscLine{hot}{3}

\end{lscinst}

\begin{lscinst}{Inst2}

\lscLine{hot}{3}

\end{lscinst}

\end{FullLsc}

Note that the interpretation ‘weak’ maps to the unified name permissive in
the LSC header. If no interpretation is given, the corresponding field is not
present in the LSC header at all.

LSC: Name
AC: ActCond
AM: iterative

Inst1 Inst2

\begin{FullLsc}[1.5]%

{Name}{ActCond}%

{iterative}{}%

{universal}{2}{3}

\begin{lscinst}{Inst1}

\lscLine{hot}{3}

\end{lscinst}

\begin{lscinst}{Inst2}

\lscLine{hot}{3}

\end{lscinst}

\end{FullLsc}

3.2 LSCs without Header

\begin{Lsc}[prechartloc]
{existential | universal | none}{nrinsts}{nrlocs}

. . .
\end{Lsc}

The Lsc environment is provided to typeset LSCs without header and LSCs
without surrounding frame indicating the quantification. With the special quan-
tification ‘none’, the frame is omitted and thus only the LSC body drawn. This
is useful in publications on LSCs which discuss, for example, the compilation of
LSC bodies to automata.

7

Inst1 Inst2 \begin{Lsc}{none}{2}{3}

\begin{lscinst}{Inst1}

\lscLine{hot}{3}

\end{lscinst}

\begin{lscinst}{Inst2}

\lscLine{hot}{3}

\end{lscinst}

\end{Lsc}

4 Instance Lines

There are two flavours of instance line environment, ordinary and creation in-
stance lines. Creation instance lines are used to indicate that an object is created
during a scenario. To this end the instance head can be placed some offset below
the regular position of instance heads and it defines a hook for the composite
\lscCreate command which draws the creation arrow.

4.1 Ordinary Instance Lines

\begin{lscinst}[MSC | SD | noboxSD | esymMSC |
esymSD]{name}
. . .
\end{lscinst}

The name is set on top of the instance line segments. The optional parameter
controls the appearance of the instance header and footer according to the
following table:

framed header footer
‘MSC’ (default) solid ×
‘SD’ solid −
‘noboxSD’ none −
‘esymMSC’ dashed ×
‘esymSD’ dashed −

There is no kind for the fourth possible combination – nobody wants the
combination of no frame but a footer.

8

MSC SD noboxSD

\begin{Lsc}{none}{2}{3}

\begin{lscinst}{MSC}

\lscLine{hot}{3}

\end{lscinst}

\begin{lscinst}[SD]{SD}

\lscLine{hot}{3}

\end{lscinst}

\begin{lscinst}[noboxSD]%

{noboxSD}

\lscLine{hot}{3}

\end{lscinst}

\end{Lsc}

See Section 15.2 for examples of existential symbolic instances.

4.2 Creation Instance Lines

\begin{lsccreateinst}[MSC | SD | noboxSD | esymMSC |
esymSD]

{offset}{id}{name}
. . .
\end{lsccreateinst}

The optional parameter lsccreateinst and the name work just like in the
lscinst environment. The additional parameter offset gives the offset of the
instance header relative to the headers of ordinary instance lines. That is, it is
exactly equivalent to lscinst if the offset is 0 and the corresponding command
is omitted.

\lscCreate{id}

The parameter id is a legal LATEX identifier which can be used in the \lscCreate
command to draw the create arrow.

Inst1

Inst2

\begin{Lsc}{none}{2}{3}

\begin{lscinst}{Inst1}

\lscLine{hot}{0.7}

\lscCreate{cr}

\lscLine{hot}{2.3}

\end{lscinst}

\begin{lsccreateinst}{1}{cr}{Inst2}

\lscLine{hot}{2}

\end{lsccreateinst}

\end{Lsc}

9

Inst

\lscLocationWidth

\lscLocationHeight

Figure 2: Dimensions of a location.

Inst1

Inst2
\begin{Lsc}{none}{2}{3}

\begin{lsccreateinst}{1}{cr}{Inst2}

\lscLine{hot}{2}

\end{lsccreateinst}

\begin{lscinst}{Inst1}

\lscLine{hot}{0.7}

\lscCreate{cr}

\lscLine{hot}{2.3}

\end{lscinst}

\end{Lsc}

Note that the creation arrow ends at the border of the frame when the
instance head has a frame and at the label if there is no frame. Further note
that the instance line end of the arrow is located 0.3 pstricks units above the
bottom of the instance head such that the instance line segment lengths on the
instance line with the \lscCreate can easily be adjusted to obtain a vertical
arrow.

The creation arrow is drawn as soon as both ends, i.e. the \lscCreate

location and the creation instance, are given. The identifier is then undefined,
i.e. the same identifier may legally occur in two \lscCreate/lsccreateinst
pairs in the same LSC – but this is obviously bad style.

4.3 Instance Location and Footer Dimensions

\lscLocationWidth

\lscLocationHeight

The LSC’s box boundary is basically computed in terms of the width and
height of a single location within an instance (cf. Figure 2) as defined by lengths
\lscLocationWidth (default: 3 pstricks units) and \lscLocationHeight (de-
fault: 1 pstricks unit). The width of the LSC body is computed as

number of instances ∗ \lscLocationWidth

and the height of the LSC body is computed as

number of locations ∗ \lscLocationHeight.

10

Both lengths can be manipulated, for example, to obtain wider or narrower
instances or to globally scale the length of instance line segments.

To change the dimension for only a single LSC, one can exploit that curly
braces in LATEX define scopes and that changes to lengths or commands are local
to these scopes. To this end we have enclosed the manipulation of the lengths
and the Lsc environment in curly braces.

Instance
No. 1

{\pssetlength{\lscLocationWidth}{5em}

\pssetlength{\lscLocationHeight}{1.5}

\begin{Lsc}{none}{2}{3}

\begin{lscinst}{%

\parbox{4em}{Instance No. 1}}

\lscLine{hot}{3}

\end{lscinst}

\begin{verbatim}

\end{Lsc}}

Note that the height of the instance head frame depends on the height of its
content, i.e. a \parbox may be used to obtain multiline annotations in instance
heads.

\lscFooterHeightFactor

The command (!) \lscFooterHeightFactor (default: 0.2) affects the ap-
pearance of instance footers. It should be set to a positive real number, at
best from the left-open interval]0, 0.2]. The footer is basically a filled framebox
around a \rule of height

\lscFooterHeightFactor∗ \lscLocationHeight.

Inst {\renewcommand{\lscFooterHeightFactor}{0.01}

\begin{Lsc}{none}{1}{3}

\begin{lscinst}{Inst}

\lscLine{hot}{3}

\end{lscinst}

\begin{verbatim}

\end{Lsc}}

5 Instance Line Segments

There are two flavours of instance line segments, ordinary and environment
instance line segments. Environment instance line segments are rendered like
the ones of Sequence Diagrams.

11

5.1 Ordinary Instance Line Segments

\lscLine[interval]{hot | cold | none}{length}

The \lscLine command draws the elements belonging to the location where
the line starts, draws the instance line segment of length length, and advances
the vertical position by this amount. The mode ‘‘none’’ is not a valid mode of
LSCs but only present to draw an invisible line segment to draw abstract LSCs,
e.g. to explain LSC construction algorithms.

The actual length of the line segment is computed as length·\lscLocationHeight.
If the optional interval is given, it rendered to the right of the instance line

segment. This may be any content, but it is typically used to place timing
intervals.

Inst1 Inst2

[1, 2]

[3, 17]

\begin{Lsc}{none}{2}{3}

\begin{lscinst}{Inst1}

\lscLine{hot}{0.75}

\lscLine{none}{0.75}

\lscLine{cold}{1.5}

\end{lscinst}

\begin{lscinst}{Inst2}

\lscLine[{$[1,2]$}]{cold}{1.25}

\lscLine[{$[3,17]$}]{hot}{1.75}

\end{lscinst}

\end{Lsc}

Note that timing intervals are always vertically centred on the line and put
to the right. As this is already the optional parameter, there are no plans to
support variable positioning of the timing interval but nobody keeps you from
using \rput should the need arise.

The \lscLine command doesn’t set the line colour, thus one can obtain
colourful LSCs using the \psset command.

Inst \begin{Lsc}{none}{1}{3}

\begin{lscinst}{Inst}

{\psset{linecolor=green}

\lscLine{hot}{1.25}}

{\psset{linecolor=blue}

\lscLine{cold}{1.75}}

\end{lscinst}

\end{Lsc}

5.2 Environment Instance Line Segments

\lscEnvLine[interval]{hot | cold}{length}

The \lscEnvLine behaves just like \lscLine, only the instance line segment
is rendered differently, namely in Sequence Diagram style. To indicate hot
segments, a solid line is drawn on top of the environment line segment.

12

Inst1 Inst2

[1, 2]

[3, 17]

\begin{Lsc}{none}{2}{3}

\begin{lscinst}{Inst1}

\lscEnvLine{hot}{1.25}

\lscEnvLine{cold}{1.75}

\end{lscinst}

\begin{lscinst}{Inst2}

\lscEnvLine[{$[1,2]$}]{cold}{1.25}

\lscEnvLine[{$[3,17]$}]{hot}{1.75}

\end{lscinst}

\end{Lsc}

6 Messages

Both message kinds distinguished by [Klo03] are supported by two sets of com-
posite commands. For each kind, there is one command to mark the sending
location, one command to mark the reception location, and one command to
finally draw the arrow.

The difference between both is only the shape of the arrow, it is not enforced
that instantaneous messages are drawn horizontally without slope.

Both also don’t define the line colour, i.e. one can obtain coloured arrows
using \psset (cf. Section 5.1).

Self messages are currently not supported. If the sending and reception lie
on the same instance line, then the arrow’s line coincides with the instance line
and only the arrow itself and the annotation will be visible.

6.1 Asynchronous Messages

\lscAsynSnd{id}
\lscAsynRcv{id}
\lscAsyn{id}{hot | cold}{label}

If \lscAsynSnd and \lscAsynRcv occurred exactly once within an FullLsc

or Lsc environment, then a following \lscAsyn command with the same id
draws the arrow annotated with label.

The id can be reused for another message within the same LSC after \lscAsyn
has been called, but this is not considered good style.

13

Inst1 Inst2

E

F

\begin{Lsc}{none}{2}{3}

\begin{lscinst}{Inst1}

\lscLine{hot}{0.5}%

\lscAsynSnd{e}%

\lscLine{hot}{1.5}%

\lscAsynRcv{f}%

\lscLine{hot}{1}%

\end{lscinst}

\begin{lscinst}{Inst2}

\lscLine{hot}{1}%

\lscAsynRcv{e}%

\lscLine{hot}{0.5}%

\lscAsynSnd{f}%

\lscLine{hot}{1.5}%

\end{lscinst}

\lscAsyn{e}{hot}{E}%

\lscAsyn{f}{cold}{F}%

\end{Lsc}}

Note that the closing commands of composite commands, like \lscAsyn in
the example, are by convention collected below all instance environments. It is
by no means necessary, as explained above, but thereby one provides a common
place to look for all definitions.

6.2 Instantaneous Messages

\lscInstSnd{id}
\lscInstRcv{id}
\lscInst{id}{hot | cold}{label}

The composite command for instantaneous messages is operated exactly like
\lscAsyn and friends (cf. Section 6.1).

14

Inst1 Inst2

E

F

\begin{Lsc}{none}{2}{3}

\begin{lscinst}{Inst1}

\lscLine{hot}{1}%

\lscInstSnd{e}%

\lscLine{hot}{1}%

\lscInstRcv{f}%

\lscLine{hot}{1}%

\end{lscinst}

\begin{lscinst}{Inst2}

\lscLine{hot}{1}%

\lscInstRcv{e}%

\lscLine{hot}{0.5}%

\lscInstSnd{f}%

\lscLine{hot}{1.5}%

\end{lscinst}

\lscInst{e}{hot}{E}%

\lscInst{f}{cold}{F}%

\end{Lsc}}

6.3 Self Messages

Self messages are not a third category but both asynchronous and instantaneous
messages may well begin and end at the same instance line.

Inst
E

F

\begin{Lsc}{none}{1}{4}

\begin{lscinst}{Inst}

\lscLine{hot}{0.5}

\lscAsynSnd{e}

\lscLine{hot}{1}

\lscAsynRcv{e}

\lscLine{hot}{0.5}

\lscInstSnd{f}

\lscLine{hot}{1}

\lscInstRcv{f}

\end{lscinst}

\lscAsyn{e}{hot}{E}

\lscInst{f}{hot}{F}

\end{Lsc}

Currently, the shape is fixed, i.e. the arrow extends to the right of the
instance line and has “armlength” 0.5 pstricks units.

7 Conditions

Conditions can be rendered using an atomic command and a composite com-
mand. The former command is provided for convenience for the frequent case
that a condition spans only a single instance line (narrow condition). In this
case, all information, i.e. the location, the temperature, and the label, can be
given immediately.

15

A wide condition may also span only one instance line but it may also cover
more.

7.1 Narrow Conditions

\lscCond{hot | cold}{label}

The \lscCond command renders a condition kandis at the current position.

Inst1

x = a

Inst2

y = 0
∨ z = 0

\begin{Lsc}{none}{1}{3}

\begin{lscinst}{Inst1}

\lscLine{hot}{1}%

\lscCond{hot}{$x = a$}%

\lscLine{hot}{2}%

\end{lscinst}

\begin{lscinst}{Inst2}

\lscLine{hot}{0.5}%

\lscCond{cold}{%

\parbox{4em}{\centering%

$y=0$ $\vee\ z=0$}}%

\lscLine{hot}{2.5}%

\end{lscinst}

\end{Lsc}}

The size of the kandis scales with the size of label ’s box. This has the effect
that it is rather low if label has neither over- nor underlength and it scales
unproportionally if label has multiple lines. The former issue can be addressed
using \rule or \phantom, the latter will have to be addressed by a smarter
kandis drawing macro within lsc.sty.

7.2 Wide Conditions

\lscWidecondOn{id}
\lscWidecondOff{id}
\lscWidecond{id}{hot |
cold}{label}

The \lscWidecondOn and \lscWidecondOff commands add locations to a
wide condition. They have to occur on exactly the same height and consecu-
tively. Use \lscWidecondOn for those instances to which the condition applies
and \lscWidecondOff otherwise.

16

Inst1 Inst2 Inst3

x = 0

\pssetlength%

{\lscLocationWidth}{2.5}%

\begin{Lsc}{none}{3}{3}

\begin{lscinst}{Inst1}

\lscLine{hot}{1}

\lscWidecondOn{wc}

\lscLine{hot}{2}

\end{lscinst}

\begin{lscinst}{Inst2}

\lscLine{hot}{1}

\lscWidecondOff{wc}

\lscLine{hot}{2}

\end{lscinst}

\begin{lscinst}{Inst3}

\lscLine{hot}{1}

\lscWidecondOn{wc}

\lscLine{hot}{2}

\end{lscinst}

\lscWidecond{wc}{hot}%

{$\qquad\quad x = 0$}

\end{Lsc}

The label is set in the centre of the kandis. If the condition doesn’t apply to
the central location, one may need to add some offset like in the example above
to avoid the instance line segment running through the label.

Note that the size of wide conditions is fixed, i.e. it does in particular not
scale with the height of label ’s box. As a consequence, label should fit onto a
single line.

7.3 Colourful Conditions

The appearance of narrow conditions, and in particular the colour of its outline,
cannot be easily manipulated because narrow conditions are “scheduled” and
drawn when the next instance line segment is drawn (cf. Section 13). Thus
changing the colour of the outline applies to all elements which are drawn to-
gether with the instance line segment, in particular the instance line itself.

If wide conditions are sufficient (cf. Section 7.2), their colour can be modified
as shown in the following example.

17

Inst

f = g

g = f

\let\lscWidecondOooginool\lscWidecond%

\renewcommand{\lscWidecond}[3]{{%

\ifthenelse{\equal{#2}{hot}}{%

\psset{linecolor=red}}{%

\psset{linecolor=blue}}%

\lscWidecondOooginool{#1}{#2}{#3}}}

\begin{Lsc}{none}{1}{4.5}

\begin{lscinst}{Inst}

\lscLine{hot}{1}%

\lscWidecondOn{c}%

\lscLine{hot}{1.5}%

\lscWidecondOn{d}%

\lscLine{hot}{2}%

\end{lscinst}

\lscWidecond{c}{hot}{$f = g$}%

\lscWidecond{d}{cold}{$g = f$}%

\end{Lsc}

8 Local Invariants

\lscLocinvStart{id}
\lscLocinvBegin{id}
\lscLocinvEnd{id}
\lscLocinv[r | l]{id}{incl | excl}{incl | excl}{hot | cold}{label}

The commands \lscLocinvBegin (or, synonymously, \lscLocinvStart)
and \lscLocinvEnd mark the beginning and end position of local invariant
id.

The \lscLocinv command renders the local invariant id. The position of the
vertical line to which the kandis is connected can be controlled by the optional
parameter (default: ‘r’ (to the right)).

The third and fourth parameters select whether the ends are inclusive (‘incl’)
or exclusive (‘excl’). Inclusive ends are rendered with a filled circle and ex-
clusive ends with a non-filled circle (just like jumps are indicated in function
graphs). This is different from [Klo03] where the kandis is rotated by 90 degrees
and inclusive ends are indicated by having the kandis end in a rectangular shape
instead of triangular. The drawback is that a both-inclusive local invariant looks
like a rotated action box and doesn’t resemble conditions at all.4

4And – first of all – it seemed easier to render the shape we chose.

18

Inst1 Inst2

x = 0

y = 0

\begin{Lsc}{none}{2}{3}

\begin{lscinst}{Inst1}

\lscLocinvBegin{li}

\lscLine{hot}{1}

\begin{simregion}

\lscLocinvStart{lj}

\end{simregion}

\lscLine{hot}{1}

\lscLocinvEnd{li}

\lscLine{hot}{1}

\end{lscinst}

\begin{lscinst}{Inst2}

\lscLine{hot}{2}

\lscLocinvEnd{lj}

\lscLine{hot}{1}

\end{lscinst}

\lscLocinv[l]{li}%

{incl}{excl}{hot}{$x = 0$}

\lscLocinv{lj}%

{excl}{incl}{cold}{$y = 0$}

\end{Lsc}

In the example above, we used a simregion (cf. Section 13) to highlight
the point where the local invariant connects to the instance line in lack of other
elements. Local invariants in the wild typically end at simultaneous regions with
other elements as the LSC’s automaton becomes non-deterministic otherwise.

Note that the local invariant kandis behaves like that of narrow conditions.
That is, it looks too low if label has no over- or underlength and it scales
unproportionally with multiline labels (cf. Section 7.1).

Further note that the box boundary of the LSC doesn’t consider the amounts
by which local invariants kandis stand out to the left or the right. One has to
explicitly treat kandis overlapping other text by adding vertical space to the left
or the right.5

\lscLocinvOffset

The length \lscLocinvOffset (default: 0) is added to the horizontal dis-
tance between instance line and local invariant. To move the local invariant
further outwards, set it to a positive number and to move it further inwards,
set it to a negative number.

5Technically the problem is that the box boundary is determined when the Lsc environment
is opened. At this point in time the extension of local invariants is not yet known. And the
dimension cannot be changed afterwards (as far as the author knows).

19

Inst1 Inst2

x = 0

y = 0

\begin{Lsc}{none}{2}{3}

\begin{lscinst}{Inst1}

\lscLocinvBegin{li}

\lscLine{hot}{1}

\begin{simregion}

\lscLocinvStart{lj}

\end{simregion}

\lscLine{hot}{1}

\lscLocinvEnd{li}

\lscLine{hot}{1}

\end{lscinst}

\begin{lscinst}{Inst2}

\lscLine{hot}{2}

\lscLocinvEnd{lj}

\lscLine{hot}{1}

\end{lscinst}

\pssetlength{\lscLocinvOffset}{0.5}

\lscLocinv[l]{li}%

{incl}{excl}{hot}{$x = 0$}

\pssetlength{\lscLocinvOffset}{-0.5}

\lscLocinv{lj}%

{excl}{incl}{cold}{$y = 0$}

\end{Lsc}

The vertical position of the kandis is fixed. It is always drawn centred
between the beginning and end point.

9 Timer Sets, Timer Resets, and Timeouts

\lscTimerSet[r | l]{label}{duration}
\lscTimerReset[r | l]{label}
\lscTimeout[r | l]{label}

The atomic commands \lscTimerSet, \lscTimerReset, and \lscTimeout

render the timer symbols. The position of the hourglass symbols can be con-
trolled by the optional parameter (default: ‘r’ (to the right)).

The parameter label is not an identifier as used with composite commands
but arbitrary text. To connect, e.g., timer setting and timeout they should
obtain the same label.

A timer type is currently not explicitly supported. It may be written as part
of the label.

20

Inst

t : superstep(3)

t

t

\begin{Lsc}{none}{1}{4}

\begin{lscinst}{Inst}

\lscLine{hot}{0.75}

\lscTimerSet{t : superstep}{3}

\lscLine{hot}{1}

\lscTimerReset[l]{t}

\lscLine{hot}{1}

\lscTimeout{t}

\lscLine{hot}{1.25}

\end{lscinst}

\end{Lsc}

10 Actions

\lscAct{label}

The atomic command draws a rectangular action symbol annotated with
label.

Inst

Aaand – action!

\begin{Lsc}{none}{1}{3}

\begin{lscinst}{Inst}

\lscLine{hot}{1}

\lscAct{Aaand -- action!}

\lscLine{hot}{2}

\end{lscinst}

\end{Lsc}

11 Self Destructions

\lscKill

The atomic \lscKill command draws a cross at the current position to
indicate termination of the instance. It is typically not followed by any more
\lscLine commands.

There is no explicit deletion arrow (like there is a creation arrow) since
instantaneous messages may be used for this purpose.

21

Inst1 Inst2

RIP

\begin{Lsc}{none}{2}{3}

\begin{lscinst}[SD]{Inst1}

\lscLine{hot}{1.5}

\lscInstSnd{rip}

\lscLine{hot}{1}

\lscKill

\end{lscinst}

\begin{lscinst}[SD]{Inst2}

\lscLine{hot}{1.5}

\lscInstRcv{rip}

\lscKill

\end{lscinst}

\lscInst{rip}{hot}{RIP}

\end{Lsc}

12 Coregions

\begin{coregion}[l | r]. . . \end{coregion}

The elements and instance line segments enclosed in a coregion environment
are marked with a parallel dotted line to indicate that they form a coregion.
The optional parameter controls whether the line appears to the left (‘l’, the
default) or to the right (‘r’) of the instance line. coregion environments shall
not be nested.

Inst1 Inst2

E

F

\begin{Lsc}{none}{2}{3}

\begin{lscinst}{Inst1}

\lscLine{hot}{1}\lscInstSnd{e}%

\lscLine{hot}{1}\lscInstRcv{f}%

\lscLine{hot}{1}%

\end{lscinst}

\begin{lscinst}{Inst2}

\lscLine{hot}{1}%

\begin{coregion}[r]

\lscInstRcv{e}%

\lscLine{hot}{0.5}%

\lscInstSnd{f}

\psset{linecolor=red}

\end{coregion}

\lscLine{hot}{1.5}%

\end{lscinst}

\lscInst{e}{hot}{E}%

\lscInst{f}{cold}{F}%

\end{Lsc}}

The coregion environment doesn’t set the line’s colour so it can be manip-
ulated using \psset. But it does set the width to ensure that the dotted line is
noticeable. To change the width one may temporary redefine the internal length
\lsc@coregwidth.

22

The coregion line is drawn when the environment is closed. This has the
(not so nice) effect that the line lies above condition kandis, action boxes etc.
So currently coregions look best when applied to message ends.

13 Simultaneous Regions

\begin{simregion}[b | f]. . . \end{simregion}

The elements enclosed in a simregion environment are marked with a large
dot to explicitly indicate that they lie in a simultaneous region. The optional
parameter controls whether the dot appears behind (‘b’, the default) or in front
of (‘f’) the elements. simregion environments shall not be nested and shall not
comprise instance line segments.

Inst1

x = 0

Inst2

y = 0

E

F

\begin{Lsc}{none}{2}{3}

\begin{lscinst}{Inst1}

\lscLine{hot}{0.75}

\lscInstSnd{e}

\lscLine{hot}{1}

\begin{simregion}

\lscInstRcv{f}

\lscCond{hot}{$x=0$}

\end{simregion}

\lscLine{hot}{1.25}

\end{lscinst}

\begin{lscinst}{Inst2}

\lscLine{hot}{0.75}

\begin{simregion}[f]

\lscInstRcv{e}

\lscCond{hot}{$y=0$}

\end{simregion}

\lscLine{hot}{1}

\lscInstSnd{f}

\lscLine{hot}{1.25}

\end{lscinst}

\lscInst{e}{hot}{E}

\lscInst{f}{hot}{F}

\end{Lsc}

Note that the order of elements (except for cuts) of different kinds in a
simultaneous region is not significant. The drawing order is (from bottom to
top):

1. simultaneous region dot, if it should go into the background

2. white background of wide condition behind the instance line (\lscWidecondOn)

3. white background of wide condition in front of the instance line (\lscWidecondOff)

4. action or narrow condition

23

5. timer set, reset, or timeout

6. atom (cf. Section 14.1)

7. simultaneous region dot, if it should go into the foreground

Per simregion, at most one action or narrow condition can be drawn. If one
really needs to put one above the other (typically sacrificing readability) one
may use instance line segments of length 0. Two actions or narrow conditions
can also be stacked one above the other using a manually tailored instance
line segment in between and a foreground simregion circle like in the following
example.

Inst

x=0

y=0

\begin{Lsc}{none}{1}{3}

\begin{lscinst}{Inst}

\lscLine{hot}{1}

\lscCond{hot}{x=0}

\lscLine{hot}{0.5}

\begin{simregion}[f]

\lscCond{hot}{y=0}

\end{simregion}

\lscLine{hot}{1.5}

\end{lscinst}

\end{Lsc}

The order of the finalising commands of composite commands and cuts is
significant. They are drawn immediately, the one occurring first is drawn first.

14 Technicalities

The lsc.sty package is in particular used to describe the semantics of LSCs
which depends on the notion of atoms and cuts, i.e. sets of atoms. There
commands introduced in this section are mainly intended to be able to illustrate
such descriptions. For example, to show the position of a cut.

14.1 Atoms

\lscAtom{id}
\lscLabelAtomAt{angle}{id}{label}
\lscLabelAtom[ra | rb | la | lb]{id}{label}

The \lscAtom command marks the (atom(s) at the) current location with a
dashed circle and equips it with an identity id. This identity may then be used
to label the atom mark.

The command \lscLabelAtomAt puts the label at position angle relative to
the atom mark with identity id.

The command \lscLabelAtom is a shortcut for the most common angles.
The default is −45 degrees (‘ra’ (right above)), the other options are −135

24

degrees (‘rb’ (right below)), 45 degrees (‘la’ (left above)), and 135 degrees (‘lb’
(left below)).

Inst

right above

other

\begin{Lsc}{none}{2}{4}

\begin{lscinst}{Inst}

\lscLine{hot}{0.5}

\lscAtom{aa}

\lscLine{hot}{1.5}

\lscAtom{ab}

\lscLine{hot}{1}

\lscAtom{ac}

\lscLine{hot}{1}

\end{lscinst}

\lscLabelAtom{ab}{right above}

\lscLabelAtomAt{93}{ac}{other}

\end{Lsc}

14.2 Cuts

\lscCut

\lscSetCutColour{colour}
\lscSetCutLinestyle{linestyle}
\lscSetCutWidth{length}

The \lscCut atomic command draws a vertical line at the current position
indicating the location of the cut on the current instance line. The line is
connected to the last existing cut on the left. There shall not be more than one
\lscCut command per instance line.

The command \lscSetCutColour sets the colour to the colour name colour
(default: red), \lscSetCutLinestyle sets the line style to linestyle (default:
solid), and \lscSetCutWidth sets the width to length (default: 3pt).

Inst1 Inst2

E

\begin{Lsc}{none}{2}{3}

\begin{lscinst}{Inst1}

\lscLine{hot}{1}%

\lscCut%

\lscAsynSnd{e}%

\lscLine{hot}{2}%

\end{lscinst}

\begin{lscinst}{Inst2}

\lscCut%

\lscLine{hot}{1}%

\lscAsynRcv{e}%

\psset{linecolor=red}

\end{coregion}

\lscLine{hot}{1.5}%

\end{lscinst}

\lscAsyn{e}{hot}{E}%

\end{Lsc}}

25

\lscNamedCut{id}
\lscSetNamedCutColour{id}{colour}
\lscSetNamedCutLinestyle{id}{linestyle}
\lscSetNamedCutWidth{id}{length}

To allow multiple cuts in a single LSC, there is a corresponding set of com-
mands for named cuts. They take an id as first parameter.

If not set explicitly, the colour, line style, and width of named cuts is inher-
ited from the general cut colour, line style, and width as set by \lscSetCutColour,
\lscSetCutLinestyle, and \lscSetCutWidth.

Inst1 Inst2

E

\lscSetCutColour{lightgray}

\lscSetNamedCutWidth{Xb}{1.5pt}

\lscSetNamedCutColour{Xc}{green}

\lscSetNamedCutColour{Xb}{blue}

\begin{Lsc}{none}{2}{3}

\begin{lscinst}{Inst1}

\lscNamedCut{Xa}%

\lscLine{hot}{0.95}%

\lscNamedCut{Xb}%

\lscLine{hot}{0.05}

\lscAsynSnd{e}%

\lscLine{hot}{0.05}

\lscNamedCut{Xc}%

\lscLine{hot}{1.45}%

\lscNamedCut{Xd}%

\lscLine{hot}{0.5}%

\end{lscinst}

\begin{lscinst}{Inst2}

\lscNamedCut{Xa}%

\lscLine{hot}{0.05}%

\lscNamedCut{Xb}%

\lscLine{hot}{1.95}%

\lscNamedCut{Xc}%

\lscAsynRcv{e}%

\lscLine{hot}{0.5}%

\lscNamedCut{Xd}%

\lscLine{hot}{0.5}%

\end{lscinst}

\lscAsyn{e}{hot}{E}%

\end{Lsc}

To avoid cuts to hide each other, one will typically add very short instance
line segments in between as shown in the example above.

Using line style ‘none’ one can easily obtain an animation effect as shown in
the following example.

26

Inst1 Inst2

E

Inst1 Inst2

E

Inst1 Inst2

E

Inst1 Inst2

E

\newcommand{\lscanim}[1]{%

\lscSetCutLinestyle{none}%

\lscSetNamedCutLinestyle{#1}{solid}%

\begin{Lsc}{none}{2}{3}

\begin{lscinst}{Inst1}

\lscNamedCut{Xa}%

\lscLine{hot}{1}%

\lscNamedCut{Xb}%

\lscNamedCut{Xc}%

\lscAsynSnd{e}%

\lscLine{hot}{1.5}%

\lscNamedCut{Xd}%

\lscLine{hot}{0.5}%

\end{lscinst}

\begin{lscinst}{Inst2}

\lscNamedCut{Xa}%

\lscNamedCut{Xb}%

\lscLine{hot}{2}%

\lscNamedCut{Xc}%

\lscAsynRcv{e}%

\lscLine{hot}{0.5}%

\lscNamedCut{Xd}%

\lscLine{hot}{0.5}%

\end{lscinst}

%

\lscAsyn{e}{hot}{E}%

\end{Lsc}}

\lscanim{Xa}\lscanim{Xb}

\lscanim{Xc}\lscanim{Xd}

14.3 Putting Stuff at the Current Location

\lscPut{stuff }

The \lscPut command typesets stuff at the current location. This is useful
to put additional labels or elements for which there is no explicit support.

We use \lscPut, for example, to draw the dashed frames indicating the
location dimensions in Figure 2.

Inst

You are here.

\begin{Lsc}{none}{1}{3}

\begin{lscinst}{Inst}

\lscLine{hot}{1.5}

\lscPut{%

\psline{<-}(0.5,0.5)%

\rput[lb](0.5,0.5){You are here.}}

\lscLine{hot}{1.5}

\end{lscinst}

\end{Lsc}

27

15 Typesetting Play-Engine LSCs

As mentioned in the introduction, lsc.sty in general renders LSC in the style
of [Klo03]. But it provides a couple of commands which support the typesetting
of LSCs in the play-engine style.

In cases where the play-engine style is not supported, it may be sufficient to
modify the existing elements, for example, by manually adding an hourglass to
an action box to represent the saving of a timer.

15.1 Actors, Clocks, and Environments

\lscActor

\lscClock

\lscEnv

The \lscActor, \lscClock, and \lscEnv draw the symbols which are used
to mark the actor, clock, and environment instance line. They are best used as
the label of a ‘noboxSD’ instance.

ENV

\begin{Lsc}{none}{3}{3}

\begin{lscinst}[noboxSD]{\lscActor}

\lscLine{hot}{3}

\end{lscinst}

\begin{lscinst}[noboxSD]{\lscClock}

\lscLine{hot}{3}

\end{lscinst}

\begin{lscinst}[noboxSD]{\lscEnv}

\lscEnvLine{cold}{3}

\end{lscinst}

\end{Lsc}

15.2 Existential Symbolic Instances

\lscBalloon{existential | universal}{stuff }

The \lscBalloon command draws think balloons that are used to provide
binding expressions of symbolic instances.

They have to be explicitly positioned using, e.g., \lscPut and one has to care
for vertical space before the LSC as they are not considered in the computation
of the boundary box. That is, symbolic instances can at best be called semi-
supported.

28

esymMSC

.ID=ID

esymSD

.Alloc> 0 \begin{Lsc}{none}{2}{3}

\begin{lscinst}[esymMSC]{esymMSC}

\lscPut{\rput(0,0.9){%

\lscBalloon%

{existential}{.ID$=$ID}}}

\lscLine{hot}{3}

\end{lscinst}

\begin{lscinst}[esymSD]{esymSD}

\lscPut{\rput(0,0.9){%

\lscBalloon%

{universal}{.Alloc> 0}}}

\lscLine{hot}{3}

\end{lscinst}

\end{Lsc}

The combination on the right above is not a well-formed LSC instance. It is
only used to demonstrate both kinds of loops in the same figure.

15.3 Branching, Subcharts, and Loops

Both branching and loops are based on subcharts. Subcharts are not directly
supported but can be simulated by putting frames using \lscPut.

Inst1 Inst2

j = 0

E

F

\begin{Lsc}{none}{3}{4}

\begin{lscinst}{Inst1}

\lscLine{hot}{1.5}\lscInstSnd{e}

\lscLine{hot}{1}\lscInstSnd{f}

\lscLine{hot}{1.5}

\end{lscinst}

\begin{lscinst}{Inst2}

\lscLine{hot}{0.5}

\lscCond{hot}{$j = 0$}

\lscLine{hot}{1}\lscInstRcv{e}

\lscLine{hot}{0.5}

\lscPut{\psframe[dimen=inner]%

(-1.5\lscLocationWidth,0)%

(0.5\lscLocationWidth,1.5\lscLocationHeight)}

\lscLine{hot}{0.5}\lscInstRcv{f}

\lscLine{hot}{0.5}

\lscPut{\psframe[dimen=inner]%

(-1.5\lscLocationWidth,0)%

(0.5\lscLocationWidth,1\lscLocationHeight)}

\lscLine{hot}{1}

\end{lscinst}

\lscInst{e}{hot}{E}\lscInst{f}{hot}{F}

\end{Lsc}

29

Inst1 Inst2

3

E

\begin{Lsc}{none}{3}{3}

\begin{lscinst}{Inst1}

\lscLine{hot}{1.5}\lscInstSnd{e}

\lscLine{hot}{1.5}

\end{lscinst}

\begin{lscinst}{Inst2}

\lscLine{hot}{1.5}\lscInstRcv{e}

\lscLine{hot}{0.5}

\lscPut{\psframe[dimen=inner]%

(-1.5\lscLocationWidth,0)%

(.5\lscLocationWidth,1.5\lscLocationHeight)

\rput[lt](-1.5\lscLocationWidth,%

1.5\lscLocationHeight){%

\rput(0.3,-0.3){\textbf{3}}}}

\lscLine{hot}{1}

\end{lscinst}

\lscInst{e}{hot}{E}

\end{Lsc}

16 Tricks and Tweaks

16.1 Linewidth

All parts of the LSC (except for cuts) are rendered with the current pstricks
linewidth. That it, if the lines appear too fat they can be globally be changed
using \psset.

Inst1 Inst2

E

\psset{linewidth=0.25pt}

\begin{Lsc}{none}{2}{3}

\begin{lscinst}{Inst1}

\lscLine{hot}{1}%

\lscAsynSnd{e}%

\lscLine{hot}{2}%

\end{lscinst}

\begin{lscinst}{Inst2}

\lscLine{hot}{2}%

\lscAsynRcv{e}%

\lscLine{hot}{1}%

\end{lscinst}

\lscAsyn{e}{hot}{E}%

\end{Lsc}

16.2 Scaling

LSCs can be scaled by changing the width and height of locations (cf. Sec-
tion 4.3) keeping the size of text. To scale the LSC including all annotations,
the FullLsc and Lsc environments can be passed to a \scalebox command.

30

i1 i2

E

i1 i2

E

i1 i2

E

i1 i2

E

\newcommand{\scalex}{%

\begin{Lsc}{none}{2}{3.5}

\begin{lscinst}{i_1}

\lscLine{hot}{1}%

\lscAsynSnd{e}%

\lscLine{hot}{2.5}%

\end{lscinst}

\begin{lscinst}{i_2}

\lscLine{hot}{2}%

\lscAsynRcv{e}%

\lscLine{hot}{1.5}%

\end{lscinst}

\lscAsyn{e}{hot}{E}%

\end{Lsc}

{\pssetlength{\lscLocationWidth}{2}

\pssetlength{\lscLocationHeight}{0.666}

\scalex}%

{\pssetlength{\lscLocationWidth}{1.5}

\pssetlength{\lscLocationHeight}{0.5}

\scalex}%

{\pssetlength{\lscLocationWidth}{1}

\pssetlength{\lscLocationHeight}{0.333}

\scalex}%

\scalebox{0.5}{\scalex}

31

Index

action, 2, 21
activation mode, 2
actor, 26
actor instance line, 2
atom, 22
atom mark, 22
atomic command, 3

b, 21
balloon, 26
binding expression, 26
Bos, V., 3
box boundary, 4, 9, 17
branch, 27

categories, 3
clock, 26
cold, 1
cold, 4, 5
command

atomic, 3
composite, 3

common sublanguage, 2
composite command, 3
condition

narrow, 15
narrow condition, 5
wide, 15

convention, 12
coregion, 20
coregion, 20
creation arrow, 8
cut, 23

multiple, 24
named, 24

deletion arrow, 19
development process, 1
dialects, 1
Diamantini, M., 3
drawing order, 21
dynamic binding, 2

environment, 3, 26

esymMSC, 7
esymSD, 7
exclude observations, 2
existential, 4
exploded view, 4

f, 21
fat, 28
flush, 5
forbidden elements, 2
formal verification, 2
FullLsc, 5

hot, 1
hot, 4, 5

instance line
actor, 26
clock, 26
environment, 26

interpretation, 2, 6
interpretations, 2

kandis, 4

la, 22
layout, 3
lb, 23
linewidth, 28
Live Sequence Charts, 1
liveness, 1
local invariant, 2
loop, 2, 27
Lsc, 6
Lsc, 4
LSC dialects, 1
\lscAct, 19
\lscActor, 26
\lscAsyn, 12
\lscAsynRcv, 12
\lscAsynSnd, 12
\lscAtom, 22
\lscBalloon, 26
\lscClock, 26

32

\lscCond, 5, 14
\lsc@coregwidth, 20
\lscCreate, 8
lsccreateinst, 8
\lscCut, 23
\lscEnv, 26
\lscEnvLine, 11
\lscFooterHeightFactor, 10
\lscInst, 13
lscinst, 7
lscinst, 4
\lscInstRcv, 13
\lscInstSnd, 13
\lscKill, 19
\lscLabelAtom, 22
\lscLabelAtomAt, 22
\lscLine, 10
\lscLine, 4
\lscLocationHeight, 9
\lscLocationWidth, 9
\lscLocinv, 16
\lscLocinvBegin, 16
\lscLocinvEnd, 16
\lscLocinvOffset, 17
\lscLocinvStart, 16
\lscNamedCut, 24
\lscPut, 25
\lscSetCutColour, 23
\lscSetCutLinestyle, 23
\lscSetCutWidth, 23
\lscSetNamedCutColour, 24
\lscSetNamedCutLinestyle, 24
\lscSetNamedCutWidth, 24
\lscTimeout, 18
\lscTimerReset, 18
\lscTimerSet, 18
\lscWidecond, 14
\lscWidecondOff, 14
\lscWidecondOn, 14

mandatory, 1
manual intervention, 2, 3
Mauw, S., 3
Message Sequence Charts, see MSC
MSC, 1, 3
MSC, 7

msc.sty, 3
MSC2000, 3

narrow condition, 5, 14, 15, 21
noboxSD, 7
none, 4
none, 4

play-engine, 2
play-out, 2
possible, 1
progress, 1
pst-uml.sty, 3
pstricks units, 4

ra, 22
rb, 22

scale, 28
scalebox, 28
scope, 2
SD, 2, 3
SD, 7
Sequence Diagram, see SD, 11
simregion, 21
simregion, 5
simultaneous region, 5, 21, 22
style, 1, 2, 26

play-engine, 26
subchart, 27
symbolic instance, 26
symbolic instances, 2

termination, 19
think balloon, 26
time, 2
timeout, 22
timer, 2
timer reset, 22
timer set, 22
timing interval, 2

UML, 2, 3
universal, 4

weak, 6
wide condition, 15, 21

33

References

[DH01] Werner Damm and David Harel. LSCs: Breathing life into message
sequence charts. Formal Methods in System Design, 19(1):45–80, July
2001.

[DW05] Werner Damm and Bernd Westphal. Live and let die: LSC-based
verification of UML-models. Science of of Computer Programming,
55(1–3):117–159, March 2005.

[HM03] David Harel and Rami Marelly. Come, Let’s Play: Scenario-Based
Programming Using LSCs and the Play-Engine. Springer-Verlag, 2003.

[IT99] ITU-T. ITU-T Recommendation Z.120: Message Sequence Chart
(MSC). ITU-T, 1999.

[Klo03] Jochen Klose. Live Sequence Charts: A Graphical Formalism for the
Specification of Communication Behavior. PhD thesis, Carl von Ossi-
etzky Universität Oldenburg, 2003.

[KW02] Jochen Klose and Bernd Westphal. Relating LSC specifications to UML
models. In Hartmut Ehrig and Martin Grosse-Rhode, editors, Proceed-
ings of the Workshop Integration of Software Specification Techniques,
INT’02, pages 130–137, April 2002.

[MB01] Sjouke Mauw and Victor Bos. Drawing Message Sequence Charts with
LATEX. TUGBoat, 22(1-2):87–92, March/June 2001.

34

License

This work may be distributed and/or modified under the conditions of the LATEX
Project Public License, either version 1.3 of this license or (at your option) any
later version.

The latest version of this license is in

http://www.latex-project.org/lppl.txt

and version 1.3 or later is part of all distributions of LATEX version 2005/12/01
or later. This work has the LPPL maintenance status ‘maintained’.

The Current Maintainer of this work is the copyright holder. This work
consists of the files README, lsc.sty, lsc.tex, lsc.bib.

In addition, all examples from this manual may of course be freely used,
modified, copied, and distributed in whole or partly.

35

