
listings-ext — A collection of LATEX commands and

some helper files to support the automatic

integration of parts of source files into a

documentation∗

Jobst Hoffmann
Fachhochschule Aachen, Campus Jülich

Ginsterweg 1
52428 Jülich

Bundesrepublik Deutschland
email: j.hoffmann_(at)_fh-aachen.de

printed on June 29, 2010

Abstract

This article describes the use and the implementation of the LATEX pack-
age listings-ext.sty, a package to simplify the insertion of parts of source code
files into a document(ation).

Contents

1 Preface 1

2 Installation and Maintenance 2

3 The User’s Interface 3

3.1 Preparing the LATEX code 3

3.2 Preparing the source code 4

4 References 6

1 Preface

This package is intended as an implementation of the macros which are described
in [Lin07]. If a software developer wants to document a piece of software, in most
cases she/he doesn’t need to print out whole source code files, but only parts of
the files. This can be achieved by the listings-package [HM07] and especially by
the command

\lstinputlisting[linerange={〈first1 〉-〈last1 〉}, . . .]{〈filename〉}

∗This file has version number v67, last revised on 2010/06/29, documentation dated 10/06/29.

1

In [Lin07] there are described three macros, which can be created automatically,
so that in the case of changes in the source code the developer mustn’t change
the contents of the line ranges, but she/he only has to rerun a program, which
regenerates the meaning of the macros. In the following the three macros and a
Bash-script to deal with these three macros are provided.

2 Hints For Installation And Maintenance

The package listings-ext.sty is belonging to consists of altogether four files:

README,
listings-ext.ins,
listings-ext.dtx,
listings-ext.pdf.

In order to generate on the one hand the documentation of the package and on
the other hand the corresponding .sty-file and the supporting Bash-script one has
to proceed as follows:

First the file listings-ext.ins must be formatted e.g. by

latex listings-ext.ins

This formatting run generates several other files. These are first of all the pre-
vious mentioned .sty-file listings-ext.sty, the style file which can be used by
\usepackage{listings-ext} and the Bash-script listings-ext.sh. Then there
are the files listings-ext.bib and hyperref.cfg, which are needed to produce
this documentation. The creation of the documentation is is simplified by the files
listings-ext.makemake and listings-ext.mk, which can be used to make a
Makefile (see section ??). Another helper file is listings-ext.el, which can be
used with the (X)Emacs editor (see section ??). Some simple tests of this package
can be done by using the files listings-ext*exmpl* and listings-ext*test*,
which are also created; these files use the configuration file listings.cfg, which
can also be used as a base or supplement for own configuration files of the listings-
package. This file can be put into the current directory for local use or into the
TEXMFHOME directory for use with every document. You have to take care about
the fact, that the local file in the current directory prevent any listings.cfg

from being loaded. Finally there is a file getversion.tex, which is used for the
creation of a "versioned" distribution.

The common procedure to produce the documentation is to execute the com-
mands

latex listings-ext.dtx

bibtex listings-ext

latex listings-ext.dtx

makeindex -s gind.ist listings-ext.idx

makeindex -s gglo.ist -o listings-ext.gls -t listings-ext.glg \

listings-ext.glo

latex listings-ext.dtx

The result of this formatting run is the documentation in form of a .dvi-file, that
can be manipulated the normal way. It ain’t possible to use pdflatex because of
the integrated PostScript based figures.

2

One can find further informations about working with the integrated docu-
mentation in [Mit06] and [MDB+05].1

This documentation itself is generated by the following internal driver code:

1 〈*driver〉
2 \documentclass[a4paper, ngerman, english]{ltxdoc}

3

4 \usepackage[T1]{fontenc}

5 \usepackage{lmodern}

6 \usepackage{babel,babelbib}

7 \usepackage[svgnames]{pstricks}

8

9 \usepackage{listings-ext}

10 \GetFileInfo{listings-ext.sty}

11

12 \newif\ifcolor \IfFileExists{color.sty}{\colortrue}{}

13 \ifcolor \RequirePackage{color}\fi

14

15 \usepackage[numbered]{hypdoc}

16 \usepackage{url}

17

18 %\EnableCrossrefs

19 %\DisableCrossrefs % say \DisableCrossrefs if index is ready

20 %\RecordChanges % gather update information

21 %\CodelineIndex % index entry code by line number

22 \OnlyDescription % comment out for implementation details

23 \MakeShortVerb{\|} % |\foo| acts like \verb+\foo+

24

25 \begin{document}

26

27 \DocInput{listings-ext.dtx}%

28 \end{document}

29 〈/driver〉

3 The User’s Interface

3.1 Preparing the LATEX code

The user’s interface is as simple as possible: just load the required package by
saying

\usepackage[style=〈style-name〉]{listings-ext}

〈style-name〉 is the name of a listings style, defined by the command [HM07,
sec. 4.5]. You can find examples for such styles in the exemplary configuration file
listings.cfg.

\lstdefinestyle{〈style name〉}{〈key=value list〉}

After loading the package provides three commands:

1. \lstdef{〈identifier〉}{〈file-name〉}{〈range〉}

1Generating the documentation is much easier with the make utility, see section ??.

3

defines the 〈identifier〉, by which the line range 〈range〉 in the file defined by
〈file-name〉 can be referenced. If you identify several 〈filename〉s or 〈range〉s
by the same 〈identifier〉, the last definition is valid. If you don’t like that
behaviour, put the corresponding \lstdef- and \lstuse-commands (see
below) into a group of its own.

2. \lstuse[〈options〉]{〈identifier〉}

includes the source code which is referenced by 〈identifier〉 by (internally)
calling \lstinputlisting of the package listings [HM07], the way of for-
matting can be influenced by 〈options〉.

3. \lstcheck{〈identifier〉}{〈file-name〉}

can be used, if one prepares a file 〈file-name〉 consisting of a lot of \lstdef
commands. If 〈identifier〉 isn’t yet defined, the file defined by 〈file-name〉 is
\input. This command is especially helpful, if you prepare a presentation
and you want to format only single slides for testing their look.

3.2 Preparing the source code

If you just want to include a small part of a source code file, you can do that
without touching the source: just write the corresponding commands \lstdef

and \lstuse into your LATEX-code. But if the source code changes, you have to
adapt the changes in the \lstdef command. That may be very tedious, if are you
changing your sources often.

It’ better to automate that procedure, and one way of implementig that is done
at the Bash-script listings-ext.sh. For working with that script you have to
tag the parts of the source, which you want to document, by comments.

At the moment there are three tags, which can be described by the following
regular expressions:

1. ^\ +〈endline-comment-character(s)〉\ be:\ 〈string〉$

This expression defines the beginning of the environment, which should be
\lstinput into the document.

2. ^\ +〈endline-comment-character(s)〉\ ee:\ 〈string〉$

This expression defines the end of that environment.

3. ^\ +〈endline-comment-character(s)〉\ ce:\ 〈list of keywords〉

This expression defines, how the the environments defined by the above
introduced should be processed.

The meaning of the regular expressions is: start a line with at least one blank space
"␣", add endline comment characters (C++ and Java: //, Fortran: !) followed by
another blank space. Then you have to enter "be:␣" for the beginning of a code
environment, and "ee:␣" for the end. In both cases the line must be ended with
a string which should denote the meaning of the environment , the strings for the
beginning and the end must be identical.2

2You can also use the standard C comments /* . . . */, but in that case the trailing "*/" is
seen as the end of the 〈string〉.

4

If you have prepared a source code file with these tags, you can process it
by the Bash-script provided by the package. The script should work for a Linux
system out of the box, for a Mac OS X 10.x one must additionally install getopt
from http://getopt.darwinports.com/, which in turn needs MacPorts (from
http://www.macports.org/install.php).3

The simplest way to do it is the call

listings-ext.sh -co 〈file list〉

〈file list〉 is a list of one or more file names. This call creates the file
〈directory〉.lst, where 〈directory〉 is the name of the current directory. The file
consists of a header and a list of \lstdef commands, of the form

\lstdef{〈identifier〉}{〈filename〉}{〈line range(s)〉}

You can \input the file 〈directory〉.lst into your documentation; its header looks
like (for example)

%% -- file listings-ext.lst generated on Mi 26. Aug 22:05:20 CEST 2009

by listings-ext.sh

\csname listingsextLstLoaded\endcsname

\expandafter\let\csname listingsextLstLoaded\endcsname\endinput

The first line is wrapped by hand, the second and third line prohibit a second load
of that file. One of the \lstdef could look like

\lstdef{listingsExtExmplAA}{/home/xxx%

/listings-ext%

/listings-ext_exmpl_a.java}{3-5}

You can input this file in two ways into your document:

1. by saying

\input{listings-ext.lst}

at the beginning of a file or

2. by saying

\lstcheck{listingsExtExmplAA}{listings-ext.lst}

in an environment to keep the definition local.

After that you can use the command \lstuse to integrate the source code
parts into your documentation. The usage is

\lstuse[〈options〉]{〈identifier〉}

at the place, where you want the part of your source code.
The 〈identifier〉 is generated automatically, it is derived from the file name, you

have to transfer the identifiers from the .lst-file to the \lstuse-command by hand,
but that happens typically only one time. So in this case the \lstuse command
could look like — as said you can add options —

\lstuse{listingsExtExmplAA}

3The package is tested with Max OS X v 10.6.3, getopt’s version number is v 1.1.4 and
MacPorts version number is v 1.9.0.

5

http://getopt.darwinports.com/
http://www.macports.org/install.php

For more information about the use of the Bash-script listings-ext.sh enter
the command

listings-ext.sh -h

There is one optional initial tag ce: (control environment): It needs one ar-
gument 〈mode〉. The argument describes the further processing. 〈mode〉 may be
one of the following values:

combine: be: . . . ee: groups with the same description are combined into one
piece of code in the output

join: all be: . . . ee: groups (independent of the description) are combined into
one piece of code in the output

The behaviour of the three modes of operation is shown in Figure 1. ce: has to
be put before all other tags in the source code.

. . .

. . .

a)

. . .

. . .

b)

. . .

. . .

c)

Figure 1: Modes of operation: a) no special control of the tagged parts, every
part can be processed by itself, b) control by ce: join, all tagged parts are joint
into one piece, which can be further processed, c) control by ce: combine, tagged
parts with the same describing string are joint into one piece, which can be further
processed, all other parts can be processed by their own

4 References

[HM07] Heinz, Carsten and Brooks Moses: The listings package, February 2007.
Version 1.4. 1, 3, 4

[Lin07] Lingnau, Anselm: LATEX-Hacks. O’Reilly, Beijing; Cambridge; Farn-
ham; Köln; Paris; Sebastopol; Taipei; Tokyo, 1. Auflage, 2007. Tipps
& Techniken für den professionellen Textsatz. 1, 2

[MDB+05] Mittelbach, Frank, Denys Duchier, Johannes Braams, Marcin
Woliński, and Mark Wooding: The DocStrip program, July 2005. ver-
sion number 2.5d. 3

[Mit06] Mittelbach, Frank: The doc and shortvrb Packages, February 2006.
version number 2.1d. 3

6

	Contents
	1 Preface
	2 Installation and Maintenance
	3 The User's Interface
	3.1 Preparing the LaTeX code
	3.2 Preparing the source code

	4 References

