
The package imakeidx∗

Enrico Gregorio†

Contents

1 Introduction 1

2 Package usage 2

3 Specific package commands 4

4 If something goes wrong 7

5 Hints 9
5.1 Conflicts 10
5.2 Two columm typesetting

and index prologue 10

5.2.1 Class memoir . . . 11
5.2.2 Package showidx . 12
5.2.3 Package fancyhdr . 12
5.2.4 Package combine . 12
5.2.5 Package ledmac . . 12

5.3 Index layout customization 13
5.4 Index page customization 13
5.5 Index location cus-

tomization 15
5.6 Using the showidx package 15
5.7 Index List sectioning cus-

tomization 15

6 Implementation 16

Abstract
This package exploits the \write18 facility of modern TEX system distri-

butions that allows to run system commands while typesetting a document
written with the LATEX mark up. By so doing, the index or indices, that are
usually typeset at the very end of the document, are possibly split and sorted
so as to include them in the document itself. This process has some minor
limitations: it’s impossible to start an index before all other pages have been
ejected and to have the automatic run of the index sorting program.

1 Introduction
This package wouldn’t exist without the essential contribution of Claudio Beccari,
who withdrawn from authorship some years ago.

It’s been some years now that the typesetting engine of the TEX system is just
pdftex ; the original Knuthian tex is still corrected by D.E. Knuth himself, but is
frozen, according to his will; it is still distributed by every TEX distribution, but
in practice only pdftex, xetex or luatex are used as the interpreter of every macro
package and the true typesetter engine.
∗Version number v1.3e; last revision 2016/10/15.
†Enrico dot Gregorio at univr dot it

1

This program pdftex was originally born with the facility of producing either a
pdf output file, as its name suggests, or a dvi file. Since then it has been enriched
with many upgrades, also with regard to the evolution of the PDF language itself.
It also incorporates the extensions of ε-TEX and has the ability to open a shell so
as to call system commands with their arguments. The same is true for xetex and
luatex.

This facility, since the TEX Live 2010 distribution, is official, but is sort of
restricted, in the sense that the TEX system configuration file contains a list of
“safe” system commands that can be run by pdftex ; presently the only program
relevant for this package ismakeindex. This precaution is necessary in order to avoid
running malicious code. Other programs can be run, though, but it’s necessary to
expressly tell pdftex that it can do so; this authorization is given by means of a
suitable program option, as explained below.

This package will exploit this facility in order to run a perl script that is capable
of splitting a raw index file into different chunks and to run the makeindex or xindy
TEX system programs so as to sort and format the index entries according to a
specified index style file. Once the shell is terminated, the typesetting program
resumes its work and possibly prints the various formatted indices produced in
previous steps. In this way the document indices are always synchronous with
their document and no further typesetting runs are necessary.

In order to reach this goal, it is necessary that at least the restricted write18
facility is enabled; if the TEX distribution in use does not enable this restricted fea-
ture by default, it is necessary to enable the typesetting engine to run such facility;
depending on the distribution and the shell editor that is being used to work on a
specific document, it is necessary to add -shell-escape (or --enable-write18
for MiKTEX) to the command with which the typesetting program is launched,
possibly through the shell editor. This applies to all three pdftex, xetex, and luatex
typesetting engines.

If LuaLATEX is used and luatex is version 0.42 to 0.66, it’s impossible to distinguish whether
the restricted shell escape is active or not, so the automatic procedure will be tried anyway,
unless disabled with the noautomatic package option. With version 0.68 or later, the behavior
is the same as with the other engines. Note that, starting from version 1.3b of this package,
the automatic call of MakeIndex is done through os.execute which might not work with older
versions of LuaTEX. It has been tested with TEX Live from the 2012 release.

2 Package usage
This package is invoked as usual by means of a \usepackage command:

\usepackage[〈options〉]{imakeidx}

The available 〈options〉 consist in a comma separated list of the following op-
tions:

makeindex in order to use the makeindex sorting an formatting engine; this option
is the default and is mutually exclusive with the next option.

2

xindy in order to use the xindy sorting and formatting engine; texindy is an alias
for xindy and actually it’s the script texindy which is called by this package.
Nevertheless if the real xindy is desired, in order to avoid the settings made
up by texindy, so as to add xindy the command line specific settings, it is
possible to specify the option truexindy; the user is then responsible to set
up the xindy engine with the suitable command line options.

noautomatic disables the automatic splitting of the raw index files and running
of the system programs; this option might be used to save time when one
knows for sure that the index files are already OK and do not need to be
refreshed. Actually the time spent in splitting, sorting and formatting is so
short that this option might be useful only when very lengthy indices are
being processed.

nonewpage inhibits the new page command to be issued when using an article
type document class and multiple indices are being typeset. We don’t see
why someone would use multiple indices in an article (except possibly for
package documentations, which usually provide a macro index and a list of
changes).

quiet suppresses all messages about manual index processing.

original uses the class-provided theindex environment for typesetting the in-
dices; it is implicitly set if the document class option twocolumn has been
specified.

splitindex calls the splitindex script by Markus Kohm, which is included in every
TEX Live distribution since 2009. With this option all index entries, which
are written in one raw index file, are successively split into all the requested
index files; in this way there is virtually no limit on the number of indices
that is possible to create for a particular document.

The last described option deserves an explanation. LATEX can write on a limited
number of files during a run, and some of these output streams are already reserved
(among these: aux files, toc files, lof files, lot files, plus several other ones). When
more than one index is produced, there’s the risk to run off the number of writable
files, because normally imakeidx reserves an output stream for each index. So the
splitindex option comes to rescue: with it only one raw index file is written.
At the first \printindex command, the program splitindex is called; it splits the
large index file into as many parts as the number of requested indices; after this,
makeindex (or xindy) can do its job. In this way only one output stream is needed
during the LATEX run.

When should you apply this option, then? With one index it’s useless, you
should begin to consider it for two or more indices and definitely use it if you get
the error

! No room for a new \write

3

Apart from this case, with or without it, the results are the same. See section 4
to see what files are written during the LATEX run with or without the option.

3 Specific package commands
As it is customary when just one index is produced, the standard LATEX facilities,
i.e. the commands \makeindex, \index, and \printindex must be used. This
package redefines them so as to produce multiple indices and defines some others.
The first three of the following commands may be used only in the preamble.

\makeindex with the syntax:

\makeindex[〈key-values〉]
where 〈key-values〉 is a comma separated list of key-value assignments of the
form: key=value; the available keys are the following:

name is the symbolic name for an index; if this key is not specified, it de-
faults to the value of the \jobname control sequence, in other words the
name of the current main .tex file, i.e., the file that \inputs and/or
\includes all the files of the complete document. This symbolic name is
necessary only when doing multiple indices and is used with the \index
command to point to the right index.
Example: name=nameidx

title is the title that is typeset at the beginning of the specific index; if not
specified, the \indexname value is used.
Example: title=Index of names.

program is the name of the system program that is used to sort and format
an index; valid choices are makeindex, xindy, or texindy, plus truexindy. If
not specified the program specified among the package options is used.
If no option is specified, makeindex is used. In order to use xindy, it’s
necessary to call (pdf)latex with the shell escape command line option.
Example: program=xindy.

options is the list of options to be passed to the sorting and formatting pro-
gram; this list is a balanced text of program options, separated with
the syntax required by the sorting and formatting program. For ex-
ample, in order to use a different makeindex sorting and formatting
style mystyle.ist and avoiding any message in the screen output, write
options=-s mystyle.

noautomatic is a boolean key that defaults to false; you can set it to true by
simply listing its key in the key-value list, without necessarily specifying
the =true part. If specified the index sorting program won’t be called
during the typesetting run for this particular index.

intoc is a boolean variable that defaults to false; if you want to set it true
you must simply list this key in the key-value list, with no need of

4

specifying the =true part. By setting this key to true an entry for this
particular index is put in the table of contents.

columns accepts an integer representing the number of columns in the index;
this is silently ignored if the original or the twocolumn options are
set; the number can even be 1.
Example: columns=3

columnsep accepts a dimension representing the separation between index
columns; the default is 35 pt as in the standard classes.
Example: columnsep=15pt

columnseprule is boolean; if it is set, a rule will appear between the index
columns.

\indexsetup with the syntax:

\indexsetup{〈key-values〉}
where again 〈key-values〉 is a comma separated list of key=value assign-
ments; the available keys are:

level which takes as value a sectioning command such as \chapter or
\chapter*. Actually any command with an argument will do and will
receive the index title as its argument. The default is \chapter* or, if
the class doesn’t provide chapters, \section*. If you specify \caption
so as to override the default \chapter*, the index title goes directly to
the table of contents; in this case do not specify the intoc option.

toclevel which takes as value a sectioning command name such as section
to indicate the level at which we want the indices appear in the table
of contents.

noclearpage is a boolean option; when set, no \clearpage will be issued
between indices. You might want to set it in order to have a ‘chapter
of indices’; in this case you are responsible for setting the right value of
the above keys. For example

\indexsetup{level=\section*,toclevel=section,noclearpage}
...
\chapter*{Indices}
\printindex
\printindex[names]
\printindex[objects]

See more on this subject in section 5

firstpagestyle which takes as value a page style, default plain. You might
want to set it to empty or some other page style defined by the class
or by yourselves. This keyword is disabled when the package fancyhdr
is loaded; any definition or choice of page styles must be done before
typesetting the indices.

5

headers which takes two values: the left and right marks. You might want
to use this for disabling automatic uppercasing, by saying, for example,
headers={\indexname}{\indexname}; notice that these values should
always be a pair of balanced braced texts. Don’t use these keys if you
use fancyhdr.

othercode which takes as value arbitrary TEX code that will be executed at
the beginning of index entries typesetting. For example you might want
to change here the setting of \parskip.

\splitindexoptions must have as its argument the command line option to
splitindex ; this might be necessary on some systems. The default is -m "",
because we want it only for splitting the large index file into its components
which are later processed by this package.

\index with the syntax:

\index[〈name〉]{〈entry〉}
inserts 〈entry〉 into the raw index file(s); upon splitting it in different files,
this particular entry is listed in the specific index file with name 〈name〉; if
no name is specified, this 〈entry〉 is added to the default index with name
\jobname. The 〈entry〉 should be written according to the particular syntax
of the sorting and formatting program.

\indexprologue with the syntax:

\indexprologue[〈spacing〉]{〈text〉}
is used to define some text to go between the index header and the entries;
the 〈spacing〉 should be a vertical space command such as \vspace{36pt}
(default is \bigskip), controlling the spacing between the prologue and
the index proper. The command affects only the next index produced by
\printindex and is best placed just before this command. Please read ahead
for further information on the use of tho command.

\printindex with the syntax:

\printindex[〈name〉]
is used to typeset the particular index named 〈name〉; if no optional ar-
gument is specified, the default index with name \jobname.ind is typeset.
Actually this command activates all the mechanism of closing the output to
the raw index file, shelling out, possibly calling the splitindex script in order
to divide the single raw file generated by the typesetting engine into dis-
tinct raw files according to the default or specified 〈name〉s for each index,
calling the sorting and formatting program on each of these split raw files
(unless inhibited by a noautomatic option; in which case a warning is issued
in order to remember the typesetter that this particular index has not been
processed), producing the sorted and formatted .ind files, and eventually
inputs and typesets these formatted files. Deep breath.

6

Let’s see an example. The sequence of commands

...
\usepackage{imakeidx}
...
\makeindex[title=Concept index]
\makeindex[name=persons,title=Index of names,columns=3]
...
\begin{document}
...
...relativity\index{relativity}...
...
... Einstein\index[persons]{Einstein, Albert}...
...
And this is the end of the story.

\printindex

\indexprologue{\small In this index you’ll find only
famous people’s names}

\printindex[persons]
\end{document}

will produce two indices. Entries for either index must be typed as shown above.
The prologue will be printed (full text width) only in the “Index of names”, which
will be typeset in three columns.

When the original option is set, maybe implicitly because of twocolumn,
\indexsetup and the keys columns, columnsep and columnseprule for \makeindex
have no effect. Please read more on this matter further on.

4 If something goes wrong
Since imakeidx relies on good cooperation between package options and command
line options for the LATEX run, in some cases it may happen that the indices are
not correctly built or built at all.

If you use only makeindex and TEX Live 2010 or later, then you shouldn’t need
anything special, since makeindex is among the safe programs allowed to be called
during a LATEX run, be it latex, pdflatex, xelatex, or lualatex. When the options
splitindex, xindy, texindy or truexindy are specified (globally or locally),
the LATEX run should be called with the unrestricted -shell-escape (which is
–enable-write18 for MiKTEX) typesetting program option or the noautomatic
option should be specified when loading imakeidx.

Let’s look at a couple of examples. In both we suppose that the document
mybook.tex defines two indices through

\makeindex[...]
\makeindex[name=secondary,...]

7

where ... denotes possible options excluding name.
First of all we examine the case when imakeidx is called without splitindex.

Two files called mybook.idx and secondary.idx will be written during the
LATEX run. At the corresponding \printindex command, makeindex will act on
each of them producing the files mybook.ind, mybook.ilg, secondary.ind and
secondary.ilg. The .ind files contain the relevant theindex environments with
alphabetized entries, while in the .ilg files makeindex will write its log. You can
check in mybook.log whether the makeindex run has been executed by searching
for a line

runsystem(makeindex <...>)...executed

where <...> stands for the rest of the command line in the particular case. If
this line is not present, then makeindex has not been called; this happens when
you didn’t specify the shell escape command line option for the LATEX run or the
restricted shell escape is not active; also, of course, if you set the noautomatic
option for the index.

When using splitindex, the situation is different. During the LATEX run, only
a large index file called mybook.idx file gets written; the first \printindex
command will call splitindex (unrestricted shell escape must be active),
which will produce the two partial index files mybook-mybook.idx and
mybook-secondary.idx. These two files will be processed by makeindex producing
the four files mybook-mybook.ind, mybook-mybook.ilg, mybook-secondary.ind
and mybook-secondary.ilg. The line

runsystem(splitindex <...>)...executed

in mybook.log will tell that the splitting has been done (see later on if this doesn’t
seem true). In table 1 you can see what files are produced when the first two lines
are in the preamble.

Everything is the same when using texindy for alphabetizing, except that, by
default, it doesn’t write .ilg files. If you want them, add options=-t〈name〉.ilg
to the relevant \makeindex command, in our example it should be

\makeindex[...,options=-t mybook.ilg]
\makeindex[name=secondary,...,options=-t secondary.ilg]

The name of the .ilg file must be specified. Remember, though, that xindy .ilg
files may turn out to be very large.

When something different from expected appears to take place, check also the
time stamps of the produced files; if they are older than mybook.log, it means
that they have not been written in the last run. The most common case is that you
forgot to activate the shell escape feature (which is not necessary with TEX Live
2010 or later, provided you use only makeindex).

Another cause of malfunction might be a wrong option passed to makeindex,
texindy or splitindex. For example, if you specify a style option for makeindex such
as options=-s mystyle.ist and the style file is missing or its name is mistyped,
the run of makeindex will result in mybook.log, but it will be aborted and the

8

\makeindex
\makeindex[name=secondary]

without splitindex with splitindex

(at \begin{document})

mybook.idx mybook.idx
secondary.idx

(at \printindex)

mybook.ind mybook-mybook.idx
mybook.ilg mybook-secondary.idx
secondary.ind mybook-mybook.ind
secondary.ilg mybook-mybook.ilg

mybook-secondary.ind
mybook-secondary.ilg

Table 1: Files written during a LATEX run

TEX program has no control over this process. In this case the .ilg and .ind files
will not be produced and you can spot the problem by checking the time stamps.
On some systems a message such as

Index file mystyle.ist not found
Usage: makeindex [-ilqrcgLT] [-s sty] [-o ind] [-t log] [-p num]

may appear on the screen, but often this window gets closed before you realize
you have a problem. The time stamp is the best clue to detect such problems.

Shell hackers may be able to redirect the stderr stream to a file, but this
requires skills that can’t be explained here, because they require tens of different
tricks, depending on what method is used to start a LATEX run. From the command
line, assuming bash, it would be something like

pdflatex -shell-escape mybook.tex 2>latex-errors

If shell hackers know a way to access the exit status of the called program, we’d
be glad to implement a supplementary check.

5 Hints
Actually this package reaches two goals: (a) it typesets the indices of a specific
document in just one run, and (b) it lets the author/typesetter produce documents
with multiple indices.

9

5.1 Conflicts

5.2 Two columm typesetting and index prologue
As it has been already mentioned, it is possible to use the command \indexprologue
to write some text before the index proper gets typeset; an optional space may be
used in place of the default one-line spacing between the index title, the prologue
and the index body.

This facility relies on a particular feature of the multicols environment, that
imakeidx uses to instruct the typesetting program to typeset the index with a
specified number of balanced columns. The choice of multicols has been made
because it balances the columns in the last page; the declaration \twocolum does
not perform the same way, and, if used, it makes \printindex typeset the index
in two-column mode with an unbalanced last column.

In the previous sections it has been clearly stated that any configuration of
the way imakeidx typesets the indices is bypassed if the option original has
been specified either explicitly or implicitly. It is implicitly specified if the option
twocolumn is specified in the class declaration statement. Why? Because if two
column typesetting is desired for the whole document, it is not clear if the index
has to be typeset in one column within each column of the document, or if it
should be typeset in two column mode after a \onecolumn command is being
issued; the results are not the same: with the former method the columns remain
unbalanced, while the latter has balanced columns. Furthermore the \onecolum
command forces a page break; without the \onecolumn command if the index is
treated as a chapter, there is a page break, while if it is configured to be typeset
as a section there is no forced page brake. With this plethora of combinations we
decided to avoid any configuration of the index typesetting and left the decision
to the user. This requires the user to practice some ingenuity in order to obtain
what he expects.

First of all the user shall not specify the twocolumn option to the class. Sec-
ondly the user asks for the use of imakeidx and sets up the single or multiple
\makindex commands. thirdly he loads all other packages required for his docu-
ment; possibly he uses also geometry in order to specify a specific page layout. He
shall specify the \twocolumn declaration after the above has been completed, in
any case after the imakeidx package has been loaded and the single or multiple
\makeindex commands are configured.

A good example might be this one:

\documentclass[a4paper,11pt]{book}
\usepackage{imakeidx}
\indexsetup{level=\section*,toclevel=section,noclearpage}
\makeindex[title=Index of places,columns=1]
\twocolumn
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage[italian,english]{babel}
\usepackage[utf8]{inputenc}
\usepackage[a4paper,margin={1in,1in},binding=3mm]{geometry}

10

\usepackage[english]{varioref}
\usepackage[hang]{caption}
\begin{document}
...
\indexprologue{This index lists all the residences where Lady Esther
lived during the time span described in the book.}
\printindex
\end{document}

In this way the index is typeset as a “section”, not as a “chapter”, in one column
mode within the two column document style; the indicated prologue is typeset
between the index title “Index of places” and the start of the index proper.

On the opposite the following code:

\documentclass[a4paper,11pt]{book}
\usepackage{imakeidx}
\makeindex[title=Index of places,columns=2]
\twocolumn
\usepackage[T1]{fontenc}
\usepackage{lmodern}
\usepackage[italian,english]{babel}
\usepackage[utf8]{inputenc}
\usepackage[a4paper,margin={1in,1in},binding=3mm]{geometry}
\usepackage[english]{varioref}
\usepackage[hang]{caption}
\begin{document}
...
\onecolumn
\indexprologue{This index lists all the residences where Lady Esther
lived during the time span described in the book.}
\printindex
\end{document}

produces an index typeset as a “chapter”, starting on a new page; it is typeset
in two balanced columns. The prologue is typeset where it should. The ingenious
reader can experiment mixing the various settings used in these two examples in
order to find out what benefits or disadvantages one can obtain with settings that
are not physically impossible, but that may be aesthetically conflicting with one
another.

5.2.1 Class memoir

The first public version of this package was not compatible with the memoir class.
Since version 1.1 it is; however, one has to keep in mind that all index processing is
done with the methods of the present package, and not with memoir’s; however the
syntax used is the same and there should be no problem. There is an interaction
between memoir and showidx that required special attention. See below about using
showidx.

11

5.2.2 Package showidx

Up to version 1.1 this package did not allow to use it together with the showidx
package; now it is, provided that showidx is loaded before imakeidx. See below more
information on using showidx.

5.2.3 Package fancyhdr

When using package fancyhdr some inconveniences did show up; now we believe
we have detected the causes and we implemented the necessary corrections1.

5.2.4 Package combine

Apparently there might be some conflicts with package combine, because this pack-
age redefines the contents of \jobname; we tried to control this behavior, and made
the necessary patches, but it is still necessary to load this package imakeidx before
package combine.

5.2.5 Package ledmac

Some users reported some conflicts with package ledmac; in order to mark with
an italic ‘n’ the pages where the reference was made in one of the footnotes, it is
necessary to use the package etoolbox and its command \pretocmd; actually it is
not necessary to load etoolbox, because this imakeidx provides for it:

...
\usepackage{letltxmacro}
\usepackage{imakeidx}
...
\makeatletter
\LetLtxMacro\orig@@index\index
\let\orig@@index\index
\newcommand\nindex[1]{\orig@@index{#1|innote}}
\newcommand\innote[1]{#1\textit{n}}
...
\makeindex[...]
...
\AtBeginDocument{%

\pretocommand{\@footnotetext}{\let\index\nindex}{}{}
}

We did not apply this patch directly because we tried to avoid possible conflicts
that might show up when loading other packages. Therefore we simply show what
to do in case it might be necessary.

1Thanks to Maïeul Rouquette, who spotted the problems and also suggested some patches.

12

5.3 Index layout customization
If you redefine yourself the theindex environment, please remember not to number
the chapter or section that introduces the index if you ask for the intoc option;
either use the commands \chapter* or the \section* respectively and the in-
toc option or don’t use this option and redefine your theindex environment with
numbered chapter or section commands, that will put the index titles directly
into the table of contents. See below the effect of the \backmatter declaration.
You may use the idxlayout package by Thomas Titz, which offers many functions
for index typesetting customization and is compatible with our package; remem-
ber to load idxlayout after imakeidx. This package has a similar function to our
\indexprologue, called \setindexprenote; however idxlayout doesn’t reset the
index prologue, which must be declared anew or disabled with \noindexprenote
before the next \printindex command. In any case take into serious consideration
what is being said hereafter about customizations.

5.4 Index page customization
The same, more or less, holds true if you customize your headings; imakeidx can
deal with standard settings, but it generally cannot deal with personal stylings
and customizations. This is why if you load fancyhdr, some of the \indexsetup
settings may be disabled.

When you make any kind of customization, remember that there are several
classes, or personal settings, or features that may render your customization very
difficult to handle. Typically:

• There are classes where the normal usable highest sectioning command, dis-
regarding \part, is not \chapter, but \section; for example classes article,
scrartcl.

• Sectioning commands come in two varieties: starred and unstarred; the for-
mer ones are not numbered and do not produce any entry in the headings
and in the table of contents; the latter ones may behave differently according
to the next item.

• There are some classes (for example book, scrbook, menoir,. . .) that have
the special “sectioning” declarations \frontmatter, \mainmatter, and
\backmatter modify how the unstarred sectioning commands behave for
what concerns the heading and the table of contents entries.

For what concerns indices, these are generally typeset at the document end.
This means that the \backmatter declaration may be in force; in this case
unstarred sectioning commands are not numbered but they produce normal
headings and table of contents entries.

• Heading entries are used by the output routine paging algorithm in such a
way as to extract the left or the right part from suitable “marks”; for the
even (left) pages the required information is extracted from the \topmark

13

or \firstmark, while for the odd (right) pages they are extracted from the
\botmark. Generally speaking, the even page heading refers to \leftmark
and odd page headings refer to \rightmark; these are the two commands
that extract the correct part from the suitable marks. But when you use the
headers option value, you specify two brace balanced strings that are loaded
through \markboth as the left and right part of the current mark.

• The contents of the marks may be very varied; they are generally made up of
two brace balanced strings, which in turn may contain other brace balanced
strings that may be used in different ways by the selected page style and
by the page style definitions of the macros \chaptermarks, \sectionmarks,
and \subsectionmarks that may interfere with personal customizations.

• Remember also that things change in an obvious way when one side typeset-
ting is chosen; all pages are treated as if they were odd ones; therefore any
customization must take into account also this aspect.

The above list has not been written down for discouraging customizations of
any kind: simply it recalls what must be taken care of in order to create one’s
customization in a proper way.

The above list explains why we disabled the commands tied to the \indexsetup
keys headings and firstpagestyle when package fancydr is being used; you may even
set up these keys, but if the fancyhdr package has been loaded, we disable their
action; this implies that any fancy customization must be done before starting to
print any index.

The intoc option must also be used with care, as well as the starred or unstarred
sectioning commands for the level and toclevel option values. They must be chosen
according to what the possible \backmatter declaration sets up, in order to avoid
double entries in the table of contents; the \backmatter settings may also influence
the way heading information is being used, and this makes it even more stringent
to set up any index page style customization before starting to print any index.

Therefore if by chance you get double entries into the table of contents, elimi-
nate the intoc option from your calls; your class, packages, and settings are already
taking care of it.

The package tocbibind should be loaded with the noindex option, otherwise it
would interfere with our redefinition of theindex.

If you redefine your theindex environment by means of other packages, pay
attention that these redefine a real theindex environment with this very name;
if they create an environment with a different name, imakeidx can’t take care of
the indices production (in particular the TEX system program makeindex creates a
sorted and formatted .ind file that refers explicitly to the theindex environment),
and it can’t take care of the table of contents entry and of the position of the hyper
link anchors needed to navigate your document by means of hyper links.

14

5.5 Index location customization
Some packages might want to use the facilities of imakeidx to offer customized
index commands, where the entry location is not expressed by a page number, but
by an other reference value (for example: line number, entry number, etc.).

These packages may use the low-level command \imki@wrindexentry which
takes three arguments:

1. The index name.

2. The entry.

3. The location number.

For example \imki@wrindexentry{names}{Charles}{26} adds to the index
names the value Charles with the location reference 26.

In simpler words, the new command \imki@wrindexentry is of interest mainly
to package and class authors; it is not to be used by the “normal” user, who, on the
opposite, if interested in referencing the index entries on some location counter
different from the page one, is urged to refer to the classes and packages that
implement this facility; eledmac should be one of these packages. Matter of fact
this addition to the imakeidx package was contributed by Maïeul Roquette, the
author and maintainer of eledmac, and we thank him very much,

5.6 Using the showidx package
If you want to make use of the showidx facilities, remember to load that package
before imakeidx; remember also to disable or comment out the call to showidx when
you typeset the final version of your document. This constraint is due to the fact
that showidx redefines several internal commands, some of which have to receive
the imakeidx definition in order to perform as described in this documentation.

At the same time if the memoir class is being used, remember that this class
simulates the showidx package and has its own commands to enable or disable the
printing of the index entries into the margin of the document; the default setting
is with the \hideindexmarks command in force; but if the user wants to write his
index entries in the margin he has to issue the declaration \showindexmarks just
after begin document, in any case before the part of the source file(s) he wants to
be marked with the index entries in the margin.

5.7 Index List sectioning customization
Use freely the options and the key values in order to reach the desired results,
but you are advised to prepare in advance the styles for composing the various
indices in a proper way; for example, if you use a titled style for the index, where
the index sections are distinguished with a bold face title or alphabetic letter, you
have to set up a .ist file, such as myindexstyle.ist, made up like this:

headings_flag 1

15

heading_prefix "\\par\\penalty-50\\textbf{"
heading_suffix "}*\~*"
symhead_positive "Symbols"
symhead_negative "symbols"
numhead_positive "Numbers"
numhead_negative "numbers"
delim_0 ",\~"

where the numeric and non alphabetic entries have different titles. But, say, you
are making also an index where the entries are file names, and for some names only
the extension is entered; the extensions start with a dot, so the sorting program
will sort these names at the beginning of the sorted index file, but you won’t
like to have a title such as “Symbols”; you probably prefer to have a title such as
“Extensions”; therefore you have to prepare a different index style file, such as this
one:

headings_flag 1
heading_prefix "\\par\\penalty-50\\textbf{"
heading_suffix "}*\~*"
symhead_positive "Extensions"
symhead_negative "extensions"
numhead_positive "Numbers"
numhead_negative "numbers"
delim_0 ",\~"

This done, besides requiring the use of this package, you have to declare the
\makeindex command with the necessary options; pay a particular attention to
the options that involve the index symbolic name, the index title, the index style,
the fact that the index titles shall appear in the table of contents, and if you
are preparing an e-book, you probably would like to hyper link both the page
numbers and the index titles to the proper locations. The typesetting program
will do everything for you but be careful not to confuse it with illogical index
entries.

Especially with multiple indices it is important that you are consistent in
putting the right information in the right index and with a consistent mark-up.
Define yourself appropriate macros so that, for example, personal names are con-
sistently typeset, say, in caps and small caps and are entered into a specific index;
you may even create one command to typeset the name in the document and
replicate the same name in the index.

Of course there is no program that can decide at your place what and where
to index each piece of information; this is a task for humans. Soooooo. . .

HAPPY TEXING!

6 Implementation
The heading to the file is in common with the documentation file, and has already
been taken care of. But we require the xkeyval package, in order to handle the
key-value lists.

16

Notice that in order to create a specific name space so as to avoid possible
conflicts with other packages, all the commands defined in this package are prefixed
with the string imki@.
1 \RequirePackage{xkeyval}

We define the various options and their defaults. After \ProcessOptions,
we set anyway the original option if the document class has been given the
twocolumn option, which is incompatible with multicol. We define also an internal
alias for \immediate\write18, a rudimentary check for the typesetting engine and
a macro for modifying the command line call to splitindex.
2 \DeclareOption{xindy}{\def\imki@progdefault{texindy}}
3 \DeclareOption{texindy}{\def\imki@progdefault{texindy}}
4 \DeclareOption{truexindy}{\def\imki@progdefault{truexindy}}
5 \DeclareOption{makeindex}{\def\imki@progdefault{makeindex}}
6 \newif\ifimki@disableautomatic
7 \DeclareOption{noautomatic}{\imki@disableautomatictrue}
8 \newif\ifimki@nonewpage
9 \DeclareOption{nonewpage}{%

10 \imki@nonewpagetrue\imki@disableautomatictrue
11 }
12 \newif\ifimki@splitindex
13 \DeclareOption{splitindex}{\imki@splitindextrue}
14 \newif\ifimki@original
15 \DeclareOption{original}{\imki@originaltrue}
16 \DeclareOption{quiet}{\AtEndOfPackage{%
17 \let\imki@finalmessage\@gobble
18 \let\imki@splitindexmessage\relax}}
19 \ExecuteOptions{makeindex}
20 \ProcessOptions\relax
21
22 \if@twocolumn\imki@originaltrue\fi
23 \def\imki@exec{\immediate\write18}
24 \def\imki@engine{(pdf)latex}
25 \RequirePackage{ifxetex,ifluatex}
26 \ifxetex\def\imki@engine{xelatex}\fi
27 \ifluatex % luatex doesn’t have \(pdf)shellescape
28 \def\imki@engine{lualatex}
29 \ifnum\luatexversion<68
30 \chardef\imki@shellescape\@ne % no way to know the value
31 \else
32 \chardef\imki@shellescape\directlua{tex.write(os.execute())}
33 \def\imki@exec#1{\directlua{os.execute("\luaescapestring{#1}")}}
34 \fi
35 \fi
36 \edef\imki@splitindexoptions{-m \string"\string"}
37 \def\splitindexoptions#1{\g@addto@macro\imki@splitindexoptions{ #1}}
38 \@onlypreamble\splitindexoptions

While experimenting we found out that some classes or packages are either
incompatible with this one, or must be faked in order to pretend they have been

17

loaded.
There is a serious incompatibility with the memoir class. In facts memoir puts

all index entries in the main .aux file and extracts them to the various raw index
files at \end{document} time. This means that no raw index file output stream has
been defined, and therefore this package can’t close it; moreover it can’t typeset
the indices before \end{document} because they are not yet available. Therefore
if memoir is the active class, we will hijack its index mechanism replacing it with
ours.

On the opposite we pretend that package makeidx or package multind have been
loaded, so that hyperref can play with their commands, that are substantially the
same as those used here. By so doing those packages are inhibited from being
loaded after this one.
39 \@namedef{ver@makeidx.sty}{3000/12/31}
40 \@ifpackageloaded{multind}
41 {\PackageError{imakeidx}{Incompatible package ‘multind’ loaded}
42 {This package is incompatible with multind, don’t load both.%
43 \MessageBreak\@ehc}}
44 {\@namedef{ver@multind.sty}{3000/12/31}}

At the same time we redefine some commands defined by makeidx and we de-
fine the default English names for the \see and \seealso commands. We use
\providecommand so that, if makeidx has already been loaded, we do not redefine
things that have already been defined.
45 \providecommand*\see[2]{\emph{\seename} #1}
46 \providecommand*\seealso[2]{\emph{\alsoname} #1}
47 \providecommand*\seename{see}
48 \providecommand*\alsoname{see also}

From here on, some commands are duplicated; this depends on the fact that
the behavior must be different when using splitindex or not. The memory occupied
by the useless commands will be cleared at the end of package.
49 \providecommand*\makeindex{} % to use \renewcommand safely
50 \renewcommand{\makeindex}[1][]{\imki@makeindex{#1}}
51 % \@onlypreamble\makeindex % Already in latex.ltx

This package implementation of \makeindex sets default values for the keys, then
evaluates its argument (which is the optional argument to \makeindex) and calls
two other macros. After that we have to reset the defaults.
52 \def\imki@makeindex#1{%
53 \edef\imki@name{\jobname}%
54 \edef\imki@jobname{\jobname}%
55 \def\imki@title{\indexname}%
56 \edef\imki@program{\imki@progdefault}%
57 \let\imki@options\space
58 \KV@imki@noautomaticfalse\KV@imki@intocfalse
59 \setkeys{imki}{#1}%
60 \ifimki@splitindex\KV@imki@noautomaticfalse\fi
61 \imki@build\imki@name
62 \imki@startidx\imki@name

18

63 \imki@resetdefaults
64 }

Here are the keys. As usual, the imki@ prefix is used to distinguish anything
that is being defined in this package, even the keys.
65 \define@key{imki}{name}{\def\imki@name{#1}}
66 \define@key{imki}{title}{\def\imki@title{#1}}
67 \define@choicekey{imki}{program}[\imki@val\imki@nr]
68 {makeindex,xindy,texindy,truexindy}{%
69 \ifcase\imki@nr\relax
70 \def\imki@program{makeindex}%
71 \or
72 \def\imki@program{texindy}%
73 \or
74 \def\imki@program{texindy}%
75 \or
76 \def\imki@program{xindy}%
77 \fi}
78 \define@key{imki}{options}{\def\imki@options{ #1 }}
79 \define@boolkey{imki}{noautomatic}[true]{}
80 \define@boolkey{imki}{intoc}[true]{}
81 \define@key{imki}{columns}{\def\imki@columns{#1}}
82 \define@key{imki}{columnsep}{\def\imki@columnsep{#1}}
83 \define@boolkey{imki}{columnseprule}[true]{}
84 \def\imki@resetdefaults{%
85 \def\imki@options{ }%
86 \def\imki@columns{2}\def\imki@columnsep{35\p@}%
87 \KV@imki@columnseprulefalse
88 \KV@imki@intocfalse\KV@imki@noautomaticfalse}
89 \imki@resetdefaults

The control sequence \imki@build defines a control sequence to hold the setup
for an index to be used when the index is sorted and printed
90 \def\imki@build#1{%
91 \toks@{}%
92 \imki@dokey\imki@title
93 \imki@dokey\imki@program
94 \imki@dokey\imki@options
95 \imki@dokey\imki@columns
96 \imki@dokey\imki@columnsep
97 \ifKV@imki@noautomatic
98 \addto@hook\toks@{\KV@imki@noautomatictrue}%
99 \else

100 \addto@hook\toks@{\KV@imki@noautomaticfalse}%
101 \fi
102 \ifKV@imki@intoc
103 \addto@hook\toks@{\KV@imki@intoctrue}%
104 \else
105 \addto@hook\toks@{\KV@imki@intocfalse}%
106 \fi

19

107 \ifKV@imki@columnseprule
108 \addto@hook\toks@{\KV@imki@columnsepruletrue}%
109 \else
110 \addto@hook\toks@{\KV@imki@columnseprulefalse}%
111 \fi
112 \expandafter\edef\csname imki@set@#1\endcsname{\the\toks@}%
113 }

Comand \imki@dokey receives as argument the text of the values assigned to
certain keys, and adds them to the options token list.

114 \def\imki@dokey#1{%
115 \expandafter\addto@hook\expandafter\toks@\expandafter{%
116 \expandafter\def\expandafter#1\expandafter{#1}}}

Command \imki@startidx defines the output stream(s); the macro with suffix
split is used when splitindex is not enabled, the one with suffix unique is used
otherwise. In the case of many indices, the symbolic name for an index named
‘pippo’ is \pippo@idxfile corresponding to the file pippo.idx. When splitindex
is enabled, the only output stream is called \@indexfile as in standard LATEX,
corresponding to \jobname.idx.

117 \def\imki@startidxsplit#1{%
118 \if@filesw
119 \def\index{\@bsphack
120 \@ifnextchar [{\@index}{\@index[\imki@jobname]}}
121 \expandafter\newwrite\csname #1@idxfile\endcsname
122 \immediate\openout \csname #1@idxfile\endcsname #1.idx\relax
123 \typeout{Writing index file #1.idx}%
124 \fi}

We define a switch which is set to true when a \makeindex command is given:
with splitindex we open only one stream.

125 \newif\ifimki@startedidx
126 \def\imki@startidxunique#1{%
127 \if@filesw
128 \ifimki@startedidx\else
129 \newwrite\@indexfile
130 \immediate\openout\@indexfile\imki@jobname.idx%
131 \global\imki@startedidxtrue
132 \fi
133 \def\index{\@bsphack
134 \@ifnextchar [{\@index}{\@index[\imki@jobname]}}
135 \expandafter\let\csname #1@idxfile\endcsname\@empty
136 \typeout{Started index file #1}%
137 \fi}

Provide a default definition for \index; when a \makeindex command is given
and LATEX is writing on auxiliary files, \index will be redefined, as seen before.
When index files are written, \index always calls \@index. Some code is borrowed
from memoir.cls, but heavily modified. We want \@wrindex to be defined with two
arguments, so that hyperref can hook into it just like it does with the similar
commands defined by the old packages multind and index.

20

138 \renewcommand{\index}[2][]{\@bsphack\@esphack}
139 \def\@index[#1]{%
140 \@ifundefined{#1@idxfile}%
141 {\PackageWarning{imakeidx}{Undefined index file ‘#1’}%
142 \begingroup
143 \@sanitize
144 \imki@nowrindex}%
145 {\edef\@idxfile{#1}%
146 \begingroup
147 \@sanitize
148 \@wrindex\@idxfile}}
149 \def\imki@nowrindex#1{\endgroup\@esphack}

Command \@wrindex must be duplicated; we have to call it the same as usual
in order to support hyperref. But the real name will be given at the end. We
have to define a switch to allow the use of the showidx facilities. We define also
a helper macro so as to do the right thing so as to show the index file name
to which a certain index entry is going to be written; the idea is to prefix the
index entry with the actual name of the specific index, except in the case or the
default index, where the name is set to \jobname. Since the control sequence is
a primitive command, its value cannot be directly compared in the \ifx sense to
the current macro represented by argument #1. Therefore we need a further helper
control sequence \imki@jobname that contains the value assigned to \jobname. We
must also take care of the case where the user wants to print the index entries in
the margin while working on the document. This implies testing for the package
showidx being already loaded; but this is not sufficient, because the memoir class
simulates the showidx package and the test would result to be true even if the user
did not load thet package, but uses the memoir class. Therefore we use the same
boolean used by memoir, testing in advance so as not defining it twice; then we
use it to let the showidx true or simulated macros do their job, but we also take
care of resetting the switch default value to false at begin document time if the
memoir class is being used.

150 \@ifundefined{showindexmarks}{\newif\ifshowindexmark}{}
151 \@ifpackageloaded{showidx}{\showindexmarktrue}{\showindexmarkfalse}
152 \newcommand\imki@showidxentry[2]{%
153 \ifshowindexmark
154 \@showidx{\ifdefequal{\imki@jobname}{#1}{}{[#1]\space}#2}%
155 \fi}
156 \newcommand\imki@wrindexentrysplit[3]{%
157 \expandafter\protected@write\csname#1@idxfile\endcsname{}%
158 {\string\indexentry{#2}{#3}}%
159 }
160 \newcommand\imki@wrindexentryunique[3]{%
161 \protected@write\@indexfile{}%
162 {\string\indexentry[#1]{#2}{#3}}%
163 }
164 \def\imki@wrindexsplit#1#2{%
165 \imki@wrindexentrysplit{#1}{#2}{\thepage}%

21

166 \endgroup\imki@showidxentry{#1}{#2}%
167 \@esphack%
168 }
169 \def\imki@wrindexunique#1#2{%
170 \imki@wrindexentryunique{#1}{#2}{\thepage}%
171 \endgroup\imki@showidxentry{#1}{#2}%
172 \@esphack%
173 }

Compilation of the indices is disabled if -shell-escape has not been given
or the restricted mode is not active; in this case we emit a warning. X ETEX
has \shellescape instead of \pdfshellescape, so we take care of this (hop-
ing that users or packages don’t define a \shellescape command). In any case
we define an internal version of this command. In the case of luatex we can’t
emit the proper messages if luatex is not version 0.68 or later. The conditional
\ifKV@imki@noautomatic is defined by \define@boolkey above.

174 \def\imki@shellwarn{}
175 \ifdefined\imki@shellescape % luatex
176 \else
177 \ifdefined\shellescape
178 \let\imki@shellescape\shellescape % xetex
179 \else
180 \let\imki@shellescape\pdfshellescape % pdftex
181 \fi
182 \fi
183 \ifnum\imki@shellescape=\z@
184 \let\KV@imki@noautomaticfalse\KV@imki@noautomatictrue
185 \KV@imki@noautomatictrue
186 \def\imki@shellwarn{\MessageBreak or call \imki@engine\space with
187 -shell-escape}
188 \fi

Do the same if noautomatic has been given as an option.
189 \ifimki@disableautomatic
190 \let\KV@imki@noautomaticfalse\KV@imki@noautomatictrue
191 \KV@imki@noautomatictrue
192 \fi

Now we set up the theindex environment. If the original option is set, we
simply patch the class definition in order to call the macro that does the work
related to the table of contents. Otherwise we define a new theindex environment,
based on the standard, but using, if the number of columns is greater than one, the
multicols environment. Users needing a different setup can use the \indexsetup
command.

193 \ifimki@original
194 \expandafter\def\expandafter\theindex\expandafter{\expandafter
195 \imki@maybeaddtotoc\theindex}
196 \else
197 \global\let\imki@idxprologue\relax

22

198 \RequirePackage{multicol}
199 \renewenvironment{theindex}
200 {\imki@maybeaddtotoc
201 \imki@indexlevel{\indexname}\imki@indexheaders
202 \thispagestyle{\imki@firstpagestyle}%
203 \ifnum\imki@columns>\@ne
204 \columnsep \imki@columnsep
205 \ifx\imki@idxprologue\relax
206 \begin{multicols}{\imki@columns}
207 \else
208 \begin{multicols}{\imki@columns}[\imki@idxprologue]
209 \fi
210 \else
211 \imki@idxprologue
212 \fi
213 \global\let\imki@idxprologue\relax
214 \parindent\z@
215 \parskip\z@ \@plus .3\p@\relax
216 \columnseprule \ifKV@imki@columnseprule.4\p@\else\z@\fi
217 \raggedright
218 \let\item\@idxitem
219 \imki@othercode}
220 {\ifnum\imki@columns>\@ne\end{multicols}\fi
221 }
222 \fi

The command \indexsetup may be used to customize some aspects of index
formatting.

223 \def\imki@indexlevel{%
224 \@ifundefined{chapter}{\section}{\chapter}*}
225 \define@key{imkiindex}{level}{\def\imki@indexlevel{#1}}
226 \def\imki@toclevel{%
227 \@ifundefined{chapter}{section}{chapter}}
228 \define@key{imkiindex}{toclevel}{\def\imki@toclevel{#1}}
229 \define@boolkey{imkiindex}{noclearpage}[true]{\let\imki@clearpage\relax}
230 \def\imki@indexheaders{%
231 \@mkboth{\MakeUppercase\indexname}{\MakeUppercase\indexname}}
232 \define@key{imkiindex}{headers}{\def\imki@indexheaders{\markboth#1}}
233 \def\imki@firstpagestyle{plain}
234 \define@key{imkiindex}{firstpagestyle}{\def\imki@firstpagestyle{#1}}
235 \let\imki@othercode\relax
236 \define@key{imkiindex}{othercode}{\def\imki@othercode{#1}}
237 \newcommand{\indexsetup}[1]{%
238 \ifimki@original\else\setkeys{imkiindex}{#1}\fi}
239 \@onlypreamble\indexsetup

The command \indexprologue sets the internal version which is always \let
to \relax during \begin{theindex}.

240 \newcommand{\indexprologue}[2][\bigskip]{%
241 \long\gdef\imki@idxprologue{{#2\par}#1}}

23

Now we provide the relevant \printindex macros by transferring the real job
to a secondary macro \imki@putindex after due checks and messages.

242 \providecommand*{\printindex}{}
243 \renewcommand*{\printindex}[1][\imki@jobname]{%
244 \@ifundefined{#1@idxfile}{\imki@error{#1}}{\imki@putindex{#1}}}
245
246 \def\imki@error#1{%
247 \def\@tempa{#1}\def\@tempb{\imki@jobname}%
248 \ifx\@tempa\@tempb
249 \let\imki@optarg\@empty
250 \else
251 \def\imki@optarg{[#1]}%
252 \fi
253 \PackageError{imakeidx}
254 {Misplaced \protect\printindex\imki@optarg}
255 {You are not making this index, as no appropriate
256 \protect\makeindex\MessageBreak
257 command has been issued in the preamble.}}

We define a command to do a \cleardoublepage if the option openright is
active (in classes where twoside is meaningful). In case \chapter is defined but
not \if@openright, we assume that the class wants “open right”.

258 \def\imki@clearpage{%
259 \@ifundefined{chapter}
260 {\clearpage} % article and similar classes
261 {\@ifundefined{if@openright}
262 {\cleardoublepage}
263 {\if@openright
264 \cleardoublepage
265 \else
266 \clearpage
267 \fi}
268 }}

We need a helper macro to do a check in order to avoid a loop and the hook
where to insert the table of contents related stuff.

269 \def\imki@check@indexname{\indexname}
270 \providecommand*\imki@maybeaddtotoc{}

Two helper macros for preparing the final messages to the user.
271 \def\imki@finalmessage#1{%
272 \expandafter\edef\csname imki@message#1\endcsname
273 {\imki@program\imki@options#1.idx}
274 \AtEndDocument{\PackageWarning{imakeidx}{%
275 Remember to run \imki@engine\space again after calling\MessageBreak
276 ‘\@nameuse{imki@message#1}’\imki@shellwarn\@gobble}}}
277 \def\imki@splitindexmessage{%
278 \AtEndDocument{\PackageWarningNoLine{imakeidx}{%
279 Remember to run \imki@engine\space again after calling\MessageBreak
280 ‘splitindex’ and processing the indices\imki@shellwarn}}}

24

Here is a helper macro for deciding whether to call the external utility or
to issue a final message. In \imki@makeindexname we put the name of the only
program allowed by default (makeindex). If the list is updated, we can supplement
the list here, maybe defining a list macro; for now this is sufficient. The temporary
switch \if@tempswa is set to true if automatic processing is possible, so that the
main macro can take the appropriate action.

281 \def\imki@makeindexname{makeindex}
282 \def\imki@decide{%
283 \@tempswafalse
284 \ifimki@splitindex % splitindex is not "safe"
285 \ifnum\imki@shellescape=\@ne\@tempswatrue\fi
286 \else
287 \ifx\imki@program\imki@makeindexname % nor is texindy
288 \ifnum\imki@shellescape=\tw@\@tempswatrue\fi
289 \fi
290 \ifnum\imki@shellescape=\@ne\@tempswatrue\fi
291 \fi
292 \ifKV@imki@noautomatic
293 \@tempswafalse
294 \fi}

We now define the main macro that puts the specified index file into the document
and possibly orders to add the index title to the table of contents. It is duplicated
as usual. The argument #1 is the specific symbolic name of the index. In par-
ticular if the intoc option has been specified, the hook \imki@maybeaddtotoc is
defined in such a way that the relevant information is added to the toc file. The
\phantomsection command is necessary when using hyperref; here it is hidden as
argument to \@nameuse, so it is equivalent to \relax and does nothing if hyperref
has not been loaded.

295 \def\imki@putindexsplit#1{%
296 \ifimki@nonewpage\else
297 \imki@clearpage
298 \ifimki@disableautomatic\else
299 \immediate\closeout\csname #1@idxfile\endcsname
300 \fi
301 \fi
302 \let\imki@indexname\indexname % keep \indexname
303 \@nameuse{imki@set@#1}\imki@decide
304 \if@tempswa % we can call the external program
305 \imki@exec{\imki@program\imki@options#1.idx}%
306 \else
307 \imki@finalmessage{#1}%
308 \fi
309 \ifKV@imki@intoc
310 \def\imki@maybeaddtotoc{\@nameuse{phantomsection}%
311 \addcontentsline{toc}{\imki@toclevel}{\imki@title}}%
312 \else
313 \def\imki@maybeaddtotoc{}%
314 \fi

25

315 \ifx\imki@title\imki@check@indexname\else
316 \def\indexname{\imki@title}%
317 \fi
318 \@input@{#1.ind}
319 \let\indexname\imki@indexname % restore \indexname
320 }
321
322 \newif\ifimki@splitdone
323 \def\imki@putindexunique#1{%
324 \ifimki@nonewpage\else
325 \imki@clearpage
326 \fi
327 \let\imki@indexname\indexname % keep \indexname
328 \@nameuse{imki@set@#1}\imki@decide
329 \if@tempswa % we can call the external program
330 \ifimki@splitdone\else
331 \ifimki@disableautomatic\else
332 \immediate\closeout\@indexfile
333 \fi
334 \imki@exec{splitindex \imki@splitindexoptions\space\imki@jobname.idx}%
335 \global\imki@splitdonetrue
336 \fi
337 \else
338 \ifimki@splitdone\else
339 \imki@splitindexmessage\global\imki@splitdonetrue
340 \fi
341 \fi
342 \if@tempswa % we can call the external program
343 \imki@exec{\imki@program\imki@options\imki@jobname-#1.idx}%
344 \fi
345 \ifKV@imki@intoc
346 \def\imki@maybeaddtotoc{\@nameuse{phantomsection}%
347 \addcontentsline{toc}{\imki@toclevel}{\imki@title}}%
348 \else
349 \def\imki@maybeaddtotoc{}%
350 \fi
351 \ifx\imki@title\imki@check@indexname\else
352 \def\indexname{\imki@title}%
353 \fi
354 \@input@{\imki@jobname-#1.ind}
355 \let\indexname\imki@indexname % restore \indexname
356 }

At this point, we choose the meaning of the relevant commands, reclaiming
the space occupied by the discarded ones

357 \ifimki@splitindex
358 \let\imki@startidx\imki@startidxunique
359 \let\@wrindex\imki@wrindexunique
360 \let\imki@putindex\imki@putindexunique
361 \let\imki@wrindexentry\imki@wrindexentryunique

26

362 \let\imki@startidxsplit\@undefined
363 \let\imki@wrindexsplit\@undefined
364 \let\imki@putindexsplit\@undefined
365 \else
366 \let\imki@startidx\imki@startidxsplit
367 \let\@wrindex\imki@wrindexsplit
368 \let\imki@putindex\imki@putindexsplit
369 \let\imki@wrindexentry\imki@wrindexentrysplit
370 \let\imki@startidxunique\@undefined
371 \let\imki@wrindexunique\@undefined
372 \let\imki@putindexunique\@undefined
373 \fi

To end the code, we deal with memoir:
374 \@ifclassloaded{memoir}{\let\@wrindexm@m\@wrindex
375 \AtBeginDocument{\hideindexmarks}}{}

The end.

Change History

v1.0
General: First public version 1

v1.0a
General: Small bug correction . . . 1

v1.1
General: Fixed compatibility with

memoir 1
Modified interaction with
LuaTEX 1

v1.1a
General: Fixed bug with possibly

defined \directlua 1
Fixed bug with possibly defined
\directlua; now we leave the
check to ifluatex; using also
ifxetex for symmetry. 17

v1.2
General: added index processing

engine option truexindy 1
made package compatible with
fancyhdr 1

made package compatible with
showidx 1

v1.2c
General: Fixed regression 1

v1.2d
General: Fixed bugs with index

internal names 1
v1.2e

General: Fixed bug with showidx
simulated by memoir 1

v1.3
General: Added internal so as to

cooperate in a better way with
eledmac (by Maieul Roquette . 1

v1.3b
General: Fixed untimely closing of

the files with the ‘nonewpage’
option and the ‘noautomatic’
option 1

LuaTeX 0.90 doesn’t support
\write18 1

v1.3c
General: xpatch is not loaded any

more 1, 17
v1.3d

General: No change, bumped
version number 1

v1.3e
General: Don’t leave \shellescape

defined 1, 22

27

	Introduction
	Package usage
	Specific package commands
	If something goes wrong
	Hints
	Conflicts
	Two columm typesetting and index prologue
	Class memoir
	Package showidx
	Package fancyhdr
	Package combine
	Package ledmac

	Index layout customization
	Index page customization
	Index location customization
	Using the showidx package
	Index List sectioning customization

	Implementation

