A hybrid LaTeX collection.

Leo Brewin

School of Mathematics, Monash University

Leo.Brewin@monash.edu

August 2018

Version 0.1

https://github.com/leo-brewin/hybrid-latex

Abstract

This collection of LaTeX packages and Python scripts provides simple tools to
allow active Python to be embedded in a LaTeX document. It does this by defining
a number of simple macros and Python scripts that build a bridge between the
output generated by the active code and the LaTeX code. Each language is defined
independently of the other languages. The scripts and macros for one language
are almost identical to those for the other languages in the collection differing
only in the names of the macros and some minor language specific tweaks. This
makes it a simple matter to extend the collection to other languages.

Contents

Introduction
The pyLaTeX package

Requirements
3.1 Latex. . ............
3.2 Python.............

Setup

Compiling

5.1 Caution . ... ........

5.2 The pypreproc.py and pypost-
proc.py scripts . . . . ... ..

5.3 The merge-tex.py script

Usage

t

(=)

6.1 Undefined tags . .. .. ...
6.2 Tagged blocks . . . . .. ...
6.3 LaTeX macros. .. ... ...
6.4 Custom formats . . . . . . ..
6.5 Python indentation . . . . . .

6.6 Error reporting . . ... ...
6.7 Matplotlib and macOS . . . .

7 Examples

8 Splitting long lines using breqn
8.1 Hyperref, hyperlinks and breqn

9 Licence

10 Version history

15

15


https://github.com/leo-brewin/hybrid-latex

1 Introduction

Programs like Mathematica, Maple, Python and so on do a wonderful job of symbolic, numeric
and graphical computations. On the other hand, LaTeX produces exceptional typeset docu-
ments but is less adept at symbolic and other forms of computation. It is a case of horses for
courses. A common approach is to use one or more codes (in Python, Maple etc.) to do the
computations and a separate LaTeX code to collect and document the results. It seems reason-
able then to attempt to consolidate these separate codes into a single hybrid LaTeX document.
That is the main purpose of this collection — to provide tools that support active code within
a LaTeX document.

This document describes the CTAN version of this package. An extended version of the pacakge
that allows inclusion of Python, Mathematica, Maple, Matlab and Cadabra code can be found
on the GitHub repository.

2 The pyLaTeX package

There are other packages that do the same job, such as PythonTeX and SageTeX. In each case
the journey from source to pdf is similar; the Python code is mined from the LaTeX source,
passed over to Python and the output feed back into the LaTeX source. The packages differ
in both the tools used to mine the Python code and the manner in which the output is made
visible to the LaTeX source.

In both PythonTeX and SageTeX, the Python code is mined using a first pass of LaTeX whereas
pyLaTeX uses a Python script to do the same job. There are two main reasons for adopting
Python as the code miner. First, it is much easier to extend pyLaTeX to incorporate other
foreign languages (such as Mathematica, Matlab, Cadabra etc.). Doing so in PythonTeX and
SageTeX requires careful tweaking of the underlying LaTeX class files — such adventures requires
a solid understanding of the LaTeX programming language and is not for the faint of heart.
The second reason is that LaTeX is not the ideal tool to mine Python (or any other code) from
a LaTeX document. There are much better text processing tools (such as Python) that can do
the same job while being much easier (for the developer) to read, debug and extend.

There are also some important differences in the way the end user accesses the Python output
for use in the LaTeX source. In PythonTeX and SageTeX the Python output is saved to a
collection of files (roughly one file per Python code block) while pyLaTeX creates a single file.
In all cases the contents of these files are made available to the LaTeX source by way of special
LaTeX macros. The PythonTeX and SageTeX output files are tightly coupled to the original
LaTeX source. This means that their contents can not be easily shared with other LaTeX
sources (without manual intervention). In contrast, the pyLaTeX output is a single file that
contains a collection of LaTeX macros, one for each piece of (tagged) Python output, that
can be read by any other LaTeX source. Thus a user could split a larger LaTeX source into
a collection of smaller sources (e.g., chapters of a book) with the Python output included as
needed. An example of this sharing of Python output can be found in the examples directory.
The file summary . tex does no symbolic calculations of its own but instead pulls in selected parts
of the Python output from other examples in that directory.

Another important difference between pyLaTeX and PythonTeX and SageTeX is that pyLaTeX uses
tags to nominate which pieces of the Python output should be made available to the LaTeX
source. Both PythonTeX and SageTeX allow all Python output to accessed in the LaTeX source.
The problem with that method is that it is not possible to record the history of a single Python


https://github.com/leo-brewin/hybrid-latex
https://github.com/gpoore/pythontex
https://github.com/sagemath/sagetex

expression. For example, if the Python code computes the expression foo five times then only
the fifth instance will be seen by LaTeX.

3 Requirements

3.1 Latex

The pyLaTeX package draws on a number of latex packages all of which should be available in
any recent LaTeX distribution. The examples described in this document were run using the
TeXLive-2018 distribution for macOS.

The pyLaTeX package provides both a normal style file, pylatex.sty and a class file pylatex.cls.
The preamble to the style file contains the following declarations.

\usepackage{comment}
\usepackage{listings}
\usepackage{keyval}
\usepackage{etoolbox}
\usepackage{xcolor}
\usepackage{pymacros}

The pymacros package is a key part of the pyLaTeX collection as it defines the core macros for
pyLaTeX.

The class file first includes the style file then executes the following statements

\usepackage [papersize={297mm,210mm},
hmargin=2cm,tmargin=1.0cm,bmargin=1.5cm] {geometry}

\usepackage{amsmath}

\usepackage{amssymb}

\usepackage{hyperref}

\usepackage{breqn}

The extra packages included in the class file are not essential but have proven useful in many
cases and thus are included as a convenient default. Note that the options to the geometry
package sets the output to A4 landscape format. This can be changed, either by editing the class
file or by including a line like the following somewhere in the preamble of the users document.

\geometry{margin=2.0cm, paperheight=25cm}

3.2 Python

There are no particular requirements on the Python environment in order to use the pyLaTeX
package though the examples listed below do require sympy version 1.1.1 or later. The simple
measure is that if your embedded Python code can be run in your normal Python environment
then that same code should work equally well using pyLaTeX. All of the examples described in
this document were run under macOS using the default Apple Python environment (Python
2.7) as well as under the Anaconda 5.2 (Python3.6) environment.



4 Setup

There is no setup tool as you only have a few files to install. The following files can be found
inside the Python directory of the hybrid collection.

shell/pylatex.sh: Copied to anywhere that is visible on your path.

python/pypostproc.py: Copied to anywhere that is visible on your path.
python/pypreproc.py: Ditto
python/merge-tex.py: Ditto

latex/pylatex.cls: Copied to anywhere that is visible to LaTeX.
latex/pylatex.sty: Ditto
latex/pymacros.sty: Ditto

For example, the shell and Python scripts could be copied to $HOME/local/sh/ while the LaTeX
files could be copied to $HOME/tex/inputs/. Provided those directories are on the appropriate
paths (i.e., PATH and TEXINPUTS), that should be all that needs doing.

Note that each of the Python scripts uses the following shebang (i.e., the first line in the file)

#!/usr/local/bin/python3

You may need to change this to match the path to your version of python3.

5 Compiling

To compile the file foo.tex use

pylatex.sh -i foo

The pylatex.sh script will call Pyhton and LaTeX as required to produce the pdf output.
Along the way a number of intermediate files will be created (most of which will be deleted by
default). Using the above command will produce not only the pdf but also foo.pytex. This
file contains a list of macros, one for each pyLaTeX tag in foo.tex, that are executed when the
pyLaTeX macros such as \py{bah} are called (in this case bah is a tag associated with part of
the Python code in the foo.tex source). This same file can also be included in other LaTeX
files using \input{foo.pytex}. This makes the Python output from foo.tex available to other
LaTeX files.

Executing pylatex.sh with the -h flag will produce the following usage information.

usage : pylatex.sh -i file [-I<path to pymacros.sty>]
[-P<path to python>] [-s] [-k] [-x] [-hl]

options : -i file : source file (without .tex extension)

-I file : full path to pymacros.sty file

-P path : where to find the Python binary

-s : silent, don’t open the pdf file

-k : keep all temporary files

-x : don’t call latex

-h : this help message
example : pylatex.sh -i file -P/usr/local/bin/python

The intermediate files produced by the -k option are (excluding the standard LaTeX files)



foo.py: A copy of all the Python code stripped bare of (most) tags.
foo_.py: Similar to foo.py but with additional Python code to catch Python
output for the pyLaTeX tags.
foo.pyidx: An index of all pyLaTeX tags.
foo.pytex: A set of macros, one for each tag, expanding to the Python output.
foo.pytxt: The raw Python output from foo_.py.

The -k option is useful in cases where there is a bug in the users Python code. This option will
force pylatex.sh to retain all intermediate files, in particular the mined Python code foo.py.
This file can then be debugged and in turn the original LaTeX source can be corrected.

The -I option can be used in cases where the output from foo.tex is intended for use in other
LaTeX sources that do not use the pyLaTeX style file pylatex.sty. This could be useful for
sharing results with colleagues who have not installed the pyLaTeX package or when submitting
a paper to a journal. The nett effect of the -I option is to prepend the foo.pytex file with the
LaTeX definitions for all of the pyLaTeX macros. Another approach would be to not use the -I
but share both the foo.pytex and pymacros.sty file with colleagues or journals.

The only files that must be kept are foo.tex (obviously) and foo.pytex. This pair of files alone
is sufficient for successful execution of LaTeX. The file foo.pytex only needs to be recreated
(using pylatex.sh) when changes have been made to the Python code in foo.tex.

It is important to note that the Python code mined from the LaTeX source will be written
to a single file. Thus it is important that all parts of this file interact harmoniously. If there
is any possibility that one part of the (combined) code may adversely effect other parts then
some action must be taken. One solution is to use language features of Python to avoid the
clash, such as placing conflicting code in separate functions. Another solution is to move
the conflicting code to separate LaTeX documents, run pylatex.sh over each document, then
include the results in the original LaTeX source using \input on the corresponding .pytex files.

5.1 Caution

Be very careful — each of the above named temporary files will overwrite any existing files of
the same name. An easy road to disaster lies this way. Suppose you have an existing Python
file named foo.py and suppose you wish to catch its output for later use in some other LaTeX
document. You might start by creating a wrapper file, foo.tex, such as the following

\documentclass[12pt]{pylatex}
\begin{document}
\begin{python}
\Input{foo.py}
\end{python}
\end{document}

The pylatex.sh will expand the \Input{foo.py} command to include the contents of foo.py.
No damage done — so far. But now pylatex.sh will read the newly merged file and will create
its own version of foo.py without any of the pyLaTeX tags. Thus any subsequent processing
of foo.tex will not capture any Python output — because all of the Python tags have been
deleted.



5.2 The pypreproc.py and pypostproc.py scripts

The job of the pypreproc.py script is to harvest the Python code from the LaTeX source. For
a source named foo.tex the script could be run using

pypreproc.py —-i foo

This will produce foo.py, foo_.py and foo.pyidx. The file foo.py is an almost! exact copy of
the active Python code while foo_.py is a version of foo.py containing extra Python commands
to catch the nominated Python output. This file is passed to Python to create the foo.pytxt
file which in turn is passed to pypostproc.py using

pypostproc.py -i foo

which should create the foo.pytex file.

The pre and post processor scripts, pypreproc.py and pypreproc.py, would rarely be used on
their own. Though if something fails in the execution of the pylatex.sh script it might prove
useful to run these scripts on their own. Bug reports are always welcome (working on the time
proven axiom that no code is ever bug free).

5.3 The merge-tex.py script

A common practice when writing LaTeX documents is to use a driver file to pull in other smaller
LaTeX documents (e.g., a driver for a book could pull in the chapters as separate documents).
Each of the chapters could contain some active Python code — so how can such code be made
visible to the Python preprocessor pypreproc.py? That is the job of the merge-tex.py script.
It will read each file and copy the contents to a single merged file (named .merged.tex). This
file is then read by pypreproc.py. Not all included files will contain active Python code so
merge-tex.py only looks for lines like \Input{foo.tex}. Other files included using \input or
\include are ignored by merge-tex.py. Thus the .merged.tex need not be a faithful copy of
the original source — but that is not a problem since .merged.tex exists solely for pypreproc.py
to harvest the active code after which it is no longer used.

The merge-tex.py script is language agnostic — all it does is read its input and respond to any
\Input lines. If the input file is foo.tex then a merged file bah.tex can be created using

merge-tex.py -1 foo.tex -o bah.tex

Note that the .tex file extensions are required (unlike pypreproc.py and pypostproc.py).

Note also that merge-tex.py will follow nested files up to 10 deep.

6 Usage

Using pyLaTeX entails the addition of user defined tags, in the form of Python comments, within
the LaTeX source. These tags serve to connect the Python output to the LaTeX source. A
typical example is shown in the following code.

Tt may retain a few comments.



\documentclass[12pt] {pylatex}
\begin{document}
\begin{python}
from sympy import *
x = Symbol(’x’)
ans = exp(-x) # py (ans.01,ans)
taylor = ans.series(x, 0, 4) # py (ans.02,taylor)
taylor = ans.series(x, 0, 8) # py (ans.03,taylor)
\end{python}
\begin{alignx*}
&\py*{ans.01}\\
&\py*{ans.02}\\
&\py*{ans.03}
\end{alignx*}
\end{document}

This will lead to a pdf file that contains not just the Python output but also, for reference, a copy
of the Python source (though this can be suppressed, see the section below on customisation).

from sympy import *

x = Symbol(’x’)

ans exp (-x) # py (ans.01,ans)
taylor = ans.series(x, 0, 4) # py (ans.02,taylor)
taylor = ans.series(x, 0, 8) # py (ans.03,taylor)

ans.01:=¢ *

2 3
anSO2:1—x+%_%+O(x4)
2 3 gt P 26 27
.03:=1— Zo_ 2 oLz 2 42 8
e R i TR TR )

The key elements to note are the pyLaTeX tags (e.g., py(ans.01,ans)) and the Python envi-
ronment block. The tags are always part of a Python comment and are always of the form
py (foo,bah) where bah is a Python symbol (or any printable entity) and foo is the tag (later
used in the LaTeX source). The pyLaTeX tag can be any string of characters from the set
a-zA-Z0-9._. In the above example there are three tags, ans.01, ans.02 and ans.03. The dot
postfix is not essential but it provides a simple way to record a sequence of Python outputs.
These tags are used later in the body of the LaTeX code and are accessed in the above example
using the pyLaTeX macro \py. This macro takes just one argument namely the corresponding
pyLaTeX tag. The macro \py{foo} will expand to the Python output for the tag foo. Other
macros are provided such as \py*{foo} which will expand to foo := followed by the Python
output. The full set of macros are described in the section LaTeX macros.

The pyLaTeX tags can be placed anywhere within the Python block. In the above example the
tags were placed on the same line as the Python code. This is just for aesthetic effect — they
could equally well have been located on following lines. The pyLaTeX tags should be unique
within the LaTeX file. If the same tag name is used more than once the output associated with
that tag will be from the last instance of that tag.

Note that the pypreproc.py script will interpret py(foo) as a shorthand for py(foo,foo).



6.1 Undefined tags

If any of the pyLaTeX macros are called for a tag that was not defined then (7?7) will be printed.
Note that this may cause a LaTeX syntax error when the (?7) appears in an unexpected context
(e.g., in cases where the output of \py was expected to expand to one or more \\’s).

6.2 Tagged blocks

There is a second form of tag, known as a tagged block, in which a block of Python code is
enclosed in a matching # pyBeg(foo), # pyEnd(foo) pair. An example of a tagged block can be
seen in the following code. The tag is given the name Pascal and can be accessed in the LaTeX
code using any of the pyLaTeX macros, in this case \py. The intention of tagged blocks is that
they can be used to capture any Python output generated within the tagged block (except the
output that is caught by simple tags such as shown in the previous example).

Here is a short example? that demonstrates the use of a single tagged block.

\documentclass[12pt]{pylatex}
\begin{document}

\begin{python}
def build(m):
if n==0:
return [1]
else:
P = build(n-1)
return [1] + [P[i]J+P[i+1] for i in range(n-1)] + [1]

def display(n):
for i in range(n):
ans = ""
for j in range(0,len(build(i))):
ans = ans + "\m{" + str(build(i)[jl) + "}"
print (ans+"\cr")

# pyBeg (Pascal)

display(7)

# pyEnd (Pascal)
\end{python}

\def\m#1{\hbox to lcm{\hfill #1\hfill}}
\halign{\hbox to \textwidth{\hfill#\hfill}\cr\py{Pascall}}

\end{document}

2This example is very inefficient as it uses recursive calls for every element in the table.



The output of the above code (excluding the echoed Python code) is Pascal’s triangle (as
expected).

All Python code must be contained within the Python environment block, i.e., within a
\begin{python} ... \end{python} pair. There is no facility to allow inline execution of Python
code (though this is allowed in other packages, notably PythonTeX). The reason for taking this
approach was to force a clear separation between native LaTex code and active Python blocks.
This makes it easier to locate the Python code. If an inline calculation is needed then it is a
simple matter of including the Python code in a Python block and using a tag to catch and
display the result.

Tagged blocks can be nested (though it is not clear what use this might serve) and they can
contain simple tags. The simple tags will always take priority over tagged blocks in capturing
Python output. Tagged blocks should respect the usual rules of begin-end blocks — they can
nested but they must not overlap. The Python pre and post processors (within the pylatex.sh
script) will report errors when tagged blocks are not properly structured (i.e., overlapping,
unmatched pyBeg/pyEnd items etc.).

6.3 LaTeX macros

The pyLaTeX package provides a number commands for typesetting tagged expressions.

\py{foo} Display the value of foo without any additional decorations.
\py*{foo} Similar to \py{foo} but adds foo:= immediately to the left of foo.

\Py{foo} Display the value of foo and set the equation tag to be (foo). Since
this macro creates its own equation tag it should not be used in any
maths environment that also creates an equation tag (e.g., align,
equation etc.) It can not be used in any of the bregn environments
(breqn will report a package error).

\Py* [bah]{foo} Use this version of \Py{foo} in any of the (starred) breqn environ-
ments. The optional argument [bah] specifies the spacing between
the end of foo and the right hand edge of the tag. The default is
[\hfill] which forces the tag to the far right.

\Dmath [bah] {foo} This is a shortcut for the dmath environment. The optional and
required arguments of \Dmath [bah] {foo} are passed onto the dmath
environment. See page (14) for an example.

\Dmath* [bah]{foo} This is similar to \Dmath[bah]{foo} but with the one small change
that it applies to the dmath* environment.

\ttTag{foo} This is a simple macro that typesets a tag name such as foo in a
small typewriter font enclosed in matching parenthesis, e.g., (foo).



\PySetup{key=value} This command takes one argument in the form of a key=value pair.
Its purpose is to set global options for the following Python blocks.
The current list of options is limited to one key with three values.
These are described in the following section.

6.4 Custom formats

The pyLaTeX package allows for some minor customisation of the formatting of the Python code.
The macro \PySetup can be used to set the preferred options using key-value pairs. There is
only one key as described in the following table.

action=show Make the Python code visible and active (i.e., cancel the hide and
verbatim actions).
action=hide Hide the python code but still allow the Python code to be active.

action=verbatim This will make the Python code inactive (i.e., it will not be passed
to Python).

Multiple calls to \PySetup can be made and apply to all subsequent Python environments or
until changed by a later call to \PySetup. The default value is action=show.

The pyLaTeX package uses the 1listings package which allows further formatting changes to be
made. For example, to add line numbers and a shaded background to the Python code use

\1lstset{numbers=left,backgroundcolor=\color{lightgrey}}

Many other options are available, see the 1istings documentation for full details.

6.5 Python indentation

Python has very strict (but simple) indentation rules that must be observed not only within
a single Python block but across all Python blocks. Why? Because all of the Python blocks
will be collected into a separate single Python code and that code must observe the Python
indentation rules.

6.6 Error reporting

None of the packages in this collection treat errors from the active code with any degree of
aplomb — at best they report that an error occurred, at worst they silently ignore the error
leaving pdflatex to pick up the pieces. This is far from ideal. If in doubt, run the main script
(e.g., pylatex.sh) using the -k -x command line options then inspect the file foo.pytxt for
any errors. If there are errors then you can debug the extracted code foo.py later returning
the corrected code back to the LaTeX source foo.tex.

6.7 Matplotlib and macOS

There is a well known issue when using Matplotlib on macOS where some Matplotlib codes may
fail. The Matplotlib documentation provides a number of suggestions including to use pythonw
rather than python. For such cases use the -P flag to set the path to the pythonw command

10


https://matplotlib.org/faq/osx_framework.html

when invoking the pylatex.sh. This has been tried and tested under the Anaconda Python3
environment for macOS.

7 Examples

The examples directory contains a small collection of complete pyLaTeX codes that showcase
the various features of the pyLaTeX package. The Python source contains inline comments that
result in long lines of text that do not comfortably fit on an A4 page in portrait mode. Thus
most of the examples have been formatted in A4 landscape mode (this is the default setting
for the pyLaTeX class). Consequently it is not practical to include those examples in this file.
The following table provides a very brief summary of each example (with hyperlinks to the
corresponding pdf’s in ../python/examples/).

Example 1:  This is a collection of basic mathematical computations. It contains exam-
ples of simple tags and tagged blocks.

Example 2:  This is the first of two examples drawn from the PythonTeX website (here).
It shows a nice example of using a tagged block.

Example 3:  This is the second example taken from the PythonTeX website (here). It
shows a step-by-step computation of a simple triple integral.

Example 4:  This example shows how Matplotlib and friends can be used to construct a
simple xy-plot.

Example 5:  This example shows how problems with the placement of equation tags can
be resolved by careful choice of the optional argument to \Py*.

Example 6: This is a simple example that uses Python to compute the first few iterations
of a Newton-Raphson method.

Example 7:  This example contains a single tag-block. It captures basic system data.

Example 8:  This example shows how to completely hide the Python code as well a trick
for hiding just the tags.

Example 9:  This example is a proof of concept example. It shows one approach for
passing LaTeX information to the Python code. The code is not elegant but
it does the job.

Summary: There is no Python code in this example. Instead, the results from the above
examples are included by inputting the corresponding .pytex file.

8 Splitting long lines using breqn

On some occasions the output from a computation may be too long to fit comfortably on one
line. In such cases some form of line splitting is required. A less than ideal approach is to
manually edit the output by inserting carefully chosen line breaks. Not only is this approach
tedious and inelegant it also requires the line breaks to be reset whenever the document format
is changed (e.g., from A4 to letter size) or when some of the computations are changed (e.g.,
showing twice as many terms in a series expansion).

A better approach is to use the breqn package which uses sophisticated algorithms to find good
line breaks with minimal input from the user. In many cases breqn will produce an acceptable

11


https://github.com/gpoore/pythontex/
https://github.com/gpoore/pythontex/

oW

oo ~ (=2} ot

output. But it is not without its own limitations® as some of the following examples will
demonstrate. The fact is that there are no algorithms that will guarantee prefect line splitting
as there will always be some subjective element in what constitutes a good line break. The
following series of examples are intended as guide of what to expect when using breqn and also
to demonstrate some possible remedies.

Here is a simple example based on a truncated Taylor series expansion of 1/(1 + z) around
x = 0.

from sympy import *

x = Symbol(’x’)

ans = 1/(1+x) # py (fun,ans)

taylor = ans.series(x, 0, 6) # py (ans.101,taylor)
taylor = ans.series(x, 0, 9) # py (ans.102,taylor)
taylor = ans.series(x, 0, 12) # py (ans.103,taylor)
taylor = ans.series(x, 0, 15) # py (ans.104,taylor)
taylor = ans.series(x, 0, 30) # py (ans.105,taylor)

For an expansion with only a handful of terms the usual align environment produces an ac-
ceptable output as demonstrated in the following code and output.

\begin{align*}
\py{fun} &= \py {ans.101}\tag{\ttTag{ans.101}}\\
&= \py {ans.102}\tag{\ttTag{ans.102}}\\
&= \py {ans.103}\tag{\ttTag{ans.103}}

\end{align*}
1 2 .3, .4 _ 5 6
=1l-z+2°—2"+2"—2°+ O (2°) (ans.101)
r+1
=l-ao+z’—2"+2' —2"+2°— 2"+ 2%+ O (2) (ans.102)

=l-o+z’—2®+a2' -2 +2%—2"+2° -2 + 2" — 2" + O (2")  (ans.103)

In this and the following examples the equation tags have been explicitly matched to the
corresponding sympy expressions. This makes it somewhat easier to follow the progress of a
computation. The normal equation numbering (e.g., (1), (2) etc.) can be recovered by deleting
the calls to \tag{...}. The \ttTag macro, defined in the pyLaTeX package, does as its name
suggests — typesets the tag in the \tt font.

The above works well for short expressions but for longer expressions it is much better to use
the breqn package. The key points to note in the following example are the use of the dmath
environment and the manner in which the equation tags have been set.

\usepackage{breqn}
\begin{dmath} [number={\ttTag{ans.105}}]

\py {fun} = \py {ans.105}
\end{dmath}

3The bregn documentation does note that it is a work in progress.

12



The corresponding output is

S U e SR S B R S BT [V s B L S ¢ SR E S LR [y

r+1
—x17+x18—x19+x20—x21+x22—x23+x24—x25+x26—x27+m28—x29+(9(x30)

(ans.105)

The dmath environment is one of a number environments provided by the breqn package. Its
job is to chose sensible line breaks that produce a pleasant output (though what constitutes
pleasant may be up for debate). Note that all of the breqn environments do not support the
\tag macro for setting equation tags. The only way to do so is through the number={...}
optional argument as shown in the above example. To suppress the equation label use the
dmath* environment.

Note: This sentence may seem out of place but its purpose is to demonstrate a
claim made later is this documentation that, with a suitably modified label macro,
the hyperref package can be used to jump to the correct page when clicking on a
hyperlink for an equation. For example, clicking on this link (ans.105) should take
us to page 15. But now, back to the main discussion.

The breqn package also provides a dgroup environment. This can be used to group a sequence
of dmath environments to align the output on a targeted symbol (usually the first equals sign).
Here is a short example

\begin{dgroup}
\begin{dmath} [number={\ttTag{ans.103}}] \py {fun} = \py {ans.103} \end{dmath}
\begin{dmath} [number={\ttTag{ans.104}}] {} = \py {ans.104} \end{dmath}
\begin{dmath} [number={\ttTag{ans.105}}] {} = \py {ans.105} \end{dmath}
\end{dgroup}

and here is the corresponding output

1 =l-o+2?—2"+a2' -2 +2° 2"+ 2% — ¥ + 2" — 2 + O (2?) (ans.103)
x

(ans.104

—loa4a?— a4t — 2P b a4 —a® 40— gy M 1O (2

gttt S S T B ¥ 10— g1l 12 18 g p14 (30541059
—x17+x18—x19+x20—x21+x22—:c23+:c24—:U25+:c26—x27+x28—:c29+(’)(:c30)

There are a few points to be made here. First is the less then ideal placement of tags. Second
is the somewhat ungainly syntax. Both of these points will be discussed in more detail shortly.
Next, notice the {} preceding the equal signs in lines 3 and 4. This supplies an empty left hand
side for each equation and is essential to ensure proper alignment (on the equals sign) across all
three equations. Unlike other maths environments, breqn does not allow you to specify which
symbol to use as the alignment target — that choice is made deep within the inner workings of
dmath and friends. It will choose symbols including =-+: (). If you wish to tell dmath to not use
a particular symbol you can wrap that symbol inside \hiderel as in the following example.

\begin{dgroup*}
\begin{dmath*} f(x) \hiderel{=} \py {fun} = \py {ans.101} \end{dmathx*}
\begin{dmath*} {} = \py {ans.102} \end{dmath=}
\end{dgroup*?}

13



1
flz) = +1:1—x—|—x2—x3+x4—x5+@($6) (ans.101)
T

=l-o+2’—2"+a2' —2"+2°—2"+ 2%+ O (2) (ans.102)

Consider now the earlier example in which the equation tags were not well placed and where the
syntax was described as ungainly. The syntax can be tidied slightly using one of the features of
the breqn package — it allows the dmath and dmath* environments to be wrapped in user defined
macros such as

\newcommand*{\Dmath} [2] [1{\begin{dmath} [#1]#2\end{dmath}}

This defines \Dmath as a macro that takes one required argument and one optional argument
(both of which are passed on to dmath). It is not a huge saving but even so it does save a few
keystrokes. Here is one of the previous examples rewritten using \Dmath.

\begin{dgroup}
\Dmath [number={\ttTag{ans.103}}]{ \py {fun} = \py {ans.103} }
\Dmath [number={\ttTag{ans.104}}1{ {} = \py {ans.104} }
\Dmath [number={\ttTag{ans.105}}]{ {} = \py {ans.105%} }
\end{dgroup}

The pyLaTeX package defines \Dmath for the dmath environment as well as \Dmath* as a shortcut
for the dmath* environment.

The use of \Dmath* does save some keystrokes but it does not fix the problem where the text
is obscured by the tag. There seems to be no simple way to tell breqn to avoid such problems
while retaining breqn’s method of placing the tags. The \Py* macro avoids this problem by
presenting dmath* with a concatenated string built from the text (e.g., the output of \py{foo}),
some flexible white space (usually \hfill) and the tag (e.g., foo). This string is processed by
dmath* and line splits are inserted at its discretion. This will guarantee that the all of the text
and the tag will be displayed. The user defined whitespace can always be chosen so that the
tag does not overlap the text. This is a bare minimum of what could be deemed an acceptable
output — non overlap of the text and the tag. The output might not be optimal but at least
it is readable. Here is the same example as above but this time using \Py* to display the text
and the tags.

\begin{dgroup*}
\Dmath*{ \py {fun} = \Py* {ans.103} }
\Dmath*{ {} = \Pyx[\hskip 2cm] {ans.104} }
\Dmathx*{ {} = \Pyx[\hskip 3cm] {ans.105} }
\end{dgroup*?}
x—lkl =l-o+2?—2®+a2' -2 +2% — 2"+ 2% —2¥ + 20 — 2 + O (2P) (ans.103)

=1-ot+2? 234t -S4 ab — 2 42— 420 2 B2 O (3315) (ans.104)
Pt P S TS 910 12 A8y 14 15 06 1T 18

—a 2 - 42?4 =P 2 -2 42— 2P+ O () (ans.105)

The whitespace between the text and the tag is passed through the optional argument of \Py*
with the default set as \hfill. The inner workings of \Py* sets the tag using \1lap and thus
the whitespace optional argument measures the space between the right hand edge of the tag

14



and left hand end of the equation text. Note also that this example uses the starred version of
dgroup and \Dmath*. This is to ensure that breqn plays no part in forming the tag (as that is
handled by \Pyx).

The pyLaTeX package defines both \Py and \Py*. The \Py macro is intended for use only in the
starred maths environments (e.g., align*, equation* etc.). Like \Py*, it also sets the equation
tag to match the expression but it does so using standard methods (internally it calls \tag).
This last point (that \Py* uses \tag) also means that it can not be used in any of the breqn
environments (doing so will cause LaTeX to issue a breqn package error).

Both \Py and \Py* support the usual method of labelling and referencing equations using
\label{foo} and \ref{foo}. However, there are good reasons to use a modified version of the
\label macro (as described below) to improve the accuracy of the label-reference pairs when
using hyperlinks (i.e., so that the reference points to the correct page where the label was
issued).

8.1 Hyperref, hyperlinks and breqn

The breqgn package does support the hyperref package though as discussed (here) the hyperlinks
to an equation may not work as expected (clicking on a link may take you to the wrong page).
The suggested fix is to define equation labels via a modified label macro such as the following

\newcommand{\pglabel} [1]{\phantomsection\label{#1}}

An example of its use might be

\begin{dmath} [number={\ttTag{ans.105}}]
\py{fun} = \py{ans.105} \pglabel{eq:target}
\end{dmath}

1
rz+1

12 4

L R Qe SR S R S, et Qs [ § N SR JUUp E e g

T 18 19y 020 21y 022 023 ) 24 025 026 2T 4 028 29 4 (x30)
(ans.105)

Then clicking on the link defined by \ref{eq:target} will bring the reader to this page. An
example of such a link was seen earlier in this document (click here to jump back to that page).

9 Licence

This software is licensed under the MIT License (MIT). Please see the LICENCE. txt file for more
information.

10 Version history

v0.1 (2018/08/22)

e Initial public release.

15


https://tex.stackexchange.com/questions/193380/hyperref-pageref-links-point-t o-first-page

	Introduction
	The pyLaTeX package
	Requirements
	Latex
	Python

	Setup
	Compiling
	Caution
	The pypreproc.py and pypostproc.py scripts
	The merge-tex.py script

	Usage
	Undefined tags
	Tagged blocks
	LaTeX macros
	Custom formats
	Python indentation
	Error reporting
	Matplotlib and macOS

	Examples
	Splitting long lines using breqn
	Hyperref, hyperlinks and breqn

	Licence
	Version history

