ICX-psmin

graph

The graphicx-psmin package *

Hendri Adriaens

v1.2 (2020/11/14)

Abstract

This package is an extension of the standard graphics bundle [1] and provides a
way to include repeated PostScript graphics (ps, eps) only once in a PostScript doc-
ument. This provides a way to get smaller PostScript documents when having, for
instance, a logo on every page. This package only works when post-processed with
dvips, which should at least have version 5.95b! The difference for the pdf file is
minimal (as Ghostscript already includes only a single copy of graphics files).

Contents
1 Introduction 1 Acknowledgements 8
2 Using the package 2

Version history 8
3 Implementation 3
References 7 Index 8

1 Introduction

Including a PostScript graphic only once in a PostScript document has been a hot issue
for along time in the KX world. It pops up regularly at many newsgroups, but never a
fully satisfying answer was supplied. Some answers vaguely describe some \special
commands, but do not give the details, some suggest to use a TgX box (which does
prevent BIEX from reading the graphic many times, but still includes it many times in
the PostScript) and some do suggest to modify the PostScript file manually, which is
far too cumbersome. This package is an extension of the standard graphics bundle [1]
and supplies an automated method to do this job.

The technique used by this package has been described by Thomas Greer [2] (see
for more details [3]). The implementation in BIEX boils down to the following steps.

1. Scan the graphics file for the bounding box.

2. Wrap the graphics file in a PostScript function that defines it as an object which
can be used multiple times. This function needs the bounding box.

3. Write the entire code to the header of the PostScript file, via the dvi file, using
\specials.

*This package can be downloaded from the CTAN mirrors: /macros/latex/contrib/graphicx-psmin.
See graphicx-psmin.dtx for information on installing graphicx-psmin into your TgX or IBIiX distribution
and for the license of this package.

\loadgraphics

This will load the graphic in the header of the PostScript file. When reusing the graphic,
there is another PostScript function to be inserted which will load the graphic from the
graphic object.

In this scheme, step 2 is the hardest one. The first implementation of this method
in this package attempted to load the entire graphics file, line by line (which is slow),
in a macro, add the necessary PostScript code and write the content of the macro to
the dvi using \special{!...}. Unfortunately, this didn't work as dvips applied its
own line breaking mechanism to the content without taking into account manual line
breaks. This meant that the content of the graphics file was modified when it arrived
in the PostScript document, often too much to be processed successfully again.

The second attempt in this package wrote the entire graphics file to hard disk, to-

gether with the PostScript function so that it could be loaded using \special{header=...3}.

Besides still being slow, this also meant a lot of hard disk overhead.

After some discussion with Karl Berry a proposal for extending the header spe-
cial was posted on the TgX-k mailinglist. The alternative of changing the line breaking
mechanism of dvips was not considered as that could change the behavior in existing
documents. The proposal was to extend the header special by allowing

\special{header={some file.ps} pre={pre code} post={post codel}}

The package uses the two extra parameters in this special to pass the PostScript func-
tion that will make an object of the graphics file in some file.ps to the PostScript
file. The header itself still copies the file directly into the PostScript file, which avoids
needing to read the entire file with TgX.

As mentioned in the abstract, this only works when post-processed with dvips, ver-
sion v5.95b or newer! It will, in general, not make a significant difference in the size of
your pdf file generated by ps2pdf (Ghostscript).! However, it will decrease the size of
your PostScript file if you use the same graphic over and over in your document.

2 Using the package

Using the package is very simple. Replace the loading of the graphicx package, like

‘ \usepackage [your options]{graphicx} ‘

by

‘ \usepackage [your options]{graphicx-psmin} ‘

This will load the graphicx package internally, pass on all of the options specified in
your options to the graphicx package (for instance, draft,dvips) and make all def-
initions necessary to do the job.

\loadgraphics [(bb)]{(listof graphics)}

Each graphic that you want to reuse in the document, but which you want to be in-
cluded only once, should be listed in the command \loadgraphics. This command
can only be used in the preamble of your document. Example:

\loadgraphics{mylogol.ps,mylogo2.eps}

1 As Ghostscript already embeds graphics with size larger than MaxInline ImageSize only once in the
pdf.

\includegraphics

If a graphics file does not contain a bounding box, you can include that in the optional
argument. This argument will be used for every graphic in the list. Example

\loadgraphics [0 O 250 420]{mylogol.ps,mylogo2.eps}
\loadgraphics{mylogo3.ps}

That’s all! You can use the usual graphicx \includegraphics command to include
and scale or rotate your graphics. This command will pick up the loaded graphics
and use a PostScript function to insert the graphic from the PostScript header. If the
graphic has not been loaded with \loadgraphic, the \includegraphics command
works as usual (see also the graphicx documentation [1] or a BTgX manual like [4]).

If the graphic does not contain bounding box information, then this should be in-
cluded in the \1oadgraphics command as described above. You can include it in the
\includegraphics command as well, but if the two bounding boxes are not equal,
the result might be unexpected.

As mentioned before, the package only works with the dvips driver, version 5.95b
or newer. When running BIEX (not pdfBIEX), the dvips driver will be loaded automati-
cally by graphicx, but you can also specify it yourself when loading the graphicx-psmin
package. Any options that you specify will be passed on to the graphicx package. When
graphicx-psmin finds out that you are using another driver than dvips, it will generate
an error message and disable itself, after which the \loadgraphics command has no
function anymore and all graphics inclusion jobs are left to the graphicx package.

To finish with, here is another example demonstrating the use of the package. The
example assumes that figure.ps is present in the figures subdirectory and that
graphic.epsisin the graphics subdirectory.

\documentclass{article}
\usepackage{graphicx-psmin}
\graphicspath{{figures/}{graphics/}}
\loadgraphics{figure.ps,graphic.eps}
\begin{document}

\includegraphics [scale=.2]{figure.ps}
\includegraphics [scale=.4]{figure.ps}\\
\includegraphics [angle=45]{graphic.eps}
\includegraphics [angle=90]{graphic.eps}
\end{document}

When running a file like the one above and generating the PostScript using dvips, one
will see that both graphics are included only once in the PostScript document and that
including one of those graphics another time, has almost no effect on the size of the
generated PostScript document.

3 Implementation

1% Initialize.

2 (xgraphicx-psmin)

3 \NeedsTeXFormat{LaTeX2e}[1995/12/01]
4\ProvidesPackage{graphicx-psmin}

5 [2020/11/14 v1.2 single PostScript graphics inclusion (HA)]
6 \DeclareOption*{\PassOptionsToPackage\CurrentOption{graphicx}}
7\ProcessOptions\relax

8 \RequirePackage{graphicx}

Check the requested driver.

9 \def \gxpsm@tempa{dvips.def}

10 \ifx\Gin@driver\gxpsm@tempa\else

11 \PackageError{graphicx-psmin}{This package cannot be used with any
12 \MessageBreak back end driver other than dvips!}\@ehd

13 \def\loadgraphics{\@testopt\gxpsm@loadgraphics{}}

4 \def\gxpsm@loadgraphics [#1]#2{}

15 \expandafter\endinput

16 \fi

—_

In draft mode, no graphics should be loaded, so we eat the argument and hence all
graphics will be handled by graphicx from here.
17\1fGin@draft
18 \def\loadgraphics{\@testopt\gxpsm@loadgraphics{}}
19 \def\gxpsm@loadgraphics [#1]#2{}
20 \expandafter\endinput
21 \fi
\gxpsm@loaded Initialize the list of loaded graphics.
22 \def\gxpsm@loaded{}

\@namexdef {{csname)}
Defines the macro with name (csname) using \xdef.

23 \def\@namexdef#1{\expandafter\xdef\csname#1\endcsname}

\loadgraphics Load graphics.
24 \def\loadgraphics{\@testopt\gxpsm@loadgraphics{}}

\gxpsm@loadgraphics [(bb)]{(list of graphics)}
Load each of the graphics in (list of graphics) into the dvi and eventually the PostScript
using \specials. Use (bb) for the bounding box for all these graphics if specified. If
not, we search the file for the bounding box.

25 \def \gxpsm@loadgraphics [#1]#2{/

Loop over all graphics.

26 \@for\gxpsm@file:=#2\do{%

27 \begingroup

If the file exists in the graphics path, continue.
28 \gxpsm@checkfile\gxpsm@file{)

If no explicit bounding box in #1, try finding one in the file, otherwise use the one in

#1.

29 \ifx\@empty#1\@empty

30 \Gread@eps{\Gin@base\GinQext}/

31 \else

32 \Gread@parse@bb#1 \\

33 \fi

Save the bounding box for this graphic.

34 \@namexdef{\Gin@base\GinGext @11x}{\Gin@1lx}%
35 \@namexdef{\Gin@base\GinOext @lly}{\Gin@llyl}%
36 \@namexdef{\Gin@base\GinGext Qurx}{\GinGurx}},
37 \@namexdef{\Gin@base\GinQext Qury}{\GinQuryl}
Transform the PostScript internal name of the graphic as ‘/’ can’t be used in variable
names.

38 \gxpsmO@getcfile

\gxpsm@getcfile
\gxpsm@g@tcfile

\Ginclude@graphics

Write the graphic body together with the extra functions to the dvi file using a header
special. This requires dvips v5.95b or newer to work!

39 \AtBeginDvi{\special{header={\Gin@base\GinQext}

40 pre={/\gxpsm@cfile-data~~Jcurrentfile~~J%

41 << /Filter /SubFileDecode~~J/DecodeParms << /EODCount O
42 /EODString (*HA-EOD-773.1416926!!%) >>~~J>>

43 /ReusableStreamDecode filter~"JJ

44 \@percentchar\@percentchar BeginDocument:

45 \Gin@base\GinQext~"J

46 }

47 post={\@percentchar\@percentchar EndDocument~~J%

48 *HA-EOD-773.1416926! !+~ ~Jdef~~J/\gxpsm@cfile-form~~J%
49 << /FormType 1~~J/BBox

50 [\Gin@l1lx\space\Gin@lly\space\GinQurx\space\Gin@ury]~~J}
51 /Matrix [1 0 0 1 0 0]~~J/PaintProc~~J{ pop~~Ji

52 /ostate save def~~J/showpage {} def~~JJ

53 /setpagedevice /pop load def~"JJ

54 \gxpsm@cfile-data O setfileposition

55 \gxpsm@cfile-data cvx exec~"J)

56 ostate restore~~J} bind~~J>> def,

57 }

58 3

Add the file to the list of loaded graphics for \includegraphics.

59 \xdef\gxpsm@loaded{’

60 \gxpsm@loaded\ifx\gxpsm@loaded\Qempty\else, \fi

61 \Gin@base\GinQext

62 Y

63 Y

64 \endgroup

65}

66 }

Avoid using \loadgraphics outside the preamble.

67 \@onlypreamble\loadgraphics
68 \@onlypreamble\gxpsm@loadgraphics

These two macros replace any occurrence of ‘/’ by ‘_’ so that the name can be used
inside PostScript. This uses a well known \lowercase trick.

69 \def \gxpsm@getcfile{),

70 \edef\gxpsm@tempa{y,

71 \noexpand\gxpsm@g@tcfile\Gin@base\Gin@ext\noexpand\@nil

72 Yh

73 \gxpsm@tempa

74}

75 \def \gxpsm@g@tcfile#1\@nil{y

76 \begingroup\lccode‘\/‘_\lowercase{\endgroup\def\gxpsm@cfile{#1}}}
77}

{(file)}

We redefine this internal of graphics. If the graphic has been loaded, use a PostScript
function to reload it from the header. Else, follow the usual track of graphicx.

78 \def\Ginclude@graphics#1{}

79 \begingroup

\gxpsm@checkfile

Graphic exists? This will also produce \Gin@base and \GinQext.
80 \gxpsm@checkfile{#1}{/
Graphic loaded?

81 \@expandtwoargs\in@{, \Gin@base\Ginext,}{, \gxpsm@loaded,}/
82 \ifin@

If the user didn’t supply a bounding box in the \includegraphics command, use the
one that we found while scanning the graphic.

83 \ifGin®@bbox\else

84 \Gin@bboxtrue

85 \edef\Gin@l1lx{\@nameuse{\Gin@base\Gin@ext @11x}}}

86 \edef\Gin@lly{\@nameuse{\Gin@base\GinQext @11y}1}J

87 \edef\GinQurx{\@nameuse{\Gin@base\Gin@ext Qurx}}}

88 \edef\GinQury{\@nameuse{\Gin@base\GinGext Quryl}}/

89 \fi

Use graphics internals to do computations etcetera and in the end, use the graphic.
90 \Gin@setfile{psdirect}{}{\Gin®@base\GinQext}}

91 \else

This is the usual route from \Ginclude@graphics from graphics for non-loaded
graphics.

92 \@ifundefined{Gin@rule®@\GinQext}{}

93 \ifx\Gin@rule®@+*\Qundefined

94 \@latex@error{Unknown graphics extension: \Gin@ext}\@ehc
95 \else

96 \expandafter\Gin@setfile\Gin@rule@*{\Gin@base\GinBext}/,
97 \fi

98 o

99 \expandafter\expandafter\expandafter\Gin@setfile

100 \csname Gin@rule@\Gin@ext\endcsname{\GinObase\GinQext}%
101 Y

102 \fi

103 Yh

104 \endgroup

105 }

{(filey}{(actions)}

This is part of graphics’ \Ginclude@graphics which checks a graphic file in the graph-
ics path. We perform (actions) when the file is all right. We separated this part as it is
reused several times in this package.

106 \def \gxpsm@checkfile#1#2{}

107 \let\input@path\Ginput@path

108 \ifx\unquote@name\@undefined

109 \filename@parse{#1}/,

110 \else

111 \expandafter\filename@parse\expandafter{\detokenize{#1}}}
12 \fi

113 \ifx\filename®@ext\relax

114 \@for\Gin@temp:=\GinQextensions\do{/

115 \ifx\Gin@ext\relax

116 \Gin@getbase\GinQtemp

117 \fi

118 Y

\Ginclude@psdirect

119
120
121
122
123
124
125
126
127
128
129
130
131

132}

\else
\Gin@getbase{\GinO@sepdefault\filename@ext}/
\ifx\Gin@ext\relax

\@warning{File ‘#1’ not found}/

\def\Gin®base{\filename@area\filename@basel,

\edef\Gin@ext{\Gin@sepdefault\filename@ext}/,
\fi

\fi

\ifx\Gin@ext\relax
\@latex@error{File ‘#1’ not foundl}

{I could not locate the file with any of these extensions:~~J%
\Gin@extensions~~J\@ehc}/,
\else#2\fi

{(file)}
This inserts the PostScript function needed to reload (file) from the PostScript header.
This is based on \Ginclude@eps from dvips.def (graphics).

133 \def\Ginclude®@psdirect#1{}

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

152 }

\message{<#1>}/,

\bgroup

\def\@tempa{ !}/

\gxpsm@getcfile

\dimen@\Gin@req@width

\dimen@ii.1bp¥%

\divide\dimen@\dimen@ii

\@tempdima\Gin@req@height

\divide\@tempdima\dimen®@ii

\special{ps:@beginspecial
\Gin@llx\space @llx \Gin@lly\space @Qlly
\Gin@urx\space Qurx \GinQury\space Qury
\ifx\Gin@scalex\@tempa\else\number\dimen@\space @rwi\fi
\ifx\Gin@scaley\Q@tempa\else\space\number\Q@tempdima\space @rhi\fi
\ifGin@clip\space Qclip\fi\space @setspecial~~J
save \gxpsm@cfile-form execform restore showpage Qendspecial

Yh

\egroup

153 i</graphicx-psmin>

References

[1] David Carlisle. graphics bundle. CTAN: /macros/latex/required/graphics.

[2] Thomas Greer. Reusable content caching in postscript. http://www.tgreer.
com/eps_vdp2.html.

[3] Adobe Systems Incorporated. Postscript language reference manual. http://
www.adobe.com/products/postscript/pdfs/PLRM. pdf.

[4] Frank Mittelbach, Michel Goossens, Johannes Braams, David Carlisle, and Chris

Rowley. The BTgX Companion, Second Edition. Addison-Wesley, 2004.

Acknowledgements

The author is grateful to Thomas Greer and Uwe Kern for help and suggestions. Many
thanks to Akira Kakuto for providing a dvips patch which makes this package possi-
ble. The author is greatly indebted to Karl Berry for support and for providing a test
environment for the dvips patch on the TUG server. Finally a word of thanks for David
Carlisle for providing a fix to make the package work with the latest graphicx package.

Version history

vl.0 (2005/08/18)
General: Initialrelease i 1

vl.l (2005/09/20)
\Ginclude®@psdirect: Added missing\space 7

vl.2 (2020/11/14)
\gxpsm@checkfile: Changes to work with the latest graphicx package 6

Index

Numbers written in italic refer to the page where the corresponding entry is described;
numbers underlined refer to the code line of the definition; numbers in roman refer to
the code lines where the entry is used.

Symbols \gxpsm@loaded 22

\@namexdefc..iii... @ \gxpsm@loadgraphics ,,,,,,,,,,,,, é
G

\Ginclude@graphics 78 I
\Ginclude@psdirect 133 \includegraphics 3
\gxpsm@checkfile 106
\gxpsm@gOtcfile 69 L
\gxpsm@getcfile 69 \loadgraphics 2,24

