
The fixdif Package

Zhang Tingxuan

2023/03/20 Version 2.1∗

Abstract

The fixdif package redefines the \d command in LATEX and provides an
interface to define commands for differential operators.

The package does well with pdfTEX, XƎTEX and LuaTEX, only works
with LATEX format. Furthermore, this package is compatible with unicode-
math package in XƎTEX and LuaTEX.

Contents
1 The background 2

2 Introduction 2
2.1 Basic commands and package options 3

3 Define commands for differential operators 3
3.1 Define commands with a single command name 3
3.2 Define commands with multi commands or a string 4

4 Using differential operators temporarily 5

5 Examples 5

6 The source code 6
6.1 Control the skip between slashes and differential operator 6
6.2 Patch the skips around the differential operator 6
6.3 Declare the package options . 7
6.4 Deal with the \d command . 7
6.5 User’s interface for defining new differential operators 7
6.6 In-document commands: \mathdif 9

∗https://github.com/AlphaZTX/fixdif

1

https://github.com/AlphaZTX/fixdif

1 The background
It’s usually recommended that a small skip should be reserved between the dif-
ferential operator and the expression before it1. Take the following line as an
example:

𝑓(𝑥)d𝑥 and 𝑓(𝑥) d𝑥.
We usually consider that the example on the right side is better than the one
on left side. The small skip between 𝑓(𝑥) and d𝑥 can be regarded as a binary
operator.

Some users prefer to define a macro like this:

\renewcommand\d{\mathop{\mathrm{d}}\!}

This macro works well in display math and text math, but still appears with the
following three problems:

1. The skip before “d” still exists before the denominator in “text fraction”.
This is what we do not hope to see. For example, $\d y/\d x$ produces
d𝑦/ d𝑥.

2. \d is defined as a text accent command in LATEX 2𝜀 kernel. If we defined like
this, \d{o} could not produce “ọ” in text.

3. The skip before “d” should behave like skips around a binary operator. It
should disappear in script math and script script math. For example, $a+b$
yields 𝑎 + 𝑏 while $^{a+b}$ yields 𝑎+𝑏, the skips around “+” disappear in
superscript. But in the definition above, $^{f(x)\d x}$ yields 𝑓(𝑥) d𝑥 but
not 𝑓(𝑥)d𝑥.

To solve these problems, you can try this package.

2 Introduction
To load this package, write

\usepackage{fixdif}

in the preamble. fixdif allows you to write this line anywhere in the preamble since
version 2.0. In your document,

\[f(x)\d x,\quad\frac{\d y}{\d x},\quad\d y/\d x,\quad a^{y\d x}. \]

will produce
𝑓(𝑥) d𝑥, d𝑦

d𝑥, d𝑦/d𝑥, 𝑎𝑦d𝑥.

2

2.1 Basic commands and package options

The fixdif package provides a \d command for the differential operator “d” in math\d
mode. When in text, \d behaves just like the old \d command in LATEX or plain
TEX as an accent command. For example,

$\d x$ and \d x

tields “d𝑥 and x̣”.

Set the font of \d There are two package options to control the style of \d in
math mode — rm and normal. The default option is rm, in which case $f(x)\d x$
produces 𝑓(𝑥) d𝑥. If you chose the normal option, that is

\usepackage[normal]{fixdif}

$f(x)\d x$ yields 𝑓(𝑥) 𝑑𝑥.

Regardless of the two options above, you can reset the font of \d through\resetdfont
\resetdfont command in preamble:

\resetdfont{\mathsf}

then $\d x$ yields d𝑥. Notice that the argument of \resetdfont should be a
command with one argument.

Control the behavior of \partial In default, \partial will be regarded as\partial
a differential operator after you load fixdif. If you don’t like this default setting,
you can use the nopartial option:

\usepackage[nopartial]{fixdif}

If you choose to use the default settings, \partialnondif yields the ordinary
symbol “𝜕”.

3 Define commands for differential operators
Attention! The commands in this section can be used in preamble only!

3.1 Define commands with a single command name

\letdif{⟨cmd⟩}{⟨csname⟩} (preamble only)\letdif

The \letdif command takes two arguments — the first is the newly-defined
command and the second is the control sequence name of a math character, that
is, a command without its backslash. For example,

1See https://tex.stackexchange.com/questions/14821/whats-the-proper-way-to-typese
t-a-differential-operator.

3

https://tex.stackexchange.com/questions/14821/whats-the-proper-way-to-typeset-a-differential-operator
https://tex.stackexchange.com/questions/14821/whats-the-proper-way-to-typeset-a-differential-operator

\letdif{\vr}{delta}

then \vr will produce a 𝛿 (\delta) with automatic skip before it.

Through the \letdif command, we can redefine a math character command
by its name. For example,

\letdif{\delta}{delta}

then \delta itself will be a differential operator.

The second argument ⟨csname⟩ of \letdif command can be used repeat-
edly. If you want to get the ordinary symbol of \⟨csname⟩, you can input
\⟨csname⟩nondif in math mode. For example, in default, \partialnondif yields\partialnondif
the old partial symbol “𝜕”.

\letdif*{⟨cmd⟩}{⟨csname⟩} (preamble only)

This command is basically the same as \letdif, but this command will
patch a correction after the differential operator. This is very useful when a math
font is setted through unicode-math package. For example,

\usepackage{unicode-math}
\setmathfont{TeX Gyre Termes Math}
\usepackage{fixdif}
\letdif{\vr}{updelta}

this will cause bad negative skip after \vr, but if you change the last line into

\letdif*{\vr}{updelta}

you will get the result correct.

3.2 Define commands with multi commands or a string

\newdif{⟨cmd⟩}{⟨multi-cmd⟩} (without correction, preamble only)\newdif
\newdif*{⟨cmd⟩}{⟨multi-cmd⟩} (with correction, preamble only)

The first argument of these commands is the newly-defined command; and
the second argument should contain more than one tokens. For example, if you
have loaded the xcolor package, you can use the following line:

\newdif{\redsfd}{\textsf{\color{red}d}}

Then you get the \redsfd as a differential operator. Take another example,

\newdif{\D}{\mathrm{D}}

4

Then you get \D for an uppercase upright “D” as a differential operator.

If your second argument contains only one command like \Delta, it’s rec-
ommended to use \letdif or \letdif* instead.

\newdif and \newdif* will check whether ⟨cmd⟩ has been defined already.
If so, an error message will be given.

\renewdif{⟨cmd⟩}{⟨multi-cmd⟩} (without correction, preamble only)\renewdif
\renewdif*{⟨cmd⟩}{⟨multi-cmd⟩} (with correction, preamble only)

These two commands are basically the same as \newdif and \newdif*. The
only difference is that \renewdif and \renewdif* will check whether ⟨cmd⟩ has
not been defined yet. If so, an error message will be given.

4 Using differential operators temporarily
\mathdif{⟨symbol⟩} (without correction, in math mode only)\mathdif
\mathdif*{⟨symbol⟩} (with correction, in math mode only)

These two commands can be used in math mode only, more specifically, after
\begin{document}. For example, $x\mathdif{\Delta}\psi$ will get 𝑥 Δ𝜓.

5 Examples
This section shows how to use this package properly in your document.

Take the two examples below:

\letdif{\Delta}{Delta} % Example 1, in preamble
\letdif{\nabla}{nabla} % Example 2, in preamble

Actually, the second example is more reasonable. Sometimes, we take “Δ” as
laplacian (equivalent to ∇2), while “Δ” can also be regarded as a variable or
function at some other times. Consequently, it’s better to save a different command
for “Δ” as laplacian while reserve \Delta as a command for an ordinary math
symbol “Δ”. However, in the vast majority of cases, “∇” is regarded as nabla
operator so there is no need to save a different command for “∇”. Then we can
correct the code above:

\letdif{\laplacian}{Delta} % Example 1, corrected, in preamble

With the xparse package, we can define the command in another method:

\letdif{\nabla}{nabla}
\DeclareDocumentCommand{ \laplacian }{ s }{
\IfBooleanTF{#1}{\mathdif{\Delta}}{\nabla^2}

}

Then \laplacian produces ∇2 and \laplacian* produces Δ.

5

Dealing with “+” and “−” If you input $-\d x$, you’ll get “− d𝑥” in your
document. However, if you think “−d𝑥” is better, you can input -{\d x}. The
“\d x” in a group will be regarded ordinary but not inner so that the small skip
will disappear. Maybe “− d𝑥” is just okay.

6 The source code
1 ⟨∗package⟩

Check the TEX format and provides the package name.
2 \NeedsTeXFormat{LaTeX2e}
3 \ProvidesPackage{fixdif}[2023/03/20 Interface for defining differential operators.]

6.1 Control the skip between slashes and differential operator

Change the math code of slash (/) and backslash (\) so that the skip between
slashes and differential operators can be ignored.

If the unicode-math package was loaded, use the XƎTEX/LuaTEX primitive
\Umathcode to change the type of slashes. The numeral “4” stands for “open”. If
unicode-math was not loaded but fontspec loaded, check if fontspec had reset math
fonts, that is to say, the no-math option.

4 \AtBeginDocument{%
5 \ifcsname symbf\endcsname%
6 \csname bool_if:cF\endcsname{g__um_main_font_defined_bool}%
7 {\csname __um_load_lm:\endcsname}%
8 \def\fd@patchUmathcode#1{% 16777216 = 16^6
9 \@tempcnta=\numexpr(\the\Umathcodenum#1-#1)/16777216\relax

10 \Umathcode #1 = "4 \@tempcnta #1}%
11 \fd@patchUmathcode{"2F}%
12 \fd@patchUmathcode{"5C}%
13 \else\ifcsname fontspec\endcsname
14 \csname bool_if:cT\endcsname{g__fontspec_math_bool}%
15 {%
16 \everymath{\mathcode`\/="413D\relax}%
17 \PackageWarning{fixdif}{Requires `no-math' option of fontspec!\MessageBreak}%
18 }% fontspec only influences "/"
19 \fi\fi}

Use \mathcode to change the type of slashes. The \backslash needs to be rede-
fined through \delimiter too.

20 \mathcode`\/="413D
21 \mathcode`\\="426E% \backslash
22 \protected\def\backslash{\delimiter"426E30F\relax}

6.2 Patch the skips around the differential operator

The following \fd@mu@p patches the skip after the differential operator.\fd@mu@p

23 \def\fd@mu@p{\mathchoice{\mskip-\thinmuskip}{\mskip-\thinmuskip}{}{}{}}

6

The \s@fd@mu@p patches the commands with star (\letdif*, etc).

24 \def\s@fd@mu@p{\mathchoice{}{}{\hbox{}}{\hbox{}}}

6.3 Declare the package options
25 \DeclareOption{rm}{%
26 \AtBeginDocument{\ifcsname symbf\endcsname%
27 \gdef\@fd@dif{\symrm{d}}\fi}%
28 \gdef\@fd@dif{\mathrm{d}}}
29 \DeclareOption{normal}{\gdef\@fd@dif{d}}
30 \DeclareOption{partial}{\@tempswatrue}
31 \DeclareOption{nopartial}{\@tempswafalse}
32 \ExecuteOptions{rm,partial}
33 \ProcessOptions\relax
34 \if@tempswa
35 \AtEndOfPackage{\letdif{\partial}{partial}}
36 \fi

Define the \resetdfont command.\resetdfont

37 \gdef\resetdfont#1{\AtBeginDocument{\let\@fd@dif\relax\gdef\@fd@dif{#1{d}}}}

6.4 Deal with the \d command

\fd@dif is the differential operator produced by \d in math mode. Here we prefer\fd@dif
\mathinner to \mathbin to make the skip.

38 \def\fd@dif{\mathinner{\@fd@dif}\fd@mu@p}

Restore the \d command in text by \fd@d@acc with \let.\fd@d@acc

39 \AtBeginDocument{\let\fd@d@acc\d

Redefine the \d command. In text, we need to expand the stuffs after \d\d

40 \DeclareRobustCommand\d{\ifmmode\fd@dif\else\expandafter\fd@d@acc\fi}}

6.5 User’s interface for defining new differential operators

Define the \letdif command. The internal version of \letdif is \@letdif and\letdif
\s@letdif.

#1 is the final command; #2 is the “control sequence name” of #1’s initial
definition. Here we create a command (\csname#2nonfif\endcsname) to restore
#2.

41 \def\@letdif#1#2{\AtBeginDocument{%
42 \ifcsname #2nondif\endcsname\else%
43 \expandafter\let\csname #2nondif\expandafter\endcsname
44 \csname #2\endcsname%
45 \fi%
46 \DeclareRobustCommand#1{\mathinner{\csname #2nondif\endcsname}\fd@mu@p}%
47 }}

7

The definition of \s@letdif is similar, but with the patch for negative skips.

48 \def\s@letdif#1#2{\AtBeginDocument{%
49 \ifcsname #2nondif\endcsname\else%
50 \expandafter\let\csname #2nondif\expandafter\endcsname
51 \csname #2\endcsname%
52 \fi%
53 \DeclareRobustCommand#1{\mathinner{\s@fd@mu@p\csname #2nondif\endcsname\hbox{}}\fd@mu@p}%
54 }}
55 \DeclareRobustCommand\letdif{\@ifstar\s@letdif\@letdif}
56 \@onlypreamble\letdif

Define the \newdif command. #1 is the final command; #2 is the “long” argument.\newdif

57 \long\def\@newdif#1#2{\AtBeginDocument{%
58 \ifdefined#1
59 \PackageError{fixdif}{\string#1 is already defined}
60 {Try another command instead of \string#1.}%
61 \else
62 \DeclareRobustCommand#1{\mathinner{#2}\fd@mu@p}%
63 \fi%
64 }}
65 \long\def\s@newdif#1#2{\AtBeginDocument{%
66 \ifdefined#1
67 \PackageError{fixdif}{\string#1 is already defined}
68 {Try another command instead of \string#1.}%
69 \else
70 \DeclareRobustCommand#1{\s@fd@mu@p\mathinner{#2\hbox{}}\fd@mu@p}%
71 \fi%
72 }}
73 \DeclareRobustCommand\newdif{\@ifstar\s@newdif\@newdif}
74 \@onlypreamble\newdif

Define the \renewdif command.\renewdif

75 \long\def\@renewdif#1#2{\AtBeginDocument{%
76 \ifdefined#1
77 \DeclareRobustCommand#1{\mathinner{#2}\fd@mu@p}%
78 \else
79 \PackageError{fixdif}{\string#1 has not been defined yet}
80 {You should use \string\newdif instead of \string\renewdif.}%
81 \fi%
82 }}
83 \long\def\s@renewdif#1#2{\AtBeginDocument{%
84 \ifdefined#1
85 \DeclareRobustCommand#1{\s@fd@mu@p\mathinner{#2\hbox{}}\fd@mu@p}%
86 \else
87 \PackageError{fixdif}{\string#1 has not been defined yet}
88 {You should use \string\newdif instead of \string\renewdif.}%
89 \fi%
90 }}
91 \DeclareRobustCommand\renewdif{\@ifstar\s@renewdif\@renewdif}
92 \@onlypreamble\renewdif

8

6.6 In-document commands: \mathdif

93 \def\@mathdif#1{\mathinner{#1}\fd@mu@p}
94 \def\s@mathdif#1{\s@fd@mu@p\mathinner{#1\mbox{}}\fd@mu@p}
95 \DeclareRobustCommand\mathdif{\@ifstar\s@mathdif\@mathdif}

End of the package.
96 ⟨/package⟩

9

	Contents
	1 The background
	2 Introduction
	2.1 Basic commands and package options

	3 Define commands for differential operators
	3.1 Define commands with a single command name
	3.2 Define commands with multi commands or a string

	4 Using differential operators temporarily
	5 Examples
	6 The source code
	6.1 Control the skip between slashes and differential operator
	6.2 Patch the skips around the differential operator
	6.3 Declare the package options
	6.4 Deal with the \d command
	6.5 User's interface for defining new differential operators
	6.6 In-document commands: \mathdif

