The docmfp package*

Author: Peter Wilson, Herries Press
Maintainer: Will Robertson
will dot robertson at latex-project dot org

2009,/09,/02

Abstract

The docmfp package extends the doc package to cater for documentation
of non-KTEX code, such as Metafont and Metapost code, or C or Java code.

Contents

(1__Introductionl 1

2 The package] 2
2.1 Usage with .dtx and .ins files| 3

[3 The package code| 5

1 Introduction

It is common practice to document HTEX packages using the doc system [GMS94].
The docmfp package extends the doc package so that similar facilities are provided
for the documentation of non-LaTeX code, such as Metafont and Metapost code,
or code in other more common programming languages. For example, a single
.dtx file can contain the documented sources of both the Metafont code for a new
font, together with the documented IXTEX code for the accompanying package.

This manual is typeset according to the conventions of the KITEX DOC-
STRIP utility which enables the automatic extraction of the ITEX macro source
files [GMS94].

Section [2] describes the usage of the package. Commented source code for the
package is in Section

*This file (docmfp.dtx) has version number v1.2d, last revised 2009/09/02.

\DescribeRoutine

routine

\routinestring
\routineheadname

\DescribeVariable

variable

\variablestring
\variableheadname

\Describe

Code

2 2 The package

2 The package

I have assumed that if you are reading this then you are familiar with the facilities
provided by the doc package.

The \DescribeRoutine{(name)} command is equivalent to the doc package
\DescribeEnv{{name)} command, except that it is intended to introduce the
description of a Metafont/post macro (or character or picture). It typesets (name)
in the margin and also generates an index entry for (name).

The routine environment is equivalent to the doc package macro environment.
It takes one argument, which is the name of the Metafont/post macro (or character
or picture) that is being defined. It typesets the argument in the margin and makes
an index entry for it.

These two commands contain the texts that are used in indexing routine names.
They can be changed via \renewcommand. Their default definitions are:

\newcommand{\routinestring}{\space(routine)}
\newcommand{\routineheadname}{routines:}

The \DescribeVariable{(name)} is like the doc \DescribeMacro{(name)}
command, except that it is intended to introduce the description, and definition,
of a variable or parameter. It typesets (name) in the margin and makes an index
entry for it.

The variable environment is equivalent to the doc package macro environ-
ment. It takes one argument, which is the name of the variable or parameter that
is being defined. It typesets the argument in the margin and makes an index entry
for it.

These two commands contain the texts that are used in indexing variable
names. They can be changed via \renewcommand. Their default definitions are:

\newcommand{\variablestring}{\space(variable)}
\newcommand{\variableheadname}{variables:}

A routine or variable (name) can include the underscore and hash characters
(i.e., _ and #), so that names like a_variable# can be used.

This is a generalization of the \Describe. .. commands.

\Describe{(head)}H(flag)}{(name)} typesets (name) in the margin and
makes index entries for it. One entry will be a main entry as name flag, and
the other will be a subsidiary entry of name under the main heading head.

Essentially, \DescribeVariable{name} is equivalent to:
\Describe{\variableheadname}{\variablestring}{name}

This is a generalization of the variable and routine environments.

\begin{Code}{(head)}{(flag)}{(name)} typesets (name) in the margin and
makes index entries for it. One entry will be a main entry as name flag, and the
other will be a subsidiary entry of name under the main heading head.

Essentially, \begin{routine}{name} is equivalent to:
\begin{Code}{\routineheadname}{\routinestring}{name’}

2.1 Usage with .dtx and .ins files 3

For example, if you are documenting Java code, then you may wish to use
commands like:
\newcommand{\cvar}{class variables}
\newcommand{\fcvar}{ (variable)}
\newcommand{\ofield}{object fields}
\newcommand{\ffield}{ (field)}
\newcommand{\cmeth}{class methods}
\newcommand{\ometh}{object methods}
\newcommand{\meth}{ (method)}
\Describe{\cvar}{\fcvar}{. ..} for class variables
\Describe{\ofield}{\ffield}{...} for object fields
\begin{Code}{\cmeth}{\meth}{. ..} for class methods
\begin{Code}{\ometh}{\meth}{. ..} for object methods.

2.1 Usage with .dtx and .ins files

T assume that the major use of the docmfp package will be in .dtx file(s) that will
be processed via a corresponding .ins file. The Itxdoc class also automatically
calls the doc package.

As an example, if the docmfp package was needed for the document you are
now reading, then I would have started it off like this (but look at the start of the
source for details that I ignore here):

%<*driver>

\documentclass{ltxdoc}

\usepackage{docmfp}

\EnableCrossrefs

\CodelineIndex

\setcounter{StandardModuleDepth}{1}

\begin{document}
\DocInput{docmfp.dtx}

\end{document}

%</driver>

The source of this document also includes several calls of the docmfp com-
mands, which I have commented out (use your editor to look for the occurences
of the string ~~A after this point). You can edit the source to include the
\usepackage{docmfp} command and uncomment the docmfp commands if you
want to sample the package in use.

The source of an .ins file might look like this:

%% file myfile.ins
\def\batchfile{myfile.ins}
\input docstrip.tex
\preamble

Copyright and other notices

\usepostamble
\empty
\defaultpostamble

\usepreamble
\defaultpreamble

4 2 The package

\endpreamble
\generate{\file{myfile.drv}{\from{myfile.dtx}{driver}}}
\generate{\file{mypackage.sty}t{\from{myfile.dtx}{pack}}}

\endinput

By default, the documentation system will put an \endinput command at the
end of each file it generates (myfile.drv and mypackage.sty in the example
above). This is fine provided the generated files are to be processed by KTEX
which understands \endinput. If a generated file is to be processed by something
that treats \endinput as an error, as Metafont/post will, then there is a problem.

The documentation system provides these three commands which can be used
within an .ins file to either prevent or enable the addition of \endinput to the
generated files. Extending the above example .ins file to include both Metafont
and and ITEX files we can have:

%% file myfile.ins
\def\batchfile{myfile.ins}
\input docstrip.tex

\preamble

Copyright and other notices
\endpreamble
\generate{\file{myfile.drv}{\from{myfile.dtx}{driver}}}
\usepostamble\empty % switch off writing \endinput
\generate{\file{myfont .mf}{\from{myfile.dtx}{font}}}
\usepostamble\defaultpostamble % switch on writing \endinput

\generate{\file{mypackage.sty}t{\from{myfile.dtx}{pack}}}

\endinput

The documentation system provides these commands which can be used within
an .ins file to either prevent or enable the addition of preamble information at
the beginning of the generated files. The preamble information is in the form of
LaTeX comment lines (i.e., lines starting with %). Other languages that you may
wish to document probably have other different commenting conventions, in which
cases it is desireable to inhibit the preamble output. Extending the above example
.ins file to turn off the preamble for the driver file we can have:

%% file myfile.ins
\def\batchfile{myfile.ins}
\input docstrip.tex
\usepreamble\empty % switch off all preamble info
\generate{\file{myfile.drv}{\from{myfile.dtx}{driver}}}
\usepreamble\defaultpreamble % switch on normal preambling
\preamble

Copyright and other notices
\endpreamble
\usepostamble\empty % switch off writing \endinput

\generate{\file{myfont.mf}{\from{myfile.dtx}{font}}}
\usepostamble\defaultpostamble % switch on writing \endinput
\generate{\file{mypackage.sty}t{\from{myfile.dtx}{pack}}}

\endinput

There is no intrinsic reason why the use of this package should be limited to
documenting Metafont/post code. It could just as well be used for documenting
C, C++, Java, or practically any other kind of code.

3 The package code

Announce the name and version of the package, which requires ITEX 2¢.

1 (xusc)

2 \NeedsTeXFormat{LaTeX2e}

3 \ProvidesPackage{docmfp}[2009/09/02 v1.2d General coding extension to the doc packagel
4

In order to try and avoid name clashes with other packages, each internal name
will include the character string m@fp.

\m@fpmakeuscoreletter Metafont/post names can include underscores and hash characters. The special
\m@fpmakehashletter meanings of these have to be turned off.

\Makem@fpPrivateLetters 5 \newcommand{\m@fpmakeuscoreletter}{\catcode‘_11\relax}
6 \newcommand{\m@fpmakehashletter}{\catcode‘\#11\relax}
7 \newcommand{\Makem@fpPrivateLetters}{\m@fpmakeuscoreletter\m@fpmakehashletter}
8

routine The routine environment code is similar to the doc package’s environment code.
9 \def\routine{\begingroup
10 \catcode‘\\12
11 \Makem@fpPrivateLetters \m@fpm@cro@ \iffalse}
12 \let\endroutine\endtrivlist
13

variable The variable environment code is almost identical to the code for the routine
environment.
14 \def\variable{\begingroup
15 \catcode‘\\12
16 \Makem@fpPrivateLetters \m@fpm@cro@ \iftruel}
17 \let\endvariable\endroutine
18

\m@fpm@cro@ This command does all the work for both the routine and variable environ-
ments. The first part is a straight copy of the doc package \m@cro@ command.

19 \long\def \m@fpm@cro@#1#2{\endgroup \topsep\MacroTopsep \trivlist
20 \def\makelabel##1{\1lap{##1}}%

\routinestring
\routineheadname

\variablestring
\variableheadname

\Describe

\Describem@fp

6 3 The package code

21 \if@inlabel

22 \let\@tempa\@empty \count@\macro@cnt

23 \loop \ifnum\count@>\z@

24 \edef\@tempa{\@tempa\hbox{\strut}}\advance\count@\m@ne \repeat
25 \edef\makelabel##1{\1lap{\vtop to\baselineskip

2 {\@tempa\hbox{##1}\vss}}}/

27 \advance \macro@cnt \@ne

28 \else

29 \macro@cnt\@ne

30 \fi

The rest of the code is for this package, and is a simplified and modified version
of the corresponding code for \m@cro@.

31 \edef\@tempa{\noexpand\item[\noexpand\PrintMfpName{\string#2}]}%

32 \Q@tempa

33 \globalladvance\c@CodelineNo\@ne

34 #17,

Do the indexing for the variable environment.

35 \SpecialMainMfpIndex{#2}{\variablestring}{\variableheadname}\nobreak
36 \else

Do the indexing for the routine environment.

37 \SpecialMainMfpIndex{#2}{\routinestring}{\routineheadnamel}\nobreak
38 \fi

and finish off the definition.

39 \global\advance\c@CodelineNo\m@ne

40 \ignorespaces}
41

These two commands store the default indexing strings for routines.
42 \newcommand{\routinestring}{\space(routine)}

43 \newcommand{\routineheadname}{routines:}
44

These two commands store the default indexing strings for variables.
45 \newcommand{\variablestring}{\space(variable)}

46 \newcommand{\variableheadname}{variables:}
47

This is a generic description macro, and is similar to those defined later.
48 \def\Describe{\leavevmode\@bsphack\begingroup\Makem@fpPrivateLetters

49 \Describem@fp}
50

The workhorse for \Describe. It processes the three apparent arguments to
\Describe.

51 \def\Describem@fp#1#2#3{\endgroup

52 \marginpar{\raggedleft\PrintMfpName{#3}1}/,

53 \SpecialMfpIndex{#3}{#2}{#1}\@esphack\ignorespaces}

54

Code This is a generalization of the previous environments.

55 \def\Code{\begingroup

56 %% \catcode‘\\12

57 \Makem@fpPrivatelLetters \m@fpm@c}
58 \let\endCode\endtrivlist

59

\m@fpm@c This is the workhorse for the Code environment and processes the 3 arguments
apparently taken by the environment.
60 \long\def\m@fpm@c#1#2#3{\endgroup \topsep\MacroTopsep \trivlist
61 \def\makelabel##1{\1lap{##1}}%
62 \if@inlabel

63 \let\@tempa\@empty \count@\macro@cnt

64 \loop \ifnum\count@>\z@

65 \edef\Q@tempa{\@tempa\hbox{\strut}}/

66 \advance\count@\m@ne \repeat

67 \edef\makelabel##1{\1lap{\vtop to\baselineskip

68 {\@tempa\hbox{##1}\vss}}}/,
69 \advance\macro@cnt\@ne

70 \else

71 \macro@cnt\@ne

72 \fi

73 \edef\@tempa{\noexpand\item[\noexpand\PrintMfpName{\string#3}11}/
74 \Q@tempa

75 \globalladvance\c@CodelineNo\@ne

76 \SpecialMainMfpIndex{#3}{#2}{#1}\nobreak

77 \global\advance\c@CodelineNo\m@ne

78 \ignorespaces}

79

\PrintMfpName This typesets the name of a Metafont/post routine or variable, or in general
(name). If there is a pre-existing definition, then the package does not modify
it.

80 \providecommand{\PrintMfpName} [1] {\strut \MacroFont \string #1\ }
81

Now for the command that writes out the index entries for the routine and
variable environments. It is also used for the Code environment.

\SpecialMainMfpIndex The command \SpecialMainMfpIndex{(name)}{(string)}{(heading)} writes (name)
to the .idx file, firstly as a ‘main’ entry (flagged with (string)) and then as a sub-
sidiary entry under (heading). Both entries are treated as definitional.

82 \newcommand{\SpecialMainMfpIndex} [3]{\@bsphack
Here is the main index entry.

83 \special@index{’

84 \string#1\actualchar

85 \string\verb\quotechar*\verbatimchar\string#1\verbatimchar
86 #2 \encapchar mainl}

\DescribeRoutine

\Describem@fpRoutine

\DescribeVariable

\Describem@fpVariable

\SpecialMfpIndex

8 3 The package code

Here is the subsidiary index entry.
87 \special@index{#3\levelchar

88 \string#1\actualchar

89 \string\verb\quotechar*\verbatimchar\string#1\verbatimchar
90 \encapchar main}

91 \@esphack}

92

The command \DescribeRoutine{(name)} typesets a marginal heading and an
index entry for the description of a routine called (name). It is based on the doc
\DescribeMacro command.

93 \def\DescribeRoutine{\leavevmode\@bsphack\begingroup\Makem@fpPrivateLetters
94 \Describem@fpRoutine}

This is the macro that does the work for \DescribeRoutine.

95 \def\Describem@fpRoutine#1{\endgroup

96 \marginpar{\raggedleft\PrintMfpName{#1}}/

97 \SpecialMfpIndex{#1}{\routinestring}{\routineheadname}\@esphack\ignorespaces}
98

The command \DescribeVariable{(name)} typesets a marginal heading and an
index entry for the description of a variable called (name). It is based on the
\DescribeRoutine command.

99 \def\DescribeVariable{\leavevmode\@bsphack\begingroup\Makem@fpPrivateLetters
100 \Describem@fpVariable}

This is the macro that does the work for \DescribeVariable.

101 \def\Describem@fpVariable#1{\endgroup

102 \marginpar{\raggedleft\PrintMfpName{#1}}/,

103 \SpecialMfpIndex{#1}{\variablestring}{\variableheadname}\@esphack\ignorespaces}
104

The command \SpecialMfpIndex{(name)}{(string)}{(heading)} writes (name)
to the .idx file, firstly as a ‘main’ entry (flagged with (string)) and then as
a subsidiary entry under (heading). Both entries are treated as ‘usages’ of the
(name).

105 \newcommand{\SpecialMfpIndex} [3]{\@bsphack

Here is the main index entry.

106 \index{%

107 \string#1\actualchar
108 \string\verb\quotechar*\verbatimchar\string#1\verbatimchar
109 #2 \encapchar usagel’

Here is the subsidiary index entry.

110 \index{#3\levelchar

111 \string#1\actualchar

112 \string\verb\quotechar*\verbatimchar\string#1\verbatimchar
113 \encapchar usage}

114 \@esphack}
115

\check@checksum After some experience with using docmfp for code that had no resemblence at all
to BTEX, I found that if there were no backslashes present, then doc whined about
there being no checksum and said that the \CheckSum should be set to zero, which
it was. This is the relevent code from the doc package.

\def\check@checksum{\relax
\ifnum\check@sum=\z0@
\typeout {#kskskokskskokok koo desokok koo skt deok 1)
\typeout{* This macro file has no checksum!}/
\typeout{* The checksum should be \the\bslash@cnt!}/,
\typeout {#kskskoksksskokok koo desdokok koo koot ook ek 1)
\else
\ifnum\check@sum=\bslash@cnt
\typeout {Fkkskkkskkskkkxkkk*]}
\typeout{* Checksum passed *}J,
\typeout {kskksk sk kkkkkkkk }Y
\else
\PackageError{doc}{Checksum not passed
(\the\check@sum<>\the\bslash@cnt) }%
{The file currently documented seems to be wrong. ~J%
Try to get a correct version.}/,
\fi
\fi
\global\check@sum\z@}

For the purposes of the docmfp package this needs redefining as a zero check sum
is acceptable.

116 \renewcommand{\check@checksum}{\relax

117 \ifnum\check@sum=\bslash@cnt

118 \typeout{*******************}%

119 \typeout{* Checksum passed *}%

120 \typeout {#*kskkkkkxkkkkkkkkk}Y,

121 \else

122 \PackageError{docmfp}{Checksum not passed

123 (\the\check@sum<>\the\bslash@cnt)}%
124 {The file currently documented seems to be wrong. ~J%
125 Try to get a correct version.l}%

126 \fi

127 \global\check@sum\z@}

128

The end of this package.

129 (/usc)

10

References

Index

[GMS94] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LaTeX
Companion. Addison-Wesley Publishing Company, 1994.

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

\# 6
\@bsphack
48, 82, 93, 99, 105
\@esphack
53, 91, 97, 103, 114

\@tempa
24, 26, 31, 32
63, 65, 68, 73, T4

N 5
N 80
A

\actualchar

84, 88, 107, 111

B
\baselineskip ... 25, 67
\bslash@cnt ... 117,123

C
\c@CodelineNo

33, 39, 75, 77
\catcode 5, 6, 10, 15, 56
\check@checksum . 116
\check@sum 117, 123, 127
\Code 55

Code (environment) . 2, 55

\count@ 22-24, 63, 64, 66
D
\defaultpostamble .. 4
\defaultpreamble ... 4
\Describe 2, 48

\Describem@fp ... 49, 51

\Describem@fpRoutine

......... 94, 95
\Describem@fpVariable
........ 100, 101
\DescribeRoutine . 2, 93
\DescribeVariable 2, 99
E
\edef 24, 25, 31, 65, 67, 73
\empty 4
\encapchar
86, 90, 109, 113
\endCode 58
\endroutine 12, 17
\endvariable 17
environments:
Code 2, 55
routine 2,9
variable 2,14
I
\if@inlabel 21, 62
\iffalse 11
\ignorespaces
40, 53, 78, 97, 103
\index 106, 110
\item 31,73
L
\levelchar 87,110
\loop 23, 64
M
\m@fpm@c 57, 60
\m@fpm@cro@ .. 11, 16, 19
\m@fpmakehashletter . 5
\m@fpmakeuscoreletter
............. 5

\macro@cnt 22,
27, 29, 63, 69, 71

\MacroFont 80

\MacroTopsep 19, 60

\makelabel 20, 25, 61, 67
\Makem@fpPrivatelLetters

....... 5, 11,

16, 48, 57, 93, 99
\marginpar 52, 96, 102
N
\noexpand 31, 73
P
\PackageError 122

\PrintMfpName 31,
52, 73, 80, 96, 102
\providecommand ... &80
\ProvidesPackage ... 3
Q
\quotechar

85, 89, 108, 112

R
\raggedleft
\repeat
\routine
routine (environment)

52, 96, 102

\routineheadname

2, 37, 42, 97
\routinestring .
2, 37, 42, 97

. 83, 87

\special@index

Index

\SpecialMainMfpIndex
35, 37, 76, 82

\SpecialMfpIndex
53, 97, 103, 105

\string .. 31, 73, 80,
84, 85, 88, 89,
107, 108, 111, 112

\strut 24, 65, 80

T
\topsep 19, 60
U
\usepostamble 4
\usepreamble 4
A%
\variable 14
variable (environ-
ment) 2,14

11
\variableheadname
2, 35, 45, 103
\variablestring
2, 35, 45, 103
\verb ... 85,89, 108, 112
\verbatimchar
85, 89, 108, 112
\vss 26, 68
\vtop 25, 67

	1 Introduction
	2 The package
	2.1 Usage with .dtx and .ins files

	3 The package code

