
The cybercic package∗

Jared Jennings
jjennings@fastmail.fm

June 23, 2015

Contents

1 What’s it for? 2

2 How to use it 2

3 Caveats 2

4 Implementation 3

∗This document corresponds to cybercic v2.1, dated 2015/06/24.

1

1 What’s it for?

This package, when used in conjunction with cyber, adds IA control names to
division names in the table of contents. (The cic stands for “controls in contents.”
Division means chapter, section, subsection, subsubsection, etc.)

As an example, suppose you have a section in your document like this:

% \section{Stuff about individual authentication}

%

% \documents{iacontrol}{IAIA-1} Bla, bla, bla...

%

Without cybercic, this creates a line in your table of contents that says some-
thing like, “3.2 Stuff about individual authentication 34,” and a section head-
ing in the body of the document, on (in our example) page 34, that says something
like, “3.2 Stuff about individual authentication.”

When you add cybercic, the line in your table of contents will say, “3.2 Stuff
about individual authentication (IAIA-1) ... 34.” The section head in the body of
the document will stay the same.

2 How to use it

In the preamble of your document, write \usepackage{cybercic}. But! You
must be careful where you write it. If you use hyperref, you must use cybercic after
hyperref. You must use cybercic after cyber, as well.

\Cybercontrolsincontentsenabledfalse

\Cybercontrolsincontentsenabledtrue

If there is a part of your document wherein you do not want section ti-
tles in the table of contents changed, at the beginning of that part write
\Cybercontrolsincontentsenabledfalse. When you want controls-in-contents
re-enabled, write \Cybercontrolsincontentsenabledtrue.

3 Caveats

First and foremost, when you use this package, and you also use hyperref to make
a PDF with bookmarks in it, you cannot put any formatting in your section titles.
This means you cannot write something like:

% \section{My \emph{Awesome} Section}

% \section{The {\tt /usr/var/tmp} directory}

%

You must content yourself with:

% \section{My Awesome Section}

% \section{The /usr/var/tmp directory}

%

2

This package is a horrible (but ingenious) hack. Do not use it unless you really,
really need to. It may not play well with other packages.

If a section spans multiple pages, and compliance posture tags (like \documents
or \implements, see cyber documentation) are strewn throughout, running page
heads containing section names will only show IA control names mentioned before
the page began. Patches gratefully accepted.

4 Implementation

1 \makeatletter

Given that we are using controlsincontents, sometimes it needs to be disabled
for part of a document. The newif here is for that purpose.

\Cybercontrolsincontentsenabledtrue

\Cybercontrolsincontentsenabledfalse 2 \newif\ifCybercontrolsincontentsenabled

3 \Cybercontrolsincontentsenabledtrue

The word “division” here is a general term for a part, chapter, section, subsec-
tion, subsubsection, paragraph, or subparagraph.

Every kind of division has an optional argument, what should show in the
table of contents instead of the title shown in the text. Our strategy is to set that
optional toc name to a reference to a macro. The macro is first defined to contain
the original name of the section, but it can be redefined later in the document to
tack text onto the end of it.

http://www.elektro.uni-miskolc.hu/~gati/references/latex/macro/tugpap1.

pdf introduces this sort of indirection.
Only the last definition of the division’s title macro that appeared in the doc-

ument is expanded when the .toc file is written. So the table of contents then
contains all the additions to the division’s title as well as the title itself. Unfortu-
nately, at the part of the document where the division title is typeset in the text,
none of the redefinitions have happened yet, so only the title which shows in the
TOC can be amended using this method.

We need to name the macro that will contain each division’s title. Each name
must be unique, so we use the counters for different kinds of sections; but each
name must also be a valid identifier, so instead of using numbers we use letters.
(Alph bombs out after it gets to number 26, so Roman it is.)

4 \newcommand \alphpart {pt\Roman{part}}

5 \ifdefined\chapter

6 \newcommand \alphchapter {\alphpart ch\Roman{chapter}}

7 \newcommand \alphsection {\alphchapter se\Roman{section}}

8 \else

9 \newcommand \alphsection {\alphpart se\Roman{section}}

10 \fi

11 \newcommand \alphsubsection {\alphsection su\Roman{subsection}}

12 \newcommand \alphsubsubsection {\alphsubsection ss\Roman{subsubsection}}

13 \newcommand \alphparagraph {\alphsubsubsection p\Roman{paragraph}}

14 \newcommand \alphsubparagraph {\alphparagraph sp\Roman{subparagraph}}

3

http://www.elektro.uni-miskolc.hu/~gati/references/latex/macro/tugpap1.pdf
http://www.elektro.uni-miskolc.hu/~gati/references/latex/macro/tugpap1.pdf

Now we’re going to replace \@sect. This macro is used for all divisions
\section and smaller.

15 \let\skia@orig@sect\@sect

16 \gdef\@sect#1#2#3#4#5#6[#7]#8{%

17 \ifCybercontrolsincontentsenabled

#1 is the kind of division, e.g. section or subparagraph. #2 is the depth of this
kind of division in the hierarchy (1 is a chapter, 2 is a section, etc)

18 \ifnum #2>\c@tocdepth

The kind of division we’re starting is too detailed to show up in the table of
contents. Just do the usual @sect thing. (Before this special case was written,
any use of \subsubsection resulted in an \inaccessible error.)

19 \skia@orig@sect{#1}{#2}{#3}{#4}{#5}{#6}[#7]{#8}

A side effect of not redefining \last@division and \last@divtitle here as we
do below is that any \addtosectionnames that happen will add to the name of the
last-declared TOC-worthy division - which will be a larger division that contains
this one.

For example, assume \setcounter{tocdepth}{1}, i.e. only chapters are
shown in the TOC. Now if we \chapter{One} \section{Onedotone} \addtosectionname{Bla},
Bla will be added to One, not onto Onedotone.

20 \else

This division will show up in the TOC. Prepare it to have text added onto its
name there. Let’s capture a unique name for the section being created:

21 \edef\last@division{#1\csname alph#1\endcsname}

(An example expansion would be paragraphptchseIsussIIp.) Now we construct a
name for a macro which will contain the title of this section.

22 \edef\last@divtitle{\csname titleof\last@division \endcsname}

23 \edef\last@divaddedto{\csname addedto\last@division \endcsname}

Now we define that macro. The expandafter causes \last@divtitle to be ex-
panded before the \def, so that we are not defining \last@divtitle, but the thing
it expands to—in our example, we are defining \titleofparagraphptchseIsussIIp.
Mind-bending, eh?

24 \expandafter\def\last@divtitle{#7}

Now we call the old @sect, giving \last@divtitle as the section title to use in
the table of contents. But we don’t want to expand it right now, because it would
just expand to #7. So we put a \noexpand first. But we don’t want its value
to be exactly “\last@divtitle”, because that one gets redefined all the time,
and only the last definition would be used in writing the toc file, so the name of
every section in the toc would end up the same... This expansion stuff is a bit
fiddly, isn’t it? So instead of using \last@divtitle, as above, we have to write
its expansion out here.

25 \skia@orig@sect{#1}{#2}{#3}{#4}{#5}{#6}[\noexpand\csname titleof\last@division\endcsname]{#8}

26 \fi

27 \else

4

If we’re in this else, Cybercontrolsincontentsenabled is not true. Just do the
usual section thing.

28 \skia@orig@sect{#1}{#2}{#3}{#4}{#5}{#6}[#7]{#8}

29 \fi}

And we need to add the same machinery to \@chapter—if it exists. (Some
document classes do not define it.)

30 \ifdefined\@chapter

31 \let\skia@orig@chapter\@chapter

32 \gdef\@chapter[#1]#2{%

33 \ifCybercontrolsincontentsenabled

34 \edef\last@division{chapter\alphchapter}

35 \edef\last@divtitle{\csname titleof\last@division \endcsname}

36 \edef\last@divaddedto{\csname addedto\last@division \endcsname}

37 \expandafter\def\last@divtitle{#1}

38 \skia@orig@chapter[\noexpand\csname titleof\last@division\endcsname]{#2}

39 \else

40 \skia@orig@chapter[#1]{#2}

41 \fi}

42 \fi % defined @chapter

Fix PDF bookmarks by using the expansion of the title macro, not its name.
When you use hyperref and you tell it to make PDF bookmarks, the bookmarks

it writes to the PDF file have to have very normal sorts of names. I think you
may get to use UTF-8, but you can’t have any text formatting. The way hyperref
makes sure of this is by temporarily defining all of the LATEX formatting macros
you may want to use, like \textsf, to do nothing, so that they expand to their
contents rather than some TEX code that makes the formatting happen plus the
contents, and then evaluating the line that’s supposed to go in the table of contents
(the optional argument to \@section or \@chapter which defaults to the first
argument) expanding only those macros. As I recall. It’s been six months since I
figured it out.

But we’ve set the section name as it should appear in the contents to a macro,
and not a macro that hyperref is prepared for. So the PDF bookmark for section
1.2 which begins on page 4 says 1.2 \titleofsectionptchseI 4 instead of
1.2 My Cool Section (IAIA-1) 4.

Our hamfisted solution to this is to go ahead and fully expand the parameter.
That means that the \titleofsectionptchseI macro is expanded, to “My Cool
Section (IAIA-1).” But it also means that all of those guards that hyperref had to
deal with what happens if I write \section{My \emph{Awesome} Section} are
gone, and suddenly if there is any formatting in any section names, bad things
happen. So this is the part of the code that necessitates that all division titles
have no formatting in them at all.

Most of this definition of addcontentsline comes from the hyperref package.
For this to work properly, cyber must be loaded after hyperref.

43 \@ifpackageloaded{hyperref}{%

44 \gdef\addcontentsline#1#2#3{% toc extension, type, tag

45 \begingroup

5

46 \let\label\@gobble

47 \let\textlatin\@firstofone

48 \ifx\@currentHref\@empty

49 \Hy@Warning{%

50 No destination for bookmark of \string\addcontentsline,%

51 \MessageBreak destination is added%

52 }%

53 \phantomsection

54 \fi

55 \expandafter\ifx\csname toclevel@#2\endcsname\relax

56 \begingroup

57 \def\Hy@tempa{#1}%

58 \ifx\Hy@tempa\Hy@bookmarkstype

59 \Hy@WarningNoLine{bookmark level for unknown #2 defaults to 0}%

60 \else

61 \Hy@Info{bookmark level for unknown #2 defaults to 0}%

62 \fi

63 \endgroup

64 \expandafter\gdef\csname toclevel@#2\endcsname{0}%

65 \fi

66 \edef\Hy@toclevel{\csname toclevel@#2\endcsname}%

Unlike hyperref, expand #3 so we don’t try to use a macro name as the title
of the bookmark. But #3 is likely a \numberline{...}, and at the time this
is expanded, it seems that \numberline is some LaTeXy thing, not a hyperreffy
thing, and hyperref complains about all the TeX code in the expansion of #3. So
we make sure that i s
going to just put the number in.

67 \let\saved@numberline\numberline

68 \ifHy@bookmarksnumbered

69 \let\numberline\Hy@numberline

70 \else

71 \let\numberline\@gobble

72 \fi

73 \edef\Hy@expandedtag{#3}

74 \let\numberline\saved@numberline

Now, about writing that bookmark.

75 \Hy@writebookmark{\csname the#2\endcsname}%

76 {\Hy@expandedtag}%

77 {\@currentHref}%

78 {\Hy@toclevel}%

79 {#1}%

80 \ifHy@verbose

81 \typeout{pdftex: bookmark at \the\inputlineno:

82 {\csname the#2\endcsname}

83 {\Hy@expandedtag}

84 {\@currentHref}%

85 {\Hy@toclevel}%

86 {#1}%

6

87 }%

88 \fi

89 \addtocontents{#1}{%

90 \protect\contentsline{#2}{#3}{\thepage}{\@currentHref}%

91 }%

92 \endgroup

93 }

94 }

95

That blank line just above seems to be necessary.
To avoid restating IA controls in appended-to section names, we’ll need a

substring search function.
From the substr package, version 1.2, 2009/10/20, copyright 2000, 2005, 2009

Harald Harders, available from CTAN:
—
expands the first and second argument with \protected@edef and calls #3

with them:

96 \newcommand\su@ExpandTwoArgs[3]{%

97 \protected@edef\su@SubString{#1}%

98 \protected@edef\su@String{#2}%

99 \expandafter\expandafter\expandafter#3%

100 \expandafter\expandafter\expandafter{%

101 \expandafter\su@SubString\expandafter

102 }\expandafter{\su@String}%

103 }

tests if #1 in #2. If yes execute #3, else #4

104 \newcommand*\IfSubStringInString[2]{%

105 \su@ExpandTwoArgs{#1}{#2}\su@IfSubStringInString

106 }

107 \newcommand*\su@IfSubStringInString[2]{%

108 \def\su@compare##1#1##2\@nil{%

109 \def\su@param{##2}%

110 \ifx\su@param\@empty

111 \expandafter\@secondoftwo

112 \else

113 \expandafter\@firstoftwo

114 \fi

115 }%

116 \su@compare#2\@nnil#1\@nil

117 }

—
End substr package excerpt.
Now, to append some text to the name of the section we’re in, we just have

to redefine the macro whose name is the value of \last@divtitle. In order to
add to it without infinite recursion, we use \edef, which expands its body before
defining. Again, rather than defining \last@divtitle itself, we want to define
the macro it names. The expandafter does this.

7

118 \def\addtosectionname#1{%

119 \def\skia@yes{yes}

120 \expandafter\ifx\last@divaddedto\skia@yes

121 \IfSubStringInString{#1}{\last@divtitle}{}{%

122 \expandafter\edef\last@divtitle{\last@divtitle , #1}%

123 }

124 \else

125 \expandafter\edef\last@divtitle{\last@divtitle ---#1}

126 \fi

127 \expandafter\def\last@divaddedto{yes}}

128

129 \makeatother

8

	1 What's it for?
	2 How to use it
	3 Caveats
	4 Implementation

