The counterz package®

Christopher McClain'

Released 2023/06/05

Abstract

The counterz package provides additional tools for manipulating counters.
The package facilitates the use of stealth prefixes for counter names in order
to help distinguish between counters from multiple input files. The package
also provides a means to generate random counters and save such counter
values for future typesetting.

Contents

1 Introduction 2
1.1 About 2
1.2 License. o o e e e e 2
1.3 Imstallation 2

2 User Guide 2
2.1 Counter Prefixes 3
2.2 Manipulating Counters oL 3
2.3 Conditional Statements o oL 4
2.4 Displaying Counters 4
2.5 Random Counters oo 8

3 Implementation 11
3.1 Counter Prefixes 11
3.2 Manipulating Counters 12
3.3 Conditional Statements 12
3.4 Displaying Counters 13
3.5 Random Counters, 16

4 Change History 20

5 Index 21

*This file describes version v1.1.1, last revised 2023/06/05.
tE-mail: christopher.mcclain@mail. wvu.edu

1 Introduction

1.1 About

This project emerged from the author’s frequent use of BTEX counters as tradi-
tional integer type variables when generating mathematics documents with ran-
dom elements. While pdfTEX primitives such as \pdfuniformdeviate may be
used to generate random integers, these integer values will be randomized with
every typesetting. The counterz package provides a way to save the values of
counters. Another .tex file is created so that, if desired, it can be inputted upon a
subsequent typesetting in order to initialize the counters with the previously gen-
erated values. A boolean variable and accompanying commands allow an author
to toggle between reusing and rerandomizing counters.

One of the consequences of preloading counter values in large projects with mul-
tiple source files is that one must take care to use distinct counter names through-
out all of the different files. If the file Main.tex inputs Filel.tex and File2.tex, and
both input files define the counter mycounter, then this could result in typesetting
errors. One way to address this problem is to prefix every counter name with the
file name or some other marker so that the counter names will actually be distinct.
For example, FileImycounter is distinct from File2mycounter. Very long counter
names, however, can make code difficult to read and hinder consistent application
of this practice. The counterz package provides a way to stealthily define and
recall such prefixes so that the shorter non-prefixed names can be used for the
manipulation, recall, and typesetting of counters.

1.2 License

Copyright (© 2023 Christopher McClain. This software may be copied, distributed,
and/or modified under the terms of the LaTeX Project Public License, either
version 1.3c of this license or any later version.

1.3 Imnstallation

Run (pdf)TEX on counterz.dtx to generate the file counterz.sty, and copy it to
your local texmf directory. To generate both the package file counterz.sty and the
documentation counterz.pdf, run (pdf)ETEX on counterz.dtx. Typesetting the
documentation requires the package hypdoc which is included in TEX distributions
and at The Comprehensive TeX Archive Network.

2 User Guide

To use this package, include the following line in the preamble of your document:
\usepackage{counterz}

The package counterz loads the packages etoolbox and makecmds, both of which are
included in TEX distributions and at The Comprehensive TeX Archive Network.

https://www.latex-project.org/lppl/
http://www.ctan.org
http://www.ctan.org

\setcounterprefix

\clearcounterprefix

\xnewcounter
\xsetcounter

\xprovidecounter
\xaddtocounter
\xvalue

2.1 Counter Prefixes

Counter prefixes are stored in an internal macro whose default value is an empty
string. The command \setcounterprefix{(prefiz)} is used to change this value.
For example, to change the prefix to PurpleMonkey, use

\setcounterprefix{PurpleMonkey}
and to change it from PurpleMonkey to Dishwasher, use
\setcounterprefix{Dishwasher}

The command \clearcounterprefix returns the prefix to its empty default.

2.2 Manipulating Counters

The command \xnewcounter{(countername)} creates a counter with a prefixed
name. The command \xsetcounter{(countername)}{(integer)} assigns the spec-
ified value to the counter with the prefixed name. For example, suppose that the
file BoringFilel.tex contains the following:

\xnewcounter{bestcounterever}
\xsetcounter{bestcounterever}{100}

and suppose that the file BoringFile2.tex contains the following:

\xnewcounter{bestcounterever}
\xsetcounter{bestcounterever}{-29}

and, finally, suppose that the file Main.tex contains (in part) the following:

\setcounterprefix{PurpleMonkey}
\input{BoringFilel}
\setcounterprefix{Dishwasher}
\input{BoringFile2}

Then typesetting Main.tex will create a counter Purple Monkeybestcounterever with
the value 100 and a counter Dishwasherbestcounterever with the value —29. By
using commands \xnewcounter and \xsetcounter instead of \newcounter and
\setcounter, BoringFilel.tex and BoringFile2.tex may be written independently
without considering any counter name conflicts. The distinction between the coun-
ters is determined by the prefixes defined in the file Main.tex. By changing prefixes,
Main.tex can even input the same file multiple times without conflict.

The commands \xprovidecounter, \xaddtocounter, and \xvalue are like-
wise prefix versions of commands \providecounter, \addtocounter, and \value,
respectively. When the prefix is empty, the commands expand like their standard
counterparts. (Note: \providecounter defines a counter if it has not already
been defined. See the documentation for the package makecmds for details.)

\ifctrequal

\ifctrless
\ifctrmore

\ifctrzero

\ifctrneg
\ifctrpos

\xarabic
\xroman
\xRoman

2.3 Conditional Statements

The command \ifctrequal{(counter?)}{(counter2)}{(foo)}{(bar)} uses the
command \xvalue to compare the values of the (prefixed) counters and then ex-
ecutes (foo) if the values are equal and otherwise executes (bar). The commands
\ifctrless and \ifctrmore work analogously, based on whether the value of
prefixed (counterl) is less than that of of prefixed (counter2) or more than that
of prefixed (counter2), respectively. Consider the example code

\setcounterprefix{TigerTiger}
\xnewcounter{Small}

\xsetcounter{Small}{7}

\xnewcounter{Large}

\xsetcounter{Large}{11}
\ifctrequal{Small}{Large}{January}{February}
\ifctrless{Small}{Large}{March}{April}
\ifctrmore{Small}{Large}{May}{June}

which produces the output
February March June

because the value of the counter TigerTigerSmall is 7 which is less than 11, the
value of the counter TigerTigerLarge.

The command \ifctrzero{{counter)}{(foo)}{(bar)} executes (foo) if the
value of the (prefixed) counter is zero and otherwise executes (bar). The com-
mands \ifctrneg and \ifctrpos work analogously based on whether the value
is negative or positive, respectively. The example code

\setcounterprefix{TigerTiger}
\xprovidecounter{Small}
\xsetcounter{Small}{7}
\ifctrzero{Small}{January}{February}
\ifctrneg{Small}{March}{April}
\ifctrpos{Small}{May}{June}

produces the output
February April May

because the value of the counter TigerTigerSmall is 7 which is positive (and thus
nonzero, as well).

2.4 Displaying Counters

The command \xarabic{(counter)} is simply a prefix version of the standard
display command \arabic. The commands \xroman, \xRoman, \xalph, \xAlph,
and \xfnsymbol are likewise prefix versions of the standard display commands

\xalph
\xAlph
\xfnsymbol

\xsigned

\roman, \Roman, \alph, \Alph, and \fnsymbol, inheriting the restrictions of their
parent commands.
Note that the code

\setcounterprefix{Sneaky}
\xprovidecounter{Pete}
\xsetcounter{Pete}{42}
\arabic{Pete}

produces an error because the counter Pete is not defined, but the code

\setcounterprefix{Sneaky}
\xprovidecounter{Pete}
\xsetcounter{Pete}{42}
\xarabic{Pete}

produces the output
42

which is the value of the counter SneakyPete. The code

\setcounterprefix{Sneaky}
\xprovidecounter{Pete}
\xsetcounter{Pete}{42}
\clearcounterprefix
\xarabic{Pete}

also generates error because the final line is trying to use the undefined counter
Pete after the prefix was returned to its default value.

In addition to prefix versions of the standard display commands, the pack-
age counterz defines some variants of \xarabic that are useful in the display of
mathematical expressions. For example, consider the following code:

\xprovidecounter{a}
\xsetcounter{a}{5}
\xprovidecounter{b}
\xsetcounter{b}{0}
\xprovidecounter{c}
\xsetcounter{c}{-7}
$\xarabic{a}+\xarabic{b}+\xarabic{c}$

which produces
5+0+ -7

Using \arabicx causes the expression to contain the consecutive pair +—. The
command \xsigned{(counter)} is like \xarabic except that nonnegative values
are preceded by a plus sign “4”. The code

$\xarabic{a}\xsigned{b}\xsigned{c}$

produces
5+0-7

\xsignednz If we wish to suppress the 0, we can instead use the command \xsignednz{{counter)}
which is a nonzero version of \xsigned and, if desired or necessary, the command
\xarabicnz \xarabicnz{(counter)} which is a nonzero version of \xarabic. The code

$\xarabicnz{a}\xsignednz{b}\xsignednz{c}$

produces
5—17

\xnegof The command \xnegof{(counter)} displays the negative of (counter). The com-
\xnegofnz mand \xnegofnz does the same except that it suppresses the number zero. The
\xnegsigned command \xnegsigned includes the appropriate signs of plus “+” and minus “-”
\xnegsignednz (assigning a minus to zero in this case). Finally, the command \xnegsignednz
does the same except that it suppresses the number zero., as demonstrated by the

following code:

\xprovidecounter{d}
\xsetcounter{d}{-2}

$\xarabic{a}\xsigned{b}\xsigned{c}=\xarabic{d}$
$\xnegof{d}=\xnegof{a}\xnegsigned{b}\xnegsigned{c}$
$\xnegofnz{d}=\xnegofnz{a}\xnegsignednz{b}\xnegsignednz{c}$

which produces

540—7=—2
2=-5-0+7
2= 547

The preceding commands for displaying values related to counters were created
by using some other commands that we make available in case they prove useful.
\xabsof The command \xabsof{({counter)} prints the absolute value of {counter). The
\xsignof command \xsignof{(counter)} prints a minus sign “-” if (counter) is negative
and otherwise prints a plus sign “+”. (Note that the latter case includes the value
\xnegsignof zero.) The command \xnegsignof{(counter)} prints a plus sign “+” if (counter)
is negative and otherwise prints a minus sign “”. (Note that the latter case

includes the value zero.)
Additional variants of these commands suppress certain output, as is con-
ventional when using integers as coefficients in algebraic expressions. The com-
\xabsofcoef mand \xabsofcoef{({counter)} prints the absolute value of (counter) except that
\xsignofcoef it suppresses the values of 1 and 0. The command \xsignofcoef{(counter)}

\xnegsignofcoef

\xcoef

\xsignedcoef

\xnegcoef

prints the sign of (counter) if the value of (counter) is nonzero. The command
\xnegsignofcoef{(counter)} prints the opposite sign of (counter) if the value of
(counter) is nonzero. These commands are used to build versions of \xarabic
and \xsigned specific to typesetting coeflicients, as we now illustrate.

Consider the following code

\xprovidecounter{al}
\xsetcounter{a0}{-10}
\xprovidecounter{al}
\xsetcounter{al}{1}
\xprovidecounter{a2}
\xsetcounter{a2}{-5}
\xprovidecounter{a3}
\xsetcounter{a3}{-1}
\xprovidecounter{ad}

\xsetcounter{a4}{0}

\xprovidecounter{a5}

\xsetcounter{a5}{11}

$\xarabic{ab5}x"5 + \xarabic{ad4}x"4 + \xarabic{a3}x"3 + \xarabic{a2}x"2
+ \xarabic{all}x + \xarabic{aO} = 42$

and its output
1125 + 0z* + —123 + —52? + 1z + —10 = 42

We seek a better way to handle the coefficients, especially 1 and —1. The command
\xcoef{(counter)} prints the value of (counter) except that it suppresses the
values of 1, 0, and -1, printing a minus sign “-” in the latter case. The command
\xsignedcoef{(counter)} is like \xcoef except that positive values are preceded
by a plus sign “4”. We use these to write the code

$\xarabic{a5}x"5 + \xarabic{ad4}x"4 + \xarabic{a3}x"3 + \xarabic{a2}x"2
+ \xarabic{al}x + \xarabic{aO} = 428

$\xcoef{ab}\ifctrzero{a5}{}{x 5}
\xsignedcoef{ad}\ifctrzero{ad}{}{x"4}
\xsignedcoef{a3}\ifctrzero{a3}{}{x"3}
\xsignedcoef{a2}\ifctrzero{a2}{}{x"2}
\xsignedcoef{al}\ifctrzero{al}t{}{x}
\xsignednz{a0}
= 42%

whose output is

112 + 02* + —123 + 522 + 1o + —10 = 42
1ad — 23 —b5x2 + 2 — 10 =42

The command \xnegcoef{(counter)} prints the negative of the value of
(counter) except that it suppresses the values of 1, 0, and -1, printing a “-” in the

\xnegsignedcoef

\randomizectr
\norandomizectr

\ifrandomizectr

\randsetcounter
\xrandsetcounter

\randaddtocounter
\xrandaddtocounter

latter case. The command \xnegsignedcoef{(counter)} is like \xnegcoef except
that positive values are preceded by a plus sign “+”. We use these to write the
code

$\xcoef{ab}\ifctrzero{ab5}{}{x 5}
\xsignedcoef{ad}\ifctrzero{ad}{}{x"4}
\xsignedcoef{a3}\ifctrzero{a3}{}{x"3}
\xsignedcoef{a2}\ifctrzero{a2}{}{x"2}
\xsignedcoef{al}\ifctrzero{al}t{}{x}
\xsignednz{a0}
= 42%

$\xcoef{ab}\ifctrzero{ab}{}{x"5}
\xsignedcoef{ad}\ifctrzero{ad}{}{x"4}
\xsignedcoef{a2}\ifctrzero{a2}{}{x"2}
\xsignednz{a0}
= \xnegcoef{a3}\ifctrzero{a3}{}{x"3}
\xnegsignedcoef{al}\ifctrzero{al}{}{x}
+42%

whose output is

1125 — 23 — 522 + 2 — 10 = 42
1125 — 522 — 10 = 23 — z + 42

As the reader has probably already observed in the code above, these display
commands appear to be less efficient than a manual adjustment of signs and
numbers. For fixed, known values of counters, this assessment is correct. The real
utility of these commands is not apparent until they are combined with randomly
generated counter values.

2.5 Random Counters

In order to effectively manage the options of randomizing counter values or
reusing counter values, the commands \randomizectr and \norandomizectr
are used to toggle an internal boolean variable. The internal boolean is initial-
ized as TRUE when the counterz package is loaded. A conditional command
\ifrandomizectr{(foo)}{(bar)} executes (foo) when the boolean is TRUE and
otherwise executes (bar).

We next define random versions of \setcounter and \addtocounter. These
commands will only execute when the document is set to randomize. The com-
mand \randsetcounter{(counter)}{(min)}{(mazx)} assigns to (counter) a ran-
dom integer value between (min) and (maz). The command \xrandsetcounter
is a prefix version of \randsetcounter. Analogously, we define the command
\randaddtocounter{{counter)}{(min)}{{maz)} which adds to (counter) a ran-
dom integer value between (min) and (maz). \xrandaddtocounter is a prefix
version of \randaddtocounter. The following code produces an expression in the
form ax + b, where a and b are random integers between —10 and 10:

\opencountersfile

\savecounter

\xsavecounter

\inputcountersfile

\randomizectr

\xprovidecounter{a}

\xprovidecounter{b}

\xrandsetcounter{a}{-10}{10}
\xrandsetcounter{b}{-10}{10}
$\xcoef{ar\ifctrzero{a}{\xarabic{b}}{x \xsignednz{b}}$

Organized in the following table are fifty instances of output that are randomly
generated by the typesetting of this document:

—Tx—7 2z + 10 10z — 6 10z — 10 2@ — 2
3x + 2 4x — 10 x—7 Sr +4 6x — 3
9 — 7 —b5xr —8 0 —6x — 1 —z+9

—2x 2xr —8 6x — 2 —10z +9 -9
6x r—4 —xr—5 —6 2 +5

—x—4 Tx+ 4 10z + 2 3r+1 9 — 6
6x — 8 dor — 7 9xr + 7 —Tr+7 -9 -9
4r — 3 Tx+7 dr +1 —2r+9 3x+ 2
rz—8 -9 46 8 -3z —1 7
—x+7 10x -2 8r + 10 3x—2

If our document contains randomly generated counters, but we wish to typeset
the document again without changing those values, then we need a way to save
them. The command \opencountersfile creates and opens the write stream to
the file (jobname).counters.tex to store the necessary information. For example,
if the document is named Yellowdog.tex, then the previously generated counters
and their assigned values will be stored the file Yellowdog.counters.tex. The author
only has to include this command once, prior to any commands used to save the
counter values. Additional instances of \opencountersfile will report an error,
as will trying to use the command when the document is set to not randomize (e.g.
\norandomizectr). These error reports are designed to prevent the accidental
overwriting of (jobname).counters.tex.

After opening the write stream to (jobname).counters.tex, the command
\savecounter{(counter)} may be used to “save” the value of counter by writ-
ing to the file the relevant \providecounter and \setcounter commands. The
command \xsavecounter is a prefix version of \savecounter. When using
\xsavecounter, the commands that are written to the file include the necessary
counter prefixes. Consequently, an author can, if necessary or desired, manually
search the file for the value assigned to any randomly generated counter.

Once we have generated a file for storing counters, we need a way to recover
those values during a subsequent typesetting. The command \inputcountersfile
will input the necessary file, if it exists, and report an error if it does not. Keep
in mind that inputting the file will override any previous assignments of those
counters, so it is probably best to invoke this command near the beginning of a
document. For example, after including an instance of either \randomizectr or
\norandomizectr, a document named Yellowdog.tex might include the code

\ifrandomizectr{\opencountersfile}{\inputcountersfile}

\promptrandomizectr

\randprovidecounter

to determine whether to preload previously stored counter values or open the write
stream in anticipation of randomly generating new counter values.

The command \promptrandomizectr [{macro)]{(message)}{(string)} offers
an alternative to manually switching between the commands \randomizectr and
\norandomizectr for different typesettings. The contents of (message) are dis-
played in the terminal, awaiting a response from the user at the prompt (macro).
If the optional argument is not used then the default prompt is \@typein. If the
optional argument is given, it must be a macro name that includes the backslash.
The user’s response is stored as a string in (macro) and compared to (string). If
they are equal, then the command \randomizectr is executed. If they are not
equal then \norandomizectr is executed.

Consider the following example code:

\promptrandomizectr [\EnterResponse]{/
~~J Enter 1 to randomize.
~~J Enter 2 to not randomize.
H%
1%
Yh
\ifrandomizectr{’,
\opencountersfile
Ho%
\inputcountersfile

Yh
which displays the following in the terminal:

Enter 1 to randomize.
Enter 2 to not randomize.

\EnterResponse=

Notice that the first (optional) argument \EnterResponse begins with a backslash
and is displayed with an equals sign “=" at the prompt. Also note that the second
argument contains two instances of the text ~~J which is used to produce a line
break in the terminal output. Next, note that the third argument 1 is immediately
followed by a percent symbol % to prevent extra space being included in the string.
(If the 1 was immediately followed by a closing brace instead of a line break in
the code, the percent symbol would not be used.) Finally, note that if the user
types a 1 in the terminal and presses Enter, then the commands \randomizectr
and \opencountersfile will be executed. If the user enters any other text or
simply presses Enter with no text, then the commands \norandomizectr and
\inputcountersfile will be executed, despite the instructions to enter a 2 to
achieve this outcome.

The command \randprovidecounter{{counter)}{(min)}{(maz)} combines
the four commands \providecounter, \ifrandomizectr, \randsetcounter, and
\savecounter. The command creates (counter) if it has not already been de-
fined and, if the document is randomized, assigns to (counter) a random in-
teger value between (min) and (maz) and saves this value to the counters

10

\randprovidecounternz
\xrandprovidecounter
\xrandprovidecounternz

\@counterz@counterprefix
\setcounterprefix
\clearcounterprefix

file. The command \randprovidecounternz is like \randprovidecounter ex-
cept that the generated value is nonzero. The commands \xrandprovidecounter
and \xrandprovidecounternz are prefix versions of \randprovidecounter and
\randprovidecounternz, respectively. Suppose that Neverending.tex contains the
code

\randomizectr
\ifrandomizectr{\opencountersfile}{}
\setcounterprefix{Southern}
\xrandprovidecounternz{Oracle}{-10}{10}
\xcoef{0Oracle}x+42

After typesetting once, the resulting document might display an expression such
as —9x + 42 and print to Neverending.counters.tex the line

\providecounter {SouthernOracle} \setcounter {SouthernOracle}{-9}

After typesetting a second time, the resulting document might display 4z +42 and
print to Neverending.counters.tex the line

\providecounter {SouthernOracle} \setcounter {SouthernOracle}{4}

If, however, the command \randomizectr is replaced by \norandomizectr, then a
third typesetting will leave both the displayed text and the counters file unchanged.

3 Implementation

The counterz package loads the two packages etoolbox and makecmds for the use
of conditional tests (boolean and numerical) and the macro \providecounter.

1 (*package)

2 \ProvidesPackage{counterz}[%

3 2023/06/05 vi.1.1 Additional tools for counters
4 1%

5 \RequirePackage{etoolbox,makecmds}

3.1 Counter Prefixes

The default expansion of \@counterz@counterprefix is null, but it can be
changed with the commands \setcounterprefix and \clearcounterprefix.

6 \newcommand{\@counterz@counterprefix}{}

7 \newcommand{\setcounterprefix}[1]{%

8 \renewcommand{\@counterz@counterprefix}{#1}
9 }h

10 \newcommand{\clearcounterprefix}{J

11 \setcounterprefix{}

12 Y%

11

\xnewcounter
\xprovidecounter
\xsetcounter
\xaddtocounter
\xvalue

\ifctrequal

\ifctrless

\ifctrmore

3.2 Manipulating Counters

These commands are prefix versions of commands \newcounter, \providecounter,
\setcounter, \addtocounter, and \value, respectively. The creation, modifica-
tion, or use of the counters is carried out on a prefixed version of the specified
counter name. When \@counterz@counterprefix is null, the commands expand
like their standard counterparts.

13 \newcommand{\xnewcounter}[1]{%

14 \newcounter{\@counterz@counterprefix #1}

15 Y

16 \newcommand{\xprovidecounter}[1]{%

17 \providecounter{\@counterz@counterprefix #1}
18 Y

19 \newcommand{\xsetcounter}[2]{%

20 \setcounter{\@counterz@counterprefix #1}{#2}
21 Y

22 \newcommand{\xaddtocounter} [2]{}%

23 \addtocounter{\@counterz@counterprefix #1}{#2}
24 Y,

25 \newcommand{\xvalue} [1]{%

26 \value{\@counterz@counterprefix #1}

27 },

3.3 Conditional Statements

The following commands provide if-then-else constructs analogous to those in the
package etoolbox. The notable difference is that the arguments are counter names.
The command \xvalue is used to determine the values of the counters, so that
the stored prefix is applied to the specified counter names before execution.

\ifctrequal{(counterl)}{{counter2)}{{foo)}{(bar)} executes (foo) if the value
of (counterl) is equal to the value of (counter2) and otherwise executes (bar).

28 \newcommand{\ifctrequall}[4]{}
29 \ifnumequal{\xvalue{#1}}{\xvalue{#2}}{#3}{#4}
30 Y

\ifctrless{(counter!)}{{counter2)}{(foo)}(bar)} executes (foo) if the value of
(counter?) is less than the value of (counter2) and otherwise executes (bar).

31 \newcommand{\ifctrless}[4]{%
32 \ifnumless{\xvalue{#1}}{\xvalue{#2} }{#3}{#4}
33 Y

\ifctrmore{(counter!)}{{counter2)}{(foo) }H(bar)} executes (foo) if the value of
(counter!) is more than the value of (counter2) and otherwise executes (bar).

34 \newcommand{\ifctrmore} [4]{%
35 \ifnumless{\xvalue{#2}}{\xvalue{#1}}{#3}{#4}
36 }%

12

\ifctrzero

\ifctrneg

\ifctrpos

\xarabic
\xroman
\xRoman

\xalph
\xAlph
\xfnsymbol

\xabsof

\xsignof

\ifctrzero{{counter)}{(foo)}{(bar)} executes (foo) if the value of (counter) is
zero and otherwise executes (bar).

37 \newcommand{\ifctrzero} [3]{%
38 \ifnumequal{\xvalue{#1}}{0}{#2}{#3}
39 Y%

\ifctrneg{({counter)}{(foo)}{(bar)} executes (foo) if the value of (counter) is
negative and otherwise executes (bar).

40 \newcommand{\ifctrneg} [3]1{%
41 \ifnumless{\xvalue{#1}}{0}{#2}{#3}
42 Y

\ifctrpos{({counter)}{(foo)}{({bar)} executes (foo) if the value of {counter) is
positive and otherwise executes (bar).

43 \newcommand{\ifctrpos} [3]1{/%
44 \ifnumless{\xvalue{#1}}{1}{#3}{#2}
45 Y

3.4 Displaying Counters

These commands include prefix versions of the standard display commands.

46 \newcommand{\xarabic}[1]{\arabic{\@counterz@counterprefix #1}}

47 \newcommand{\xroman} [1]{\roman{\@counterz@counterprefix #1}}

48 \newcommand{\xRoman} [1] {\Roman{\@counterz@counterprefix #1}}

49 \newcommand{\xalph}[1]{\alph{\@counterz@counterprefix #1}}

50 \newcommand{\xAlph}[1]{\Alph{\@counterz@counterprefix #1}}

51 \newcommand{\xfnsymbol} [1]{\fnsymbol{\@counterz@counterprefix #1}}

The following commands likewise apply the stored prefix to the counter name.
These commands are designed to aid in the typesetting of counter values within
algebraic expressions while observing particular conventions about the display of
numbers and their and their signs.

\xabsof{(counter)} prints the absolute value of {counter).

52 \newcommand{\xabsof} [1]{%
53 \ifctrneg{#1}{/

54 \the \numexpr O - \xvalue{#1} \relaxy
55 H%

56 \xarabic{#1}/

57 }h

58 }

\xsignof{{counter)} prints a minus sign “-” if (counter) is negative and otherwise
prints a plus sign “4”. Note that the latter case includes the value zero.

59 \newcommand{\xsignof}[1]{%
60 \ifctrneg{#1}{-}{+}
61 Y%

13

\xnegsignof \xnegsignof{(counter)} prints a plus sign “+” if (counter) is negative and oth-
erwise prints a minus sign “-”. Note that the latter case includes the value zero.

62 \newcommand{\xnegsignof}[1]1{/
63 \ifctrneg{#1}{+}{-}
64 Y,

\xsigned \xsigned{(counter)} prints the absolute value of (counter), preceded by a plus
sign “4” or a minus sign “-” as defined by \xsignof.

65 \newcommand{\xsigned} [1]{%
66 \xsignof{#1} \xabsof{#1}
67 %

\xsignednz \xsignednz{(counter)} is like \xsigned but suppresses the number zero.

68 \newcommand{\xsignednz}[1]{%
69 \ifctrzero{#1}{}{\xsigned{#1}}
70 Y

\xarabicnz \xarabicnz{(counter)} is like \xarabic but suppresses the number zero.

71 \newcommand{\xarabicnz} [1]1{%
72 \ifctrzero{#1}{}{\xarabic{#1}}
73 Y

\xnegsigned \xnegsigned{(counter)} prints the absolute value of (counter), preceded by a
plus sign “4” or a minus sign “-” as defined by \xnegsignof.

74 \newcommand{\xnegsigned} [1]{/,
75 \xnegsignof{#1} \xabsof{#1}
76 Yh

\xnegsignednz \xnegsignednz{(counter)} is like \xnegsigned but suppresses the number zero.

77 \newcommand{\xnegsignednz}[1]{/
78 \ifctrzero{#1}{}{\xnegsigned{#1}}
79 Yh

\xnegof \xnegof{(counter)} prints the negative of the value of (counter).

80 \newcommand{\xnegof} [1]{%
81 \ifctrpos{#1}{-}{}\xabsof{#1}
82 }

\xnegofnz \xnegofnz{(counter)} is like \xnegof but suppresses the number zero.

83 \newcommand{\xnegofnz} [11{/%
84 \ifctrzero{#1}{}{\xnegof{#1}}
85 }h

\xcoef \xcoef{(counter)} prints the value of (counter) except that it suppresses the
values of 1, 0, and -1, printing a “-” in the latter case.

86 \newcommand{\xcoef}[1]{%
87 \ifboolexpr{%

14

\xnegcoef

\xabsofcoef

\xsignofcoef

\xnegsignofcoef

\xsignedcoef

88 test {\ifnumless{\xvalue{#1}}{-1}}

89 or test {\ifnumgreater{\xvalue{#1}}{1}}
9 H%

91 \xarabic{#1}

92 H%

93 }%h

94 \ifnumequal{\xvalue{#1}}{-13{-}{}

95 }%

\xnegcoef{({counter)} prints the value of {counter) except that it suppresses the
values of 1, 0, and -1, printing a “-” in the former case.

96 \newcommand{\xnegcoef} [1]{/
97 \ifboolexpr{’

98 test {\ifnumless{\xvalue{#1}}{-1}}

99 or test {\ifnumgreater{\xvalue{#1}}{1}}
100 H¥%

101 \xnegof{#1}

w2 X

103 X%

104 \ifnumequal{\xvalue{#1}}{1}{-}{}

105 }%

\xabsofcoef{(counter)} prints the absolute value of (counter) except that it sup-
presses the values of 1 and 0.

106 \newcommand{\xabsofcoef}[1]1{%

107 \ifboolexpr{%

108 test {\ifnumless{\xvalue{#1}}{-1}}

109 or test {\ifnumgreater{\xvalue{#1}}{1}}
110 H%

111 \xabsof{#1}

112 H%

113 iy

114 Y,

\xsignofcoef{(counter)} prints the sign of {counter) if (counter) is nonzero.

115 \newcommand{\xsignofcoef}[1]{%
116 \ifctrzero{#1}{}{\xsignof{#1}}
117 }%

\xnegsignofcoef{(counter)} prints the opposite sign of (counter) if (counter) is
nonzero.

118 \newcommand{\xnegsignofcoef}[1]{/
119 \ifctrzero{#1}{}{\xnegsignof{#1}}
120 }%

\xsignedcoef{(counter)} is like \xcoef except that positive values are preceded
by a plus sign “+”.

121 \newcommand{\xsignedcoef} [1]{%

15

\xnegsignedcoef

\randomizectr
\norandomizectr

\ifrandomizectr

\promptrandomizectr

122 \xsignofcoef{#1} \xabsofcoef{#1}
123 }%

\xnegsignedcoef{(counter)} is like \xsignedcoef except using the opposite sign.

124 \newcommand{\xnegsignedcoef}[1]{%
125 \xnegsignofcoef{#1} \xabsofcoef{#1}
126 }%

3.5 Random Counters

In order to assign a random value to a counter during one typesetting and avoid
overwriting this value with a random assignment during another typesetting, the
boolean @counterz@random is used to distinguish between the two typesetting
options. The value of @counterz@random may be changed by the commands
\randomizectr and \norandomizectr.

127 \newbool{@counterz@random}

128 \booltrue{@counterz@random}

129 \newcommand{\randomizectr}{\booltrue{@counterz@random}}
130 \newcommand{\norandomizectr}{\boolfalse{@counterz@random}}

\ifrandomizectr{(foo)}{(bar)} executes (foo) if the boolean @counterz@random
is TRUE and otherwise executes (bar).

131 \newcommand{\ifrandomizectr} [2]{%
132 \ifbool{@counterz@random}{#1}{#2}
133 }%

\promptrandomizectr [{command)]{({message)}{(string)} writes (message) to
the terminal and awaits a response from the user at the prompt. The user’s
response is stored in (command) and compared to the text of (string). If
they are equal, then \randomizectr is executed. If they are not equal, then
\norandomizectr is executed.

134 \newcommand{\promptrandomizectr} [3] [\@typein]{%
135 \typein[#1]{#2}
136 \ifdefstring{#1}{#3}{%

137 \randomizectr
138 H%

139 \norandomizectr
140 iy

141 Y,

The commands \randsetcounter and \randaddtocounter use the pdfTEX
primitive \pdfuniformdeviate to provide random versions of \setcounter and
\addtocounter. The commands \xrandsetcounter and \xrandaddtocounter
are prefix versions of \randsetcounter and \randaddtocounter, respectively.
Each of these four commands will generate random counter values only when the
boolean @counterz@random is TRUE.

16

\randsetcounter
\xrandsetcounter

\randaddtocounter
\xrandaddtocounter

\opencountersfile

\randsetcounter{(counter)}{{min)}{(mazx)} assigns to (counter) a random in-
teger value between (min) and (maz), if @counterz@random is TRUE.

142 \newcommand{\randsetcounter} [3]{%

143 \ifrandomizectr{%

144 \setcounter{#1}{%

145 \the \numexpr #2+\pdfuniformdeviate \numexpr #3-#2+1 \relax
146 Y

147 H

148 % Do Nothing

149 Y

150 }%

151 \newcommand{\xrandsetcounter} [3]{%

152 \randsetcounter{\@counterz@counterprefix#1}{#2}{#3}
153 }%

\randaddtocounter{{counter)}{(min)}{{maz)} adds to {counter) a random in-
teger value between (min) and (maz), if @counterz@random is TRUE.

154 \newcommand{\randaddtocounter} [3]{%

155 \ifrandomizectr{%

156 \addtocounter{#1}{%

157 \the \numexpr #2+\pdfuniformdeviate \numexpr #3-#2+1 \relax
158 iy

159 H%

160 % Do Nothing

161 iy

162 },

163 \newcommand{\xrandaddtocounter}[3]{%

164 \randaddtocounter{\@counterz@counterprefix#1}{#2}{#3}
165 }

The following commands are designed to provide a means by which authors can
generate random values for counters but also preserve those values for future
typesettings. This is accomplished by storing counters and their values in an
external file and then inputting the file before a subsequent typesetting.

The command \opencountersfile creates and opens the write stream to the file
(jobname).counters.tex, referenced by the macro \countersfile. If the file already
exists, it is overwritten. For this reason,

166 \newbool{@counterz@fileISopen}

167 \boolfalse{@counterz@fileISopen}
168 \newcommand{\opencountersfile}{},
169 \ifbool{@counterz@fileISopen}{%

170 \PackageError{counterz}{/

171 The write stream is already open!

172 \MessageBreak Process interrupted to prevent overwriting
173 \MessageBreak \jobname.counters.tex

174 Hu%

175 Be sure to include only one instance of

17

\inputcountersfile

\@counterz@openbrace
\@counterz@closebrace

\savecounter
\xsavecounter

176 \protect\opencountersfile.

177 Yh

178 H%

179 \ifrandomizectr{’

180 \newwrite\countersfile

181 \immediate\openout\countersfile=\jobname.counters.tex

182 \booltrue{@counterz@fileISopen}

183 H%

184 \PackageError{counterz}{%

185 \protect\opencountersfile\space requires

186 \protect\randomizectr

187 \MessageBreak Process interrupted to prevent overwriting
188 \MessageBreak \jobname.counters.tex

189 %

190 \protect\opencountersfile\space is designed to open a file
191 for saving newly randomized counters. See the Random

192 Counters section of the counterz package documentation for
193 details.

194 Yh

195 Yh

196 Yh

197 }

The command \inputcountersfile inputs (jobname).counters.tex if the file exists
and reports a package error if the file does not exist.

198 \newcommand{\inputcountersfile}{%

199 \InputIfFileExists{\jobname.counters}{/

200 H%

201 \PackageError{counterz}{’

202 The file \jobname.counters.tex does not exist.
203 H%

204 See the Random Counters section of the counterz package
205 documentation.

206 Yh

207 }h

208 }%

The commands \@counterz@openbrace and \@counterz@closebrace facilitate
the writing of the brace delimiters to \countersfile.

209 \begingroup

210 \catcode ‘<=1 \catcode‘>=2

211 \catcode‘{=12 \catcode‘}=12

212 \gdef\Q@counterz@openbrace<{>

213 \gdef\Qcounterz@closebrace<}>

214 \endgroup

\savecounter{(counter)} writes \providecounter and \setcounter commands
to the file (jobname).counters.tex so that they may be inputted as part of a fu-
ture typesetting. The command reports a package error if the write stream to

18

\randprovidecounter

\xrandprovidecounter

(jobname).counters.tex is not open. The command \xsavecounter is a prefix ver-
sion of \savecounter.

215 \newcommand{\savecounter}[1]{%
216 \ifbool{@counterz@fileISopen}{%

217 \immediate\write\countersfile{y

218 \unexpanded{\providecounter}

219 \@counterz@openbrace#1\Q@counterz@closebrace

220 \unexpanded{\setcounter}

221 \@counterz@openbrace#1\Q@counterz@closebrace

222 \@counterz@openbrace\arabic{#1}\@counterz@closebrace
223 Y

224 H%

225 \PackageError{counterz}{%

226 The write stream to the file \jobname.counters.tex must be
227 opened before \protect\savecounter\space can be executed.
228 H%

229 See \protect\opencountersfile\space and

230 \protect\savecounter\space in the counterz package
231 documentation.

232 Yh

233}

234 }

235

236 \newcommand{\xsavecounter}[1]{%

237 \savecounter{\@counterz@counterprefix#1}/,

238 }%

\randprovidecounter{{counter)}{{(min)}{(mazx)} creates (counter) if it does
not already exist, and if the boolean @counterz@random is TRUE then (counter)
is assigned a random integer value between (min) and (maz) and then saved.

239 \newcommand{\randprovidecounter} [3]{%
240 \ifltxcounter{#1}{Y%

241 \@ifnextchar]{%

242 \m@k@gobbleendoptarg
243 H

244 YA

245 H%

246 \newcounter{#1}

247 \ifrandomizectr{%

248 \randsetcounter{#1}{#2}{#3}
249 \savecounter{#1}

250 Hi

251 iy

252 jYA

253 Y

\xrandprovidecounter{(counter)}{(min)}{{max)} creates (counter) if it does
not already exist, and if the boolean @counterz@random is TRUE then (counter)
is assigned a random integer value between (min) and (maz) and then saved.

19

\randprovidecounternz

\xrandprovidecounternz

254 \newcommand{\xrandprovidecounter}[3]{/
255 \randprovidecounter{\@counterz@counterprefix#1}{#2}{#3}
256 }%

\randprovidecounternz{(counter)}{(min)}{(maz)} does the same job as the
command \xrandprovidecounter except that the value of (counter) is random-
ized until it is nonzero.

257 \newcommand{\randprovidecounternz} [3]{%
258 \ifltxcounter{#1}{/

259 \@ifnextchar]{%

260 \m@k@gobbleendoptarg

261 Hi

262 o

263 H

264 \newcounter{#1}

265 \ifrandomizectr{%

266 \setcounter{#1}{0}

267 \whileboolexpr{test {\ifnumequal{\value{#1}}{0}}}{%
268 \randsetcounter{#1}{#2}{#3}
269 iy

270 \savecounter{#1}

271 H%

272 iy

273 iy

274 },

\xrandprovidecounternz{{counter)}{(min)}{(maz)} does the same job as the
command \xrandprovidecounter except that the value of (counter) is random-
ized until it is nonzero.

275 \newcommand{\xrandprovidecounternz} [3]{%
276 \randprovidecounternz{\@counterz@counterprefix#1}{#2}{#3}
277 Y

278 (/package)

4 Change History

v1.0.0 \randsetcounter: new 17
General: First public release 1 \savecounter: new 18

v1.1.0 \xrandaddtocounter: now based
\inputcountersfile: new 18 on a new \randaddtocounter 17
\opencountersfile: new error \xrandprovidecounter: no longer

reports 17 randomizes if already defined;

\promptrandomizectr: new 16 now based on a new
\randaddtocounter: new 17 \randprovidecounter 19
\randprovidecounter: new 19 \xrandprovidecounternz: no
\randprovidecounternz: new .. 20 longer randomizes if already

20

defined; now based on a new

General: New and revised

\randprovidecounternz 20 commands and error reports .. 1
\xrandsetcounter: now based on v1.1.1

a new \randsetcounter 17 \randaddtocounter: bug fix 17
\xsavecounter: now based on a \randsetcounter: bug fix 17

new \savecounter 18 General: Bug fixes 1

5 Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols

\@counterz@closebrace

. 209, 219, 221, 222
\@counterz@counterprefix

.......... 6,

14, 17, 20, 23,

26, 46, 47, 48,

49, 50, 51, 152,

164, 237, 255, 276
\@counterz@openbrace

. 209, 219, 221, 222

C

\clearcounterprefix

\countersfile
180, 181, 217

\ifctrequal
\ifctrless
\ifctrmore
\ifctrneg 4, 40, 53, 60, 63
\ifctrpos /, 43,81
\ifctrzero 4, 37, 69,

72, 78, 84, 116, 119
\ifdefstring 136
\ifrandomizectr

. 8,131, 143,

155, 179, 247, 265
\inputcountersfile .

9, 198

\norandomizectr

8,127, 139

\opencountersfile

9, 166, 229

\promptrandomizectr
10, 134

\randaddtocounter &, 154
\randomizectr
8, 127, 137, 186
\randprovidecounter
10, 239, 255
\randprovidecounternz
11, 257, 276
\randsetcounter

8, 142, 248, 268

S
\savecounter
9, 215, 249, 270
\setcounterprefix 3, 6

\xabsof
52, 66, 75, 81, 111
\xabsofcoef
6, 106, 122, 125
\xaddtocounter . 3,13
\xAlph 5, 46
\xalph 5, 46
\xarabic /4, 46, 56, 72, 91

21

\xarabicnz 6, 71
\xcoef 7, 86
\xfnsymbol 5, 46
\xnegcoef 7, 96
\xnegof 6, 80, 84, 101
\xnegofnz 6, 83
\xnegsigned ... 6,74, 78
\xnegsignedcoef . §, 124
\xnegsignednz . 06,77
\xnegsignof 6, 62, 75, 119
\xnegsignofcoef
..... 7, 118, 125
\xnewcounter 3,13
\xprovidecounter . 3, 13
\xrandaddtocounter .
......... 8, 154
\xrandprovidecounter
........ 11, 254
\xrandprovidecounternz
........ 11, 275
\xrandsetcounter &, 142
\xRoman 4, 46
\xroman 4, 46
\xsavecounter ... 9, 215
\xsetcounter 3,13
\xsigned 5, 65, 69
\xsignedcoef 7, 121
\xsignednz 6, 68
\xsignof 6, 59, 66, 116
\xsignofcoef 6, 115, 122
\xvalue 3, 13, 29, 32,

35, 38, 41, 44,
54, 88, 89, 94,
98, 99, 104, 108, 109

	Contents
	1 Introduction
	1.1 About
	1.2 License
	1.3 Installation

	2 User Guide
	2.1 Counter Prefixes
	2.2 Manipulating Counters
	2.3 Conditional Statements
	2.4 Displaying Counters
	2.5 Random Counters

	3 Implementation
	3.1 Counter Prefixes
	3.2 Manipulating Counters
	3.3 Conditional Statements
	3.4 Displaying Counters
	3.5 Random Counters

	4 Change History
	5 Index
	Symbols
	C
	I
	N
	O
	P
	R
	S
	X

