The checklistings package*

Timothy Bourke and Marc Pouzet
September 3, 2015

1 Introduction

User manuals and papers about programming languages usually contain many
code samples, often with accompanying compiler messages giving the types of
declarations or error messages explaining why certain declarations are invalid.
This package extends fancyvrb' and listings?, which are ideal for displaying
code, with a way to pass code samples through a compiler and include the resulting
messages in a INTEX document. The motivation is to check the code samples in a
document for syntax and typing errors and to facilitate the inclusion of inferred
types and compiler warnings or errors in a text. This package is intentionally very
lightweight and unlike packages like python,® it is not intended for interacting
with an interpretor or including the execution traces of code. While it does not
focus on a specific programming language, it is designed to work well with ML-like
languages.

As an example, the text at left below is generated by the IXTEX code at right:

Code samples are included verbatim| | code samples are included
and the results of compilation can be > verbatim and the results of

included automatically: 3 compilation can be included
s4automatically:

let inc x = x + 1 5 \begin{chklisting} [withresult]

let y = inc 3 6let inc x = x + 1

7let y = inc 3
s \end{chklisting}

val inc : int -> int
val y : int

A first pass through latex generates both a .chkl file, with parameters for
the compiler, and an .ml file containing the source code (i.e., the two lines in the
example above). Running the checklistings.sh script processes these files to
produce a .tex file with the results of compilation. A second pass through latex
updates the compiler message.

*This document corresponds to checklistings v1.0, dated 2015/09/01.
Thttp://www.ctan.org/pkg/fancyvrb
2http://www.ctan.org/pkg/listings
3http://www.ctan.org/pkg/python

http://www.ctan.org/pkg/fancyvrb
http://www.ctan.org/pkg/listings
http://www.ctan.org/pkg/python

It is possible to continue examples and to label them (to be continued at some
later point):

1 These definitions follow on from the previous ones:

2 \begin{chklisting}[continue,withresult,label=early]

slet z =y + inc y

1 \end{chklisting}

These definitions follow on from the previous ones:

let z =y + inc y

val z : int

Examples need not necessarily succeed:

1 This code does not compile:

2 \begin{chklisting}[continue,fail,withresult,skipone]
3let u =3

4let w =u + "four"

5 \end{chklisting}

This code does not compile:

let w = u + "four"

File "chklisting.ml", line 1, characters 12-18:
Error: This expression has type string but an expression was expected of type
int

Note that the line number in the error message is 1 even though the continue
option added a line to include the previous definitions and the skipone option hid
the let u = 3 line. The checklistings.sh script performs this adjustment by
looking for the regular expression ‘line *[0-9] [0-9]#*" and decrementing the
number appropriately. This approach is simple and effective but obviously not
foolproof. Some manual tuning of the script may be required for correct results.

2 Use

Using the package involves three elements:

1. The declaration \usepackage{checklistings}.
Section 2.1 describes the options for configuring package behaviour.

2. The environment chklisting.
This environment is used like any other verbatim environment. Section 2.2
describes options that may be given to control its behaviour.

3. The script checklistings.sh.
Running this script passes the contents of each chklisting environment
through a compiler or interpreter and copies the resulting output into a file.

\checklistings

Additionally, the file checklistings.hva can be used to incorporate the out-
put of checklistings in HTML documents generated by HeVeA.*

2.1 Package options

Package options are either given as optional arguments to \usepackage or via one
or more calls to \checklistings. The advantage of the latter is that macros are
not expanded (for a detailed explanation see the documentation for kvoptions,”
Section 4.1, Package kvoptions-patch). Options are passed as a comma separated
list of (key)=(value) pairs and single (key)s.

There are three classes of options: options controlling the default behaviour
of chklisting, options for configuring the checklistings.sh script, and options
controlling the display of code and results.

2.1.1 Behavioural options

These options control the default behaviour of the chklisting environment.

option description default

withresult Automatically show compilation results. false

skipone Do not display the first line of code (see the de- false
scription under the chklisting environment).

skiptwo Do not display the first two lines of code (see the false

description under the chklisting environment).
hideproblems Globally disable the display of failure messages false

(within a red box) when compilation fails or suc-

ceeds unexpectedly.

2.1.2 Configuring compilation

These options are used for naming and placing the files generated by chklisting
environments. They are passed to the checklistings.sh script and thus control
its behaviour.

option description default

prefix Prefix for naming source files. It must not contain chklisting
underscores (_).

ext Extension of source files. .ml

subdir If defined, source files are created in the given

subdirectory, which must already exist. A final
slash (/) should not be given. The name must
not contain underscores (_).

prompt The prompt displayed by \chklistingcmd. #

4http://hevea.inria.fr
Shttp://www.ctan.org/pkg/kvoptions

http://hevea.inria.fr
http://www.ctan.org/pkg/kvoptions

compiler Path of the compiler to execute. ocamlc
compilerflags Flags passed to the compiler. These are not re-
vealed by \chklistingcmd.

lastflags Flags passed to the compiler before the main -i
source file, that is, the last one given.

includecmd The source language command for importing the open
definitions of another file.

html The path of a program that renders source code as

html. This value can be useful when using HeVeA
to produce web pages from KTEX documents. In
any case, it is optional.

Each chklisting environment is assigned a number n, from zero, and its
contents are written to the file: (subdir)/(prefiz)(n).(ext), where (n) is zero-
padded to four characters. For example, by default, the fourth environment is
written to the file chklisting0003.ml in the current directory.

Source lines are added for each dependency, and those files are compiled using
the (compiler), (compilerflags), and (lastflags) options. For example, if the fourth
environment depends on the first and the second, a line is added:

(includecmd) Withopen0000 (includecmd) Withopen0001,
where Withopen is the prefix used for such augmented files, and the compiler is

invoked with:

(compilery (compilerflags) Withopen0000 Withopen0001
(lastflags) Withopen0003

2.1.3 Controlling the display

This package exploits the display options given by the fancyvrb package.

option description default
codestyle fancyvrb options for code

msgstyle fancyvrb options for compiler messages formatcom=\em
errstyle fancyvrb options for error messages formatcom=\em
codelst listings options for source code, passed with

\lstset. When this option is not empty,

fancyvrb=true is included automatically.
msglst As for codelst, but applied to compiler messages.
errlst As for codelst, but applied to error messages.

Other options are passed directly through to the fancyvrb package and applied
to all chklisting code blocks (but not to messages or errors). For example,
frame=single. These options must typically be set using \checklistings, since
they will usually contain commands that should not be expanded immediately

chklisting

(like \em or \bf).

2.2 The chklisting environment

As an optional argument, this environment takes a comma separated list of
(key)=(value) and single (key)s.

option description

fail This code is expected to fail; an error is reported if it succeeds.

continue This code is continued from the previous chklisting environ-
ment; all of the definitions available there are imported.

label Label this code for later inclusion.

include All of the definitions available after the environment with the
given label are imported.

withresult The result of compiling the code is displayed (see also
\chklistingmsg and \chklistingerr). This is normally either
the types of declared values or the results of evaluation. For en-
vironments marked fail, it will be an error message.

withoutresult The result of compiling code is not displayed automatically. This
is the default behaviour, but it can be overridden by the package
options.

hide The code is not displayed, but it is still compiled, compiler mes-
sages are still displayed (if withresult is active), and definitions
are still available for continuation (continue), labelling (1abel),
and later inclusion (include).

skipone Do not display the first line of the code. This line is still sent to
the compiler and may thus be used to open other modules, or to
pass execution options (via comments).

skiptwo As pre the previous option, but two lines are skipped.

skipnone Do not skip any lines; this option overrides any package-level skip
setting.

hideproblems Do not display an error message within the document when com-
pilation fails or succeeds unexpectedly.

showproblems Display an error message within the document when compilation

fails or succeeds unexpectedly. This is the default behaviour unless
the hideproblems package option was set.

The results of compiling the code of a chklisting environment are made
available in the following macros until the next chklisting which will redefine

them.

\chklistingemd \chklistingcmd contains an idealised version of the command line used to com-

pile the code sample. It includes the prompt, the basename of compiler,
and lastflags, but not compilerflags or the list of included files. Fur-
thermore, the subdir and serial number are removed from the filename of
the code sample, which becomes simply (prefiz). (ext).

\chklistingmsg

\chklistingerr

\chklistingmsg{(label)} : inserts the verbatim text emitted by the compiler,
provided compilation succeeded, for the chklisting environment labelled
(label). When (label) is left empty, the message for the last environment is
inserted. It should not be used after environments marked fail.

\chklistingerr{(label)} : inserts the verbatim text emitted by the compiler,
provided compilation failed, for the chklisting environment labelled (label).
When (label) is left empty, the message for the last environment is inserted.
It should only be used after environments marked fail.

2.3 The checklistings.sh script

Processing a document that uses the checklistings package produces a .chkl
file containing compiler options and a list of source files together with their inter-
dependencies. The checklistings.sh script processes .chkl files by executing
the specified compiler against each listed source file (subdir)/(prefix)(n). (ext)
and copying the results—the command-line used, whether it succeeded or failed,
the messages on stdout, and the messages on stderr—into a corresponding file,
(subdir)/(prefiz)(n).tex, for inclusion in the original document.

The checklistings.sh script is written for the Bourne shell (sh). It takes a
list of .chkl files as arguments (with or without the exentions), but if none are
given it processes all such files in the current working directory.

The compilation options specified within a KTEX source file, see Section 2.1.2,
can be manually overridden by processing a .chk1 file, before any others, contain-
ing a ‘lock’ directive, for example: lock compiler=/usr/local/bin/ocamlc.
This feature is useful when working with others to develop the compiler being
documented.

3 Remarks

3.1 Known limitations
The package and script have some known limitations.

e Line numbers in error messages may not correspond correctly with the line
numbers of sample files, due to either the skip* options, or because of lines
added to import code.

e The system has been designed to work with ML-style compilers. It has not
been tested with other compilers and interpreters. Please contact tim@tbrk.
org if you would like to support other systems. Patches are most welcome,
but the intent is to keep this package relatively simple rather than to try to
do everything.

e Multiple languages in a single document are not supported.

tim@tbrk.org
tim@tbrk.org

e Care must be taken when using checklistings with the overlays of the
Beamer package. In particular, chklisting environment commands are to
be avoided within commands that completely omit material from slides, like
only, alt, or temporal, or with ‘closed’ overlay specifications, like 2 or 1-3.
As these commands do not execute the material, the environment sequence
numbers do not increase monotonically, and the compilation results may
not be properly synchronized with the verbatim text. Commands that only
hide material, or that introduce it successively, like uncover or visible, or
‘open’ overlay specifications, like 2-, should function as expected.

4 Implementation

All internal macros have names of the form \CHKL@(name).

\chklisting Generate the sequence of source code identifiers used in per-environment filenames
and to manage dependencies. If beamer is being used, reset the counter on each
overlay to avoid generating multiple output files for the same program.

1 \newcounter{chklisting}

2 \ifdefined\resetcounteronoverlays

3 \resetcounteronoverlays{chklisting}
4 \fi

\ifCHKL@fileexists An internal boolean variable for remembering whether an input .tex file, corre-
sponding to the compilation of source code, was found.

5 \newif\ifCHKL@fileexists

4.1 Package Options

The package options are processed using the kvoptions package.

\CHKL@pkg@verbopts This list accumulates package-level options for the verbatim environments.
6 \def\CHKL@pkg@verbopts{}

\CHKL@pkg@globalskip Defines the number of lines to be skipped when displaying a code sample as defined
by the global options skipone and skiptwo.

7 \def\CHKL@pkg@globalskip{0}

Declare the package options and their default values:

8 \DeclareBoolOption{withresult}

9 \DeclareComplementaryOption{withoutresult}{withresult}

10 \DeclareBoolOption[true] {showproblems}

11 \DeclareComplementaryOption{hideproblems}{showproblems}

12 \DeclareVoidOption{skipone}

13 {\edef\CHKL@pkg@globalskip{1}%

14 \edef\CHKL@pkg@verbopts{\CHKL@pkg@verbopts,firstline=2}}
15 \DeclareVoidOption{skiptwo}

16 {\edef\CHKL@pkg@globalskip{2}%

\checklistings

\CHKL@samplefile

\CHKL@logsample

17 \edef\CHKLOpkg@verbopts{\CHKL@pkg@verbopts,firstline=3}}
18 \DeclareDefaultOption

19 {\edef\CHKL@pkg@verbopts{\CHKL@pkg@verbopts, \CurrentOption}}
20 \DeclareStringOption[]{codestyle}

21 \DeclareStringOption[formatcom=\em] {msgstyle}

22 \DeclareStringOption[formatcom=\em] {errstyle}

23 \DeclareStringOption{codelst}

24 \DeclareStringOption{msglst}

25 \DeclareStringOption{errlst}

26 \DeclareStringOption{emptyoption}

27 \DeclareStringOption[.]{subdir}

28 \DeclareStringOption[chklisting] {prefix}

29 \DeclareStringOption[.ml]{ext}

30 \DeclareStringOption [\#]{prompt}

31 \DeclareStringOption[ocamlc]{compiler}

32 \DeclareStringOption{compilerflags}

33 \DeclareStringOption[-i]J{lastflags}

34 \DeclareStringOption[open]{includecmd}

35 \DeclareStringOption[]{html}

36 \ProcessKeyvalOptions*

This macro offers another way of setting package options with the advantage that
values are not expanded.

37 \def\checklistings{\kvsetkeys{CHKL}}

4.2 Logging Files to be Processed

Several definitions and commands are used to create and write to the .chkl file.

The file generated when a I#TEX document that uses the checklistings package
is processed.
38 \newwrite\CHKL@samplefile

39 \openout\CHKL@samplefile=\jobname.chkl
40 \AtEndDocument{\closeout\CHKL@samplefile}

Package options are logged to the file.

41 \write\CHKL@samplefile{subdir=\CHKL@subdir/}

42 \write\CHKL@samplefile{prefix=\CHKL@prefix}

43 \write\CHKL@samplefile{ext=\CHKL@ext}

44 \write\CHKL@samplefile{compiler=\CHKL@compiler}

45 \write\CHKL@samplefile{compilerflags=\CHKL@compilerflags}
46 \write\CHKL@samplefile{lastflags=\CHKL@lastflags}

47 \write\CHKL@samplefile{includecmd=\CHKL@includecmd}

48 \write\CHKL@samplefile{htmlfilter=\CHKLGhtml}

An entry is logged for each chklisting environment. It contains the sequence
number for the example, followed by a colon, an ordered list of other sample files
to import, and the page and line numbers (to include in error messages).

49 \DeclareRobustCommand{\CHKL@logsample} [2]{%

\ifchklisting

\setchklistingcmd

ChkListingMsg

ChkListingErr

\chklistingfile

\ifCHKL@shouldfail

50 \edef\CHKLOtolog{#1:#2 [page=\noexpand\thepage] [line=\the\inputlineno]}%
51 \expandafter\write\expandafter\CHKL@samplefile\expandafter{\CHKL@tolog}%

52 }

4.3 Insertion of Compilation Results

Several macros are defined for use by the checklistings.sh script (and any
similar program). These macros are called from within the .tex file generated for
each chklisting environment.

A successful compilation is signalled by \chklistingtrue, and a failed compila-
tion by \chklistingfalse.

53 \newif\ifchklisting

The command used to compile a sample is recorded by \setchklistingcmd which
(re)defines the internal \CHKL@prompt value.

54 \DeclareRobustCommand{\setchklistingcmd} [1]{%
55 \global\def\chklistingcmd{\emph{\CHKL@prompt{#1}}}}

Normal compiler messages (written on stdout) should be communicated between
\begin{ChkListingMsg} and \end{ChkListingMsgl}. This verbatim text is saved
using the SaveVerbatim feature of fancyvrb.

56 \def\ChkListingMsg{\FV@Environment{}{ChkListingMsg}}

57 \def\FVB@ChkListingMsg{\FVB@SaveVerbatim{ChkListingMsgl}}

58 \1let\FVE@ChkListingMsg\FVE@SaveVerbatim

59 \DefineVerbatimEnvironment{ChkListingMsg}{ChkListingMsg}{}

Compiler error messages (usually written on stderr) should be communicated be-
tween \begin{ChkListingErr} and \end{ChkListingErr}. This verbatim text
is saved using the SaveVerbatim feature of fancyvrb.

60 \def\ChkListingErr{\FV@Environment{}{ChkListingErr}}

61 \def\FVB@ChkListingErr{\FVB@SaveVerbatim{ChkListingErr}}
62 \let\FVE@ChkListingErr\FVE@SaveVerbatim

63 \DefineVerbatimEnvironment{ChkListingErr}{ChkListingErr}{}

This is the filename used by checklistings.sh to refer to the file containing
sample code when \setchklistingcmd is called.

64 \DeclareRobustCommand{\chklistingfile}{\CHKL@prefix\CHKL@ext}

4.4 Main Environment

Several auxiliary definitions are needed to track per-environment configuration
options.

This boolean variable records whether sample code is expected to fail.
65 \newif\ifCHKL@shouldfail

\ifCHKL@showcode This boolean variable records whether the compilation result should be shown.
66 \newif\ifCHKL@showcode

\CHKL@skip Defines the number of lines to be skipped when displaying a code sample. It
defaults to the value of \CHKL@pkg@globalskip, but may be altered by the envi-
ronment options skipone and skiptwo. This value is only used to generate the
skip= field in the .chk1 file. The actual skipping is done by the firstline option
of verbopts.

67 \def\CHKL@skip{0}

The keyval package® is used to parse environment options. The following
macros setup parameters used by the chklisting environment.

\CHKL@continue These two macros hold lists of source code identifiers: \CHKL@precontinue tracks
\CHKL@precontinue the dependencies of the previous chklisting environment and \CHKL@continue
tracks those of the current one. The continue option appends the previous de-
pendencies onto the list of current ones. The dependencies used at each labelled
environment are remembered in \RBRB@deps(label). The include option causes

them to be added to the list of current dependencies.

68 \edef\CHKL@precontinue{}

69 \define@key{CHKL@envkeys}{continue} []{\edef\CHKL@continue{\CHKL@precontinue}}
70 \define@key{CHKL@envkeys}{include}{%

71 \edef\CHKL@continue{\CHKL@continue\space\@ifundefined{CHKL@depsQ#1}/

72 {#1}{\csname CHKL@deps@#1\endcsnamel}}}

73 \define@key{CHKL@envkeys}{fail} []{\CHKL@shouldfailtrue}

74 \define@key{CHKL@envkeys}{label}{\edef\CHKL@label{#1}}

75 \define@key{CHKL@envkeys}{skipnone} []1{%

76 \edef\CHKL@skip{0}\edef\CHKL@verbopts{\CHKL@verbopts,firstline=1}}
77 \define@key{CHKL@envkeys}{skipone} [1{%

78 \edef\CHKL@skip{1}\edef\CHKLOverbopts{\CHKL@verbopts,firstline=2}}
79 \define@key{CHKL@envkeys}{skiptwo} [1{/

80 \edef\CHKL@skip{2}\edef\CHKL@verbopts{\CHKL@verbopts,firstline=3}}
81 \define@key{CHKL@envkeys}{hide} []{\CHKL@showcodefalse}

82 \define@key{CHKL@envkeys}{withresult} [J{\CHKLOwithresulttrue}

83 \define@key{CHKL@envkeys}{withoutresult} [J{\CHKL@withresultfalse}

84 \define@key{CHKL@envkeys}{showproblems} []{\CHKL@showproblemstrue}

85 \define@key{CHKL@envkeys}{hideproblems} []{\CHKL@showproblemsfalse}

\chklistingmsg This macro takes a single argument (label). It first configures the listings and
fancyvrb packages with the current display options. It then checks the fancyvrb
saved text namespace (‘FV@SV@...’) for an entry named ‘. . .CHKL@MSG@(label)’.
If found, the associated verbatim text is inserted via the \UseVerbatim feature
of fancyvrb, otherwise an error message is inserted. In the latter case, we prefer
not to fail outright, because the user may not yet have had the chance to run the
compiler on the extracted code, in which case the log will already contain warnings

Shttp://www.ctan.org/pkg/keyval

10

http://www.ctan.org/pkg/keyval

\chklistingerr

chklisting

from chklisting. By convention, the chklisting environment creates an entry
for the empty label (‘FV@SV@CHKLOMSGQ’) when compilation succeeds.

86 \DeclareRobustCommand{\chklistingmsg}[1]{

87 \bgroup’

88 \1fx\CHKL@msglst\CHKL@emptyoption\else

89 \expandafter\lstset\expandafter{\CHKL@msglst,fancyvrb=true}\fi/,

90 \@ifundefined{FV@SV@CHKLOMSG@#1}

91 {\def\@tempa{#1}

92 \ifx\@tempa\empty

93 \CHKL@none

94 \else

95 \langleNo message found for the label ‘#1’!\rangle

96 \fi}

97 {\expandafter\UseVerbatim\expandafter [\CHKL@msgstyle] {CHKLOMSGQ#1}1}/,

98 \egroup}

This macro is essentially the same as the previous one—only that the substring
‘ERR’ is used instead of ‘MSG’.

99 \DeclareRobustCommand{\chklistingerr}[1]{

100 \bgroup’

101 \1fx\CHKL@errlst\CHKL@emptyoption\else

102 \expandafter\lstset\expandafter{\CHKL@errlst,fancyvrb=true}\fi/

103 \@ifundefined{FVOSVQCHKLOERRQ#1}

104 {\def\@tempa{#1}

105 \ifx\@tempa\empty

106 \CHKL@none

107 \else

108 \langleNo message found for the label ‘#1’!\rangle

109 \fi}

110 {\expandafter\UseVerbatim\expandafter [\CHKL@errstyle] {CHKL@ERRQ#1}}/,

111 \egroup}

This is the main environment for including source code. This macro works in two
parts:

1. It uses the listings package to write the code to a file,
2. It either loads the corresponding .tex file or logs an error message.

The 1listings package allows the definition of custom verbatim environments.
This one has a single argument (a list of keyval options).

112 \1stnewenvironment{chklisting}[1] []

113 {%

Set default parameter values before invoking \setkeys:
114 \CHKL@shouldfailfalse},

115 \CHKL@showcodetrue’,

116 \let\CHKL@label\@undefinedy,

117 \edef\CHKL@continue{}},

118 \def\CHKL@skip{\CHKL@pkg@globalskip}%

11

119 \1let\CHKL@verbopts\CHKLOpkg@verbopts?,
120 \def\@currentlabel{\thechklisting}/
121 \setkeys{CHKL@envkeys}{#1}/,

Log an entry to the .chkl1 file:

122 \CHKL@logsample{\arabic{chklisting}}{\CHKL@continue,
123 \space\ifnum\CHKL@skip>0 [skip=\CHKL@skip]\fi%
124 \ifCHKL@shouldfail\space [faill\fil}}

Update \CHKL@precontinue for the next source code block, and, if a label was
defined, add an \CHKL@deps@(label) entry.

125 \global\edef\CHKL@precontinue{\CHKL@continue\space\arabic{chklistingl}}%
126 \@ifundefined{CHKL@label}{}{%
127 \global\expandafter\edef\csname CHKL@deps@\CHKL@label\endcsname{\CHKL@precontinuel}}/,

A file will be created in the \CHKL@subdir subdirectory, with the name
\CHKL@prefix followed by the value of the chklisting counter, padded out with
zeroes to four digits, and the extension \RBRBQext.

128 \edef \CHKL@num{%

129 \ifnum\value{chklisting}<1000 O\fi
130 \ifnum\value{chklisting}<100 O\fi
131 \ifnum\value{chklisting}<10 O\fi
132 \arabic{chklisting}}/

133 \stepcounter{chklisting}¥

134 \def\CHKL@f ile{\CHKL@subdir/\CHKL@prefix\CHKLOnum}%

Clear the definitions used to return information about the compilation run,
and close the environment by opening a file, using the 1listings package, into
which to write the ensuing contents.

135 \global\let\chklistingcmd\@undefinedy,

136 \global\let\FV@SV@ChkListingMsg\Qundefinedy,
137 \global\let\FV@SV@ChkListingErr\Qundefined},
138 \chklistingtrue}

139 \setbox\@tempboxa\hbox\bgroup’

140 \1st@BeginWriteFile{\CHKL@file\CHKL@ext}%
141}

Start closing the environment by closing the previously opened file and group.

142 {%
143 \1st@EndWriteFile
144 \egroup%

If hide is not active, apply \CHKL@verbopts and reload the newly created file.

145 \ifCHKL@showcode

146 \bgroup’

147 \ifx\CHKL@codelst\CHKL@emptyoption\else,

148 \expandafter\lstset\expandafter{\CHKL@codelst,fancyvrb=true}’

149 \£fiJ

150 \expandafter\fvset\expandafter{\CHKL@verboptsl}/,

151 \expandafter\VerbatimInput\expandafter [\CHKL@codestyle] {\CHKL@file\CHKLOext}’

12

152 \egroup’
153 \fif%
Check whether a corresponding .tex file was created:
154 \global\edef\CHKL@none{\langleCannot load \CHKL@file.tex!\rangle}/
155 \InputIfFileExists{\CHKL@file.tex}{\CHKLOfileexiststrue}{\CHKL@fileexistsfalse}’

If the .tex file was loaded successfully, create ‘unlabelled’ saved verbatim
environments for the message and error texts. These are exploited, respectively,

by the \chk

156 \ifC
157
158
159
160

listingmsg and \chklistingerr macros.

HKL.Ofileexists

\@ifundefined{FV@SV@ChkListingMsg}/
{}{\global\let\FV@SV@CHKLO@MSG@=\FV@SV@ChkListingMsg}V,

\@ifundefined{FVOSVOChkListingErr}y,
{}{\global\let\FVOSV@CHKLOERR@=\FVQSVQ@ChkListingErr}y

Then, if compilation failed and the fail option was not active, or if compilation
succeeded and the fail option is active, log a warning message and, if errors are
not being ignored, include details in the document. Otherwise, if withresult was
given, expand either \chklistingerr or \chklistingmsg.

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

\ifCHKL@shouldfail
\ifchklisting
\PackageWarning{checklistings}/

{Compilation of \CHKL@file\CHKLQ@ext\space should have failed},

\1ifCHKL@showproblemsy
\UseVerbatim[frame=single,
label=Unexpected success,
rulecolor=\color{red}]{ChkListingMsgl}/,

\fi%
\else
\ifCHKL@withresult,
{\setlength{\partopsep}{Oem}\chklistingerr{}}%
\fi%
\fi%
\else%
\ifchklisting’
\ifCHKL@withresult,
{/\vspace{\dimexpr-2\topsep-2\partopsep+.5em\relaxl}/,
\setlength{\partopsep}{Oem}\chklistingmsg{}}%
\fi%
\else%
\PackageWarning{checklistings}/
{Compilation of \CHKL@file\CHKLQ@ext\space should not have
\ifCHKL@showproblems
\UseVerbatim[frame=single,
label=Unexpected failure,
rulecolor=\color{red}]{ChkListingErr}},
\fi%
\fi%
\fi%

13

failed}%

191 \else%

If the .tex file was not loaded successfully, clear the \chklistingcmd macros,
and the ‘unlabelled’ saved verbatim environments for the message and error results.

192 \PackageWarning{checklistings}{Cannot load \CHKL@file.tex}/
193 \global\let\chklistingcmd\CHKL@none%

194 \global\let\FV@SV@CHKL@MSG@\@undef ined’

195 \global\let\FV@SVOCHKLOERRO\Qundefined’,

196 \£fif

197 % If this environment is labelled, create persistent references to the saved
198 % verbatim environments for the message and error results.

199 % These are exploited, respectively, by the |\chklistingmsg| and

200 % |\chklistingerr| macros when their \meta{labell} argument is not empty.

201 %

202 \@ifundefined{CHKL@label}{}{’

203 \global\expandafter\let?,

204 \csname FV@SV@CHKL@MSG@\CHKL@label\endcsname=\FV@SV@CHKLAMSG®Y,
205 \global\expandafter\let’

206 \csname FV@SV@CHKLE@ERRG@\CHKL@label\endcsname=\FV@SVOCHKL@ERRQY
207 Yk

208}

14

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

C
\checklistings
\CHKL@codelst 147, 148
\CHKL@codestyle . 151
\CHKL@compiler 44
\CHKL@compilerflags 45
\CHKL@continue .

68, 117, 122, 125
\CHKL@emptyoption
88, 101, 147
\CHKL@errlst .. 101, 102
\CHKLQ@errstyle . 110
\CHKL@ext ... 43, 64,
140, 151, 164, 183
\CHKLefile 134,
140, 151, 154,
155, 164, 183, 192
\CHKL@fileexistsfalse

- 3,37

\CHKL@html
\CHKL@includecmd .. 47
\CHKL@label 74,
116, 127, 204, 206
\CHKL@lastflags ... 46
\CHKL@logsample 49, 122
\CHKL@msglst 88, 89
\CHKL@msgstyle 97
\CHKL@none
93, 106, 154, 193
\CHKL@num 128, 134
\CHKL@pkg@globalskip
. 7,13, 16, 118
\CHKL@pkg@verbopts
6, 14, 17, 19, 119
\CHKL@precontinue
..... 68, 125, 127
\CHKL@prefix 42, 64, 134
\CHKL@prompt 55
\CHKL@samplefile 38,
41, 42, 43, 44,
45, 46, 47, 48, 51

\CHKL@shouldfailfalse

........... 114
\CHKL@shouldfailtrue 73
\CHKL@showcodefalse 81
\CHKL@showcodetrue . 115
\CHKL@showproblemsfalse

............ 85
\CHKL@showproblemstrue

............ 84
\CHKL@skip 67,

76, 78, 80, 118, 123
\CHKL@subdir ... 41, 134
\CHKL@tolog 50, 51
\CHKL@verbopts

76, 78, 80, 119, 150
\CHKL@withresultfalse

........... 83
\CHKL@withresulttrue &2
\chklisting 1
chklisting (environ-

ment) 5,112
\chklistingcmd .

5, 55, 135, 193
\ChkListingErr 60
ChkListingErr (envi-

ronment) 60
\chklistingerr .

6, 99, 172, 200
\chklistingfile ... 064
\ChkListingMsg 56
ChkListingMsg (envi-

ronment) 56
\chklistingmsg

6, 86, 179, 199
\chklistingtrue . 138
E

environments:
chklisting ... 5, 112
ChkListingErr .. 60
ChkListingMsg .. 56

F
\FV@Environment 56, 60

15

\FV@SV@CHKLOERR®@

160, 195, 206
\FV@SV@CHKL@MSG®

158, 194, 204
\FV@SV@ChkListingErr
137, 160
\FV@SV@ChkListingMsg
136, 158
\FVB@ChkListingErr . 61
\FVB@ChkListingMsg . 57
\FVB@SaveVerbatim 57, 61
\FVE@ChkListingErr . (2
\FVE@ChkListingMsg . 58
\FVE@SaveVerbatim 58, 62

I

\ifCHKL@fileexists .

......... 5, 156
\ifCHKL@shouldfail .
65, 124, 161
\ifCHKL@showcode 66, 145
\ifCHKL@showproblems
165, 184
\ifCHKL@withresult .
171, 177

53, 162, 176

140
. 143
. 112

\1st@BeginWriteFile
\1st@EndWriteFile
\lstnewenvironment

S
\setchklistingemd . 54

T

\thechklisting . 120

U
\UseVerbatim
97, 110, 166, 185

Vv
\VerbatimInput 151

	1 Introduction
	2 Use
	2.1 Package options
	2.1.1 Behavioural options
	2.1.2 Configuring compilation
	2.1.3 Controlling the display

	2.2 The chklisting environment
	2.3 The checklistings.sh script

	3 Remarks
	3.1 Known limitations

	4 Implementation
	4.1 Package Options
	4.2 Logging Files to be Processed
	4.3 Insertion of Compilation Results
	4.4 Main Environment

	Index
	C
	E
	F
	I
	L
	S
	T
	U
	V

