Publication quality tables in XTEX*

Simon Fear
300A route de Meyrin
Meyrin
Switzerland

Printed January 14, 2020

Abstract

This article describes some additional commands to enhance the quality
of tables in BTEX. Guidelines are given as to what constitutes a good table
in this context. The 2000 release (Version 1.61) of the booktabs package,
described herein, adds some enhancements to the 1995 release (Version 1.00),
most notably longtable compatibility.

Releases (Versions 1.618, 1.6180, 1.61803 and 1.618033) are only bug
patches, support for the colortbl package and better compatability with
longtable.1

1 Introduction

The routines described below are to enable the easy production of tables such
as should appear in published scientific books and journals. What distinguishes
these from plain IMTEX tables is the default use of additional space above and
below rules, and rules of varying ‘thickness’. What further distinguishes them
from the tables many people do produce using IXTEX is the absence of vertical
rules and double rules.

I must draw a clear distinction between what I call here a formal table, which
is a set of values in labelled columns, as distinct from what I will call a tableau.
The latter is the kind of thing illustrated in the BTEX manual, and increasingly
common as the output of many database management systems; it will probably
have icons in abundance, and no doubt use colour too. The layout of such a tableau
is determined (hopefully) as a one-off, given a jumble of material the designer is
trying to combine into a meaningful configuration. But the layout of a table

*This file has version number v1.61803398, (converging to phi, the golden ratio), last revised
2020/01/12.
1By Danie Els (dnjels@sun.ac.za) in the absence of the author.

has been established over centuries of experience and should only be altered in
extraordinary circumstances.

By way of illustration, consider this tableau from the ¥TEX manual (p. 64 old
edition):

gnats gram $13.65

each .01
gnu stuffed 92.50
emu 33.33
armadillo | frozen 8.99

This is a hotch-potch of information that is probably reasonably clearly pre-
sented as is (but is the emu stuffed or not?). However, as a published table, this
should much rather appear along the lines suggested further down the page in the
manual:

Item

Animal Description Price ($)

Gnat per gram 13.65

each 0.01
Gnu stuffed 92.50
Emu stuffed 33.33
Armadillo frozen 8.99

It takes much less work to lay this out, as a formal table; we don’t have to
work out a new layout for everything we do. Moreover, we can be almost certain
that the data cannot be misread, because the reader does not have to learn how
to read some novel presentation.

The above table cannot be produced in pure ETEX, unfortunately. It can be
laid out as it should be, but despite your best efforts, using plain \hline commands
produces

Item
Animal Description Price ($)
Gnat per gram 13.65
each 0.01
Gnu stuffed 92.50
Emu stuffed 33.33
Armadillo frozen 8.99

Note (if it is not already obvious) that there is not enough space between the
top line and the capital I of ‘Item’, and so on for all the lines: contrast with the
previous version. Also, in the first version the top and bottom rules (ie lines) are
heavier than the middle rule, which is turn heavier than the subrule underneath
‘Ttem’. Of course you could redefine \doublerulesep and then use \hline\hline
to get something near the same effect, and you could use struts to improve the

spacing. But you should not have to think of such things. The booktabs style
defines its commands so that such things are taken care of automatically.

In general, T would say that this package is of no interest to those looking for an
alternative to PicTEX to conjure up fancy tableaux. Rather, it is a style guide for
authors of scientific papers and books as regards table layout. It is not going too
far to say that if you cannot create a table using the commands in this package,
you should redesign it.

1.1 A note on terminology

In British typesetting, a ‘line’ is always called a ‘rule’. Perhaps confusingly (for
historic reasons in fact), the ‘thickness’ of rule is often referred to as is its ‘width’
(whereas just about everyone else would call this ‘depth’ or ‘height’, if they were
thinking of a horizontal rule). A ‘thick black line’ is called a ‘heavy rule’. I have
used this terminology in most of the new commands below. If nothing else it
avoids confusion with \hline.

2 The layout of formal tables

You will not go far wrong if you remember two simple guidelines at all times:
1. Never, ever use vertical rules.
2. Never use double rules.

These guidelines may seem extreme but I have never found a good argument in
favour of breaking them. For example, if you feel that the information in the left
half of a table is so different from that on the right that it needs to be separated
by a vertical line, then you should use two tables instead. Not everyone follows
the second guideline: I have worked for a publisher who insisted on a double light
rule above a row of totals. But this would not have been my choice.

There are three further guidelines worth mentioning here as they are generally
not known outside the circle of professional typesetters and subeditors:

3. Put the units in the column heading (not in the body of the table).
4. Always precede a decimal point by a digit; thus 0.1 not just .1.

5. Do not use ‘ditto’ signs or any other such convention to repeat a previous
value. In many circumstances a blank will serve just as well. If it won'’t,
then repeat the value.

Whether or not you wish to follow the minor niceties, if you use only the
following commands in your formal tables your reader will be grateful. I stress
that the guidelines are not just to keep the pedantic happy. The principal is that
enforced structure of presentation enforces structured thought in the first instance.

\toprule
\midrule
\bottomrule

\cmidrule

3 Use of the new commands

In the simplest of cases a table begins with a \toprule, has a single row of column
headings, then a dividing rule called here a \midrule; after the columns of data
we finish off with a \bottomrule. Most book publishers set the \toprule and
\bottomrule heavier (ie thicker, or darker; see section 1.1) than the intermediate
\midrule. However, when tables appear in very small typesizes it is sometimes
impossible to make this distinction, and moreover quite a few journals routinely
use all rules of the same heaviness.

The rule commands here all take a default which may be reset within the doc-
ument (preferably, but not necessarily, in the preamble). For the top and bottom
rules this default is \heavyrulewidth and for midrules it is \lightrulewidth
(fully described below). In very rare cases where you need to do something spe-
cial, you may use the optional arguments to the rule commands which have formal
syntax as follows:

\toprule [{wd)]
\midrule [{wd)]
\bottomrule [{wd)]

where (wd) is a TEXdimension (for example 1pt, .5em, etc.).

All the rule commands described here go after the closing \\ of the preceding
row (except \toprule, which comes right after the \tabular{} command); in
other words, exactly where plain I#TEX allows \hline or \cline.

Frequently we need a sub-rule to extend over only some of the columns, for
which we need a \cmidrule (the analogue of IXTEX’s \cline command). Gen-
erally, this rule should not come to the full width of the columns, and this is
especially the case when we need to begin a \cmidrule straight after the end
of another one (IATEX’s \clines crash into each other here if you are not extra
careful with \extracolsep). Thus, you will generally want to use the optional
‘trimming’ commands.

The trimming commands, if used at all, go in parentheses (like this), with
no spaces separating them. The possible specifications are r, r{(wd)}, 1 and
1{(wd)}, or any combination of these, where (wd) is a dimension, and r and
1 indicate whether the right and/or left ends of the rule should be trimmed.
The form without explicit argument is equivalent to r{\cmidrulekern}, where
\cmidrulekern defaults to 0.5 em, but can be set by the user in the preamble.?

Here’s an illustrative example: (1r{.75em}) gives you a default left trim and
exactly 0.75 em right trim. Equally valid here is (r{.75em}1).3

The full syntax of the command is

\cmidrule [{(wd)] ({trim)){a—b}

2User feedback suggested the Version 1.00 default, 0.25 em, was too small. Sorry for any loss
of backward compatibility. Remember that you can easily set \cmidrulekern in the preamble,
or just use (r{.25em}) to recover the original behaviour.

3As a matter of fact, (lrrlr{.75em}) does the same thing: only the last encountered left and
the last encountered right specification are applied.

\addlinespace

\morecmidrules

where (wd) is an optional rule width command, in square brackets [like this| (the
default here is \cmidrulewidth), and the last argument, which is not optional,
gives the column numbers to be spanned.

An example of the commands in use is given by the code used to produce the
example table above:

\begin{tabular}{@{}11r@{}} \toprule
\multicolumn{2}{c}{Item} \\ \cmidrule(r){1-2}
Animal & Description & Price (\$)\\ \midrule
Gnat & per gram & 13.65 \\

& each & 0.01 \\
Gnu & stuffed & 92.50 \\
Emu & stuffed & 33.33 \\
Armadillo & frozen & 8.99 \\ \bottomrule
\end{tabular}

Occasionally we want to put an extra space between certain rows of a table; for
example, before the last row, if this is a total. This is simply a matter of inserting

\addlinespace [(wd)]

after the \\ alignment marker. Between ordinary rows of text, the effect is identical
to the ordinary I¥TEX usage \\ [\defaultaddspace], which I find rather clumsy,
and it is better than \\ \\, which inserts too much space. Also, \addlinespace
can be used before, after, or between rules if you want to control the exact amount
of space to be inserted. The default space before or after an adjacent rule is
replaced by exactly \defaultaddspace or the amount of space specified in the
optional argument.?

4 Abuse of the new commands

Let’s face it, nobody can leave well alone, so here are some guidelines and extra
commands.

The new rule commands are not guaranteed to work with \hline or \cline,
although these remain available and unchanged. I cannot foresee any reason to
want to mix them.

More importantly the rules generated by the new commands are in no way
guaranteed to connect with verticals generated by {|} characters in the preamble.
This is a feature (see above). You should not use vertical rules in tables, end of
story.

If you just cannot stop yourself from using a double rule, even a construction as
bizarre as \toprule\bottomrule\midrule will work without generating an error
message (just as you can double \hline). These rules will be separated by the
ordinary I¥TEX separator \doublerulesep. However if your perversion is to want

4This is a change from version 1.00, where the space was sometimes in addition to default
rule space.

double \cmidrules you will need the extra command \morecmidrules to do so
properly, because normally two \cmidrules in a row is a sane construction calling
for two rules on the same ‘rule row’. Thus in

\cmidrule{1-2}\cmidrule{1-2}

the second command writes a rule that just overwrites the first one; I suppose you
wanted

\cmidrule{1-2}\morecmidrules\cmidrule{1-2}

which gives you a double rule between columns one and two, separated by
\cmidrulesep (note: since a \cmidrule is generally very light, the ordinary
\doublerulesep is probably too much space). Finish off a whole row of rules
before giving the \morecmidrules command. Note that \morecmidrules has no
effect whatsoever if it does not immediately follow a \cmidrule (ie it is not a
general space-generating command).

\specialrule If you find some extraordinary need to specify exactly 0.5 em, say, between two
rules, you could use a construction such as \midrule \addlinespacel[.5em] \midrule.
In a rare fit of tolerance, though, I have also provided the command

\specialrule{({wd)}{(abovespace)}{{belowspace)}

where all three arguments are mandatory (I couldn’t be bothered to program in
defaults). If you use this frequently, you have misunderstood the purpose and
content of the guidelines given above. A preceeding rule does not add its default
space below, and a following rule adds no space above itself, so you get ezxactly
the space specified in the arguments.®

5 Booktabs and longtables

If you have both booktabs and longtable packages loaded, the booktabs rule
commands can now all be used exactly as described above, within a longtable.

There is an addition worth noting: within a longtable, you can use the
optional left and right trimming commands, which normally only work for
\cmidrules, with \toprule, \midrule and \bottomrule (and if you must, also
with \specialrule). Users who hacked the previous release for longtable com-
patability® seemed to like all the rules to be right trimmed 0.5 em. I think you
can do the same by making @{} be the last column specifier. Still, after working
out the rest of the code, it was easy to add parsing for the optional arguments,
so I did. (I didn’t go the whole way and allow the optional trimming outside a
longtable; this would be a huge amount of work. If you must have trimmed rules,
make all your tables be longtables!)

A somewhat technical note: within a longtable, \hline and \hline\hline
both produce a double rule (to allow for page breaks occurring at that point).

5This is a change from Version 1.00, which rather liked to add an extra \doublerulesep space
whenever it could.
6Jim Service was the first

But the booktabs rules do not. Longtable’s automatic doubling of \hline is
questionable, even according to the documentation within that package. But
doubled booktabs rules make almost no sense at all. In the unfortunate event
that a booktabs rule should occur at a page break, then you will have to make
the necessary adjustments by hand.” (In general, this will mean deleting the
offending rule.)

6 Booktabs and and the colortbl package

Booktabs is now compatible with the colortbl package.® The \arrayrulecolor
command will result in coloured rules if the colortbl package is loaded.

7 Technical summary of commands

The new rule commands are valid inside the standard tabular (and array) envi-
ronment, in the modified tabular and array of \usepackage{array}, and within
both standard tables and longtables after \usepackage{longtablel}.

The commands follow the standard placement syntax of \hline. There can be
space (including carriage-return, but not two carriage-returns) between successive
rule commands.?

In what amounts to quite a big change from former releases, within the macro
code I now define three classes of rules. (But we don’t need these definitions
within ordinary use, so I haven’t even mentioned them above.) A class 1 rule
(otherwise called a ‘normal’ rule) is any of \toprule, \midrule, \bottomrule, or
\cmidrule. The class 2 rules are \specialrule and \addlinespace. Finally, a
class 0 rule is none of the preceeding — or in other words, not a rule at all.'® Note
that \addlinespace counts as a class 2 rule, not as class 0 text.

In the following, we first describe each command in ‘normal use’, meaning that
the rule is being used between two lines of text (or more technically, is preceded
and followed by a class 0 rule). After that, we will look at the exceptions.

\toprule [(wd)]

A rule of width (wd) (default \heavyrulewidth) with \abovetopsep space
above and \belowrulesep extra vertical space inserted below it. By default,
\abovetopsep is zero, which seems sensible for a rule designed to go at the top.
However, if your tables have captions, it can make sense to use \abovetopsep
to insert a reasonable amount of space between caption and table, rather than
remember to use a \vspace{} command in the float.

"Fixed in version 1.618033 (Morten Hggholm)
8Since v1.6180
9A welcome change from Version 1.00, where space between rule commands generated a very
baffling error message.
10Except that \hline and \cline are class 0. Still, there is no reason to lose sleep over this,
since one would not want to mix the two rule-drawing systems.

\midrule [{wd)]

A (wd) (default \1lightrulewidth) rule with \aboverulesep space above it and
with \belowrulesep space below it.

\bottomrule [{wd)]

A (wd) (default \heavyrulewidth) rule with \aboverulesep space above it and
with \belowbottomsep space below it. By default \belowbottomsep is zero'!.
There is a frequent and legitimate reason you might want space below a bottom
rule: namely, when there’s a table footnote.'? If you don’t override the default
you could use \bottomrule \addlinespace[\belowrulesep] or you could put a
suitably sized strut into the footnote text.!® But the default has to be zero, so

that it behaves sensibly in a longtable footer.
\cmidrule[(wd)] ({trim)){a—b}

A (wd) (default \cmidrulewidth) rule with \aboverulesep space above it (un-
less following another \cmidrule, in which case it is on the same vertical align-
ment; or if following \morecmidrules, separated from a previous \cmidrule by
\cmidrulesep). A \cmidrule has \belowrulesep below it (unless followed by
another \cmidrule, in which case the following rule is on the same vertical align-
ment; or if followed by \morecmdirules, when there will be \cmidrulesep below
it).

The \cmidrule spans columns a to b as specified in the mandatory argument.
The optional argument (¢rim), which goes in parentheses if at all, can contain
any sequence of the tokens r, 1 and {(wd)}, with the latter setting the kerning to
be applied to right or left sides as specified by the immediately preceding token.
(There’s currently no error checking done here, so be careful to get the syntax
right.)

\morecmidrules

Instructs TEX to begin a new row of \cmidrules, separated from the last by
\cmidrulesep. Has no meaning in any other context.

\specialrule{{wd)}{(abovespace)}{{belowspace)}

A (wd) rule (note: here this is a mandatory argument) with (abovespace) above
it and (belowspace) below it.

\addlinespace [{wd)]

Technically this has the same effect as \specialrule{Opt}{Opt}{{wd)}, i.e. a
zero-width rule with no space above and with (wd) (default \defaultaddspace)
space below. This command was primarily designed to add space between rows

1 This is a change from Version 1.00, where there was always a \belowrulesep
12Byt don’t use footnotes, Donald.
131 don’t like either of these. Sort it out in Version 1.6187

in the body of the table, but it may also be used to specify an exact amount of
space above or below a class 1 rule.

Now we come to the exceptions to the above. We have already seen in the
definitions that the type 2 rules are preceded and followed by exactly the amount
of space specified by the arguments. That is, a type 2 rule suppresses the space that
would normally be generated by a previous type 1 rule (e.g. \belowrulesep after
a \toprule) and replaces it by the argument of the type 2 rule. Similarly, in the
combination {type 2 rule}{type 1 rule}, the ordinary space above the type 1 rule
(e.g. \aboverulesep) is suppressed. But in the combination {type 2 rule}{type
2 rule}, no space is suppressed: the rules will be separated by both the first rule’s
{(belowspace)} and the second rule’s {({abovespace)} arguments. Last but not
least, the combination {type 1 rule}{type 1 rule} will always give rules separated
by \doublerulesep, suppressing all normal space generated between the rules
(but retaining normal space above the first and below the second).

As an exception to this last exception, ‘type 1 rule’ excludes \cmidrule.
Such rules combine with other \cmidrules and \morecmidrules in normal use
as described above. I don’t know and I don’t care care what the combination
\toprule\cmidrule{1-2}\midrule would produce. I can see no excuse for such
usage.

The default dimensions are defined at the beginning of the macro description
section (Section 9). The user can change these defaults in the preamble, or outside
a tabular environment, by simply inserting a command in exactly the same format
as in Section 9; the redefinition will stay in effect for the rest of the document or
until redefined again. Inside a table you would have to make the assignment glob-
ally in a noalign group: e.g. \noalign\{\globallabovetopsep=1em\toprule}.
I hope you never have to do that.

8 Acknowledgments

Hugely indebted of course to DEK and Lamport; the optional argument and

\cmidrule stuff especially was stolen from latex.sty. The documentation driver

stuff is stolen from the tools package description dcolumn.dtx by David Carlisle.
For beta testing and encouragement ...

9 The code

The current version is defined at the top of the file looking something like this
1 (xpackage)

2 %\NeedsTeXFormat{LaTeX2e}

3 %\ProvidesPackage{booktabs}

4% [\filedate\space version\fileversion]

First we set up the new dimensions described above:

\futurenonspacelet

5 \newdimen\heavyrulewidth
6 \newdimen\lightrulewidth
7 \newdimen\cmidrulewidth

8 \newdimen\belowrulesep

9 \newdimen\belowbottomsep
10 \newdimen\aboverulesep

11 \newdimen\abovetopsep

12 \newdimen\cmidrulesep

13 \newdimen\cmidrulekern

14 \newdimen\defaultaddspace
15 \heavyrulewidth=.08em

16 \lightrulewidth=.05em

17 \cmidrulewidth=.03em

18 \belowrulesep=.65ex

19 \belowbottomsep=0pt

20 \aboverulesep=.4ex

21 \abovetopsep=0pt

22 \cmidrulesep=\doublerulesep
23 \cmidrulekern=.5em

24 \defaultaddspace=.5em
And some internal counters of no interest to the end user:
25 \newcount\@cmidla

26 \newcount\@cmidlb

27 \newdimen\@aboverulesep
28 \newdimen\@belowrulesep
29 \newcount\@thisruleclass
30 \newcount\@lastruleclass
31 \@lastruleclass=0

32 \newdimen\@thisrulewidth

which will be described as needed below.

Next we define a very useful macro (more-or-less straight from the TEXbook’s
Dirty Tricks chapter; documented there). Use \futurenonspacelet instead of
\futurelet when looking for the next (non-space) token after a macro that has
an argument. (After a macro without an argument, space is ignored anyway, so
\futurenonspacelet wouldn’t be needed.) This hack allows users to type white
space between successive rule commands (which did not work in Version 1.00).
33 \def\futurenonspacelet#1{\def\@BTcs{#1}/

34 \afterassignment\@BTfnslone\let\nexttoken= }

35 \def\@BTfnslone{\expandafter\futurelet\@BTcs\@BTfnsltwol}

36 \def\@BTfnsltwo{\expandafter\ifx\0@BTcs\@sptoken\let\next=\0BTfnslthree

37 \else\let\next=\nexttoken\fi \next}

38 \def\@BTfnslthree{\afterassignment\@BTfnslone\let\next= }

9.1 Full width rules

When we are not in a longtable environment, we can simply implement the full
width rules as a \hrule in a \noalign{} group. But within a longtable, the rule

10

has to be drawn like a \cmidrule{1-\LT@cols} (the rationale for this is explained
in the longtable documentation).

In order to allow for both, all the rule macros have to open a \noalign
group immediately, while they work out whether they have been called within
a longtable; if you don’t do this, TEX’s underlying \halign process gets hic-
cups. I use BTEX’s dirty trick (\ifnum=0‘}) to fool the parser that the bracket
count is OK. The bracket really gets closed after all the skipping at the end of the
\@BTendrule macro.

The class 1 rules, and \specialrule, really only differ in the defaults for space
above and below, and the width, passed to a common routine, \@BTrule, described
below. The spaces, \@aboverulesep and \@belowrulesep, are set within the
\noalign group, so are inherited by \@BTrule. Similarly, \@BTrule knows as
much as it needs to about the routine that called it by examining the inherited
\@thisruleclass. The optional width argument is parsed by \@BTrule after
being set to default if absent.

\toprule

\midrule 39 \def\toprule{\noalign{\ifnum0=‘}\fi

\bottomrule 40 \@aboverulesep=\abovetopsep

\specialrule 41 \global\@belowrulesep=\belowrulesep %global cos for use in the next noalign
42 \global\@thisruleclass=\@ne
43 \@ifnextchar [{\@BTrule}{\@BTrule[\heavyrulewidth]}}
44 \def\midrule{\noalign{\ifnum0O=‘}\fi
45 \@aboverulesep=\aboverulesep
46 \global\@belowrulesep=\belowrulesep
47 \global\@thisruleclass=\@ne
48 \@ifnextchar [{\@BTrule}{\@BTrule[\lightrulewidth]}}
49 \def\bottomrule{\noalign{\ifnum0=‘}\fi
50 \@aboverulesep=\aboverulesep
51 \global\@belowrulesep=\belowbottomsep
52 \global\@thisruleclass=\@ne
53 \@ifnextchar [{\@BTrule}{\@BTrule[\heavyrulewidth]}}
54 \def\specialrule#1#2#3{\noalign{\ifnum0=‘}\fi
55 \@aboverulesep=#2\global\@belowrulesep=#3\global\@thisruleclass=\tw@
56 \@BTrule[#11}

\addlinespace An \addlinespace is essentially a zero-width rule with zero space above and
argument (or default) space below. But because the rule is not actually drawn,
but is just a \vskip, there is no need to check if we’re in a longtable, so we
don’t need to call \@BTrule as for ‘real’ rules. But we do share the \@BTendrule
lookahead and flagsetting code (described below), and the \vskip is done there.
57 \def\addlinespace{\noalign{\ifnum0=‘}\fi
58 \@ifnextchar[{\@addspace}{\@addspace[\defaultaddspace] }}

59 \def\Qaddspace [#1]{\global\@belowrulesep=#1\global\@thisruleclass=\tw@
60 \futurelet\@tempa\@BTendrule}

\@BTrule All the rules (except \addlinespace) share this code.
61 \def\@BTrule [#1]1{}

11

\CT@arc®@

\@BTnormal

Now we work out, by a very nasty hack, if we’re within a longtable. It’s easy
if \longtable isn’t even defined: then we can’t be. But it is not enough just to
check if longtable is loaded — we might be within an ordinary table rather than a
longtable. So we look to see if \hline has been re-defined from its ITEX definition
to be the same as \LT@hline. (Longtable currently does this redefinition when
it opens a longtable environment, but not globally, so it is cleared it when the
environment closes.) Another package could potentially do this! And longtable
might change the way it implements this! So, it is not entirely safe, but I have
found no better way so far.

We set up \@BTswitch to call \@BTnormal or \@BLTrule, as appropriate, then
call it.

62 \ifx\longtable\undefined

63 \1let\@BTswitch\@BTnormal
64 \else\ifx\hline\LT@hline
65 \nobreak

66 \1let\@BTswitch\@BLTrule
67 \else

68 \let\@BTswitch\@BTnormal
69 \fi\fi

Call \@BTswitch at end of macro
70 \global\@thisrulewidth=#1\relax
Save the width argument (if the user didn’t give one, then the calling routine will

have called \@BTrule with the default) in a global variable for later use when
drawing the rule.

71 \ifnum\@thisruleclass=\tw@\vskip\@aboverulesep\else

Specialrules always insert specified space above. (Note: addlinespaces don’t come
here).

72 \ifnum\@lastruleclass=\z@\vskip\@aboverulesep\else

73 \ifnum\@lastruleclass=\O@ne\vskip\doublerulesep\fi\fi\fi

After text (last rule class 0), precede the rule by \aboverulesep; but if immedi-
ately after a previous rule, insert a \doublerulesep.

74 \@BTswitch}

This is support for the colortbl package for colored rules. \CT@arc@ hold the
\arrayrulecolor setting.

75 \AtBeginDocument {7
76 \providecommand*\CT@arc@{}}}% colortbl support

This is when we’re not within a longtable. We are already in a \noalign group,
all we need do is draw an \hrule and gobble any trailing spaces, then call the
closing routine with \@tempa set equal to the next token in the document.

77 \def\@BTnormal{}
78 {\CT@arc@\hrule\Gheight\@thisrulewidth}/,
79 \futurenonspacelet\@tempa\@BTendrule}

12

\@BLTrule

\@@BLTrule

\@BTendrule

\@setrulekerning

This is for full width rule within a longtable. First we check if a kerning argument
has been used; if so let \@@BLTrule read it, else call \@@BLTrule with an empty
string:

80 \def\@BLTrule{\@ifnextchar ({\@@BLTrule}{\@@BLTrule()}}

81 \def\Q@@BLTrule (#1){\@setrulekerning{#1}/
82 \global\@cmidlb\LT@cols

The \@setrulekerning routine parses the kerning argument tokens and sets
global kerning widths accordingly (or to defaults, if user hasn’t set them explicitly).
The global assignment to \@cmid1b sets up the column count for the \@cmidruleb
macro, which is shared with cmidrules.

83 \ifnumO="‘{\fi}%

Close the currently open \noalign group. Within a longtable, rules are all to
be drawn as leaders within a text box that is \LT@cols columns wide.

84 \@cmidruleb
Draw the rule. We share the \@cmidruleb code with ordinary \cmidrules.
85 \noalign{\ifnumO=‘}\fi

We have to open a new noalign immediately else TEXwill start a new text box
where we don’t want one. Then, after gobbling any unwanted white space, we call
the closing routine.

86 \futurenonspacelet\@tempa\@BTendrule}

We look one step ahead (token is in \@tempa) to see if another rule follows
(shame on user!). If so, we set \@lastruleclass equal to \@thisruleclass
(thus setting it up for the following rule). If there isn’t a following rule, we clear
\@lastruleclass (ie set it to zero), which isn’t technically true since we have just
drawn a rule, but sets it up correctly for the next rule encountered, which must
be following some intervening text.

87 \def\@BTendrule{\ifx\@tempa\toprule\global\@lastruleclass=\Q@thisruleclass
88 \else\ifx\@tempa\midrule\global\@lastruleclass=\@thisruleclass

89 \else\ifx\@tempa\bottomrule\global\@lastruleclass=\@thisruleclass

90 \else\ifx\@tempa\cmidrule\global\@lastruleclass=\@thisruleclass

91 \else\ifx\@tempa\specialrule\global\@lastruleclass=\Q@thisruleclass

92 \else\ifx\@tempa\addlinespace\global\@lastruleclass=\@thisruleclass

93 \else\global\@lastruleclass=\z@\fi\fi\fi\fi\fi\fi

94 \ifnum\@lastruleclass=\One\relax\else\vskip\@belowrulesep\fi

95 \ifnumoO=‘{\fil}}

9.2 Special subrules

The following code parses the trimming arguments (if there are any) for \cmidrule
or a \BLTrule. The rule will be trimmed left and right by \cmrkern@l and
\cmrkern@l, which are zero by default, set to \cmidrulekern by the plain (1r)
arguments, or user set as in (r{.5em}). We parse token by token through the

13

\cmidrule
\@cmidrule
\@@cmidrule
\@@@cmidrule

arguments. The tokens r and 1 cause \cmrkern®r or \cmrkern®@l to be set to
\cmidrulekern. There is no lookahead to see if a width is the next token; this
strategy is efficient for the plain commands, while inefficient for the qualified
commands, but more importantly it is much easier to program. Tokens r and
1 also set \cmrswitch so that if the next token turns out to be {{wd)} then
the kerning will be done on the side currently specified. I have been too lazy to
program an error message should one encounter tokens other than r, 1 or {(wd)}.

96 \def\@setrulekerning#1{/,

97 \global\let\cmrkern@l\z@
98 \global\let\cmrkern@r\z@
99 \@tfor\@tempa :=#1\do
100 {\def\@tempb{r}y

101 \ifx\@tempa\@tempb

102 \global\let\cmrkern@r\cmidrulekern
103 \def\cmrsideswitch{\cmrkern@rl}y,

104 \else

105 \def\@tempb{1}%

106 \ifx\@tempa\@tempb

107 \global\let\cmrkern@l\cmidrulekern
108 \def\cmrsideswitch{\cmrkern@1}
109 \else

110 \global\expandafter\let\cmrsideswitch\@tempa
111 \fi

112 \fi}}

The \cmidrule re-uses \@lastruleclass in an entirely different way from the
full width rules. (Maybe I should have used a different flag; it seemed efficient
at the time ...). This is (left) set to one if you are in the middle of a row of
\cmidrules, or starting a new one (with \morecmidrules). Otherwise, when
\@lastruleclass is zero, we precede the rule with \aboverulesep.

113 \def\cmidrule{\noalign{\ifnumO=‘}\fi

114 \@ifnextchar [{\@cmidrule}{\@cmidrule [\cmidrulewidth]}}

115 \def\@cmidrule [#1]{\@ifnextchar ({\@@cmidrule [#1]}{\@@cmidrule [#1] O }}

116 \def\@@cmidrule [#1] (#2)#3{\@0@0cmidrule [#3] {#1}{#2}}

The above is fiddling around to set defaults for missing optional arguments. We
also pass to \@@@cmidrule in a different order, namely [a-b]{width required}
{kerning commands} (this being the order in which the arguments are actually
processed):

117 \def\@@@cmidrule [#1-#2]#3#4{\global\@cmidla#1\relax

118 \global\advance\@cmidla\m@ne

119 \ifnum\@cmidla>0\global\let\@gtempa\@cmidrulea\else
120 \globalllet\@gtempa\@cmidruleb\fi

121 \global\@cmidlb#2\relax

122 \globalladvance\@cmidlb-\@cmidla

This has set up a switch (\@gtempa) to call the relevant routine, \@cmidrulea or
\@cmidruleb, depending on whether we start from column one or not.

14

\@xcmidrule

\@cmidrulea

\@cmidruleb

\morecmidrules

123 \global\@thisrulewidth=#3

That is, set per default or given argument. Then parse any trimming arguments
to set, globally, \cmrkern@r and \cmrkern®@l accordingly:

124 \@setrulekerning{#4}

Now insert space above if needed, close the \noalign, then switch to appropriate
rule drawing routine as determined above (\let to \Q@gtempa):

125 \ifnum\@lastruleclass=\z@\vskip \aboverulesep\fi
126 \ifnumO=‘{\fi}\@gtempa

Having now drawn the rule, open another \noalign, and call the closing routine:

127 \noalign{\ifnumO=‘}\fi\futurenonspacelet\@tempa\@xcmidrule}

In this closing routine, see if another \cmidrule follows; if so, backspace vertical
so it will line up with the one you just drew, and setting \@lastruleclass to 1
will suppress adding space above the next. If a \morecimdrules follows, we add
(positive) \cmidrulesep (and again set \@lastruleclass to one). Otherwise this
is the last rule of the current group and we can just add \belowrulesep. Finally,
we close the \noalign.

128 \def\@xcmidrule{%

129 \ifx\@tempa\cmidrule

130 \vskip-\@thisrulewidth

131 \global\@lastruleclass=\@ne

132 \else \ifx\@tempa\morecmidrules

133 \vskip \cmidrulesep

134 \global\@lastruleclass=\@ne\else
135 \vskip \belowrulesep

136 \global\@lastruleclass=\z@

137 \fi\fi
138 \ifnumO=‘{\fi}}

This code (called below) actually draws the rules. They are drawn as boxes in
text, rather than in a \noalign group, which permits the left and right kerning.
139 \def\@cmidrulea{%

140 \multispan\@cmidla&\multispan\@cmidlb

141 \unskip\hskip\cmrkern@ly,

142 {\CT@arc@\leaders\hrule \@height\@thisrulewidth\hfill\kern\z@}/

143 \hskip\cmrkern@r\cr}yj

144 \def\@cmidruleb{}

145 \multispan\@cmidlb

146 \unskip\hskip \cmrkern@lj,

147 {\CT@arc@\leaders\hrule \@height\@thisrulewidth\hfill\kern\z@}},
148 \hskip\cmrkern@r\crl}y

This is really a dummy command; all the work is done above within the \cmidrule
routine. We look one step ahead there to see if a \morecmidrules follows the

15

current \cmidrule, and if so set the flag. Otherwise, \morecmidrules itself does

nothing.

149 \def\morecmidrules{\noalign{\relax}}

150 (/package)
Change History

v1.618
\@xcmidrule: Change to
\@xcmidrule: replace
\@cmidrulewidth with

\@thisrulewidth 15
General: Remove
\@cmidrulewidth 10
v1.6180
\@BTnormal: add colortbl \CT@arc@
command for color support .. 12
\@cmidrulea: add colortbl
\CT@arc@ command for color
support, 15
\@cmidruleb: add colortbl
\CT@arc@ command for color
support 15
\@setrulekerning: Refine option
testing in \@setrulekerning . 14

\CT@arc@: add colortbl command
for color support 12

Index

v1.61803
\toprule: Change \@belowrulesep
to \belowrulesep
v1.618033
\@BTrule: Rearranged and added
\nobreak within longtable
(Morten Hggholm)
\@cmidrulea: add \kern\z@ after
\hfill to protects against
unskips
\@cmidruleb: add \kern\z@ after
\hfill to protects against
unskips
v1.6180339
\@BTrule: Add test for xltabular
(Herbert Voss)
v1.61803398
\@BTrule: Restore \@BTrule to
v1.618033 (Danie Els)

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\@@@cmidrule 113
\@@BLTrule 80, 81
\@@cmidrule 113
\@BLTrule 66, 80
\@BTcs 33, 35, 36
\@BTendrule 60, 79, 86, 87
\@BTfnslone .. 34, 35, 38
\@BTfnslthree . 36, 38
\@BTfnsltwo 35, 36
\@BTnormal 63, 68, 77

\@BTrule 43, 48, 53, 56, 61
\@BTswitch 63, 66, 68, 74
\@aboverulesep 27, 40,

45, 50, 55, 71, 72
\@addspace 58, 59
\@belowrulesep 28, 41,

46, 51, 55, 59, 94

\@cmidla 25,
117-119, 122, 140
\@cmidlb . 26, 82,

121, 122, 140, 145

16

\@cmidrule 113
\@cmidrulea ... 119, 139
\@cmidruleb 84, 120, 144
\@gtempa .. 119, 120, 126
\@height 78, 142, 147

\@ifnextchar . 43, 48,
53, 58, 80, 114, 115

\@lastruleclass

30, 31,

72, 73, 87-94,

125, 131, 134, 136

42, 47,
52, 73, 94, 131, 134
\@setrulekerning
81, 96, 124
\@sptoken 36
\@tempa 60, 79, 86—
92, 99, 101, 106,
110, 127, 129, 132
\@tempb 100, 101, 105, 106
\@tfor 99
\@thisruleclass
. 29,42, 47, 52
55, 59, 71, 87-92
\@thisrulewidth
32, 70, 78,
123, 130, 142, 147
\@xcmidrule ... 127, 128

A
\aboverulesep
10, 20, 45, 50, 125
\abovetopsep . 11, 21, 40
\addlinespace 5, 57, 92
\advance 118, 122
\afterassignment 34, 38
\AtBeginDocument .. 75

B
\belowbottomsep 9, 19, 51
\belowrulesep

8, 18, 41, 46, 135
\bottomrule ... /4, 39, 89

C
\cmidrule 4, 90, 113, 129
\cmidrulekern
13, 23, 102, 107
\cmidrulesep 12, 22, 133
\cmidrulewidth 7, 17, 114
\cmrkern@l 97
107, 108, 141, 146
\cmrkern@r 98,
102, 103, 143, 148
\cmrsideswitch
103, 108, 110
\cr 143, 148
\CT@arc@ 75, 78, 142, 147

D
\def 33, 35, 36, 38, 39,
44, 49, 54, 57,

59, 61, 77, 80,
81, 87, 96, 100,
103, 105, 108,
113, 115-117,
128, 139, 144, 149
\defaultaddspace
14, 24, 58
............. 99

\do

E
\else . 37, 64, 67, 71,
72, 88-94, 104,
109, 119, 132, 134
\expandafter 35, 36, 110

F
37, 39, 44, 49,
54, 57, 69, 73,
83, 85, 93-95,
111-113, 120,
125-127, 137,
\filedate
\fileversion
\futurelet
\futurenonspacelet .
33, 79, 86, 127

\fi

G
\global .. 41, 42, 46,
47, 51, 52, 55,
59, 70, 82, 87—
93, 97, 98, 102,
107, 110, 117-
123, 131, 134, 136

H
\heavyrulewidth
5, 15, 43, 53
142, 147
\hline 64
\hrule 78, 142 147
\hskip 141, 143, 146, 148

\hfill

I
39, 44, 49, 54,
57, T1-73, 83,
85, 94, 95, 113,
119, 125-127
\ifx 36, 62, 64, 87-92,
101, 106, 129, 132

\ifnum

138

17

142, 147

\leaders 142, 147

\let 34, 36-38, 63, 66,
68, 97, 98, 102,
107, 110, 119, 120

\lightrulewidth 6, 16, 48

\longtable 62
\LT@cols 82
\LT@hline 64
M
\m@ne 118
\midrule 4, 39, 88
\morecmidrules
...... 5, 132, 149
\multispan 140, 145
N
\NeedsTeXFormat 2
\newcount 25, 26, 29, 30
\newdimen 5-14, 27, 28, 32
\next 36-38
\nexttoken 34, 37

\noalign 39, 44, 49, 54,
57, 85, 113, 127, 149

\nobreak 65
P
\providecommand ... 76
\ProvidesPackage ... 3
R

\relax

70, 94, 117, 121, 149

S
\space 4
\specialrule .. 6, 39, 91
T
\toprule 4, 39, 87
\tw@ 55, 59, 71
U
\undefined 62
\unskip 141, 146

\Y% y/
\vskip ... 71-73, 94, \z@ .. 72, 93,97, 98,
125, 130, 133, 135 125, 136, 142, 147

18

