
The biblatex Package
Programmable Bibliographies and Citations

Philip Kime, Moritz Wemheuer,
Philipp Lehman

Version 4.0
March 8, 2023

Contents

List of Tables 1

1 Introduction 2
1.1 About 2
1.2 License 2
1.3 Feedback 3
1.4 Acknowledgements . . 3
1.5 Prerequisites 3

2 Database Guide 7
2.1 Entry Types 9
2.2 Entry Fields 16
2.3 Usage Notes 34
2.4 Hints and Caveats . . . 43

3 User Guide 47
3.1 Package Options 47
3.2 Global Customization . 76
3.3 Standard Styles 76
3.4 Extended Name Format 82
3.5 Related Entries 83
3.6 Sorting Options 84
3.7 Data Annotations . . . 85
3.8 Bibliography Commands 91
3.9 Citation Commands . . 111
3.10 Localization Commands 122
3.11 Entry Querying Com-

mands 124
3.12 Formatting Commands 124
3.13 Language notes 139
3.14 Usage Notes 142
3.15 Hints and Caveats . . . 153
3.16 Using the fallback

BibTeX backend 159
3.17 Multiscript Support . . 159
3.18 Selection of Multiscript

Alternates 163

4 Author Guide 165
4.1 Overview 165
4.2 Bibliography Styles . . 169
4.3 Citation Styles 192
4.4 Data Interface 196
4.5 Customization 206
4.6 Auxiliary Commands . 256
4.7 Punctuation 286
4.8 Localization Strings . . 292
4.9 Localization Modules . 295
4.10 Formatting Commands 312
4.11 Hints and Caveats . . . 333

Appendix 349

A Default Driver Source
Mappings 349
A.1 bibtex 349

B Default Inheritance Setup 350

C Default Sorting Templates 352
C.1 Alphabetic 1 352
C.2 Alphabetic 2 352
C.3 Chronological 352

D biblatexml 353
D.1 Header 353
D.2 Body 354

E Option Scope 358

F Default BCP47 to ba-
bel/polyglossia language
identifiers 362

G Revision History 363

List of Tables

1 biber/biblatex compati-
bility matrix 8

2 Supported Languages 30

3 Date Specifications 40

4 ISO8601-2 4.3 Unspecified
Date Parsing 41

1

https://sourceforge.net/projects/biblatex/

5 Enhanced Date Specifications 42
6 Work Uniqueness options . . 70
7 Disambiguation counters . . 73
8 mcite-like commands . . . 122

9 mcite-like syntax 123
10 Date Interface 182
11 Valid transliteration pairs . . 245
12 \mkcomprange setup . . . 281

1 Introduction

NOTE: This is the documentation for the ‘multiscript’ version of biblatex. The
package name is ‘biblatex-ms’ and it requires the multiscript version of biber
(biber-ms). This version is expected in the future to be the default and only version
of biblatex but currently, in order to garner feedback and testing, it is a separate
package which can be installed in parallel with the standard version. It should be
fully backwards compatible with the standard biblatex package but is considered
experimental and feedback is encourage via the biblatex github repository1.

This document is a systematic reference manual for the biblatex package. Look
at the sample documents which come with biblatex to get a first impression.2
For a quick start guide, browse §§ 1.1, 2.1, 2.2, 2.3, 3.1, 3.3, 3.8, 3.9, 3.14.

1.1 About biblatex

This package provides advanced bibliographic facilities for use with LaTeX. The
package is a complete reimplementation of the bibliographic facilities provided by
LaTeX. The biblatex package works with the “backend” (program) biber, which
is used to process BibTeX format data files and them performs all sorting, label
generation (and a great deal more). Formatting of the bibliography is entirely con-
trolled by TeX macros. Good working knowledge in LaTeX should be sufficient to
design new bibliography and citation styles. This package also supports subdivided
bibliographies, multiple bibliographies within one document, and separate lists of
bibliographic information such as abbreviations of various fields. Bibliographies may
be subdivided into parts and/or segmented by topics. Just like the bibliography styles,
all citation commands may be freely defined. Features such as full Unicode support
for bibliography data, customisable sorting, multiple bibliographies with different
sorting, customisable labels and dynamic data modification are available. Please refer
to § 1.5.6 for information on biber/biblatex version compatibility. The pack-
age is completely localised and can interface with the babel and polyglossia
packages. Please refer to table 2 for a list of languages currently supported by this
package.

1.2 License

Copyright © 2006–2012 Philipp Lehman, 2012–2017 Philip Kime, Audrey Boruvka,
Joseph Wright, 2018– Philip Kime and Moritz Wemheuer. Permission is granted to
copy, distribute and/or modify this software under the terms of the LaTeX Project
Public License, version 1.3.3

1
https://github.com/plk/biblatex

2
https://ctan.org/tex-archive/macros/latex/contrib/biblatex/doc/

examples
3
https://www.latex-project.org/lppl.txt

2

https://github.com/plk/biblatex
https://ctan.org/tex-archive/macros/latex/contrib/biblatex/doc/examples
https://ctan.org/tex-archive/macros/latex/contrib/biblatex/doc/examples
https://www.latex-project.org/lppl.txt

1.3 Feedback

Please use the biblatex project page on GitHub to report bugs and submit feature
requests.4 Before making a feature request, please ensure that you have thoroughly
studied this manual. If you do not want to report a bug or request a feature but are
simply in need of assistance, you might want to consider posting your question on
the comp.text.tex newsgroup or TeX-LaTeX Stack Exchange.5

1.4 Acknowledgements

The package was originally written by Philipp Lehman and much of his excellent
original code remains in the core. Philip Kime took over the package in 2012 with
Moritz Wemheuer making regular and valuable contributions from 2017. The main
authors would like to acknowledge the valuable help of Audrey Boruvka and Joseph
Wright who helped with the transition of ownership in 2012 and following years.

The language modules of this package are made possible thanks to the following
contributors:
Ander Zarketa-Astigarraga (Basque); Augusto Ritter Stoffel, Mateus Araújo, Gus-
tavo Barros (Brazilian); Kaloyan Ganev (Bulgarian); Sebastià Vila-Marta (Catalan);
Ivo Pletikosić (Croatian); Michal Hoftich (Czech); Christian Mondrup, Jonas Nyrup
(Danish); Johannes Wilm (Danish/Norwegian); Alexander van Loon, Pieter Belmans,
Hendrik Maryns (Dutch); Kristian Kankainen, Benson Muite (Estonian); Hannu
Väisänen, Janne Kujanpää (Finnish); Denis Bitouzé (French); Apostolos Syropoulos,
Prokopis (Greek); Márton Marczell, Bence Ferdinandy (Hungarian); Baldur Kristins-
son (Icelandic); Enrico Gregorio, Andrea Marchitelli (Italian); Rihards Skuja (Latvian);
Valdemaras Klumbys (Lithuanian); �नरंजन (Marathi); Håkon Malmedal, Hans Fredrik
Nordhaug (Norwegian); Anastasia Kandulina, Yuriy Chernyshov (Polish); José Car-
los Santos (Portuguese); Patrick Danilevici (Romanian); Oleg Domanov (Russian);
Andrej Radović (Serbian); Martin Vrábel, Dávid Lupták (Slovak); Tea Tušar, Bogdan
Filipič (Slovene); Ignacio Fernández Galván (Spanish); Per Starbäck, Carl-Gustav
Werner, Filip Åsblom (Swedish); Abdulkerim Gok (Turkish); Sergiy M. Ponomarenko
(Ukrainian).

1.5 Prerequisites

This section gives an overview of all resources required by this package and discusses
compatibility issues.

1.5.1 Requirements

The resources listed in this section are strictly required for biblatex to function.
The package will not work if they are not available.

e-TeX The biblatex package requires e-TeX. TeX distributions have been providing
e-TeX binaries for quite some time, the popular distributions use them by default
these days. The biblatex package checks if it is running under e-TeX. Simply
try compiling your documents as you usually do, the chances are that it just works.
If you get an error message, try compiling the document with elatex instead of
latex or pdfelatex instead of pdflatex, respectively.

4
https://github.com/plk/biblatex

5
https://tex.stackexchange.com/questions/tagged/biblatex

3

https://github.com/plk/biblatex
https://tex.stackexchange.com/questions/tagged/biblatex

biber biber is the backend of biblatex used to transfer data from source files to the
LaTeX code. biber comes with TeX Live and is also available from SourceForge.6.
biber uses the btparse C library for BibTeX format file parsing which aimed to
be compatible with BibTeX’s parsing rules but also aimed at correcting some of the
common problems. For details, see the manual page for the Perl Text::BibTeX
module7.

etoolbox This LaTeX package, which is loaded automatically, provides generic programming
facilities required by biblatex. It is available from ctan.8

kvoptions This LaTeX package, which is also loaded automatically, is used for internal option
handling. It is available from ctan.9

logreq This LaTeX package, which is also loaded automatically, provides a frontend for
writing machine-readable messages to an auxiliary log file. It is available from
ctan.10

pdftexcmds This LaTeX package, which is loaded automatically, implements pdfTeX primitives
for LuaTeX, it also offers a unified interface for these primitives across engines. It is
available from ctan.11

biblatex uses pdftexcmds to access the MD5 hash primitives, so version 0.27
(2018/01/30) or above is strongly recommended.

Apart from the above resources, biblatex also requires the standard LaTeX
packages keyval and ifthen as well as the url package. These package are
included in all common TeX distributions and will be loaded automatically.

1.5.2 Recommended Packages

Thepackages listed in this section are not strictly required for biblatex to function,
but they provide recommended additional functions or enhance existing features.

babel/polyglossia The babel and polyglossia packages provides the core architecture for multi-
lingual typesetting. If you are writing in a language other than American English,
using one of these packages is strongly recommended. You should load babel
or polyglossia before biblatex and then biblatex will detect babel or
polyglossia automatically. (While babel may be loaded after biblatex if so
desired, polyglossia must always be loaded before biblatex.)

biblatex has only limited support for polyglossia versions prior to v1.45
(2019/10/27). Additional useful features for biblatex were added in version 1.49.
If polyglossia is used, it should be updated to version 1.49 (2020/04/08) or above.

The minimum supported babel version is v3.9r (2016/04/23).

csquotes If this package is available, biblatex will use its language sensitive quotation
facilities to enclose certain titles in quotation marks. If not, biblatex uses quotes
suitable for American English as a fallback. When writing in a language other than
American English, loading csquotes is strongly recommended.12

6
https://biblatex-biber.sourceforge.net/

7
https://metacpan.org/release/Text-BibTeX

8
https://ctan.org/pkg/etoolbox

9
https://ctan.org/pkg/kvoptions

10
https://ctan.org/pkg/logreq/

11
https://ctan.org/pkg/pdftexcmds/

12
https://ctan.org/pkg/csquotes/

4

https://biblatex-biber.sourceforge.net/
https://metacpan.org/release/Text-BibTeX
https://ctan.org/pkg/etoolbox
https://ctan.org/pkg/kvoptions
https://ctan.org/pkg/logreq/
https://ctan.org/pkg/pdftexcmds/
https://ctan.org/pkg/csquotes/

1.5.3 Additional Useful Packages

The packages listed in this section are not required for biblatex to function, but
provide additional specialist functions or enhance existing features. These packages
generally only need to be loaded if their functionality is explicitly desired. The
package loading order usually does not matter.

xpatch The xpatch package extends the patching commands of etoolbox to biblatex
bibliography macros, drivers and formatting directives.13 Its commands are useful
to apply surgical-precision changes to bibliography macros, drivers or formatting
directives without having to restate the whole definition to change it. Thebiblatex
core does not need or use these patching commands and styles that make use of
them should load the package themselves.

1.5.4 Compatible Classes and Packages

The biblatex package provides dedicated compatibility code for the classes and
packages listed in this section.

hyperref The hyperref package transforms citations into hyperlinks. See the hyperref
and backref package options in § 3.1.2.1 for further details. When using the
hyperref package, it is preferable to load it after biblatex.

showkeys The showkeys package prints the internal keys of, among other things, citations in
the text and items in the bibliography. The package loading order does not matter.

memoir When using the memoir class, the default bibliography headings are adapted such
that they blend well with the default layout of this class. See § 3.15.2 for further
usage hints.

KOMA-Script When using any of the scrartcl, scrbook, or scrreprt classes, the default
bibliography headings are adapted such that they blend with the default layout of
these classes. See § 3.15.1 for further usage hints.

If available biblatex makes use of some of the more recent of koma-Script’s do-
hooks. The relevant hooks are present from version 3.27 (2019/10/12) onwards, which
is therefore the minimum version recommendation.

1.5.5 Incompatible Packages

The packages listed in this section are not compatible with biblatex. Since it
reimplements the bibliographic facilities of LaTeX from the ground up, biblatex
naturally conflicts with all packages modifying the same facilities. This is not specific
to biblatex. Some of the packages listed below are also incompatible with each
other for the same reason.

babelbib The babelbib package provides support for multilingual bibliographies. This is
a standard feature of biblatex. Use the langid field and the package option
autolang for similar functionality. Note that biblatex automatically adjusts to
the main document language if babel or polyglossia is loaded. You only need
the above mentioned features if you want to switch languages on a per-entry basis
within the bibliography. See §§ 2.2.3 and 3.1.2.1 for details. Also see § 3.10.

13
https://ctan.org/pkg/xpatch/

5

https://ctan.org/pkg/xpatch/

backref The backref package creates back references in the bibliography. See the package
options hyperref and backref in § 3.1.2.1 for comparable functionality.

bibtopic The bibtopic package provides support for bibliographies subdivided by topic,
type, or other criteria. For bibliographies subdivided by topic, see the category
feature in § 3.8.6 and the corresponding filters in § 3.8.2. Alternatively, you may use
the keywords field in conjunction with the keyword and notkeyword filters
for comparable functionality, see §§ 2.2.3 and 3.8.2 for details. For bibliographies sub-
divided by type, use the type and nottype filters. Also see § 3.14.4 for examples.

bibunits The bibunits package provides support for multiple partial (e. g., per chapter)
bibliographies. See chapterbib.

chapterbib The chapterbib package provides support for multiple partial bibliographies. Use
therefsection environment and thesection filter for comparable functionality.
Alternatively, you might also want to use the refsegment environment and the
segment filter. See §§ 3.8.4, 3.8.5, 3.8.2 for details. Also see § 3.14.3 for examples.

cite The cite package automatically sorts numeric citations and can compress a list
of consecutive numbers to a range. It also makes the punctuation used in citations
configurable. For sorted and compressed numeric citations, see the sortcites
package option in § 3.1.2.1 and the numeric-comp citation style in § 3.3.1. For
configurable punctuation, see § 3.12.

citeref Another package for creating back references in the bibliography. See backref.

inlinebib The inlinebib package is designed for traditional citations given in footnotes.
For comparable functionality, see the verbose citation styles in § 3.3.1.

jurabib Originally designed for citations in law studies and (mostly German) judicial docu-
ments, the jurabib package also provides features aimed at users in the humanities.
In terms of the features provided, there are some similarities between jurabib and
biblatex but the approaches taken by both packages are quite different. Since
both jurabib and biblatex are full-featured packages, the list of similarities
and differences is too long to be discussed here.

mcite The mcite package provides support for grouped citations, i. e., multiple items can
be cited as a single reference and listed as a single block in the bibliography. The
citation groups are defined as the items are cited. This only works with unsorted
bibliographies. The biblatex package also supports grouped citations, which are
called ‘entry sets’ or ‘reference sets’ in this manual. See §§ 3.14.5, 3.8.11, 3.9.10 for
details.

mciteplus A significantly enhanced reimplementation of the mcite package which supports
grouping in sorted bibliographies. See mcite.

multibib The multibib package provides support for bibliographies subdivided by topic or
other criteria. See bibtopic.

natbib The natbib package supports numeric and author-year citation schemes, incorpo-
rating sorting and compression code found in the cite package. It also provides
additional citation commands and several configuration options. See the numeric
and author-year citation styles and their variants in § 3.3.1, the sortcites
package option in § 3.1.2.1, the citation commands in § 3.9, and the facilities discussed
in §§ 3.8.7, 3.8.8, 3.12 for comparable functionality. Also see § 3.9.9.

6

splitbib The splitbib package provides support for bibliographies subdivided by topic.
See bibtopic.

titlesec The titlesec package redefines user-level document division commands such as
\chapter or \section. This approach is not compatible with internal command
changes applied by the biblatex refsection, refsegment and citereset
option settings described in § 3.1.2.1.

ucs The ucs package provides support for utf-8 encoded input, but it does so in a way
incompatible with biblatex.

If you get an error about ucs being loaded, but you don’t load it explic-
itly in your preamble, check that you don’t load inputenc’s utf8x module:
\usepackage[utf8x]{inputenc} will also load ucs.

Instead of ucs/utf8x use a Unicode engine such as XeTeX or LuaTeX if you want
full Unicode support. If you use pdfTeX or TeX, the Unicode characters predefined
by the LaTeX format are usually enough for many use cases (this is true for LaTeX
from April 2018 or later, in older versions load inputenc with the utf8 module)
and missing characters can be defined using \DeclareUnicodeCharacter or
newunicodechar’s \newunicodechar.

etextools The etextools package provides enhancements to list macros defined by
etoolbox and a few other tools for command definitions. The package redefines
list handling macros in a way incompatible with biblatex.

If you must load the etextools package at all costs, define the con-
trol sequence \blx@noerroretextools before you load biblatex. If
\blx@noerroretextools is defined, no error will be issued if etextools is
loaded, the message is degraded to a warning instead. In that case you need to make
sure that all redefined macros used by biblatex (currently only \forlistloop)
have their original etoolbox definitions when biblatex is loaded.

1.5.6 Compatibility Matrix for biber

biber versions are closely coupled with biblatex versions. You need to have
the right combination of the two. biber will throw a fatal error during process-
ing if it encounters information which comes from a biblatex version which is
incompatible. Table 1 shows a compatibility matrix for the recent versions.

2 Database Guide

This section describes the default data model defined in the blx-dm.def file which
is part of biblatex. The data model is defined using the macros documented in
§ 4.5.4. It is possible to redefine the data model which both biblatex and biber
use so that datasources can contain new entrytypes and fields (which of course will
need style support). The data model specification also allows for constraints to be
defined so that data sources can be validated against the data model (using biber’s
--validate-datamodel option). Users who want to customise the data model
need to look at the blx-dm.def file and to read § 4.5.4.

All entry types and field names are given in all-lowercase form here. This is how
the entry types and field names are given in the data model. While the biber/BibTeX
input side is case insensitive, the LaTeX side is case sensitive and uses the exact
capitalisation from the data model. This means that the input in the bib file may

7

Table 1: biber/biblatex compatibility matrix
Biber version biblatex version

2.19 3.19
2.18 3.18
2.17 3.17
2.16 3.16
2.15 3.15
2.14 3.14
2.13 3.13
2.12 3.12
2.11 3.11
2.10 3.10
2.9 3.9
2.8 3.8
2.7 3.7
2.6 3.5, 3.6
2.5 3.4
2.4 3.3
2.3 3.2
2.2 3.1
2.1 3.0
2.0 3.0
1.9 2.9
1.8 2.8
1.7 2.7
1.6 2.6
1.5 2.5
1.4 2.4
1.3 2.3
1.2 2.1, 2.2
1.1 2.1
1.0 2.0
0.9.9 1.7x
0.9.8 1.7x
0.9.7 1.7x
0.9.6 1.7x
0.9.5 1.6x
0.9.4 1.5x
0.9.3 1.5x
0.9.2 1.4x
0.9.1 1.4x
0.9 1.4x

8

use any capitalisation of entry types and field names, but when the fields are used in
the LaTeX document—for example in \citefield—the capitalisation must match
the captalisation in the data model, for standard types and fields that would be all
lowercase.

2.1 Entry Types

This section gives an overview of the entry types supported by the defaultbiblatex
data model along with the fields supported by each type.

2.1.1 Regular Types

The lists below indicate the fields supported by each entry type. Note that the
mapping of fields to an entry type is ultimately at the discretion of the bibliography
style. The lists below therefore serve two purposes. They indicate the fields supported
by the standard styles which come with this package and they also serve as a model
for custom styles. Note that the ‘required’ fields are not strictly required in all cases,
see § 2.3.2 for details. The fields marked as ‘optional’ are optional in a technical
sense. Bibliographical formatting rules usually require more than just the ‘required’
fields. The default data model defined a few constraints for the format of date
fields, ISBNs and some special fields like gender but the constraints are only used if
validating against the datamodel withbiber’s--validate-datamodel option.
Generic fields like abstract and annotation or label and shorthand are
not included in the lists below because they are independent of the entry type. The
special fields discussed in § 2.2.3, which are also independent of the entry type, are
not included in the lists either. See the default data model specification in the file
blx-dm.def which comes with biblatex for a complete specification.

The ‘alias’ relation referred to in this subsection is the ‘soft alias’ defined with
\DeclareBibliographyAlias. That means that the alias will use the same
bibliography driver as the type it is aliased to, but that its type-specific formatting is
still handled independently of the aliased type.

article An article in a journal, magazine, newspaper, or other periodical which forms a
self-contained unit with its own title. The title of the periodical is given in the
journaltitle field. If the issue has its own title in addition to the main title of
the periodical, it goes in the issuetitle field. Note that editor and related
fields refer to the journal while translator and related fields refer to the article.

Required fields: author, title, journaltitle, year/date

Optional fields: translator, annotator, commentator, subtitle,
titleaddon, editor, editora, editorb, editorc, journalsubtitle,
journaltitleaddon, issuetitle, issuesubtitle,
issuetitleaddon, language, origlanguage, series, volume,
number, eid, issue, month, pages, version, note, issn, addendum,
pubstate, doi, eprint, eprintclass, eprinttype, url, urldate

book A single-volume book with one or more authors where the authors share credit for
the work as a whole. This entry type also covers the function of the @inbook type
of traditional BibTeX, see § 2.3.1 for details.

Required fields: author, title, year/date

9

Optional fields: editor, editora, editorb, editorc, translator,
annotator, commentator, introduction, foreword, afterword,
subtitle, titleaddon, maintitle, mainsubtitle, maintitleaddon,
language, origlanguage, volume, part, edition, volumes, series,
number, note, publisher, location, isbn, eid, chapter, pages,
pagetotal, addendum, pubstate, doi, eprint, eprintclass,
eprinttype, url, urldate

mvbook A multi-volume @book. For backwards compatibility, multi-volume books are also
supported by the entry type @book. However, it is advisable to make use of the
dedicated entry type @mvbook.

Required fields: author, title, year/date

Optional fields: editor, editora, editorb, editorc, translator,
annotator, commentator, introduction, foreword, afterword,
subtitle, titleaddon, language, origlanguage, edition, volumes,
series, number, note, publisher, location, isbn, pagetotal,
addendum, pubstate, doi, eprint, eprintclass, eprinttype, url,
urldate

inbook A part of a book which forms a self-contained unit with its own title. Note that the
profile of this entry type is different from standard BibTeX, see § 2.3.1.

Required fields: author, title, booktitle, year/date

Optional fields: bookauthor, editor, editora, editorb, editorc,
translator, annotator, commentator, introduction, foreword,
afterword, subtitle, titleaddon, maintitle, mainsubtitle,
maintitleaddon, booksubtitle, booktitleaddon, language,
origlanguage, volume, part, edition, volumes, series, number,
note, publisher, location, isbn, eid, chapter, pages, addendum,
pubstate, doi, eprint, eprintclass, eprinttype, url, urldate

bookinbook This type is similar to @inbook but intended for works originally published as a
stand-alone book. A typical example are books reprinted in the collected works of
an author.

suppbook Supplemental material in a @book. This type is closely related to the @inbook
entry type. While @inbook is primarily intended for a part of a book with its own
title (e. g., a single essay in a collection of essays by the same author), this type is
provided for elements such as prefaces, introductions, forewords, afterwords, etc.
which often have a generic title only. Style guides may require such items to be
formatted differently from other @inbook items. The standard styles will treat this
entry type as an alias for @inbook.

booklet A book-like work without a formal publisher or sponsoring institution. Use the field
howpublished to supply publishing information in free format, if applicable. The
field type may be useful as well.

Required fields: author/editor, title, year/date

Optional fields: subtitle, titleaddon, language, howpublished,
type, note, location, eid, chapter, pages, pagetotal, addendum,
pubstate, doi, eprint, eprintclass, eprinttype, url, urldate

10

collection A single-volume collection with multiple, self-contained contributions by distinct
authors which have their own title. The work as a whole has no overall author but it
will usually have an editor.

Required fields: editor, title, year/date

Optional fields: editora, editorb, editorc, translator, annotator,
commentator, introduction, foreword, afterword, subtitle,
titleaddon, maintitle, mainsubtitle, maintitleaddon, language,
origlanguage, volume, part, edition, volumes, series, number,
note, publisher, location, isbn, eid, chapter, pages, pagetotal,
addendum, pubstate, doi, eprint, eprintclass, eprinttype, url,
urldate

mvcollection A multi-volume @collection. For backwards compatibility, multi-volume collec-
tions are also supported by the entry type @collection. However, it is advisable
to make use of the dedicated entry type @mvcollection.

Required fields: editor, title, year/date

Optional fields: editora, editorb, editorc, translator, annotator,
commentator, introduction, foreword, afterword, subtitle,
titleaddon, language, origlanguage, edition, volumes, series,
number, note, publisher, location, isbn, pagetotal, addendum,
pubstate, doi, eprint, eprintclass, eprinttype, url, urldate

incollection A contribution to a collection which forms a self-contained unit with a distinct author
and title. The author refers to the title, the editor to the booktitle, i. e.,
the title of the collection.

Required fields: author, title, editor, booktitle, year/date

Optional fields: editor, editora, editorb, editorc, translator,
annotator, commentator, introduction, foreword, afterword,
subtitle, titleaddon, maintitle, mainsubtitle, maintitleaddon,
booksubtitle, booktitleaddon, language, origlanguage, volume,
part, edition, volumes, series, number, note, publisher,
location, isbn, eid, chapter, pages, addendum, pubstate, doi,
eprint, eprintclass, eprinttype, url, urldate

suppcollection Supplemental material in a @collection. This type is similar to @suppbook but
related to the @collection entry type. The standard styles will treat this entry
type as an alias for @incollection.

dataset A data set or a similar collection of (mostly) raw data.

Required fields: author/editor, title, year/date

Optional fields: subtitle, titleaddon, language, edition, type,
series, number, version, note, organization, publisher,
location, addendum, pubstate, doi, eprint, eprintclass,
eprinttype, url, urldate

manual Technical or other documentation, not necessarily in printed form. The author or
editor is omissible in terms of § 2.3.2.

Required fields: author/editor, title, year/date

11

Optional fields: subtitle, titleaddon, language, edition, type,
series, number, version, note, organization, publisher,
location, isbn, eid, chapter, pages, pagetotal, addendum,
pubstate, doi, eprint, eprintclass, eprinttype, url, urldate

misc A fallback type for entries which do not fit into any other category. Use the field
howpublished to supply publishing information in free format, if applicable. The
field type may be useful as well. author, editor, and year are omissible in
terms of § 2.3.2.

Required fields: author/editor, title, year/date

Optional fields: subtitle, titleaddon, language, howpublished,
type, version, note, organization, location, month, addendum,
pubstate, doi, eprint, eprintclass, eprinttype, url, urldate

online An online resource. author, editor, and year are omissible in terms of § 2.3.2.
This entry type is intended for sources such as web sites which are intrinsically
online resources. Note that all entry types support the url field. For example, when
adding an article from an online journal, it may be preferable to use the @article
type and its url field.

Required fields: author/editor, title, year/date, doi/eprint/url

Optional fields: subtitle, titleaddon, language, version, note,
organization, month, addendum, pubstate, eprintclass,
eprinttype, urldate

patent A patent or patent request. The number or record token is given in the number
field. Use the type field to specify the type and the location field to indicate the
scope of the patent, if different from the scope implied by the type. Note that the
location field is treated as a key list with this entry type, see § 2.2.1 for details.

Required fields: author, title, number, year/date

Optional fields: holder, subtitle, titleaddon, type, version,
location, note, month, addendum, pubstate, doi, eprint,
eprintclass, eprinttype, url, urldate

periodical An complete issue of a periodical, such as a special issue of a journal. The title of
the periodical is given in the title field. If the issue has its own title in addition to
the main title of the periodical, it goes in the issuetitle field. The editor is
omissible in terms of § 2.3.2.

Required fields: editor, title, year/date

Optional fields: editora, editorb, editorc, subtitle, titleaddon,
issuetitle, issuesubtitle, issuetitleaddon, language, series,
volume, number, issue, month, note, issn, addendum, pubstate, doi,
eprint, eprintclass, eprinttype, url, urldate

suppperiodical Supplemental material in a @periodical. This type is similar to @suppbook
but related to the @periodical entry type. The role of this entry type may be
more obvious if you bear in mind that the @article type could also be called
@inperiodical. This type may be useful when referring to items such as regular
columns, obituaries, letters to the editor, etc. which only have a generic title. Style
guides may require such items to be formatted differently from articles in the strict

12

sense of the word. The standard styles will treat this entry type as an alias for
@article.

proceedings A single-volume conference proceedings. This type is very similar to@collection.
It supports an optional organization field which holds the sponsoring institution.
The editor is omissible in terms of § 2.3.2.

Required fields: title, year/date

Optional fields: editor, subtitle, titleaddon, maintitle,
mainsubtitle, maintitleaddon, eventtitle, eventtitleaddon,
eventdate, venue, language, volume, part, volumes, series,
number, note, organization, publisher, location, month, isbn,
eid, chapter, pages, pagetotal, addendum, pubstate, doi, eprint,
eprintclass, eprinttype, url, urldate

mvproceedings A multi-volume @proceedings entry. For backwards compatibility, multi-volume
proceedings are also supported by the entry type @proceedings. However, it is
advisable to make use of the dedicated entry type @mvproceedings

Required fields: title, year/date

Optional fields: editor, subtitle, titleaddon, eventtitle,
eventtitleaddon, eventdate, venue, language, volumes, series,
number, note, organization, publisher, location, month, isbn,
pagetotal, addendum, pubstate, doi, eprint, eprintclass,
eprinttype, url, urldate

inproceedings An article in a conference proceedings. This type is similar to @incollection. It
supports an optional organization field.

Required fields: author, title, booktitle, year/date

Optional fields: editor, subtitle, titleaddon, maintitle,
mainsubtitle, maintitleaddon, booksubtitle, booktitleaddon,
eventtitle, eventtitleaddon, eventdate, venue, language,
volume, part, volumes, series, number, note, organization,
publisher, location, month, isbn, eid, chapter, pages, addendum,
pubstate, doi, eprint, eprintclass, eprinttype, url, urldate

reference A single-volume work of reference such as an encyclopedia or a dictionary. This is a
more specific variant of the generic @collection entry type. The standard styles
will treat this entry type as an alias for @collection.

mvreference A multi-volume @reference entry. The standard styles will treat this entry type
as an alias for @mvcollection. For backwards compatibility, multi-volume refer-
ences are also supported by the entry type @reference. However, it is advisable
to make use of the dedicated entry type @mvreference.

inreference An article in a work of reference. This is a more specific variant of the generic
@incollection entry type. The standard styles will treat this entry type as an
alias for @incollection.

report A technical report, research report, or white paper published by a university or some
other institution. Use the type field to specify the type of report. The sponsoring
institution goes in the institution field.

Required fields: author, title, type, institution, year/date

13

Optional fields: subtitle, titleaddon, language, number, version,
note, location, month, isrn, eid, chapter, pages, pagetotal,
addendum, pubstate, doi, eprint, eprintclass, eprinttype, url,
urldate

set An entry set. This entry type is special, see § 3.14.5 for details.

software Computer software. The standard styles will treat this entry type as an alias for
@misc.

thesis A thesis written for an educational institution to satisfy the requirements for a degree.
Use the type field to specify the type of thesis.

Required fields: author, title, type, institution, year/date

Optional fields: subtitle, titleaddon, language, note, location,
month, isbn, eid, chapter, pages, pagetotal, addendum, pubstate,
doi, eprint, eprintclass, eprinttype, url, urldate

unpublished A work with an author and a title which has not been formally published, such as
a manuscript or the script of a talk. Use the fields howpublished and note to
supply additional information in free format, if applicable.

Required fields: author, title, year/date

Optional fields: subtitle, titleaddon, type, eventtitle,
eventtitleaddon, eventdate, venue, language, howpublished,
note, location, isbn, month, addendum, pubstate, doi, eprint,
eprintclass, eprinttype, url, urldate

xdata This entry type is special. @xdata entries hold data which may be inherited by other
entries using the xdata field. Entries of this type only serve as data containers;
they may not be cited or added to the bibliography. See § 3.14.6 for details.

custom[a–f] Custom types for special bibliography styles. The standard styles defined no biblio-
graphy drivers for these types and will fall back to using the driver for @misc.

2.1.2 Type Aliases

The entry types listed in this section are provided for backwards compatibility with
traditional BibTeX styles. These aliases are resolved by the backend as the data is
processed. biblatex and the styles will see only the entry type the alias points to
(the target), not the alias name (the source). In particular biblatex-side per-type
operations like type-specific formatting and filtering only work for the target type,
not the source type. This ‘hard alias’ is unlike the ‘soft alias’ relation in the previous
subsection. The relevant mappings for the bibtex driver can be found in § A.1.

conference A legacy alias for @inproceedings.

electronic An alias for @online.

mastersthesis Similar to @thesis except that the type field is optional and defaults to the
localised term ‘Master’s thesis’. You may still use the type field to override that.

phdthesis Similar to @thesis except that the type field is optional and defaults to the
localised term ‘PhD thesis’. You may still use the type field to override that.

14

techreport Similar to @report except that the type field is optional and defaults to the
localised term ‘technical report’. You may still use the type field to override that.

www An alias for @online, provided for jurabib compatibility.

2.1.3 Non-standard Types

The types in this section are similar to the custom types @custom[a--f], i. e., the
standard bibliography styles provide no bibliography drivers for these types. In the
standard styles they will use the bibliography driver for @misc entries—exceptions
to this rule are noted in the descriptions below. The types are known to the default
data model and will be happily accepted by biber.

artwork Works of the visual arts such as paintings, sculpture, and installations.

audio Audio recordings, typically on audio cd, dvd, audio cassette, or similar media. See
also @music.

bibnote This special entry type is not meant to be used in the bib file like other types. It is
provided for third-party packages like notes2bib which merge notes into the bib-
liography. The notes should go into the note field. Be advised that the @bibnote
type is not related to the \defbibnote command in any way. \defbibnote
is for adding comments at the beginning or the end of the bibliography, whereas
the @bibnote type is meant for packages which render endnotes as bibliography
entries.

commentary Commentaries which have a status different from regular books, such as legal com-
mentaries.

image Images, pictures, photographs, and similar media.

jurisdiction Court decisions, court recordings, and similar things.

legislation Laws, bills, legislative proposals, and similar things.

legal Legal documents such as treaties.

letter Personal correspondence such as letters, emails, memoranda, etc.

movie Motion pictures. See also @video.

music Musical recordings. This is a more specific variant of @audio.

performance Musical and theatrical performances as well as other works of the performing arts.
This type refers to the event as opposed to a recording, a score, or a printed play.

review Reviews of some other work. This is a more specific variant of the @article type.
The standard styles will treat this entry type as an alias for @article.

standard National and international standards issued by a standards body such as the Interna-
tional Organization for Standardization.

video Audiovisual recordings, typically on dvd, vhs cassette, or similar media. See also
@movie.

15

2.2 Entry Fields

This section gives an overview of the fields supported by the biblatex default
data model. See § 2.2.1 for an introduction to the data types used by the data model
specification and §§ 2.2.2 and 2.2.3 for the actual field listings.

2.2.1 Data Types

In datasources such as a bib file, all bibliographic data is specified in fields. Some of
those fields, for example author and editor, may contain a list of items. This list
structure is implemented by the BibTeX file format via the keyword ‘and’, which is
used to separate the individual items in the list. The biblatex package implements
three distinct data types to handle bibliographic data: name lists, literal lists, and
fields. There are also several list and field subtypes and a content type which can be
used to semantically distinguish fields which are otherwise not distinguishable on
the basis of only their datatype (see § 4.5.4). This section gives an overview of the
data types supported by this package. See §§ 2.2.2 and 2.2.3 for information about
the mapping of the BibTeX file format fields to biblatex’s data types.

Entry fields of any data type may be multiscript entry fields which means that
they can have multiple ‘alternates’ which are combinations of a multiscript ‘form’
and ‘language’. Multiscript entry fields must be declared to be such in the data model.
See 3.17.

Name lists are parsed and split up into the individual items at the and delimiter.
Each item in the list is then dissected into the name part components: by
default the given name, the name prefix (von, van, of, da, de, della, …), the
family name, and the name suffix (junior, senior, …). The valid name parts
can be customised by changing the datamodel definition described in § 4.2.3.
Name lists may be truncated in the bib file with the keyword ‘and others’.
Typical examples of name lists are author and editor.

Name list fields automatically have an \ifuse* test created as per the name
lists in the default data model (see § 4.6.2). They are also automatically have a
ifuse* option created which controls labelling and sorting behaviour with
the name (see § 3.1.3.1). biber supports a customisable set of name parts but
currently this is defined to be the same set of parts as supported by traditional
BibTeX:

• Family name (also known as ‘last’ part)

• Given name (also known as ‘first’ part)

• Name prefix (also known as ‘von’ part)

• Name suffix (also known as ‘Jr’ part)

The supported list of name parts is defined as a constant list in the default data
model using the \DeclareDatamodelConstant command (see § 4.5.4).
However, it is not enough to simply add to this list in order to add sup-
port for another name part as name parts typically have to be hard coded
into bibliography drivers and the backend processing. See the example file
93-nameparts.tex for details on how to define and use custom name parts.
Also see \DeclareUniquenameTemplate in § 4.11.4 for information on
how to customise name disambiguation using custom name parts.

16

Literal lists are parsed and split up into the individual items at the and delimiter
but not dissected further. Literal lists may be truncated in the bib file with
the keyword ‘and others’. There are two subtypes:

Literal lists in the strict sense are handled as described above. The individual
items are simply printed as is. Typical examples of such literal lists are
publisher and location.

Key lists are a variant of literal lists which may hold printable data or local-
isation keys. For each item in the list, styles should perform a test to
determine whether it is a known localisation key (the localisation keys
defined by default are listed in § 4.9.2). If so, the localised string should
be printed. If not, the item should be printed as is. The standard styles are
set up to exhibit this behaviour for all key lists listed below. New key lists
do not automatically perform this test, it has to be implemented explicitly
via the list format. A typical example of a key list is language.

Fields are usually printed as a whole. There are several subtypes:

Literal fields are printed as is. Typical examples of literal fields are title
and note.

Range fields consist of one or more ranges where all dashes are normalized
and replaced by the command \bibrangedash. A range is something
optionally followed by one or more dashes optionally followed by some
non-dash (e.g. 5--7). Any number of consecutive dashes will only yield
a single range dash. A typical example of a range field is the pages
field. See also the \bibrangessep command which can be used to
customise the separator between multiple ranges. Range fields will be
skipped and will generate a warning if they do not consist of one or more
ranges. You can normalise messy range fields before they are parsed
using \DeclareSourcemap (see § 4.5.3).

Integer fields hold integers which may be converted to ordinals or strings as
they are printed. A typical example is the extradate or volume field.
Such fields are sorted as integers. bibermakes a (quite serious) effort to
map non-arabic representations (roman numerals for example) to integers
for sorting purposes. See the noroman option which can be used to
suppress roman numeral parsing. This can help in cases where there is
an ambiguity between parsing as roman numerals or alphanumeric (e.g.
‘C’), see § 3.1.2.3.

Datepart fields hold unformatted integers which may be converted
to ordinals or strings as they are printed. A typical example
is the month field. For every field of datatype date in the
datamodel, datepart fields are automatically created with the fol-
lowing names: <datetype>year, <datetype>endyear,
<datetype>month, <datetype>endmonth,
<datetype>day, <datetype>endday, <datetype>hour,
<datetype>endhour, <datetype>minute,
<datetype>endminute, <datetype>second,
<datetype>endsecond, <datetype>timezone,
<datetype>endtimezone. <datetype> is the string preced-
ing ‘date’ for any datamodel field of datatype=date. For example, in
the default datamodel, ‘event’, ‘orig’, ‘url’ and the empty string ‘’ for the
date field date.

17

Date fields hold a date specification in yyyy-mm-ddThh:nn[+-

][hh[:nn]Z] format or a date range in yyyy-mm-ddThh:nn[+-

][hh[:nn]Z]/yyyy-mm-ddThh:nn[+-][hh[:nn]Z] format
and other formats permitted by iso8601-2 Clause 4, level 1, see § 2.3.8.
Date fields are special in that the date is parsed and split up into its
datepart type components. The datepart components (see above) are
automatically defined and recognised when a field of datatype date is
defined in the datamodel. A typical example is the date field.

Verbatim fields are processed in verbatim mode and may contain special
characters. Typical examples of verbatim fields are file and doi.

URI fields are processed in verbatim mode and may contain special charac-
ters. They are also URL-escaped if they don’t look like they already are.
The typical example of a uri field is url.

Separated value fields A separated list of literal values. Examples are the
keywords and options fields. The separator can be configured to be
any Perl regular expression via the xsvsep option which defaults to the
usual BibTeX comma surrounded by optional whitespace.

Pattern fields A literal field which must match a particular pattern. An
example is the gender field from § 2.2.3.

Key fields May hold printable data or localisation keys. Styles should perform
a test to determine whether the value of the field is a known localisation
key (the localisation keys defined by default are listed in § 4.9.2). If so,
the localised string should be printed. If not, the value should be printed
as is. The standard styles are set up to handle all key fields listed below in
that way. New key fields do not automatically perform the test, it has to
be enabled explicitly in the field format. A typical example is the type
field.

Code fields Holds TeX code.

2.2.2 Data Fields

The fields listed in this section are the regular ones holding printable data in the
default data model. The name on the left is the default data model name of the field
as used by biblatex and its backend. The biblatex data type is given to the
right of the name. See § 2.2.1 for explanation of the various data types.

Some fields are marked as ‘label’ fields which means that they are often used as
abbreviation labels when printing bibliography lists in the sense of section § 3.8.3.
biblatex automatically creates supporting macros for such fields. See § 3.8.3.

abstract field (literal)

This field is intended for recording abstracts in a bib file, to be printed by a special
bibliography style. It is not used by all standard bibliography styles.

addendum field (literal)

Miscellaneous bibliographic data to be printed at the end of the entry. This is similar
to the note field except that it is printed at the end of the bibliography entry.

18

afterword list (name)

The author(s) of an afterword to the work. If the author of the afterword is identical
to the editor and/or translator, the standard styles will automatically con-
catenate these fields in the bibliography. See also introduction and foreword.

annotation field (literal)

This field may be useful when implementing a style for annotated bibliographies.
It is not used by all standard bibliography styles. Note that this field is completely
unrelated to annotator. The annotator is the author of annotations which are
part of the work cited.

annotator list (name)

The author(s) of annotations to the work. If the annotator is identical to the editor
and/or translator, the standard styles will automatically concatenate these fields
in the bibliography. See also commentator.

author list (name)

The author(s) of the title.

authortype field (key)

The type of author. This field will affect the string (if any) used to introduce the
author.

bookauthor list (name)

The author(s) of the booktitle.

bookpagination field (key)

If the work is published as part of another one, this is the pagination scheme of the en-
closing work, i. e., bookpagination relates to pagination like booktitle
to title. The value of this field will affect the formatting of the pages and
pagetotal fields. The key should be given in the singular form. Possible
keys are page, column, line, verse, section, and paragraph. See also
pagination as well as § 2.3.12.

booksubtitle field (literal)

The subtitle related to the booktitle. If the subtitle field refers to a work
which is part of a larger publication, a possible subtitle of the main work is given in
this field. See also subtitle.

booktitle field (literal)

If the title field indicates the title of a work which is part of a larger publication,
the title of the main work is given in this field. See also title.

booktitleaddon field (literal)

An annex to the booktitle, to be printed in a different font.

chapter field (literal)

A chapter or section or any other unit of a work.

19

commentator list (name)

The author(s) of a commentary to the work. Note that this field is intended for
commented editions which have a commentator in addition to the author. If the
work is a stand-alone commentary, the commentator should be given in the author
field. If the commentator is identical to the editor and/or translator, the
standard styles will automatically concatenate these fields in the bibliography. See
also annotator.

date field (date)

The publication date. See also month and year as well as §§ 2.3.8 and 2.3.9.

doi field (verbatim)

The Digital Object Identifier of the work.

edition field (integer or literal)

The edition of a printed publication. This must be an integer, not an ordinal. Don’t say
edition={First} or edition={1st} but edition={1}. The bibliography
style converts this to a language dependent ordinal. It is also possible to give the
edition as a literal string, for example “Third, revised and expanded edition”.

editor list (name)

The editor(s) of the title, booktitle, or maintitle, depending on the entry
type. Use the editortype field to specify the role if it is different from ‘editor’.
See § 2.3.6 for further hints.

editora list (name)

A secondary editor performing a different editorial role, such as compiling, redacting,
etc. Use the editoratype field to specify the role. See § 2.3.6 for further hints.

editorb list (name)

Another secondary editor performing a different role. Use the editorbtype field
to specify the role. See § 2.3.6 for further hints.

editorc list (name)

Another secondary editor performing a different role. Use the editorctype field
to specify the role. See § 2.3.6 for further hints.

editortype field (key)

The type of editorial role performed by the editor. Roles supported by de-
fault areeditor, compiler, founder, continuator, redactor, reviser,
collaborator, organizer. The role ‘editor’ is the default. In this case, the
field is omissible. See § 2.3.6 for further hints.

editoratype field (key)

Similar to editortype but referring to the editora field. See § 2.3.6 for further
hints.

20

editorbtype field (key)

Similar to editortype but referring to the editorb field. See § 2.3.6 for further
hints.

editorctype field (key)

Similar to editortype but referring to the editorc field. See § 2.3.6 for further
hints.

eid field (literal)

The electronic identifier of an @article or chapter-like section of a larger work
often called ‘article number’, ‘paper number’ or the like. This field may replace the
pages field for journals deviating from the classic pagination scheme of printed
journals by only enumerating articles or papers and not pages.

Not to be confused with number, which for @articles subdivides the volume.

entrysubtype field (literal)

This field, which is not used by the standard styles, may be used to specify a subtype
of an entry type. This may be useful for bibliography styles which support a finer-
grained set of entry types.

eprint field (verbatim)

The electronic identifier of an online publication. This is roughly comparable to a
doi but specific to a certain archive, repository, service, or system. See § 3.14.7 for
details. Also see eprinttype and eprintclass.

eprintclass field (literal)

Additional information related to the resource indicated by the eprinttype field.
This could be a section of an archive, a path indicating a service, a classification of
some sort, etc. See § 3.14.7 for details. Also see eprint and eprinttype.

eprinttype field (literal)

The type of eprint identifier, e. g., the name of the archive, repository, service, or
system the eprint field refers to. See § 3.14.7 for details. Also see eprint and
eprintclass.

eventdate field (date)

The date of a conference, a symposium, or some other event in @proceedings
and @inproceedings entries. This field may also be useful for the custom types
listed in § 2.1.3. See also eventtitle and venue as well as § 2.3.8.

eventtitle field (literal)

The title of a conference, a symposium, or some other event in @proceedings and
@inproceedings entries. This field may also be useful for the custom types listed
in § 2.1.3. Note that this field holds the plain title of the event. Things like “Proceed-
ings of the Fifth XYZ Conference” go into the titleaddon or booktitleaddon
field, respectively. See also eventdate and venue.

21

eventtitleaddon field (literal)

An annex to the eventtitle field. Can be used for known event acronyms, for
example.

file field (verbatim)

A local link to a pdf or other version of the work. Not used by the standard biblio-
graphy styles.

foreword list (name)

The author(s) of a foreword to thework. If the author of the foreword is identical to the
editor and/or translator, the standard styles will automatically concatenate
these fields in the bibliography. See also introduction and afterword.

holder list (name)

The holder(s) of a @patent, if different from the author. Note that corporate
holders need to be wrapped in an additional set of braces, see § 2.3.3 for details. This
list may also be useful for the custom types listed in § 2.1.3.

howpublished field (literal)

A publication notice for unusual publications which do not fit into any of the common
categories.

indextitle field (literal)

A title to use for indexing instead of the regular title field. This field may be useful
if you have an entry with a title like “An Introduction to …” and want that indexed
as “Introduction to …, An”. Style authors should note that biblatex automatically
copies the value of the title field to indextitle if the latter field is undefined.
It the title field is a multiscript field (it is in the default datamodel), then the
currently active multiscript form and language (if the entry has a langid field, this
is used to override the currently active multiscript language) are used to determine
which alternate to copy to the indextitle field. If this default behaviour is not
what is required, use an explicit indextitle field in the entry.

institution list (literal)

The name of a university or some other institution, depending on the entry type.
Traditional BibTeX uses the field name school for theses, which is supported as an
alias. See also §§ 2.2.5 and 2.3.4.

introduction list (name)

The author(s) of an introduction to the work. If the author of the introduction is
identical to the editor and/or translator, the standard styles will automatically
concatenate these fields in the bibliography. See also foreword and afterword.

isan field (literal)

The International Standard Audiovisual Number of an audiovisual work. Not used
by the standard bibliography styles.

isbn field (literal)

The International Standard Book Number of a book.

22

ismn field (literal)

The International Standard Music Number for printed music such as musical scores.
Not used by the standard bibliography styles.

isrn field (literal)

The International Standard Technical Report Number of a technical report.

issn field (literal)

The International Standard Serial Number of a periodical.

issue field (literal)

The issue of a journal. This field is intended for journals whose individual issues
are identified by a designation such as ‘Spring’ or ‘Summer’ rather than the month
or a number. The placement of issue is similar to month and number. Integer
ranges and short designators are better written to the number field. See also month,
number and §§ 2.3.10 and 2.3.11.

issuesubtitle field (literal)

The subtitle of a specific issue of a journal or other periodical.

issuetitle field (literal)

The title of a specific issue of a journal or other periodical.

issuetitleaddon field (literal)

An annex to the issuetitle, to be printed in a different font.

iswc field (literal)

The International Standard Work Code of a musical work. Not used by the standard
bibliography styles.

journalsubtitle field (literal)

The subtitle of a journal, a newspaper, or some other periodical.

journaltitle field (literal)

The name of a journal, a newspaper, or some other periodical.

journaltitleaddon field (literal)

An annex to the journaltitle, to be printed in a different font.

label field (literal)

A designation to be used by the citation style as a substitute for the regular label if
any data required to generate the regular label is missing. For example, when an
author-year citation style is generating a citation for an entry which is missing the
author or the year, it may fall back to label. See § 2.3.2 for details. Note that, in
contrast to shorthand, label is only used as a fallback. See also shorthand.

23

language list (key)

The language(s) of the work. Languages may be specified literally or as localisa-
tion keys. If localisation keys are used, the prefix lang is omissible. See also
origlanguage and compare langid in § 2.2.3.

library field (literal)

This field may be useful to record information such as a library name and a call
number. This may be printed by a special bibliography style if desired. Not used by
the standard bibliography styles.

location list (literal)

The place(s) of publication, i. e., the location of the publisher or institution,
depending on the entry type. Traditional BibTeX uses the field name address,
which is supported as an alias. See also §§ 2.2.5 and 2.3.4. With @patent entries,
this list indicates the scope of a patent. This list may also be useful for the custom
types listed in § 2.1.3.

mainsubtitle field (literal)

The subtitle related to the maintitle. See also subtitle.

maintitle field (literal)

The main title of a multi-volume book, such as Collected Works. If the title or
booktitle field indicates the title of a single volume which is part of multi-volume
book, the title of the complete work is given in this field.

maintitleaddon field (literal)

An annex to the maintitle, to be printed in a different font.

month field (literal)

The publication month. This must be an integer, not an ordinal or a string. Don’t
say month={January} but month={1}. The bibliography style converts this to
a language dependent string or ordinal where required. This field is a literal field
only when given explicitly in the data (for plain BibTeX compatibility for example).
It is however better to use the date field as this supports many more features. See
§§ 2.3.8 and 2.3.9.

nameaddon field (literal)

An addon to be printed immediately after the author name in the bibliography. Not
used by the standard bibliography styles.

note field (literal)

Miscellaneous bibliographic data which does not fit into any other field. The note
field may be used to record bibliographic data in a free format. Publication facts such
as “Reprint of the edition London 1831” are typical candidates for the note field.
See also addendum.

24

number field (literal)

The number of a journal or the volume/number of a book in a series. See also
issue as well as §§ 2.3.7, 2.3.10, 2.3.11. With @patent entries, this is the number or
record token of a patent or patent request. Normally this field will be an integer or an
integer range, but it may also be a short designator that is not entirely numeric such
as “S1”, “Suppl. 2”, “3es”. In these cases the output should be scrutinised carefully.

Since number is—maybe counterintuitively given its name—a literal field, sorting
templates will not treat its contents as integers, but as literal strings, which means
that “11” may sort between “1” and “2”. If integer sorting is desired, the field can be
declared an integer field in a custom data model (see § 4.5.4). But then the sorting of
non-integer values is not well defined.

The ‘article number’ or ‘paper number’, which can be used instead of—or along
with—a page range to pinpoint a specific article within another work, goes into the
eid field.

organization list (literal)

The organization(s) that published a @manual or an @online resource, or spon-
sored a conference. See also § 2.3.4.

origdate field (date)

If the work is a translation, a reprint, or something similar, the publication date of
the original edition. Not used by the standard bibliography styles. See also date.

origlanguage list (key)

If the work is a translation, the language(s) of the original work. See also language.

origlocation list (literal)

If the work is a translation, a reprint, or something similar, the location of the
original edition. Not used by the standard bibliography styles. See also location
and § 2.3.4.

origpublisher list (literal)

If the work is a translation, a reprint, or something similar, the publisher of the
original edition. Not used by the standard bibliography styles. See also publisher
and § 2.3.4.

origtitle field (literal)

If the work is a translation, the title of the original work. Not used by the standard
bibliography styles. See also title.

pages field (range)

One or more page numbers or page ranges. If the work is published as part of another
one, such as an article in a journal or a collection, this field holds the relevant page
range in that other work. It may also be used to limit the reference to a specific part
of a work (a chapter in a book, for example). For papers in electronic journals with a
non-classical pagination setup the eid field may be more suitable.

25

pagetotal field (literal)

The total number of pages of the work.

pagination field (key)

The pagination of the work. The value of this field will affect the formatting
the 〈postnote〉 argument to a citation command. The key should be given in the
singular form. Possible keys are page, column, line, verse, section, and
paragraph. See also bookpagination as well as §§ 2.3.12 and 3.15.3.

part field (literal)

The number of a partial volume. This field applies to books only, not to journals. It
may be used when a logical volume consists of two or more physical ones. In this
case the number of the logical volume goes in the volume field and the number of
the part of that volume in the part field. See also volume.

publisher list (literal)

The name(s) of the publisher(s). See also § 2.3.4.

pubstate field (key)

The publication state of the work, e. g., ‘in press’. See § 4.9.2.11 for known publication
states.

reprinttitle field (literal)

The title of a reprint of the work. Not used by the standard styles.

series field (literal)

The name of a publication series, such as “Studies in …”, or the number of a journal
series. Books in a publication series are usually numbered. The number or volume of
a book in a series is given in the number field. Note that the @article entry type
makes use of the series field as well, but handles it in a special way. See § 2.3.7
for details.

shortauthor list (name) Label field

The author(s) of the work, given in an abbreviated form. This field is mainly intended
for abbreviated forms of corporate authors, see § 2.3.3 for details.

shorteditor list (name) Label field

The editor(s) of the work, given in an abbreviated form. This field is mainly intended
for abbreviated forms of corporate editors, see § 2.3.3 for details.

shorthand field (literal) Label field

A special designation to be used by the citation style instead of the usual label. If
defined, it overrides the default label. See also label.

shorthandintro field (literal)

The verbose citation styles which comes with this package use a phrase like “hence-
forth cited as [shorthand]” to introduce shorthands on the first citation. If the
shorthandintro field is defined, it overrides the standard phrase. Note that the
alternative phrase must include the shorthand.

26

shortjournal field (literal) Label field

A short version or an acronym of the journaltitle. Not used by the standard
bibliography styles.

shortseries field (literal) Label field

A short version or an acronym of the series field. Not used by the standard
bibliography styles.

shorttitle field (literal) Label field

The title in an abridged form. This field is usually not included in the bibliography.
It is intended for citations in author-title format. If present, the author-title citation
styles use this field instead of title.

subtitle field (literal)

The subtitle of the work.

title field (literal)

The title of the work.

titleaddon field (literal)

An annex to the title, to be printed in a different font.

translator list (name)

The translator(s) of the title or booktitle, depending on the entry type. If
the translator is identical to the editor, the standard styles will automatically
concatenate these fields in the bibliography.

type field (key)

The type of a manual, patent, report, or thesis. This field may also be useful
for the custom types listed in § 2.1.3.

url field (uri)

The url of an online publication. If it is not URL-escaped (no ‘%’ chars) it will be
URI-escaped according to RFC 3987, that is, even Unicode chars will be correctly
escaped.

urldate field (date)

The access date of the address specified in the url field. See also § 2.3.8.

venue field (literal)

The location of a conference, a symposium, or some other event in @proceedings
and @inproceedings entries. This field may also be useful for the custom types
listed in § 2.1.3. Note that the location list holds the place of publication. It
therefore corresponds to the publisher and institution lists. The location
of the event is given in the venue field. See also eventdate and eventtitle.

version field (literal)

The revision number of a piece of software, a manual, etc.

27

volume field (integer)

The volume of a multi-volume book or a periodical. It is expected to be an integer,
not necessarily in arabic numerals since biber will automatically convert from
roman numerals or arabic letter to integers internally for sorting purposes. See also
part. See the noroman option which can be used to suppress roman numeral
parsing. This can help in cases where there is an ambiguity between parsing as
roman numerals or alphanumeric (e.g. ‘C’), see § 3.1.2.3.

volumes field (integer)

The total number of volumes of a multi-volume work. Depending on the entry
type, this field refers to title or maintitle. It is expected to be an integer,
not necessarily in arabic numerals since biber will automatically convert from
roman numerals or arabic letter to integers internally for sorting purposes. See the
noroman option which can be used to suppress roman numeral parsing. This can
help in cases where there is an ambiguity between parsing as roman numerals or
alphanumeric (e.g. ‘C’), see § 3.1.2.3.

year field (literal)

The year of publication. This field is a literal field only when given explicitly in
the data (for plain BibTeX compatibility for example). It is however better to use
the date field as this is compatible with plain years too and supports many more
features. See §§ 2.3.8 and 2.3.9.

2.2.3 Special Fields

The fields listed in this section do not hold printable data but serve a different purpose.
They apply to all entry types in the default data model.

crossref field (entry key)

This field holds an entry key for the cross-referencing feature. Child entries with
a crossref field inherit data from the parent entry specified in the crossref
field. If the number of child entries referencing a specific parent entry hits a certain
threshold, the parent entry is automatically added to the bibliography even if it
has not been cited explicitly. The threshold is settable with the mincrossrefs
package option from § 3.1.2.1. Style authors should note that whether or not the
crossref fields of the child entries are defined on the biblatex level depends
on the availability of the parent entry. If the parent entry is available, the crossref
fields of the child entries will be defined. If not, the child entries still inherit the
data from the parent entry but their crossref fields will be undefined. Whether
the parent entry is added to the bibliography implicitly because of the threshold or
explicitly because it has been cited does not matter. See also the xref field in this
section as well as § 2.4.1.

entryset field (separated values)

This field is specific to entry sets. See § 3.14.5 for details. This field is consumed by
the backend processing and does not appear in the .bbl.

execute field (code)

A special field which holds arbitrary TeX code to be executed whenever the data of the
respective entry is accessed. This may be useful to handle special cases. Conceptually,

28

this field is comparable to the hooks \AtEveryBibitem, \AtEveryLositem,
and \AtEveryCitekey from § 4.10.6, except that it is definable on a per-entry
basis in the bib file. Any code in this field is executed automatically immediately
after these hooks.

gender field (Pattern matching one of: sf, sm, sn, pf, pm, pn, pp)

The gender of the author or the gender of the editor, if there is no author. The
following identifiers are supported: sf (feminine singular, a single female name), sm
(masculine singular, a single male name), sn (neuter singular, a single neuter name),
pf (feminine plural, a list of female names), pm (masculine plural, a list of male
names), pn (neuter plural, a list of neuter names), pp (plural, a mixed gender list of
names). This information is only required by special bibliography and citation styles
and only in certain languages. For example, a citation style may replace recurrent
author names with a term such as ‘idem’. If the Latin word is used, as is custom in
English and French, there is no need to specify the gender. In German publications,
however, such key terms are usually given in German and in this case they are
gender-sensitive.

langid field (identifier)

The language id of the bibliography entry. The alias hyphenation is provided
for backwards compatibility. The identifier must be a language name known to the
babel/polyglossia packages. This information may be used to switch hyphen-
ation patterns and localise strings in the bibliography. Note that the language names
are case sensitive. The languages currently supported by this package are given in
table 2. Note that babel treats the identifier english as an alias for british
or american, depending on the babel version. The biblatex package always
treats it as an alias for american. It is preferable to use the language identifiers
american and british (babel) or a language specific option to specify a lan-
guage variant (polyglossia, using the langidopts field) to avoid any possible
confusion. Compare language in § 2.2.2.

langidopts field (literal)

For polyglossia users, allows per-entry language specific options. The literal
value of this field is passed to polyglossia’s language switching facility when
using the package option autolang=langname. For example, the fields:

langid = {english},

langidopts = {variant=british},

would wrap the bibliography entry in:

\english[variant=british]

...

\endenglish

ids field (separated list of entrykeys)

Citation key aliases for the main citation key. An entry may be cited by any of its
aliases and biblatex will treat the citation as if it had used the primary citation

29

Table 2: Supported Languages
Language Region/Dialect Identifiers

Basque France, Spain basque

Bulgarian Bulgaria bulgarian

Catalan Spain, France, Andorra, Italy catalan

Croatian Croatia, Bosnia and Herzegovina, Serbia croatian

Czech Czech Republic czech

Danish Denmark danish

Dutch Netherlands dutch

English USA american, USenglish,
english

United Kingdom british, UKenglish
Canada canadian

Australia australian

New Zealand newzealand

Estonian Estonia estonian

Finnish Finland finnish

French France, Canada french

German Germany german

Austria austrian

Switzerland swissgerman

German (new) Germany ngerman

Austria naustrian

Switzerland nswissgerman

Greek Greece greek

Hungarian Hungary magyar, hungarian
Icelandic Iceland icelandic

Italian Italy italian

Latvian Latvia latvian

Lithuanian Lithuania lithuanian

Marathi India marathi

Norwegian (Bokmål) Norway norsk

Norwegian (Nynorsk) Norway nynorsk

Polish Poland polish

Portuguese Brazil brazil

Portugal portuguese, portuges
Romanian Romania romanian

Russian Russia russian

Serbian (Latin) Serbia serbian

Serbian (Cyrillic) Serbia serbianc

Slovak Slovakia slovak

Slovene Slovenia slovene, slovenian
Spanish Spain spanish

Swedish Sweden swedish

Turkish Turkey turkish

Ukrainian Ukraine ukrainian

30

key. This is to aid users who change their citation keys but have legacy documents
which use older keys for the same entry. This field is consumed by the backend
processing and does not appear in the .bbl.

indexsorttitle field (literal)

The title used when sorting the index. In contrast to indextitle, this field is used
for sorting only. The printed title in the index is the indextitle or the title
field. This field may be useful if the title contains special characters or commands
which interfere with the sorting of the index. Consider this example:

title = {The \LaTeX\ Companion},

indextitle = {\LaTeX\ Companion, The},

indexsorttitle = {LATEX Companion},

Style authors should note that biblatex automatically copies the value of either
the indextitle or the title field to indexsorttitle if the latter field is
undefined.

keywords field (separated values)

A separated list of keywords. These keywords are intended for the bibliography
filters (see §§ 3.8.2 and 3.14.4), they are usually not printed. Note that with the default
separator (comma), spaces around the separator are ignored.

options field (separated 〈key〉=〈value〉 options)

A separated list of entry options in 〈key〉=〈value〉 notation. This field is used to
set options on a per-entry basis. See § 3.1.3 for details. Note that citation and
bibliography styles may define additional entry options.

presort field (string)

A special field used to modify the sorting order of the bibliography. This field is
the first item the sorting routine considers when sorting the bibliography, hence it
may be used to arrange the entries in groups. This may be useful when creating
subdivided bibliographies with the bibliography filters. Please refer to § 3.6 for
further details. Also see § 4.5.6. This field is consumed by the backend processing
and does not appear in the .bbl.

related field (separated values)

Citation keys of other entries which have a relationship to this entry. The relationship
is specified by the relatedtype field. Please refer to § 3.5 for further details.

relatedoptions field (separated values)

Per-type options to set for a related entry. Note that this does not set the options on
the related entry itself, only the dataonly clone which is used as a datasource for
the parent entry.

relatedtype field (identifier)

An identifier which specified the type of relationship for the keys listed in the
related field. The identifier is a localised bibliography string printed before the
data from the related entry list. It is also used to identify type-specific formatting
directives and bibliography macros for the related entries. Please refer to § 3.5 for
further details.

31

relatedstring field (literal)

A field used to override the bibliography string specified by relatedtype. Please
refer to § 3.5 for further details.

sortkey field (literal)

A field used to modify the sorting order of the bibliography. Think of this field as
the master sort key. If present, biblatex uses this field during sorting and ignores
everything else, except for the presort field. Please refer to § 3.6 for further details.
This field is consumed by the backend processing and does not appear in the .bbl.

sortname list (name)

A name or a list of names used to modify the sorting order of the bibliography. If
present, this list is used instead ofauthor oreditorwhen sorting the bibliography.
Please refer to § 3.6 for further details. This field is consumed by the backend
processing and does not appear in the .bbl.

sortshorthand field (literal)

Similar to sortkey but used in the list of shorthands. If present, biblatex uses
this field instead of shorthandwhen sorting the list of shorthands. This is useful if
the shorthand field holds shorthands with formatting commands such as \emph
or \textbf. This field is consumed by the backend processing and does not appear
in the .bbl.

sorttitle field (literal)

A field used to modify the sorting order of the bibliography. If present, this field is
used instead of the title field when sorting the bibliography. The sorttitle
field may come in handy if you have an entry with a title like “An Introduction
to…” and want that alphabetized under ‘I’ rather than ‘A’. In this case, you could put
“Introduction to…” in the sorttitle field. Please refer to § 3.6 for further details.
This field is consumed by the backend processing and does not appear in the .bbl.

sortyear field (integer)

A field used to modify the sorting order of the bibliography. In the default sorting
templates, if this field is present, it is used instead of the year field when sorting
the bibliography. Please refer to § 3.6 for further details. This field is consumed by
the backend processing and does not appear in the .bbl.

xdata field (separated list of entrykeys)

This field inherits data from one or more @xdata entries. Conceptually, the xdata
field is related to crossref and xref: crossref establishes a logical paren-
t/child relation and inherits data; xref establishes as logical parent/child relation
without inheriting data; xdata inherits data without establishing a relation. The
value of the xdatamay be a single entry key or a separated list of keys. See § 3.14.6
for further details. This field is consumed by the backend processing and does not
appear in the .bbl.

xref field (entry key)

This field is an alternative cross-referencing mechanism. It differs from crossref

in that the child entry will not inherit any data from the parent entry specified in

32

the xref field. If the number of child entries referencing a specific parent entry
hits a certain threshold, the parent entry is automatically added to the bibliography
even if it has not been cited explicitly. The threshold is settable with the minxrefs
package option from § 3.1.2.1. Style authors should note that whether or not the
xref fields of the child entries are defined on the biblatex level depends on the
availability of the parent entry. If the parent entry is available, the xref fields of
the child entries will be defined. If not, their xref fields will be undefined. Whether
the parent entry is added to the bibliography implicitly because of the threshold or
explicitly because it has been cited does not matter. See also the crossref field in
this section as well as § 2.4.1.

2.2.4 Custom Fields

The fields listed in this section are intended for special bibliography styles. They are
not used by the standard bibliography styles.

name[a–c] list (name)

Custom lists for special bibliography styles. Not used by the standard bibliography
styles.

name[a–c]type field (key)

Similar to authortype and editortype but referring to the fields
name[a--c]. Not used by the standard bibliography styles.

list[a–f] list (literal)

Custom lists for special bibliography styles. Not used by the standard bibliography
styles.

user[a–f] field (literal)

Custom fields for special bibliography styles. Not used by the standard bibliography
styles.

verb[a–c] field (literal)

Similar to the custom fields above except that these are verbatim fields. Not used by
the standard bibliography styles.

2.2.5 Field Aliases

The aliases listed in this section are provided for backwards compatibility with tradi-
tional BibTeX and other applications based on traditional BibTeX styles. Note that
these aliases are immediately resolved as the bib file is processed. All bibliography
and citation styles must use the names of the fields they point to, not the alias. In
bib files, you may use either the alias or the field name but not both at the same
time.

address list (literal)

An alias for location, provided for BibTeX compatibility. Traditional BibTeX uses
the slightly misleading field name address for the place of publication, i. e., the
location of the publisher, while biblatex uses the generic field name location.
See §§ 2.2.2 and 2.3.4.

33

annote field (literal)

An alias for annotation, provided for jurabib compatibility. See § 2.2.2.

archiveprefix field (literal)

An alias for eprinttype, provided for arXiv compatibility. See §§ 2.2.2 and 3.14.7.

journal field (literal)

An alias for journaltitle, provided for BibTeX compatibility. See § 2.2.2.

key field (literal)

An alias for sortkey, provided for BibTeX compatibility. See § 2.2.3.

pdf field (verbatim)

An alias for file, provided for JabRef compatibility. See § 2.2.2.

primaryclass field (literal)

An alias for eprintclass, provided for arXiv compatibility. See §§ 2.2.2 and
3.14.7.

school list (literal)

An alias forinstitution, provided for BibTeX compatibility. Theinstitution
field is used by traditional BibTeX for technical reports whereas the school field
holds the institution associated with theses. The biblatex package employs the
generic field name institution in both cases. See §§ 2.2.2 and 2.3.4.

2.3 Usage Notes

The entry types and fields supported by this package should for the most part be
intuitive to use for anyone familiar with BibTeX. However, apart from the additional
types and fields provided by this package, some of the familiar ones are handled in
a way which is in need of explanation. This package includes some compatibility
code for bib files which were generated with a traditional BibTeX style in mind.
Unfortunately, it is not possible to handle all legacy files automatically because
biblatex’s data model is slightly different from traditional BibTeX. Therefore,
such bib files will most likely require editing in order to work properly with this
package. In sum, the following items are different from traditional BibTeX styles:

• The entry type @inbook. See §§ 2.1.1 and 2.3.1 for details.

• The fields institution, organization, and publisher as well as the
aliases address and school. See §§ 2.2.2, 2.2.5, 2.3.4 for details.

• The handling of certain types of titles. See § 2.3.5 for details.

• The field series. See §§ 2.2.2 and 2.3.7 for details.

• The fields year and month. See §§ 2.2.2, 2.3.8, 2.3.9, 2.3.10 for details.

• The field edition. See § 2.2.2 for details.

• The field key. See § 2.3.2 for details.

Users of the jurabib package should note that the shortauthor field is
treated as a name list by biblatex, see § 2.3.3 for details.

34

2.3.1 The Entry Type @inbook

Use the @inbook entry type for a self-contained part of a book with its own title
only. It relates to @book just like @incollection relates to @collection. See
§ 2.3.5 for examples. If you want to refer to a chapter or section of a book, simply use
the book type and add a chapter and/or pages field. Whether a bibliography
should at all include references to chapters or sections is controversial because a
chapter is not a bibliographic entity.

2.3.2 Missing and Omissible Data

The fields marked as ‘required’ in § 2.1.1 are not strictly required in all cases. The
bibliography styles which come with this package can get by with as little as a title
field for most entry types. A book published anonymously, a periodical without
an explicit editor, or a software manual without an explicit author should pose no
problem as far as the bibliography is concerned. Citation styles, however, may
have different requirements. For example, an author-year citation scheme obviously
requires an author/editor and a year field.

You may generally use the label field to provide a substitute for any missing data
required for citations. How the label field is employed depends on the citation style.
The author-year citation styles which come with this package use the label field as
a fallback if either the author/editor or the year is missing. The numeric styles,
on the other hand, do not use it at all since the numeric scheme is independent of
the available data. The author-title styles ignore it as well, because the bare title
is usually sufficient to form a unique citation and a title is expected to be available in
any case. The label field may also be used to override the non-numeric portion of
the automatically generated labelalpha field used by alphabetic citation styles.
See § 4.2.4 for details.

Note that traditional BibTeX styles support a key field which is used for alpha-
betizing if both author and editor are missing. The biblatex package treats
key as an alias for sortkey. In addition to that, it offers very fine-grained sorting
controls, see §§ 2.2.3 and 3.6 for details. The natbib package employs the key field
as a fallback label for citations. Use the label field instead.

2.3.3 Corporate Authors and Editors

Corporate authors and editors are given in theauthor oreditor field, respectively.
Note that they must be wrapped in an extra pair of curly braces to prevent data
parsing from treating them as personal names which are to be dissected into their
components. Use the shortauthor field if you want to give an abbreviated form
of the name or an acronym for use in citations.

author = {{National Aeronautics and Space

↪→ Administration}},

shortauthor = {NASA},

The default citation styles will use the short name in all citations while the full name
is printed in the bibliography. For corporate editors, use the corresponding fields
editor and shorteditor. Since all of these fields are treated as name lists, it is
possible to mix personal names and corporate names, provided that the names of all
corporations and institutions are wrapped in braces.

35

editor = {{National Aeronautics and Space

↪→ Administration}

and Doe, John},

shorteditor = {NASA and Doe, John},

Users switching from the jurabib package to biblatex should note that the
shortauthor field is treated as a name list.

2.3.4 Literal Lists

The fields institution, organization, publisher, and location are lit-
eral lists in terms of § 2.2. This also applies to origlocation, origpublisher
and to the field aliases address and school. All of these fields may contain a list
of items separated by the keyword ‘and’. If they contain a literal ‘and’, it must be
wrapped in braces.

publisher = {William Reid {and} Company},

institution = {Office of Information Management {and}

↪→ Communications},

organization = {American Society for Photogrammetry {and

↪→ } Remote Sensing

and

American Congress on Surveying {and}

↪→ Mapping},

Note the difference between a literal ‘{and}’ and the list separator ‘and’ in the
above examples. You may also wrap the entire name in braces:

publisher = {{William Reid and Company}},

institution = {{Office of Information Management and

↪→ Communications}},

organization = {{American Society for Photogrammetry and

↪→ Remote Sensing}

and

{American Congress on Surveying and

↪→ Mapping}},

Legacy files which have not been updated for use with biblatex will still work if
these fields do not contain a literal ‘and’. However, note that you will miss out on
the additional features of literal lists in this case, such as configurable formatting
and automatic truncation.

2.3.5 Titles

The following examples demonstrate how to handle different types of titles. Let’s
start with a five-volume work which is referred to as a whole:

@MvBook{works,

author = {Shakespeare, William},

title = {Collected Works},

volumes = {5},

...

36

The individual volumes of a multi-volume work usually have a title of their own.
Suppose the fourth volume of the Collected Works includes Shakespeare’s sonnets
and we are referring to this volume only:

@Book{works:4,

author = {Shakespeare, William},

maintitle = {Collected Works},

title = {Sonnets},

volume = {4},

...

If the individual volumes do not have a title, we put the main title in the title field
and include a volume number:

@Book{works:4,

author = {Shakespeare, William},

title = {Collected Works},

volume = {4},

...

In the next example, we are referring to a part of a volume, but this part is a self-
contained work with its own title. The respective volume also has a title and there is
still the main title of the entire edition:

@InBook{lear,

author = {Shakespeare, William},

bookauthor = {Shakespeare, William},

maintitle = {Collected Works},

booktitle = {Tragedies},

title = {King Lear},

volume = {1},

pages = {53-159},

...

Suppose the first volume of the Collected Works includes a reprinted essay by a well-
known scholar. This is not the usual introduction by the editor but a self-contained
work. The Collected Works also have a separate editor:

@InBook{stage,

author = {Expert, Edward},

title = {Shakespeare and the Elizabethan Stage},

bookauthor = {Shakespeare, William},

editor = {Bookmaker, Bernard},

maintitle = {Collected Works},

booktitle = {Tragedies},

volume = {1},

pages = {7-49},

...

See § 2.3.7 for further examples.

37

2.3.6 Editorial Roles

The type of editorial role performed by an editor in one of the editor fields (i. e.,
editor, editora, editorb, editorc) may be specified in the corresponding
editor...type field. The following roles are supported by default. The role
‘editor’ is the default. In this case, the editortype field is omissible.

editor The main editor. This is the most generic editorial role and the default value.
compiler Similar to editor but used if the task of the editor is mainly compiling.
founder The founding editor of a periodical or a comprehensive publication project such as a

‘Collected Works’ edition or a long-running legal commentary.
continuator An editor who continued the work of the founding editor (founder) but was

subsequently replaced by the current editor (editor).
redactor A secondary editor whose task is redacting the work.
reviser A secondary editor whose task is revising the work.

collaborator A secondary editor or a consultant to the editor.
organizer Similar to editor but used if the task of the editor is mainly organizing.

For example, if the task of the editor is compiling, you may indicate that in the
corresponding editortype field:

@Collection{...,

editor = {Editor, Edward},

editortype = {compiler},

...

There may also be secondary editors in addition to the main editor:

@Book{...,

author = {...},

editor = {Editor, Edward},

editora = {Redactor, Randolph},

editoratype = {redactor},

editorb = {Consultant, Conrad},

editorbtype = {collaborator},

...

Periodicals or long-running publication projects may see several generations of
editors. For example, there may be a founding editor in addition to the current
editor:

@Book{...,

author = {...},

editor = {Editor, Edward},

editora = {Founder, Frederic},

editoratype = {founder},

...

Note that only the editor is considered in citations and when sorting the biblio-
graphy. If an entry is typically cited by the founding editor (and sorted accordingly
in the bibliography), the founder goes into the editor field and the current editor
moves to one of the editor... fields:

38

@Collection{...,

editor = {Founder, Frederic},

editortype = {founder},

editora = {Editor, Edward},

...

You may add more roles by initializing and defining a new localisation key whose
name corresponds to the identifier in the editor...type field. See §§ 3.10 and
4.9.1 for details.

2.3.7 Publication and Journal Series

The series field is used by traditional BibTeX styles both for the main title of
a multi-volume work and for a publication series, i. e., a loosely related sequence
of books by the same publisher which deal with the same general topic or belong
to the same field of research. This may be ambiguous. This package introduces a
maintitle field for multi-volume works and employs series for publication
series only. The volume or number of a book in the series goes in the number field
in this case:

@Book{...,

author = {Expert, Edward},

title = {Shakespeare and the Elizabethan Age},

series = {Studies in English Literature and

↪→ Drama},

number = {57},

...

The @article entry type makes use of the series field as well, but handles it in
a special way. First, a test is performed to determine whether the value of the field is
an integer. If so, it will be printed as an ordinal. If not, another test is performed to
determine whether it is a localisation key. If so, the localised string is printed. If not,
the value is printed as is. Consider the following example of a journal published in
numbered series:

@Article{...,

journal = {Journal Name},

series = {3},

volume = {15},

number = {7},

year = {1995},

...

This entry will be printed as “Journal Name. 3rd ser. 15.7 (1995)”. Some journals
use designations such as “old series” and “new series” instead of a number. Such
designations may be given in the series field as well, either as a literal string
or as a localisation key. Consider the following example which makes use of the
localisation key newseries:

@Article{...,

journal = {Journal Name},

39

Table 3: Date Specifications
Date Specification Formatted Date (Examples)

Short/12-hour Format Long/24-hour Format

1850 1850 1850
1997/ 1997– 1997–
/1997 –1997 –1997
1997/.. 1997– 1997–
../1997 –1997 –1997
1967-02 02/1967 February 1967
2009-01-31 31/01/2009 31st January 2009
1988/1992 1988–1992 1988–1992
2002-01/2002-02 01/2002–02/2002 January 2002–February 2002
1995-03-30/1995-04-05 30/03/1995–05/04/1995 30th March 1995–5th April 1995
2004-04-05T14:34:00 05/04/2004 2:34 PM 5th April 2004 14:34:00

series = {newseries},

volume = {9},

year = {1998},

...

This entry will be printed as “Journal Name. New ser. 9 (1998)”. See § 4.9.2 for a list
of localisation keys defined by default.

2.3.8 Date and Time Specifications

Date fields such as the default data model dates date, origdate, eventdate,
and urldate adhere to iso8601-2 Extended Format specification level 1. In addition
to the iso8601-2 empty date range markers, you may also specify an open ended/start
date range by giving the range separator and omitting the end/start date (e. g., YYYY/,
/YYYY). See table 3 for some examples of valid date specifications and the formatted
dates automatically generated by biblatex. The formatted date is language specific
and will be adapted automatically. If there is no date field in an entry, biblatex
will also consider the fields year and month for backwards compatibility with
traditional BibTeX but this is not encouraged as explicit year and month are not
parsed for date meta-information markers or times and are used as-is. Style authors
should note that date fields like date or origdate are only available in the bib
file. All dates are parsed and dissected into their components as the bib file is
processed. The date and time components are made available to styles by way of
the special fields discussed in § 4.2.4.3. See this section and table 10 on page 182 for
further information.

iso8601-2 Extended Format dates are astronomical dates in which year ‘0’ exists.
When outputting dates in BCE or BC era (see the dateera option below), note that
they will typically be one year earlier since BCE/BC era do not have a year 0 (year 0
is 1 BCE/BC). This conversion is automatic. See examples in table 5.

Date field namesmust endwith the string ‘date’, as with the default date fields. Bear
this in mind when adding new date fields to the datamodel (see § 4.5.4). biblatex
will check all date fields after reading the data model and will exit with an error if it
finds a date field which does not adhere to this naming convention.

iso8601-2 supports dates before common era (BCE/BC) by way of a negative date
format and supports ‘approximate’ (circa) and uncertain dates. Such date formats
set internal markers which can be tested for so that appropriate localised mark-
ers (such as circa or beforecommonera) can be inserted. Also supported are

40

Table 4: ISO8601-2 4.3 Unspecified Date Parsing
Date Specification Expanded Range Meta-information

199X 1990/1999 yearindecade
19XX 1900/1999 yearincentury
1999-XX 1999-01/1999-12 monthinyear
1999-01-XX 1999-01-01/1999-01-31 dayinmonth
1999-XX-XX 1999-01-01/1999-12-31 dayinyear

‘unspecified’ dates (iso8601-2 4.3) which are automatically expanded into appropri-
ate data ranges accompanied by a field <datetype>dateunspecified which
details the granularity of the unspecified data. Styles may use this information to
format such dates appropriately but the standard styles do not do this. See table 4 on
page 41 for the allowed iso8601-2 ‘unspecified’ formats, their range expansions and
<datetype>dateunspecified values (see § 4.2.4.1).

Table 5 shows formats which use appropriate tests and formatting. See the date
meta-information tests in § 4.6.2 and the localisation strings in § 4.9.2.21. See also the
96-dates.tex example file for complete examples of the tests and localisation
strings use.

The output of ‘circa’, uncertainty and era information in standard styles (or custom
styles not customising the internal \mkdaterange* macros) is controlled by the
package options datecirca, dateuncertain, dateera and dateeraauto
(see § 3.1.2.1). See table 5 on page 42 for examples which assumes these options are
all used.

2.3.9 Year, Month and Date

The fields year and month are still supported by biblatex, but the full set of
date features (day and time precision, ranges, …) can only be used with date. It is
therefore recommended to prefer date over year and month unless backwards
compatibility of the bib file with classical BibTeX is required.

2.3.10 Months and Journal Issues

The month field is an integer field. The bibliography style converts the month to
a language-dependent string as required. For backwards compatibility, you may
also use the following three-letter abbreviations in the month field: jan, feb, mar,
apr, may, jun, jul, aug, sep, oct, nov, dec. Note that these abbreviations are
BibTeX strings which must be given without any braces or quotes. When using them,
don’t say month={jan} or month="jan" but month=jan. It is not possible
to specify a month such as month={8/9}. Use the date field for date ranges
instead. Quarterly journals are typically identified by a designation such as ‘Spring’
or ‘Summer’ which should be given in the issue field. The placement of the issue
field in @article entries is similar to and overrides the month field.

2.3.11 Journal Numbers and Issues

The terms ‘number’, ‘issue’ and even ‘issue number’ are often used synonymously
by journals to refer to the subdvision of a volume. The fact that biblatex’s data
model has fields of both names can sometimes lead to confusion about which field
should be used. First and foremost the word that the journal uses for the subdivsion
of a volume should be of minor importance, what matters is the role in the data

41

Table 5: Enhanced Date Specifications
Date Specification Formatted Date (Examples)

Output Format Output Format Notes

0000 1 BC dateera=christian prints beforechrist locali-
sation

-0876 877 BCE dateera=secular prints beforecommonera local-
isation string

-0877/-0866 878 BC–867 BC using \ifdateera test and beforechrist localisa-
tion string

0768 0768 CE using dateeraauto set to ‘1000’ and commonera lo-
calisation string

-0343-02 344-02 BCE
0343-02-03 343-02-03 CE with dateeraauto=400
0343-02-03 343-02-02 CE with dateeraauto=400 and julian
1723~ circa 1723 using \ifdatecirca test
1723? 1723? using \ifdateuncertain test
1723% circa 1723? using \ifdateuncertain and \ifdatecirca tests
2004-22 2004 also, yeardivision is set to the localisation string ‘sum-

mer’
2004-24 2004 also, yeardivision is set to the localisation string ‘win-

ter’

model. As a rule of thumb number is the right field in most circumstances. In
the standard styles number modifies volume, whereas issue modifies the date
(year) of the entry. Numeric identifiers and short designators that are not necessarily
(entirely) numeric such as ‘A’, ‘S1’, ‘C2’, ‘Suppl. 3’, ‘4es’ would go into the number
field, because they usually modify the volume. The output of—especially longer—
non-numeric input for number should be checked since it could potentially look
odd with some styles. The field issue can be used for designations such as ‘Spring’,
‘Winter’ or ‘Michaelmas term’ if that is commonly used to refer to the journal.

The ‘article number’ or ‘paper number’, which can be used instead of—or along
with—a page range to pinpoint a specific article within another work, goes into the
eid field, whose placement in the standard styles is similar to the analogous pages
field.

2.3.12 Pagination

When specifying a page or page range, either in the pages field of an entry or in the
〈postnote〉 argument to a citation command, it is convenient to have biblatex add
prefixes like ‘p.’ or ‘pp.’ automatically and this is indeed what this package does by
default. However, some works may use a different pagination scheme or may not be
cited by page but rather by verse or line number. This is when the pagination and
bookpagination fields come into play. As an example, consider the following
entry:

@InBook{key,

title = {...},

pagination = {verse},

booktitle = {...},

bookpagination = {page},

pages = {53--65},

...

42

The bookpagination field affects the formatting of the pages and pagetotal
fields in the list of references. Since page is the default, this field is omissible in
the above example. In this case, the page range will be formatted as ‘pp. 53–65’.
Suppose that, when quoting from this work, it is customary to use verse numbers
rather than page numbers in citations. This is reflected by the pagination field,
which affects the formatting of the 〈postnote〉 argument to any citation command.
With a citation like \cite[17]{key}, the postnote will be formatted as ‘v. 17’.
Setting the pagination field to section would yield ‘§ 17’. See § 3.15.3 for
further usage instructions.

The pagination and bookpagination fields are key fields. This package
will try to use their value as a localisation key, provided that the key is defined.
Always use the singular form of the key name in bib files, the plural is formed au-
tomatically. The keys page, column, line, verse, section, and paragraph
are predefined, with page being the default. The string ‘none’ has a special mean-
ing when used in a pagination or bookpagination field. It suppresses the
prefix for the respective entry. If there are no predefined localisation keys for the
pagination scheme required by a certain entry, you can simply add them. See the com-
mands \NewBibliographyString and \DefineBibliographyStrings
in § 3.10. You need to define two localisation strings for each additional pagination
scheme: the singular form (whose localisation key corresponds to the value of the
pagination field) and the plural form (whose localisation key must be the singular
plus the letter ‘s’). See the predefined keys in § 4.9.2 for examples.

2.4 Hints and Caveats

This section provides some additional hints concerning the data interface of this
package. It also addresses some common problems.

2.4.1 Cross-referencing

biber features a highly customizable cross-referencing mechanism with flexible
data inheritance rules. Duplicating certain fields in the parent entry or adding empty
fields to the child entry is no longer required. Entries are specified in a natural way:

@Book{book,

author = {Author},

title = {Booktitle},

subtitle = {Booksubtitle},

publisher = {Publisher},

location = {Location},

date = {1995},

}

@InBook{inbook,

crossref = {book},

title = {Title},

pages = {5--25},

}

The title field of the parent will be copied to the booktitle field of the child,
the subtitle becomes the booksubtitle. The author of the parent becomes
the bookauthor of the child and, since the child does not provide an author
field, it is also duplicated as the author of the child. After data inheritance, the
child entry is similar to this:

43

author = {Author},

bookauthor = {Author},

title = {Title},

booktitle = {Booktitle},

booksubtitle = {Booksubtitle},

publisher = {Publisher},

location = {Location},

date = {1995},

pages = {5--25},

See appendix B for a list of mapping rules set up by default. Note that all of this is cus-
tomizable. See § 4.5.12 on how to configure biber’s cross-referencing mechanism.
See also § 2.2.3.

2.4.1.1 The xref field

In addition to the crossref field, biblatex supports a simplified cross-refer-
encing mechanism based on the xref field. This is useful if you want to establish
a parent/child relation between two associated entries but prefer to keep them in-
dependent as far as the data is concerned. The xref field differs from crossref

in that the child entry will not inherit any data from the parent. If the parent is
referenced by a certain number of child entries, biblatex will automatically add
it to the bibliography. The threshold is controlled by the minxrefs package option
from § 3.1.2.1.u See also § 2.2.3.

2.4.2 Sorting and Encoding Issues

biber handles us-ascii, 8-bit encodings such as Latin 1, and utf-8. It features true
Unicode support and is capable of reencoding the bib data on the fly in a robust way.
For sorting, biber uses a Perl implementation of the Unicode Collation Algorithm
(uca), as outlined in Unicode Technical Standard #10.14 Collation tailoring based on
the Unicode Common Locale Data Repository (cldr) is also supported.15

Supporting Unicode implies much more than handling utf-8 input. Unicode is
a complex standard covering more than its most well-known parts, the Unicode
character encoding and transport encodings such as utf-8. It also standardizes
aspects such as string collation, which is required for language-sensitive sorting. For
example, by using the Unicode Collation Algorithm, biber can handle the character
‘ß’ without any manual intervention. All you need to do to get localised sorting is
specify the locale:

\usepackage[sortlocale=de]{biblatex}

or if you are using German as the main document language via babel or
polyglossia:

\usepackage[sortlocale=auto]{biblatex}

14
https://unicode.org/reports/tr10/

15
http://cldr.unicode.org/

44

https://unicode.org/reports/tr10/
http://cldr.unicode.org/

This will make biblatex pass the babel/polyglossia main document lan-
guage as the locale which biber will map into a suitable default locale. biber
will not try to get locale information from its environment as this makes document
processing dependent on something not in the document which is against TeX’s
spirit of reproducibility. This also makes sense since babel/polyglossia are in
fact the relevant environment for a document. Note that this will also work with
8-bit encodings such as Latin 9, i. e., you can take advantage of Unicode-based sorting
even though you are not using utf-8 input. See § 2.4.2.1 on how to specify input
and data encodings properly.

2.4.2.1 Specifying Encodings

When using a non-us-ascii encoding in the bib file, it is important to understand
what biblatex can do for you and what may require manual intervention. The
package takes care of the LaTeX side, i. e., it ensures that the data imported from the
bbl file is interpreted correctly, provided that the bibencoding package option
(or the datasource specific override for this, see § 3.8.1) is set properly. All of this is
handled automatically and no further steps, apart from setting the bibencoding
option in certain cases (namely when the encoding of the bib file differs from the
encoding of the tex file), are required provided that you set up your document
encoding (i. e., load inputenc or related packages if required) before biblatex
is loaded. Here are a few typical usage scenarios along with the relevant lines from
the document preamble:

• us-ascii notation in both the tex and the bib file with pdfTeX or traditional
TeX:

\usepackage{biblatex}

• Latin 1 encoding (iso-8859-1) in the tex file, us-ascii notation in the bib file
with pdfTeX or traditional TeX:

\usepackage[latin1]{inputenc}

\usepackage[bibencoding=ascii]{biblatex}

• Latin 9 encoding (iso-8859-15) in both the tex and the bib file with pdfTeX
or traditional:

\usepackage[latin9]{inputenc}

\usepackage[bibencoding=auto]{biblatex}

Since bibencoding=auto is the default setting, the option is omissible.
The following setup will have the same effect:

\usepackage[latin9]{inputenc}

\usepackage{biblatex}

• utf-8 encoding in the tex file, Latin 1 (iso-8859-1) in the bib file with pdfTeX
or traditional TeX:

45

\usepackage[utf8]{inputenc}

\usepackage[bibencoding=latin1]{biblatex}

The same scenario with LaTeX release 2018-04-01 or above, XeTeX or LuaTeX
in native utf-8 mode:

\usepackage[bibencoding=latin1]{biblatex}

biber can handle us-ascii notation, 8-bit encodings such as Latin 1, and utf-8.
It is also capable of reencoding the bib data on the fly (replacing the limited macro-
level reencoding feature of biblatex). This will happen automatically if required,
provided that you specify the encoding of the bib files properly. In addition to the
scenarios discussed above, biber can also handle the following cases:

• Transparent utf-8 workflow, i. e., utf-8 encoding in both the tex and the
bib file with pdfTeX or traditional TeX:

\usepackage[utf8]{inputenc}

\usepackage[bibencoding=auto]{biblatex}

Since bibencoding=auto is the default setting, the option is omissible:

\usepackage[utf8]{inputenc}

\usepackage{biblatex}

The same scenario with XeTeX or LuaTeX in native utf-8 mode:

\usepackage{biblatex}

• It is even possible to combine an 8-bit encoded tex file with utf-8 encoding
in the bib file, provided that all characters in the bib file are also covered by
the selected 8-bit encoding:

\usepackage[latin1]{inputenc}

\usepackage[bibencoding=utf8]{biblatex}

Some workarounds may be required when using traditional TeX or pdfTeX with
utf-8 encoding because inputenc’s utf8 module does not cover all of Unicode.
Roughly speaking, it only covers theWestern European Unicode range. When loading
inputenc with the utf8 option, biblatex will normally instruct biber to
reencode the bib data to utf-8. This may lead to inputenc errors if some of
the characters in the bib file are outside the limited Unicode range supported by
inputenc.

• If you are affected by this problem, try setting the safeinputenc option:

46

\usepackage[utf8]{inputenc}

\usepackage[safeinputenc]{biblatex}

If this option is enabled, biblatex will ignore inputenc’s utf8 option
and use us-ascii. biber will then try to convert the bib data to us-ascii
notation. For example, it will convert S̨ to \k{S}. This option is similar to set-
ting texencoding=ascii but will only take effect in this specific scenario
(inputenc/inputenx with utf-8). This workaround takes advantage of
the fact that both Unicode and the utf-8 transport encoding are backwards
compatible with us-ascii.

This solution may be acceptable as a workaround if the data in the bib file is
mostly us-ascii anyway, with only a few strings, such as some authors’ names,
causing problems. However, keep in mind that it will not magically make traditional
TeX or pdfTeX support Unicode. It may help if the occasional odd character is not
supported by inputenc, but may still be processed by TeX when using an accent
command (e. g., \d{S} instead of Ṣ). If you need full Unicode support, however,
switch to XeTeX or LuaTeX.

Typical errors when inputenc cannot handle a certain UTF-8 character are:

! Package inputenc Error: Unicode char <char> (U+<codepoint>)

(inputenc) not set up for use with LaTeX.

but also less obvious things like:

! Argument of \UTFviii@three@octets has an extra }.

3 User Guide

This part of the manual documents the user interface of the biblatex package.
The user guide covers everything you need to know in order to use biblatex with
the default styles that come with this package. You should read the user guide first in
any case. If you want to write your own citation and/or bibliography styles, continue
with the author guide afterwards.

3.1 Package Options

All package options are given in 〈key〉=〈value〉 notation. The value true is omissible
with all boolean keys. For example, giving sortciteswithout a value is equivalent
to sortcites=true.

3.1.1 Load-time Options

The following options must be used as biblatex is loaded, i. e., in the optional
argument to \usepackage.

backend=bibtex, bibtex8, biber default: biber

Specifies the database backend. The following backends are supported:

47

biber biber, the default backend of biblatex, supports us-ascii, 8-
bit encodings, utf-8, on-the-fly reencoding, locale-specific sorting,
and many other features. Locale-specific sorting, case-sensitive sort-
ing, and upper/lowercase precedence are controlled by the options
sortlocale, sortcase, and sortupper, respectively.

bibtex Legacy BibTeX. Traditional BibTeX supports us-ascii encoding only.
Sorting is always case-insensitive.

bibtex8 bibtex8, the 8-bit implementation of BibTeX, supports us-ascii and
8-bit encodings such as Latin 1.

See § 3.16 for details of using BibTeX as a backend.

style=〈file〉 default: numeric

Loads the bibliography style 〈file〉.bbx and the citation style 〈file〉.cbx. See § 3.3
for an overview of the standard styles.

bibstyle=〈file〉 default: numeric

Loads the bibliography style 〈file〉.bbx. See § 3.3.2 for an overview of the standard
bibliography styles.

citestyle=〈file〉 default: numeric

Loads the citation style 〈file〉.cbx. See § 3.3.1 for an overview of the standard
citation styles.

natbib=true, false default: false

Loads compatibility module which provides aliases for the citation commands of the
natbib package. See § 3.9.9 for details.

mcite=true, false default: false

Loads a citation module which provides mcite/mciteplus-like citation com-
mands. See § 3.9.10 for details.

casechanger=auto, latex2e, expl3 default: auto

This option selects the implementation ofbiblatex’s case changing functions, most
prominently \MakeSentenceCase*. expl3 selects the new implementation
based on the LaTeX 3modulel3text. Note that thel3textmodule assumes utf-8
input and that your expl3 version should be new enough (at least version 2020-04-
06). latex2e selects the original implementation, which has tricky brace protection
behaviour and some shortcomings when dealing with non-us-ascii characters. The
default auto selects the case changing code based on the available expl3 version
and detected document encoding (expl3 is selected if expl3 is at least version
2020-04-06 and the document encoding is detected as utf-8).

3.1.2 Preamble Options

3.1.2.1 General

The following options may be used in the optional argument to \usepackage as
well as in the configuration file and the document preamble. The default value listed
to the right is the package default. Note that bibliography and citation styles may
modify the default setting at load time, see § 3.3 for details.

48

msform=〈form〉 default: default

The default multiscript field alternate ‘form’. Must be one of the forms declared in
‘multiscriptforms’ constant. This controls the default ‘form’ selected by biber and
also the default ‘form’ selected by citations. Can be overridden on a per-refcontext
basis. See 3.17.

mslang=〈bcp47tag〉 default: en

The default multiscript field alternate ‘language’ as a BCP47 tag. This controls
the default ‘language’ selected by biber and also the default ‘language’ selected
by citations. Can be overridden on a per-refcontext basis. See 3.17. If babel or
polyglossia are used, this is determined from the main language selected at
the beginning of the document. If neither babel or polyglossia is loaded, the
default is as show above.

dynamiclabel=true, false default: false

Normally the multiscript entryfield alternates pointed to by labelname and
labeltitle are determined for the document via the \DeclareLabelname
and \DeclareLabeltitle commands and this determination is static. If this
option is ‘true’, then the multiscript alternate entryfield pointed by labelname
and labeltitle are determined dynamically by the setting of the msform and
mslang options at the point where the labelname or labeltitle are printed.
See § 3.17.

sorting=nty, nyt, nyvt, anyt, anyvt, ynt, ydnt, count, none,
debug, 〈name〉

default: nty

The sorting order of the bibliography. Unless stated otherwise, the entries are sorted
in ascending order. The following choices are available by default:

nty Sort by name, title, year.

nyt Sort by name, year, title.

nyvt Sort by name, year, volume, title.

anyt Sort by alphabetic label, name, year, title.

anyvt Sort by alphabetic label, name, year, volume, title.

ynt Sort by year, name, title.

ydnt Sort by year (descending), name, title.

none Do not sort at all. All entries are processed in citation order.

count Sort in descending order of number of times cited

debug Sort by entry key. This is intended for debugging only.

〈name〉 Use 〈name〉, as defined with \DeclareSortingTemplate

(§ 4.5.6)

Using any of the ‘alphabetic’ sorting templates only makes sense in conjunction
with a bibliography style which prints the corresponding labels. Note that some
bibliography styles initialize this package option to a value different from the package
default (nty). See § 3.3.2 for details. Please refer to § 3.6 for an in-depth explanation
of the above sorting options as well as the fields considered in the sorting process.
See also § 4.5.6 on how to adapt the predefined templates or define new ones.

49

sortcase=true, false default: true

Whether or not to sort the bibliography and the list of shorthands case-sensitively.

sortupper=true, false default: true

This option corresponds to biber’s --sortupper command-line option. If en-
abled, the bibliography is sorted in ‘uppercase before lowercase’ order. Disabling
this option means ‘lowercase before uppercase’ order.

sortlocale=auto, 〈locale〉 default: auto

This option sets the global sorting locale. Every sorting template inherits this locale if
none is specified using the 〈locale〉 option to \printbibliography. Setting this
to auto requests that it be set to the babel/polyglossia main document lan-
guage identifier, if these packages are used and en_US otherwise. biber will map
babel/polyglossia language identifiers into sensible locale identifiers (see the
biber documentation). You can therefore specify either a normal locale identifier
like de_DE_phonebook, es_ES or one of the supported babel/polyglossia
language identifiers if the mapping biber makes of this is fine for you.

sortcites=true, false default: false

Whether or not to sort citations if multiple entry keys are passed to a citation
command. If this option is enabled, citations are sorted according to the current
bibliography context sorting template (see § 3.8.10). This feature works with all
citation styles.

sortsets=true, false default: false

Whether or not to sort set members according to the active reference context sorting
scheme. By default this is false and set members appear in the order given in the
data source.

pluralothers=true, false default: false

Controls whether the localised ‘and others’ string (e.g. ‘et al’) is forced to be plural.
If true, it will only be printed in place of two or more names and if there is only one
name it would replace, the name itself is printed instead. Defaults to false.

maxnames=〈integer〉 default: 3

A threshold affecting all lists of names (author, editor, etc.). If a list exceeds this
threshold, i. e., if it holds more than 〈integer〉 names, it is automatically truncated
according to the setting of the minnames option. maxnames is the master option
which sets maxbibnames, maxcitenames and maxsortnames. Note that the
uniquelist feature can locally override maxnames, see the documentation of
the uniquelist option in § 3.1.2.3 and § 4.11.4.

minnames=〈integer〉 default: 1

A limit affecting all lists of names (author, editor, etc.). If a list holds more
than 〈maxnames〉 names, it is automatically truncated to 〈minnames〉 names. The
〈minnames〉 value must be smaller than or equal to 〈maxnames〉. minnames is
the master option which sets both minbibnames and mincitenames. Like
maxnames the value of minnames can be overridden by uniquelist.

50

maxbibnames=〈integer〉 default: 〈maxnames〉

Similar to maxnames but affects only the bibliography.

minbibnames=〈integer〉 default: 〈minnames〉

Similar to minnames but affects only the bibliography.

maxcitenames=〈integer〉 default: 〈maxnames〉

Similar to maxnames but affects only the citations in the document body.

mincitenames=〈integer〉 default: 〈minnames〉

Similar to minnames but affects only the citations in the document body.

maxsortnames=〈integer〉 default: 〈maxbibnames〉

Similar to maxnames but affects only the names visible to sorting. Since this defaults
to 〈maxbibnames〉, you should set this after maxbibnames if maxbibnames is
explicitly set.

minsortnames=〈integer〉 default: 〈minbibnames〉

Similar to minnames but affects only the names visible to sorting. Since this defaults
to 〈minbibnames〉, you should set this after minbibnames if minbibnames is
explicitly set.

maxitems=〈integer〉 default: 3

Similar to maxnames, but affecting all literal lists (publisher, location, etc.).

minitems=〈integer〉 default: 1

Similar to minnames, but affecting all literal lists (publisher, location, etc.).

autocite=plain, inline, footnote, superscript, ...

This option controls the behavior of the \autocite command discussed in § 3.9.4.
The plain option makes \autocite behave like \cite, inline makes it
behave like \parencite, footnote makes it behave like \footcite, and
superscript makes it behave like \supercite. The options plain, inline,
and footnote are always available, the superscript option is only provided
by the numeric citation styles which come with this package. The citation style may
also define additional options. The default setting of this option depends on the
selected citation style, see § 3.3.1.

autopunct=true, false default: true

This option controls whether the citation commands scan ahead for punctuation
marks. See § 3.9 and \DeclareAutoPunctuation in § 4.7.5 for details.

language=autobib, autocite, auto, 〈language〉 default: autobib

This option controls multilingual support. By default biblatex automatically picks
up the active surrounding language from the babel/polyglossia package16 (and

16Note that biblatex has only limited support for polyglossia versions prior to v1.45. If
polyglossia is used, it should be updated to version 1.45 (2019/10/27) or above.

51

fall back to English if babel/polyglossia is not available). autobib switches
the language for each entry in the bibliography using the langid field and the
language environment specified by the autolang option. autocite switches the
language for each citation using the langid field and the language environment
specified by the autolang option. auto is a shorthand to set both autobib and
autocite. It is also possible to select the package language manually. In this case,
the language chosen will override the langid of entries and you should still choose
a language switching environment with the autolang option to select how the
switch to the manually chosen language is handled. Please refer to table 2 for a list
of supported languages and the corresponding identifiers.

clearlang=true, false default: true

If this option is enabled, biblatex will automatically clear the language field
of all entries whose language matches the babel/polyglossia language of the
document (or the language specified explicitly with the language option) in order
to omit redundant language specifications. The language mappings required by this
feature are provided by the \DeclareRedundantLanguages command from
§ 4.9.1. This option is also settable on a per-type and per-entry basis.

autolang=none, hyphen, other, other*, langname default: none

This option controls which babel language environment17 is used if the
babel/polyglossia package is loaded and a bibliography entry includes a
langid field (see § 2.2.3). Note that regardless of the selected value biblatex
automatically adjusts to the main document language if babel/polyglossia
is loaded. In multilingual documents, it will also continually adjust to the current
language as far as citations and the default language of the bibliography is concerned.
The effect of additional language adjustment, which can negate the effect of picking
up the surrounding language, depends on the language environment selected by this
option. The possible choices are:

none Do not use any additional enclosing language environment at all. This
means that citations and the bibliography are set in the currently
active language—this need not be the main language.

hyphen Enclose the entry in a hyphenrules environment. This will load
hyphenation patterns for the language specified in the langid field
of the entry, if available. Localisation strings and extra language
definitions are not changed and taken from the surrounding language
environment.

other Enclose the entry in an otherlanguage environment. This will
load hyphenation patterns for the specified language, enable all extra
definitions which babel/polyglossia and biblatex provide
for the respective language, and translate key terms such as ‘editor’
and ‘volume’. The extra definitions include localisations of the date
format, of ordinals, and similar things.

other* Enclose the entry in an otherlanguage* environment.
Please note that biblatex treats otherlanguage* like
otherlanguage if langhook is set to extras.

17
polyglossia understands the babel language environments too and so this option controls
both the babel and polyglossia language environments.

52

langname polyglossia only. Enclose the entry in a <languagename>
environment. The benefit of this option value for polyglossia
users is that it takes note of thelangidopts field so that you can add
per-language options to an entry (like selecting a language variant).
When using babel, this option does the same as the other option
value.

langhook=captions, extras default: captions

This option controls whether bibliography strings and extras are written to
\captions<language> or \extras<language>. The exact effect of this
option depend on the language package (babel/polyglossia). Broadly speak-
ing, the language switching environments provided by those packages (except
hyphenrules) either switch language captions and extras or only language extras.
Hence, if this option is set to extras, all language switches will affect biblatex,
whereas with captions only language switches that also switch other parts of the
document language affect biblatex.

autofieldlang=none, hyphen, other, other*, langname default: none

As autolang but controls the language environment at the level of individual
multiscript fields or list items in a multiscript field. This environment overrides
autolang at a more granular level.

autofieldlangstrings=true, false
default: false

Whether to also switch biblatex languages strings when autofieldlang is set
to ‘none’ or ‘hyphen’ (with autolang, this only happens with ‘other’ or ‘other*’).
This allows more fine-grained control over language switching at the entryfield and
entryfield item level.

block=none, space, par, nbpar, ragged default: none

This option controls the extra spacing between blocks, i. e., larger segments of a
bibliography entry. The possible choices are:

none Do not add anything at all.

space Insert additional horizontal space between blocks. This is similar to
the default behavior of the standard LaTeX document classes.

par Start a new paragraph for every block. This is similar to the openbib
option of the standard LaTeX document classes.

nbpar Similar to the par option, but disallows page breaks at block bound-
aries and within an entry.

ragged Inserts a small negative penalty to encourage line breaks at block
boundaries and sets the bibliography ragged right.

The\newblockpunct commandmay also be redefined directly to achieve different
results, see § 3.12.1. Also see § 4.7.1 for additional information.

locallabelwidth=true, false default: false

This option controls whether \printbibliography uses a locally calculated
value for \labelnumberwidth and \labelalphawidth or the global value

53

calculated from all entries. The local value is calculated separately for each biblio-
graphy and takes into account only the entries displayed in that bibliography. This
option is useful if there are several bibliographies with wildly varying label lengths
in the same document.

notetype=foot+end, footonly, endonly default: foot+end

This option controls the behavior of \mkbibfootnote, \mkbibendnote, and
similar wrappers from § 4.10.4. The possible choices are:

foot+end Support both footnotes and endnotes, i. e., \mkbibfootnote will
generate footnotes and \mkbibendnote will generate endnotes.

footonly Force footnotes, i. e., make \mkbibendnote generate footnotes.

endonly Force endnotes, i. e., make \mkbibfootnote generate endnotes.

hyperref=true, false, auto, manual default: auto

Whether or not to transform citations and back references into clickable hyper-
links. This feature requires the hyperref package. It also requires support by the
selected citation style. All standard styles which ship with this package support
hyperlinks. hyperref=auto automatically detects if the hyperref package
has been loaded. This is the default setting. hyperref=false explicitly dis-
ables links even if hyperref is loaded. hyperref=true enables links when
hyperref is loaded, it cannot explicitly enable links if hyperref is not loaded,
as such it works exactly like hyperref=auto except that it will issue a warning
if hyperref is not loaded. hyperref=manual gives full manual control over
hyperref interaction, it should only be needed by package authors in very special
circumstances. With the hyperref=manual setting you are responsible to enable
or disable hyperref support manually with \BiblatexManualHyperrefOn
or \BiblatexManualHyperrefOff yourself. One of the two commands must
be called exactly once; \BiblatexManualHyperrefOn can only be called after
hyperref is loaded.

backref=true, false default: false

Whether or not to print back references in the bibliography. The back references are
a list of page numbers indicating the pages on which the respective bibliography
entry is cited. If there are refsection environments in the document, the back
references are local to the reference sections. Strictly speaking, this option only
controls whether the biblatex package collects the data required to print such
references. This feature still has to be supported by the selected bibliography style.
All standard styles which come with this package do so.

backrefstyle=none, three, two, two+, three+, all+ default: three

This option controls how sequences of consecutive pages in the list of back references
are formatted. The following styles are available:

none Disable this feature, i. e., do not compress the page list.

three Compress any sequence of three or more consecutive pages to a range,
e. g., the list ‘1, 2, 11, 12, 13, 21, 22, 23, 24’ is compressed to ‘1, 2, 11–13,
21–24’.

two Compress any sequence of two or more consecutive pages to a range,
e. g., the above list is compressed to ‘1–2, 11–13, 21–24’.

54

two+ Similar in concept to two but a sequence of exactly two consecutive
pages is printed using the starting page and the localisation string
sequens, e. g., the above list is compressed to ‘1 sq., 11–13, 21–24’.

three+ Similar in concept to two+ but a sequence of exactly three consec-
utive pages is printed using the starting page and the localisation
string sequentes, e. g., the above list is compressed to ‘1 sq., 11 sqq.,
21–24’.

all+ Similar in concept to three+ but any sequence of consecutive pages
is printed as an open-ended range, e. g., the above list is compressed
to ‘1 sq., 11 sqq., 21 sqq.’.

All styles support both Arabic and Roman numerals. In order to avoid potentially
ambiguous lists, different sets of numerals will not be mixed when generating ranges,
e. g., the list ‘iii, iv, v, 6, 7, 8’ is compressed to ‘iii–v, 6–8’.

backrefsetstyle=setonly, memonly, setormem, setandmem,
memandset, setplusmem

default: setonly

This option controls how back references to @set entries and their members are
handled. The following options are available:

setonly All back references are added to the @set entry. The pageref lists
of set members remain blank.

memonly References to set members are added to the respective member. Ref-
erences to the @set entry are added to all members. The pageref
list of the @set entry remains blank.

setormem References to the@set entry are added to the@set entry. References
to set members are added to the respective member.

setandmem References to the @set entry are added to the @set entry. Refer-
ences to set members are added to the respective member and to the
@set entry.

memandset References to the @set entry are added to the @set entry and to
all members. References to set members are added to the respective
member.

setplusmem References to the @set entry are added to the @set entry and to
all members. References to set members are added to the respective
member and to the @set entry.

backreffloats=true, false default: true

Whether to enable back references to citations in floats.

indexing=true, false, cite, bib default: false

This option controls indexing in citations and in the bibliography. More precisely,
it affects the \ifciteindex and \ifbibindex commands from § 4.6.2. The
option is settable on a global, a per-type, or on a per-entry basis. The possible choices
are:

true Enable indexing globally.

false Disable indexing globally.

cite Enable indexing in citations only.

55

bib Enable indexing in the bibliography only.

This feature requires support by the selected citation style. All standard styles
which come with this package support indexing of both citations and entries in the
bibliography. Note that you still need to enable indexing globally with \makeindex
to get an index.

loadfiles=true, false default: false

This option controls whether external files requested by way of the \printfile
command are loaded. See also § 3.14.8 and \printfile in § 4.4.1. Note that this
feature is disabled by default for performance reasons.

refsection=none, part, chapter, chapter+, section, section+,
subsection, subsection+

default: none

This option automatically starts a new reference section at a document division such
as a chapter or a section. This is equivalent to the \newrefsection command,
see § 3.8.4 for details. The following choice of document divisions is available:

none Disable this feature.

part Start a reference section at every \part command.

chapter Start a reference section at every \chapter command.

chapter+ Start a reference section at every \chapter and every higher level
of sectioning, i.e. \part.

section Start a reference section at every \section command.

section+ Start a reference section at every \section and every higher level
of sectioning, i.e. \part and \chapter (if available).

subsection Start a reference section at every \subsection command.

subsection+ Start a reference section at every \subsection and every
higher level of sectioning, i.e. \part, \chapter (if available) and
\section.

The starred versions of these commands will not start a new reference section.

refsegment=none, part, chapter, chapter+, section, section+,
subsection, subsection+

default: none

Similar to the refsection option but starts a new reference segment. This is
equivalent to the \newrefsegment command, see § 3.8.5 for details. When using
both options, note that you can only apply this option to a lower-level document
division than the one refsection is applied to and that nested reference segments
will be local to the enclosing reference section.

citereset=none, part, chapter, chapter+, section, section+,
subsection, subsection+

default: none

This option automatically executes the \citereset command from § 3.9.8 at a
document division such as a chapter or a section. The following choice of document
divisions is available:

none Disable this feature.

part Perform a reset at every \part command.

chapter Perform a reset at every \chapter command.

56

chapter+ Perform a reset at every \chapter and \part command.

section Perform a reset at every \section command.

section+ Perform a reset at every \section, 〈chapter〉 (if supported by the
class) and \part command.

subsection Perform a reset at every \subsection command.

subsection+ Perform a reset at every \subsection, \section, 〈chapter〉
(if supported by the class) and \part command.

abbreviate=true, false default: true

Whether or not to use long or abbreviated strings in citations and in the bibliography.
This option affects the localisation modules. If this option is enabled, key terms such
as ‘editor’ are abbreviated. If not, they are written out. This option is also settable on
a per-type or per-entry basis.

date=year, short, long, terse, comp, ymd, iso default: comp

This option controls the basic format of printed date specifications. The following
choices are available:

year Use only years, for example:

2010

2010–2012

short Use the short format with verbose ranges, for example:

01/01/2010

21/01/2010–30/01/2010

01/21/2010–01/30/2010

long Use the long format with verbose ranges, for example:

1st January 2010

21st January 2010–30th January 2010

January 21, 2010–January 30, 2010

terse Use the short format with compact ranges, for example:

21–30/01/2010

01/21–01/30/2010

comp Use the long format with compact ranges, for example:

21st–30th January 2010

January 21–30, 2010

iso Use ISO8601 Extended Format (yyyy-mm-dd), for example:

2010-01-01

2010-01-21/2010-01-30

ymd A year-month-day format which can be modified by other options
unlike strict iso8601-2, for example:

2010-1-1

2010-1-21/2010-1-30

57

Note that iso format will enforce dateera=astronomical, datezeros=
true, timezeros=true, seconds=true, <datetype>time=24h and
julian=false. ymd is an EDTF-like format but which can change the various
options which the strict iso option does not allow for.

As seen in the above examples, the actual date format is language specific. Note
that the month name in all long formats is responsive to the abbreviate pack-
age option. The leading zeros for months and days in all short formats may be
controlled separately with the datezeros package option. The leading zeros for
hours, minutes and seconds in all short formats may be controlled separately with
the timezeros package option. If outputting times, the printing of seconds and
timezones is controlled by the seconds and timezones options respectively.

The options julian and gregorianstart may be used to control when to
output Julian Calendar dates.

labeldate=year, short, long, terse, comp, ymd, iso default: year

Similar to the date option but controls the format of the date field selected with
\DeclareLabeldate.

<datetype>date=year, short, long, terse, comp, ymd, iso default: comp

Similar to the date option but controls the format of the <datetype>date field
in the datamodel.

alldates=year, short, long, terse, comp, ymd, iso

Sets the option for all dates in the datamodel to the same value. The date fields in
the default data model are date, origdate, eventdate and urldate.

julian=true, false default: false

This option controls whether dates before the date specified in the
gregorianstart option will be converted automatically to the Julian
Calendar. Dates so changed will return ‘true’ for the \ifdatejulian and
\if<datetype>datejulian tests (see § 4.6.2). Please bear in mind that dates
consisting of just a year like ‘1565’ will never be converted to a Julian Calendar
date because a date without a month and day has an ambiguous Julian Calendar
representation18. For example, in the case of ‘1565’, this is Julian year ‘1564’ until
after the Gregorian date ‘10th January 1565’ when the Julian year becomes ‘1565’.

gregorianstart=〈YYYY-MM-DD〉

This option controls the date before which dates are converted to the Julian Calendar.
It is a strict format string, 4-digit year, 2-digit month and day, separated by a single
dash character (any valid Unicode character with the ‘Dash’ property). The default
is ’1582-10-15’, the date of the instigation of the standard Gregorian Calendar. This
option does not nothing unless julian is set to ‘true’.

datezeros=true, false default: true

This option controls whether short and terse date components are printed with
leading zeros unless overridden by specific formatting.

18This is potentially true for dates missing times too but this is not relevant for bibliographic work.

58

timezeros=true, false default: true

This option controls whether time components are printed with leading zeros unless
overridden by specific formatting.

timezones=true, false default: false

This option controls whether timezones are printed when printing times.

seconds=true, false default: false

This option controls whether seconds are printed when printing times.

dateabbrev=true, false default: true

This option controls whether long and comp dates are printed with long or abbrevi-
ated month/yeardivision names. The option is similar to the generic abbreviate
option but specific to the date formatting. This option is also settable on a per-type
and per-entry basis.

datecirca=true, false default: false

This option controls whether to output ‘circa’ information about dates. If set to
true, dates will be preceded by the expansion of the \datecircaprint macro
(§ 3.12.1).

dateuncertain=true, false default: false

This option controls whether to output uncertainty information about dates. If set to
true, dates will be followed by the expansion of the \dateuncertainprint
macro and end dates will be followed by the \enddateuncertainprint macro
(§ 3.12.1).

dateera=astronomical, secular, christian default: astronomical

This option controls how date era information is printed. ‘astronomical’ uses
\dateeraprintpre to print era information before start/end dates. ‘secular’
and ‘christian’ uses \dateeraprint to print era information after the start/end/-
dates. By default ‘astronomical’ results in a minus sign before BCE/BC dates and
‘secular’/‘christian’ results in the relevant localisation strings like ‘BCE’ or ‘BC’ after
BCE/BC dates. See the relevant comments in § 3.12.1 and the localisation strings in
§ 4.9.2.21.

dateeraauto=〈integer〉 default: 0

This option sets the astronomical year, below which era localisation strings are
automatically added. This option does nothing without dateera being set to
‘secular’ or ‘christian’.

time=12h, 24h, 24hcomp default: 24h

This option controls the basic format of printed time specifications. The following
choices are available:

24h 24-hour format, for example:

14:03:23

14:3:23

59

14:03:23+05:00
14:03:23Z
14:21:23–14:23:45
14:23:23–14:23:45

24hcomp 24-hour format with compressed ranges, for example:
14:21–23 (hours are the same)
14:23:23–45 (hour and minute are the same)

12h 12-hour format with (localised) AM/PM markers, for example:
2:34 PM
2:34 PM–3:50 PM

As seen in the above examples, the actual time format is language specific. Note that
the AM/PM string is responsive to the abbreviate package option, if this makes
a difference in the specific locale. The leading zeros in the 24-hour formats may be
controlled separately with the timezeros package option. The separator between
time components (\bibtimesep and \bibtzminsep) and between the time and
any timezone (\bibtimezonesep) are also language specific and customisable,
see § 3.12.3. There are global package options which determine whether seconds
and timezones are printed (seconds and timezones, respectively, see § 3.1.2.1).
Timezones, if present, are either ‘Z’ or a numeric positive or negative offset. No
default styles print time information. Custom styles may print times by using the
\print<datetype>time commands, see § 4.4.1.

labeltime=12h, 24h, 24hcomp default: 24h

Similar to the time option but controls the format of the time part fields obtained
from the field selected with \DeclareLabeldate.

<datetype>time=12h, 24h, 24hcomp default: 24h

Similar to the time option but controls the format of the time part fields obtained
from the <datetype>date field in the datamodel.

alltimes=12h, 24h, 24hcomp

Sets labeltime and the <datetype>time option for all times in the datamodel
to the same value. The date fields supporting time parts in the default data model
are date, origdate, eventdate and urldate.

dateusetime=true, false default: false

Specifieswhether to print any time component of a date field after the date component.
The separator between the date and time components is \bibdatetimesep from
§ 3.12.3.

labeldateusetime=true, false default: false

Similar to the dateusetime option but controls the whether to print time compo-
nents for the field selected with \DeclareLabeldate.

<datetype>dateusetime=true, false
default: false

Similar to the dateusetime option but controls the whether to print time compo-
nents for the <datetype>date field in the datamodel.

60

alldatesusetime=true, false default: false

Sets labeldateusetime and the <datetype>dateusetime option for all
<datetype>date fields in the datamoel.

defernumbers=true, false default: false

In contrast to standard LaTeX, the numeric labels generated by this package are
normally assigned to the full list of references at the beginning of the document body.
If this option is enabled, numeric labels (i. e., the labelnumber field discussed
in § 4.2.4) are assigned the first time an entry is printed in any bibliography. See
§ 3.15.5 for further explanation. This option requires two LaTeX runs after the data
has been exported to the bbl file by the backend (in addition to any other runs
required by page breaks changing etc.). An important thing to note is that if you are
using this option, then changes to options, the bib file or certain commands like
\printbibliography will usually require that you delete your current aux file
and re-run LaTeX to obtain the correct numbering. See § 4.1.

punctfont=true, false default: false

This option enables an alternative mechanism for dealing with unit punctuation
after a field printed in a different font (for example, a title printed in italics). See
\setpunctfont in § 4.7.1 for details.

arxiv=abs, ps, pdf, format default: abs

Path selector for arXiv links. If hyperlink support is enabled, this option controls
which version of the document the arXiv eprint links will point to. The following
choices are available:

abs Link to the abstract page.

ps Link to the PostScript version.

pdf Link to the pdf version.

format Link to the format selector page.

See § 3.14.7 for details on support for arXiv and electronic publishing information.

texencoding=auto, 〈encoding〉 default: auto

Specifies the encoding of the tex file. This option affects the data transferred from
the backend to biblatex. This corresponds to biber’s --output-encoding
option. The following choices are available:

auto Try to auto-detect the input encoding. If the inputenc/inputenx/
luainputenc package is available, biblatex will get the main
encoding from that package. If not, it assumes utf-8 encoding if
a LaTeX format using at least the April 2018 version of the kernel,
XeTeX or LuaTeX has been detected, and us-ascii otherwise.

〈encoding〉 Specifies the 〈encoding〉 explicitly. This is for odd cases in which
auto-detection fails or you want to force a certain encoding for some
reason.

Note that setting texencoding=〈encoding〉 will also affect the bibencoding
option if bibencoding=auto.

61

bibencoding=auto, 〈encoding〉 default: auto

Specifies the default encoding of the bib files. This can be overridden on a per-
datasource basis using the bibencoding option to \addbibresource, see
§ 3.8.1. This option corresponds to biber’s --input-encoding option. The
following choices are available:

auto Use this option if the workflow is transparent, i. e., if the encoding of
the bib file is identical to the encoding of the tex file.

〈encoding〉 If the encoding of the bib file is different from the one of the tex
file, you need to specify it explicitly.

By default, biblatex assumes that the tex file and the bib file use the same
encoding (bibencoding=auto).

safeinputenc=true, false default: false

If this option is enabled, biblatex will automatically force texencoding=
ascii if the inputenc/inputenx package has been loaded and the input encod-
ing is utf-8, i. e., it will ignore any macro-based utf-8 support and use us-ascii only.
biber will then try to convert any non-us-ascii data in the bib file to us-ascii.
For example, it will convert Ṣ to \d{S}. See § 2.4.2.1 for an explanation of why you
may want to enable this option.

bibwarn=true, false default: true

By default, biblatex will report warnings issued by the backend concerning the
data in the bib file as LaTeX warnings. Use this option to suppress such warnings.

mincrossrefs=〈integer〉 default: 2

Sets the minimum number of cross references to 〈integer〉 when requesting a backend
run.19 This option also affects the handling of the xref field. See the field description
in § 2.2.3 as well as § 2.4.1 for details.

minxrefs=〈integer〉 default: 2

As mincrossrefs but for xref fields.

bibtexcaseprotection=true, false
default: true

This option only has an effect when the expl3 implementation of the case changing
functions is selected. If the option is set totrue, \MakeSentenceCase* supports
brace protection of words from case change as in classical BibTeX. If the option is
set to false, pairs of braces no longer imply case protection, which can now be
enforced by wrapping the relevant word in \NoCaseChange—this makes for a less
confusing, if more verbose, markup of case protection.

19If an entry which is cross-referenced by other entries in the bib file hits this threshold, it is included
in the bibliography even if it has not been cited explicitly. This is a standard feature of the BibTeX
format and not specific to biblatex. See the description of the crossref field in § 2.2.3 for
further information.

62

3.1.2.2 Style-specific

The following options are provided by all standard bibliography styles (as opposed
to the core package). The options are available as preamble options like those in
§ 3.1.2.1 and at a per-type and per-entry scope.

isbn=true, false default: true

This option controls whether the fields isbn/issn/isrn are printed.

url=true, false default: true

This option controls whether the url field and the access date is printed. The
option only affects entry types whose url information is optional. The url field of
@online entries is always printed.

doi=true, false default: true

This option controls whether the field doi is printed.

eprint=true, false default: true

This option controls whether eprint information is printed.

related=true, false default: true

Whether to use information from related entries or not. See § 3.5.

alphabetic/numeric Additionally, styles of thealphabetic andnumeric
family support the subentry option in global, per-type and per-entry scope.

subentry=true, false default: false

This option affects the handling of citations to set members and the display of sets
in the bibliography. If the option is enabled, citations to individual set members
feature an additional letter that identifies the member, that letter is also printed in
the bibliography. If the option is disabled, a citation to the member of a set will
display just as a citation to the entire set and there will be no additional letters in
the bibliography entries enumerating the members.

Suppose key1 and key2 are members of the set set1. With subentry set to
true in a numeric style a citation to key1 will show as ‘[1a]’ and a citation to
key2 as ‘[1b]’, while the entire set set1 will be cited as ‘[1]’. Furthermore ‘(a)’ and
‘(b)’ will be added in front of the entry data for the set members in the bibliography
entry for the set. With subentry set to false citations to all three keys will show
as ‘[1]’, no additional letter will be printed in the bibliography.

numeric-comp The citation style numeric-comp supports the
subentrycomp option in global, per-type and per-entry scope.

subentrycomp=true, false default: true

This option determines whether or not citations to set members are compressed
similar to non-set citations. The option only has an effect if subentry is set to
true.

Suppose key1, key2 and key3 are members of the set set1. With
subentrycomp set to true the three entries will be compressed to ‘[1a–c]’ in

63

citations. With subentry set to false the citation will show in the more verbose
form ‘[1a, 1b, 1c]’.

The option is intended mainly for backwards compatibility, because earlier versions
of biblatex did not compress set member citations.

authortitle/authoryear All bibliography styles of the authoryear and
authortitle family as well as all bibliography styles of the verbose family—
whose bibliography styles are based on authortitle—support the option
dashed in global scope.

dashed=true, false default: true

This option controls whether recurrent the same author/editor list in the bibliography
are replaced by a dash (\bibnamedash, see § 3.12.1). If the option is enabled,
subsequent mentions of the same name list at the beginning of an entry are replaced
by a dash provided the entry is not the first on the current page. If the option is
disabled, name lists are never replaced by a dash.

authoryear Bibliography styles of the authoryear family provide the option
mergedate in global, per-type and per-entry scope.

mergedate=false, minimum, basic, compact, maximum, true default: true

This option controls whether and how the date specification in the entry is merged
with the date label shown directly after the author/editor list.

false Strictly separate the date specification shown in the entry (styled with
date) from the date label (styled with labeldate). The date will
always be shown twice.

minimum Omit the date specification whenever it coincides exactly—including
extradate information—with the output of the date label.

basic Similar to minimum, but the date specification will also be omitted if
it differs from the date label only by the absence of the extradate
letter.

compact Merges all date specifications with the date label. The date format of
that merged date label is controlled by date, not labeldate, even
if it is printed in the position of the date label. The issue field is not
merged.

maximum Like compact, but if present the issue field will also be moved
into the date label at the beginning of the entry.

true An alias for compact.

More in-depth examples of this option can be found in the style examples.

‘ibid’ styles Citation styles with ‘ibid.’ function, namely authortitle-

ibid, authortitle-icomp, authoryear-ibid, authoryear-icomp,
verbose-ibid, verbose-inote, verbose-trad1, verbose-trad2 and
verbose-trad3 provide the global ibidpage option.

64

ibidpage=true, false default: false

Whether ibidem without page reference means ‘same work’ or ‘same work + same
page’. If set to true a page range postnote will be suppressed in an ibidem citation if
the last citation was to the same page range. With ibidpage=false the postnote
is not omitted. Citations to different page ranges than the previous always produce
the page ranges with either setting.

verbose All citation styles of the verbose family provide the global option
citepages.

citepages=permit, suppress, omit, separate default: permit

This option controls the output of the page/pagetotal field in the full citation
in combination with a postnote containing a page range. The option can be used to
suppress references to two page ranges in full citations like the following

Author. “Title.” In: Book, pp. 100–150, p. 125.

Here ‘p. 125’ is the postnote argument and ‘pp. 100–150’ is the value of the pages
field.

permit Allow duplication of page specifications, i.e. print both page/
pagetotal and postnote.

suppress Unconditionally suppress the pages/pagetotal fields in citations,
regardless of the postnote.

omit Suppress the pages/pagetotal if the postnote contains a page
range. They are still printed if there is no postnote or if the
postnote is not a number or range.

separate Separate the pages/pagetotal from the postnote if the latter
contains a page range. The string thiscite is added to separate
the two page ranges.

verbose-trad The citation styles of the verbose-trad family support the
global option strict.

strict=true, false default: false

This option allows to restrict the use of the scholarly abbreviations ‘ibid.’ and ‘op. cit.’
to avoid ambiguities. If the option is set to true these terms will only be used if the
relevant work was cited in the same or previous footnote.

reading The reading style supports a number of additional options, but these
are not of general interest and can be found in the style example.

3.1.2.3 Internal

The default settings of the following preamble options are controlled by bibliography
and citation styles. Apart from the pagetracker and <name>inits options,
which you may want to adapt, there is normally no need to set them explicitly.

pagetracker=true, false, page, spread default: false

This option controls the page tracker which is required by the \ifsamepage and
\iffirstonpage tests from § 4.6.2. The possible choices are:

65

true Enable the tracker in automatic mode. This is like spread if LaTeX
is in twoside mode, and like page otherwise.

false Disable the tracker.

page Enable the tracker in page mode. In this mode, tracking works on a
per-page basis.

spread Enable the tracker in spread mode. In this mode, tracking works on a
per-spread (double page) basis.

Note that this tracker is disabled in all floats unless explicitly requested with
trackfloats, see § 4.11.5.

citecounter=true, false, context default: false

This option controls the citation counter which is required by citecounter from
§ 4.6.2. The possible choices are:

true Enable the citation counter in global mode.

false Disable the citation counter.

context Enable the citation counter in context-sensitive mode. In this mode,
citations in footnotes and in the body text are counted independently.

citetracker=true, false, context, strict, constrict default: false

This option controls the citation tracker which is required by the \ifciteseen
and \ifentryseen tests from § 4.6.2. The possible choices are:

true Enable the tracker in global mode.

false Disable the tracker.

context Enable the tracker in context-sensitive mode. In this mode, citations
in footnotes and in the body text are tracked independently.

strict Enable the tracker in strict mode. In this mode, an item is only con-
sidered by the tracker if it appeared in a stand-alone citation, i. e., if a
single entry key was passed to the citation command.

constrict This mode combines the features of context and strict.

Note that this tracker is disabled in all floats unless explicitly requested with
trackfloats, see § 4.11.5. This option is also settable on a per-type or per-entry
basis.

ibidtracker=true, false, context, strict, constrict default: false

This option controls the ‘ibidem’ tracker which is required by the \ifciteibid
test from § 4.6.2. The possible choices are:

true Enable the tracker in global mode.

false Disable the tracker.

context Enable the tracker in context-sensitive mode. In this mode, citations
in footnotes and in the body text are tracked separately.

strict Enable the tracker in strict mode. In this mode, potentially ambiguous
references are suppressed. A reference is considered ambiguous if
either the current citation (the one including the ‘ibidem’) or the

66

previous citation (the one the ‘ibidem’ refers to) consists of a list of
references.20

constrict This mode combines the features of context and strict. It also
keeps track of footnote numbers and detects potentially ambiguous
references in footnotes in a stricter way than the strict option. In
addition to the conditions imposed by the strict option, a reference
in a footnote will only be considered as unambiguous if the current
citation and the previous citation are given in the same footnote or in
immediately consecutive footnotes.

Note that this tracker is disabled in all floats unless explicitly requested with
trackfloats, see § 4.11.5. This option is also settable on a per-type or per-entry
basis.

opcittracker=true, false, context, strict, constrict default: false

This option controls the ‘opcit’ tracker which is required by the \ifopcit test from
§ 4.6.2. This feature is similar to the ‘ibidem’ tracker, except that it tracks citations
on a per-author/editor basis, i. e., \ifopcit will yield true if the cited item is the
same as the last one by this author/editor. The possible choices are:

true Enable the tracker in global mode.

false Disable the tracker.

context Enable the tracker in context-sensitive mode. In this mode, citations
in footnotes and in the body text are tracked separately.

strict Enable the tracker in strict mode. In this mode, potentially ambiguous
references are suppressed. See ibidtracker=strict for details.

constrict This mode combines the features of context and strict. See the
explanation of ibidtracker=constrict for details.

Note that this tracker is disabled in all floats unless explicitly requested with
trackfloats, see § 4.11.5. This option is also settable on a per-type or per-entry
basis.

loccittracker=true, false, context, strict, constrict default: false

This option controls the ‘loccit’ tracker which is required by the \ifloccit test
from § 4.6.2. This feature is similar to the ‘opcit’ tracker except that it also checks
whether the 〈postnote〉 arguments match, i. e., \ifloccit will yield true if the
citation refers to the same page cited before. The possible choices are:

true Enable the tracker in global mode.

false Disable the tracker.

context Enable the tracker in context-sensitive mode. In this mode, citations
in footnotes and in the body text are tracked separately.

strict Enable the tracker in strict mode. In this mode, potentially ambiguous
references are suppressed. See ibidtracker=strict for details.

20For example, suppose the initial citation is “Jones, Title; Williams, Title” and the following one
“ibidem”. From a technical point of view, it is fairly clear that the ‘ibidem’ refers to ‘Williams’
because this is the last reference processed by the previous citation command. To a human reader,
however, this may not be obvious because the ‘ibidem’ may also refer to both titles. The strict mode
avoids such ambiguous references.

67

In addition to that, this mode also checks if the 〈postnote〉 argument
is numerical (based on \ifnumerals from § 4.6.2).

constrict This mode combines the features of context and strict. See the
explanation of ibidtracker=constrict for details. In addition
to that, this mode also checks if the 〈postnote〉 argument is numerical
(based on \ifnumerals from § 4.6.2).

Note that this tracker is disabled in all floats unless explicitly requested with
trackfloats, see § 4.11.5. This option is also settable on a per-type or per-entry
basis.

idemtracker=true, false, context, strict, constrict default: false

This option controls the ‘idem’ tracker which is required by the \ifciteidem test
from § 4.6.2. The possible choices are:

true Enable the tracker in global mode.

false Disable the tracker.

context Enable the tracker in context-sensitive mode. In this mode, citations
in footnotes and in the body text are tracked separately.

strict This is an alias for true, provided only for consistency with the other
trackers. Since ‘idem’ replacements do not get ambiguous in the same
way as ‘ibidem’ or ‘op. cit.’, the strict tracking mode does not apply
to them.

constrict This mode is similar to context with one additional condition: a
reference in a footnote will only be considered as unambiguous if
the current citation and the previous citation are given in the same
footnote or in immediately consecutive footnotes.

Note that this tracker is disabled in all floats unless explicitly requested with
trackfloats, see § 4.11.5. This option is also settable on a per-type or per-entry
basis.

trackfloats=true, false default: false

Whether to enable citation tracking in floats. Citation tracking in floats can be tricky,
so this option should only be enabled if absolutely necessary and the output should
be scrutinised carefully, see also § 4.11.5.

parentracker=true, false default: true

This option controls the parenthesis tracker which keeps track of nested
parentheses and brackets. This information is used by \parentext and
\brackettext from § 3.9.5, \mkbibparens and \mkbibbrackets from
§ 4.10.4 and \bibopenparen, \bibcloseparen, \bibopenbracket,
\bibclosebracket (also § 4.10.4).

maxparens=〈integer〉 default: 3

The maximum permitted nesting level of parentheses and brackets. If parentheses
and brackets are nested deeper than this value, biblatex will issue errors.

68

<namepart>inits=true, false default: false

The option sets the \if<namepart>inits test from § 4.6.2.
<namepart> is any valid name part as defined in the data model by the
\DeclareDatamodelConstant command (§ 4.2.3). For the given name, for
example, the option becomes giveninits. This option is also settable on a
per-type, per-entry, per-namelist and per-name basis.

If giveninits is set to true, the default name formats will only render the given
name initials and not the full given name. The standard styles only use the test
\ifgiveninits and hence only respond to the option giveninits. Setting
the option for a name part different from given has no effect on the default name
formats.

Note that sorting and name uniqueness are not automatically affected by this option,
these have to be requested explicitly via \DeclareSortingNamekeyTemplate
and the uniquename option (or \DeclareUniquenameTemplate), respec-
tively. A warning will be issued if giveninits is used together with
uniquename set to one of the full values and uniquename is automatically set
to the corresponding init value.

terseinits=true, false default: false

This option controls the format of all initials generated by biblatex. If enabled,
initials are rendered using a terse format without dots and spaces. For example, the
initials of Donald Ervin Knuth would be rendered as ‘D. E.’ by default, and as ‘DE’ if
this option is enabled. The option will affect the \ifterseinits test from § 4.6.2.
The option works by redefining some macros which control the format of initials.
See § 3.15.4 for details. This option is also settable on a per-type, per-entry, per-name
and per-namelist basis.

labelalpha=true, false default: false

Whether or not to provide the special fields labelalpha and extraalpha, see
§ 4.2.4 for details. This option is also settable on a per-type and per-entry basis. See
also maxalphanames and minalphanames. Table 7 summarises the various
extra* disambiguation counters and what they track.

maxalphanames=〈integer〉 default: 3

Similar to the maxnames option but customizes the format of the labelalpha
field.

minalphanames=〈integer〉 default: 1

Similar to the minnames option but customizes the format of the labelalpha
field.

labelnumber=true, false default: false

Whether or not to provide the special field labelnumber, see § 4.2.4 for details.
This option is also settable on a per-type and per-entry basis.

noroman=true, false default: false

Whether or not to try to parse roman numerals encountered in integer fields for
sorting purposes. Since biber also tries to parse alphanumeric values when sorting

69

Table 6: Work Uniqueness options
Option Test Tracks

singletitle \ifsingletitle labelname

uniquetitle \ifuniquetitle labeltitle

uniquebaretitle \ifuniquebaretitle labeltitle when
labelname is null

uniquework \ifuniquework labelname+labeltitle

integer fields, this roman numeral parsing can be a problem when, for example, ‘C’
is encountered as this could be a roman numeral or a simple alphanumeric string
which would have a different integer value depending on how it was parsed. It is
likely that this is most useful on a per-entry basis for entries that have, for example,
a volume field with values such as ‘A’, ‘B’, ‘C’, ‘D’ which should not be parsed as
roman numerals since this would give incorrect integer values for ‘C’ and ‘D’.

This option is also settable on a per-type and per-entry basis.

labeltitle=true, false default: false

Whether or not to provide the special field extratitle, see § 4.2.4 for details.
Note that the special field labeltitle is always provided and this option controls
rather whether labeltitle is used to generate extratitle information. This
option is also settable on a per-type and per-entry basis. Table 7 summarises the
various extra* disambiguation counters and what they track.

labeltitleyear=true, false default: false

Whether or not to provide the special field extratitleyear, see § 4.2.4 for details.
Note that the special field labeltitle is always provided and this option controls
rather whether labeltitle is used to generate extratitleyear information.
This option is also settable on a per-type and per-entry basis. Table 7 summarises
the various extra* disambiguation counters and what they track.

labeldateparts=true, false default: false

Whether or not to provide the special fields labelyear, labelmonth,
labelday, labelendyear, labelendmonth, labelendday, labelhour,
labelendhour, labelminute, labelendminute, labelsecond,
labelendsecond, labelyeardivision, labelendyeardivision,
labeltimezone, labelendtimeone and extradate, see § 4.2.4 for details.
This option is also settable on a per-type and per-entry basis. Table 7 summarises
the various extra* disambiguation counters and what they track.

singletitle=true, false default: false

Whether or not to provide the data required by the \ifsingletitle test, see
§ 4.6.2 for details. See table 6 for details on what determines the data for this test.
This option is also settable on a per-type and per-entry basis.

uniquetitle=true, false default: false

Whether or not to provide the data required by the \ifuniquetitle test, see
§ 4.6.2 for details. See table 6 for details on what determines the data for this test.
This option is also settable on a per-type and per-entry basis.

70

uniquebaretitle=true, false default: false

Whether or not to provide the data required by the \ifuniquebaretitle test,
see § 4.6.2 for details. See table 6 for details on what determines the data for this test.
This option is also settable on a per-type and per-entry basis.

uniquework=true, false default: false

Whether or not to provide the data required by the \ifuniquework test, see
§ 4.6.2 for details. See table 6 for details on what determines the data for this test.
This option is also settable on a per-type and per-entry basis.

uniqueprimaryauthor=true, false
default: false

Whether or not to provide the data required by the \ifuniqueprimaryauthor
test, see § 4.6.2 for details. This option is also settable on a per-type and per-entry
basis.

uniquename=true, false, init, full, allinit, allfull,
mininit, minfull

default: false

Whether or not to update the uniquename counter, see § 4.6.2 for details. This
feature will disambiguate individual names in the labelname list. This option is
also settable on a per-type, per-entry, per-namelist and per-name basis. The possible
choices are:

true An alias for full.

false Disable this feature.

init Disambiguate using initials only.

full Disambiguate using initials or full names, as required.

allinit Similar to init but disambiguates all names in the labelname list,
beyond maxnames/minnames/uniquelist.

allfull Similar to full but disambiguates all names in the labelname list,
beyond maxnames/minnames/uniquelist.

mininit A variant of init which only disambiguates names in identical lists
of base nameparts (by default, lists of family names).

minfull A variant of full which only disambiguates names in identical lists
of base nameparts (by default, lists of family names).

Note that the uniquename option will also affect uniquelist, the
\ifsingletitle test, and the extradate and extraname fields. See § 4.11.4
for further details and practical examples.

uniquelist=true, false, minyear default: false

Whether or not to update the uniquelist counter, see § 4.6.2 for details.
This feature will disambiguate the labelname list if it has become ambiguous
after maxnames/minnames truncation. Essentially, it overrides maxnames/
minnames on a per-field basis. This option is also settable on a per-type, per-entry
and per-namelist basis. The possible choices are:

true Disambiguate the labelname list.

false Disable this feature.

71

minyear Disambiguate the labelname list only if the truncated list is identi-
cal to another onewith the samelabelyear. Thismode of operation
is useful for author-year styles and requires labeldateparts=
true.

Note that the uniquelist option will also affect the \ifsingletitle test
and the extradate and extraname fields. See § 4.11.4 for further details and
practical examples.

nohashothers=true, false default: false

By default, name lists which are truncated with ‘et al’–either explicitly by ‘and
others’ in the data source or the uniquelist and min/maxnames options–result
in different name list hashes (and therefore different extraname and extradate
values) and different sorting. This option allows this behaviour to be tuned. When
set to 〈true〉, biber ignores ‘et al’ truncations for the purposes of generating name
list hashes. Consider:

Jones 1972

Jones/and others 1972

Smith 2000

Smith/Vogel/Beast/Tremble 2000

With maxnames=3, minnames=1, nohashothers=false, the result would
be:

Jones 1972

Jones et al. 1972

Smith 2000

Smith et al. 2000

Whereas with maxnames=3, minnames=1, nohashothers=true, the result
would be:

Jones 1972a

Jones et al. 1972b

Smith 2000a

Smith et al. 2000b

If desired, this could be further simplified by removing the ‘et al.’ to obtain:

Jones 1972a

Jones 1972b

Smith 2000a

Smith 2000b

Note that the nohashothers option will affect the extradate and extraname
fields.

This option is also settable on a per-type, per-entry and per-namelist basis.

72

Table 7: Disambiguation counters
Option Enabled field(s) Enabled counter Counter tracks

labelalpha labelalpha extraalpha label

labeldateparts labelyear extradate extradate

context+labelyear

labelmonth

labelday

labelendyear

labelendmonth

labelendday

labelhour

labelminute

labelsecond

labelendhour

labelendminute

labelendsecond

labelyeardivision

labelendyeardivision

labeltimezone

labelendtimezone

labeltitle — extratitle labelname+labeltitle

labeltitleyear — extratitleyear labeltitle+labelyear

— — extraname labelname

nosortothers=true, false default: false

The option has a related to effect to nohashothers but applies to sorting–the
visible list of names (which is the minsortnames value) used to determine sorting
will ignore any truncation. This means that with nosortothers=true, the name
lists:

Jones, Smith

Jones, Smith et al

will sort exactly the same. The default setting of nosortothers always sorts in
the order shown in the example, that is, by default, truncated names lists always sort
after any name lists identical to the point of truncation.
This option is also settable on a per-type, per-entry and per-namelist basis.

3.1.3 Entry Options

Entry options are package options which determine how bibliography data entries
are handled. They may be set at various scopes defined below.

3.1.3.1 Preamble/Type/Entry Options

The following options are settable on a per-type basis or on a per-entry in the
options field. In addition to that, they may also be used in the optional argument
to \usepackage as well as in the configuration file and the document preamble.
This is useful if you want to change the default behaviour globally.

useauthor=true, false default: true

Whether the author is used in labels and considered during sorting. This may
be useful if an entry includes an author field but is usually not cited by author

73

for some reason. Setting useauthor=false does not mean that the author is
ignored completely. It means that the author is not used in labels and ignored
during sorting. The entry will then be alphabetized by editor or title. With
the standard styles, the author is printed after the title in this case. See also § 3.6.
This option is also settable on a per-type and per-entry basis.

useeditor=true, false default: true

Whether the editor replaces a missing author in labels and during sorting. This
may be useful if an entry includes an editor field but is usually not cited by editor.
Setting useeditor=false does not mean that the editor is ignored completely.
It means that the editor does not replace a missing author in labels and during
sorting. The entry will then be alphabetized by title. With the standard styles,
the editor is printed after the title in this case. See also § 3.6. This option is also
settable on a per-type and per-entry basis.

usetranslator=true, false default: false

Whether the translator replaces a missing author/editor in labels and dur-
ing sorting. Settingusetranslator=true does notmean that thetranslator
overrides the author/editor. It means that the translator is considered as
a fallback if the author/editor is missing or if useauthor and useeditor
are set to false. In other words, in order to cite a book by translator rather than
by author, you need to set the following options: This option is also settable on a
per-type and per-entry basis.

@Book{...,

options = {useauthor=false,usetranslator=true},

author = {...},

translator = {...},

...

With the standard styles, the translator is printed after the title by default. See
also § 3.6.

use<name>=true, false default: true

As per useauthor, useeditor and usetranslator, all name lists defined in
the data model have an option controlling their behaviour in sorting and labelling au-
tomatically defined. Global, per-type and per-entry options called ‘use<name>’are
automatically created.

useprefix=true, false default: false

Whether the default data model name part ‘prefix’ (von, van, of, da, de, della, etc.) is
considered when:

•Printing the family name in citations

•Sorting

•Generation of certain types of labels

•Generating name uniqueness information

•Formatting aspects of the bibliography

74

For example, if this option is enabled, biblatex precedes the family name with the
prefix—Ludwig van Beethoven would be cited as “van Beethoven” and alphabetized
as “Van Beethoven, Ludwig”. If this option is disabled (the default), he is cited as
“Beethoven” and alphabetized as “Beethoven, Ludwig van” instead. This option is
also settable on a per-type scope. With biblatexml datasources and the BibTeX
extended name format supported by biber (see § 3.4), this is also settable on per-
namelist and per-name scopes.

indexing=true, false, cite, bib

The indexing option is also settable per-type or per-entry basis. See § 3.1.2.1 for
details.

skipbib=true, false default: false

If this option is enabled, the entry is excluded from the bibliography but it may still
be cited. This option is also settable on a per-type basis.

skipbiblist=true, false default: false

If this option is enabled, the entry is excluded from bibliography lists. It is still
included in the bibliography and it may also be cited by shorthand etc. This option
is also settable on a per-type basis.

skiplab=true, false default: false

If this option is enabled, biblatex will not assign any labels to the entry. It is
not required for normal operation. Use it with care. If enabled, biblatex can not
guarantee unique citations for the respective entry and citations styles which require
labels may fail to create valid citations for the entry. This option is also settable on a
per-type basis.

dataonly=true, false default: false

Setting this option is equivalent to uniquename=false, uniquelist=false,
skipbib, skipbiblist, and skiplab. It is not required for normal operation.
Use it with care. This option is also settable on a per-type basis.

3.1.3.2 Entry Only Options

The following options are settable only on a per-entry in the options field. They
are not available globally or per-type.

labelnamefield=〈fieldname〉

Specifies the field to consider first when looking for a labelname candidate. It is
essentially prepended to the search list created by \DeclareLabelname for just
this entry.

labeltitlefield

=〈fieldname〉

Specifies the field to consider first when looking for a labeltitle candidate. It
is essentially prepended to the search list created by \DeclareLabeltitle for
just this entry.

75

3.1.4 Legacy Options

The following legacy option may be used globally in the optional argument to
\documentclass or locally in the optional argument to \usepackage:

openbib This option is provided for backwards compatibility with the standard LaTeX docu- Deprecated
ment classes. openbib is similar to block=par.

3.2 Global Customization

Apart from writing new citation and bibliography styles, there are numerous ways to
customize the styles which come with this package. Customization will usually take
place in the preamble, but there is also a configuration file for permanent adaptions.
The configuration file may also be used to initialize the package options to a value
different from the package default.

3.2.1 Configuration File

If available, this package will load the configuration file biblatex.cfg. This file
is read at the end of the package, immediately after the citation and bibliography
styles have been loaded.

3.2.2 Setting Package Options

The load-time package options in § 3.1.1 must be given in the optional argument to
\usepackage. The package options in § 3.1.2 may also be given in the preamble.
The options are executed with the following command:

\ExecuteBibliographyOptions[〈entrytype, …〉]{〈key=value, …〉}

This command may also be used in the configuration file to modify the default setting
of a package option. Certain options are also settable on a per-type basis. In this
case, the optional 〈entrytype〉 argument specifies the entry type. The 〈entrytype〉
argument may be a comma-separated list of values.

3.3 Standard Styles

This section provides a short description of all bibliography and citation styles
which come with the biblatex package. Each style is further illustrated in a style
example which is linked in the right margin. The local link may not be available if
this document does not reside in the expected folder structure. If you want to write
your own styles, see § 4.

3.3.1 Citation Styles

The citation styles which come with this package implement several common citation
schemes. All standard styles cater for the shorthand field and support hyperlinks
as well as indexing.

numeric This style implements a numeric citation scheme similar to the standard biblio- Style example:
local, online.graphic facilities of LaTeX. It should be employed in conjunction with a numeric

bibliography style which prints the corresponding labels in the bibliography. It is
intended for in-text citations. The style will set the following package options at
load time: autocite=inline, labelnumber=true. This style also provides

76

http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/30-style-numeric-biber.pdf

an additional preamble option called subentry which affects the handling of entry
sets. If this option is disabled, citations referring to a member of a set will point to
the entire set. If it is enabled, the style supports citations like “[5c]” which point to a
subentry in a set (the third one in this example). See the style example for details.

numeric-comp A compact variant of the numeric style which prints a list of more than two con- Style example:
local, online.secutive numbers as a range. This style is similar to the cite package and the

sort&compress option of the natbib package in numerical mode. For exam-
ple, instead of “[8, 3, 1, 7, 2]” this style would print “[1–3, 7, 8]”. It is intended
for in-text citations. The style will set the following package options at load time:
autocite=inline, sortcites=true, labelnumber=true. It also pro-
vides the subentry and subentrycomp options.

numeric-verb A verbose variant of the numeric style. The difference affects the handling of Style example:
local, online.a list of citations and is only apparent when multiple entry keys are passed to a

single citation command. For example, instead of “[2, 5, 6]” this style would print
“[2]; [5]; [6]”. It is intended for in-text citations. The style will set the following
package options at load time: autocite=inline, labelnumber=true. It also
provides the subentry option.

alphabetic This style implements an alphabetic citation scheme similar to the alpha.bst style Style example:
local, online.of traditional BibTeX. The alphabetic labels resemble a compact author-year style to

some extent, but the way they are employed is similar to a numeric citation scheme.
For example, instead of “Jones 1995” this style would use the label “[Jon95]”. “Jones
and Williams 1986” would be rendered as “[JW86]”. This style should be employed
in conjunction with an alphabetic bibliography style which prints the corresponding
labels in the bibliography. It is intended for in-text citations. The style will set
the following package options at load time: autocite=inline, labelalpha=
true. This style also provides an additional preamble option called subentry
which affects the handling of entry sets. If this option is disabled, citations referring
to a member of a set will point to the entire set. If it is enabled, the style supports
citations like “[SGW(c)]” which point to a subentry in a set (the third one in this
example). See the style example for details.

alphabetic-verb A verbose variant of the alphabetic style. The difference affects the handling Style example:
local, online.of a list of citations and is only apparent when multiple entry keys are passed to

a single citation command. For example, instead of “[Doe92; Doe95; Jon98]” this
style would print “[Doe92]; [Doe95]; [Jon98]”. It is intended for in-text citations.
The style will set the following package options at load time: autocite=inline,
labelalpha=true. It also provides the subentry option.

authoryear This style implements an author-year citation scheme. If the bibliography contains Style example:
local, online.two or more works by the same author which were all published in the same year, a

letter is appended to the year. For example, this style would print citations such as
“Doe 1995a; Doe 1995b; Jones 1998”. This style should be employed in conjunction
with an author-year bibliography style which prints the corresponding labels in the
bibliography. It is primarily intended for in-text citations, but it could also be used
with citations given in footnotes. The style will set the following package options
at load time: autocite=inline, labeldateparts=true, uniquename=
full, uniquelist=true.

authoryear-comp A compact variant of the authoryear style which prints the author only once Style example:
local, online.if subsequent references passed to a single citation command share the same au-

thor. If they share the same year as well, the year is also printed only once. For

77

http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/31-style-numeric-comp-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/32-style-numeric-verb-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/40-style-alphabetic-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/41-style-alphabetic-verb-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/50-style-authoryear-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/52-style-authoryear-comp-biber.pdf

example, instead of “Doe 1995b; Doe 1992; Jones 1998; Doe 1995a” this style would
print “Doe 1992, 1995a,b; Jones 1998”. It is primarily intended for in-text citations,
but it could also be used with citations given in footnotes. The style will set the
following package options at load time: autocite=inline, sortcites=true,
labeldateparts=true, uniquename=full, uniquelist=true.

authoryear-ibid A variant of the authoryear style which replaces repeated citations by the ab- Style example:
local, online.breviation ibidem unless the citation is the first one on the current page or double-

page spread, or the ibidem would be ambiguous in the sense of the package option
ibidtracker=constrict. The style will set the following package options
at load time: autocite=inline, labeldateparts=true, uniquename=
full, uniquelist=true, ibidtracker=constrict, pagetracker=
true. This style also provides an additional preamble option called ibidpage. See
the style example for details.

authoryear-icomp A style combining authoryear-comp and authoryear-ibid. The style Style example:
local, online.will set the following package options at load time: autocite = inline,

labeldateparts = true, uniquename = full, uniquelist = true,
ibidtracker=constrict, pagetracker=true, sortcites=true. This
style also provides an additional preamble option called ibidpage. See the style
example for details.

authortitle This style implements a simple author-title citation scheme. It will make use of the Style example:
local, online.shorttitle field, if available. It is intended for citations given in footnotes. The

style will set the following package options at load time: autocite=footnote,
uniquename=full, uniquelist=true.

authortitle-comp A compact variant of the authortitle style which prints the author only once if Style example:
local, online.subsequent references passed to a single citation command share the same author.

For example, instead of “Doe, First title; Doe, Second title” this style would print
“Doe, First title, Second title”. It is intended for citations given in footnotes. The
style will set the following package options at load time: autocite=footnote,
sortcites=true, uniquename=full, uniquelist=true.

authortitle-ibid A variant of the authortitle style which replaces repeated citations by the Style example:
local, online.abbreviation ibidem unless the citation is the first one on the current page or double-

page spread, or the ibidem would be ambiguous in the sense of the package option
ibidtracker=constrict. It is intended for citations given in footnotes. The
style will set the following package options at load time: autocite=footnote,
uniquename = full, uniquelist = true, ibidtracker = constrict,
pagetracker=true. This style also provides an additional preamble option
called ibidpage. See the style example for details.

authortitle-icomp A style combining the features of authortitle-comp and authortitle- Style example:
local, online.ibid. The style will set the following package options at load time: autocite=

footnote, uniquename = full, uniquelist = true, ibidtracker =
constrict, pagetracker=true, sortcites=true. This style also pro-
vides an additional preamble option called ibidpage. See the style example for
details.

authortitle-terse A terse variant of the authortitle style which only prints the title if the biblio- Style example:
local, online.graphy contains more than one work by the respective author/editor. This style will

make use of the shorttitle field, if available. It is suitable for in-text citations as
well as citations given in footnotes. The style will set the following package options

78

http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/51-style-authoryear-ibid-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/53-style-authoryear-icomp-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/60-style-authortitle-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/62-style-authortitle-comp-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/61-style-authortitle-ibid-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/63-style-authortitle-icomp-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/64-style-authortitle-terse-biber.pdf

at load time: autocite=inline, singletitle=true, uniquename=full,
uniquelist=true.

authortitle-tcomp A style combining the features of authortitle-comp and authortitle- Style example:
local, online.terse. This style will make use of the shorttitle field, if available. It is suitable

for in-text citations as well as citations given in footnotes. The style will set the
following package options at load time: autocite=inline, sortcites=true,
singletitle=true, uniquename=full, uniquelist=true.

authortitle-ticomp A style combining the features of authortitle-icomp and authortitle- Style example:
local, online.terse. In other words: a variant of the authortitle-tcomp style with an

ibidem feature. This style is suitable for in-text citations as well as citations given
in footnotes. It will set the following package options at load time: autocite=
inline, ibidtracker=constrict, pagetracker=true, sortcites=
true, singletitle=true, uniquename=full, uniquelist=true. This
style also provides an additional preamble option called ibidpage. See the style
example for details.

verbose A verbose citation style which prints a full citation similar to a bibliography entry Style example:
local, online.when an entry is cited for the first time, and a short citation afterwards. If available,

the shorttitle field is used in all short citations. If the shorthand field is
defined, the shorthand is introduced on the first citation and used as the short
citation thereafter. This style may be used without a list of references and shorthands
since all bibliographic data is provided on the first citation. It is intended for citations
given in footnotes. The style will set the following package options at load time:
autocite=footnote, citetracker=context. This style also provides an
additional preamble option called citepages. See the style example for details.

verbose-ibid A variant of the verbose style which replaces repeated citations by the abbreviation Style example:
local, online.ibidem unless the citation is the first one on the current page or double-page spread,

or the ibidem would be ambiguous in the sense of ibidtracker=strict. This
style is intended for citations given in footnotes. The style will set the following
package options at load time: autocite=footnote, citetracker=context,
ibidtracker=constrict, pagetracker=true. This style also provides
additional preamble options called ibidpage and citepages. See the style
example for details.

verbose-note This style is similar to the verbose style in that it prints a full citation similar to Style example:
local, online.a bibliography entry when an entry is cited for the first time, and a short citation

afterwards. In contrast to the verbose style, the short citation is a pointer to the
footnote with the full citation. If the bibliography contains more than one work
by the respective author/editor, the pointer also includes the title. If available, the
shorttitle field is used in all short citations. If the shorthand field is defined,
it is handled as with the verbose style. This style may be used without a list of
references and shorthands since all bibliographic data is provided on the first citation.
It is exclusively intended for citations given in footnotes. The style will set the
following package options at load time: autocite=footnote, citetracker=
context, singletitle=true. This style also provides additional preamble
options called pageref and citepages. See the style example for details.

verbose-inote A variant of the verbose-note style which replaces repeated citations by the Style example:
local, online.abbreviation ibidem unless the citation is the first one on the current page or double-

page spread, or the ibidem would be ambiguous in the sense of ibidtracker=
strict. This style is exclusively intended for citations given in footnotes. It

79

http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/65-style-authortitle-tcomp-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/66-style-authortitle-ticomp-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/70-style-verbose-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/71-style-verbose-ibid-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/72-style-verbose-note-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/73-style-verbose-inote-biber.pdf

will set the following package options at load time: autocite = footnote,
citetracker = context, ibidtracker = constrict, singletitle =
true, pagetracker=true. This style also provides additional preamble op-
tions called ibidpage, pageref, and citepages. See the style example for
details.

verbose-trad1 This style implements a traditional citation scheme. It is similar to the verbose Style example:
local, online.style in that it prints a full citation similar to a bibliography entry when an item

is cited for the first time, and a short citation afterwards. Apart from that, it
uses the scholarly abbreviations ibidem, idem, op. cit., and loc. cit. to replace re-
current authors, titles, and page numbers in repeated citations in a special way.
If the shorthand field is defined, the shorthand is introduced on the first ci-
tation and used as the short citation thereafter. This style may be used with-
out a list of references and shorthands since all bibliographic data is provided
on the first citation. It is intended for citations given in footnotes. The style
will set the following package options at load time: autocite = footnote,
citetracker = context, ibidtracker = constrict, idemtracker =
constrict, opcittracker=context, loccittracker=context. This
style also provides additional preamble options called ibidpage, strict, and
citepages. See the style example for details.

verbose-trad2 Another traditional citation scheme. It is also similar to the verbose style but Style example:
local, online.uses scholarly abbreviations like ibidem and idem in repeated citations. In contrast

to the verbose-trad1 style, the logic of the op. cit. abbreviations is different
in this style and loc. cit. is not used at all. It is in fact more similar to verbose-
ibid and verbose-inote than to verbose-trad1. The style will set the
following package options at load time: autocite=footnote, citetracker=
context, ibidtracker=constrict, idemtracker=constrict. This
style also provides additional preamble options called ibidpage, strict, and
citepages. See the style example for details.

verbose-trad3 Yet another traditional citation scheme. It is similar to the verbose-trad2 style Style example:
local, online.but uses the scholarly abbreviations ibidem and op. cit. in a slightly different way. The

style will set the following package options at load time: autocite=footnote,
citetracker=context, ibidtracker=constrict, loccittracker=
constrict. This style also provides additional preamble options called strict
and citepages. See the style example for details.

reading A citation style which goes with the bibliography style by the same name. It simply Style example:
local, online.loads the authortitle style.

The following citation styles are special purpose styles. They are not intended for
the final version of a document:

draft A draft style which uses the entry keys in citations. The style will set the following Style example:
local, online.package options at load time: autocite=plain.

debug This style prints the entry key rather than some kind of label. It is intended for Style example:
local, online.debugging only and will set the following package options at load time: autocite=

plain.

3.3.2 Bibliography Styles

All bibliography styles which come with this package use the same basic format for
the individual bibliography entries. They only differ in the kind of label printed in the

80

http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/74-style-verbose-trad1-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/75-style-verbose-trad2-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/76-style-verbose-trad3-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/80-style-reading-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/81-style-draft-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/82-style-debug-biber.pdf

bibliography and the overall formatting of the list of references. There is a matching
bibliography style for every citation style. Note that some bibliography styles are
not mentioned below because they simply load a more generic style. For example,
the bibliography style authortitle-comp will load the authortitle style.

numeric This style prints a numeric label similar to the standard bibliographic facilities of Style example:
local, online.LaTeX. It is intended for use in conjunction with a numeric citation style. Note that

the shorthand field overrides the default label. The style will set the following
package options at load time: labelnumber=true. This style also provides an
additional preamble option called subentry which affects the formatting of entry
sets. If this option is enabled, all members of a set are marked with a letter which
may be used in citations referring to a set member rather than the entire set. See the
style example for details.

alphabetic This style prints an alphabetic label similar to the alpha.bst style of traditional Style example:
local, online.BibTeX. It is intended for use in conjunction with an alphabetic citation style. Note

that the shorthand field overrides the default label. The style will set the following
package options at load time: labelalpha=true, sorting=anyt.

authoryear This style differs from the other styles in that the publication date is not printed Style example:
local, online.towards the end of the entry but rather after the author/editor. It is intended for use

in conjunction with an author-year citation style. Recurring author and editor names
are replaced by a dash unless the entry is the first one on the current page or double-
page spread. This style provides an additional preamble option called dashedwhich
controls this feature. It also provided a preamble option called mergedate. See
the style example for details. The style will set the following package options at
load time: labeldateparts=true, sorting=nyt, pagetracker=true,
mergedate=true.

authortitle This style does not print any label at all. It is intended for use in conjunction with Style example:
local, online.an author-title citation style. Recurring author and editor names are replaced by a

dash unless the entry is the first one on the current page or double-page spread. This
style also provides an additional preamble option called dashed which controls this
feature. See the style example for details. The style will set the following package
options at load time: pagetracker=true.

verbose This style is similar to the authortitle style. It also provides an additional Style example:
local, online.preamble option called dashed. See the style example for details. The style will set

the following package options at load time: pagetracker=true.

reading This special bibliography style is designed for personal reading lists, annotated bibli- Style example:
local, online.ographies, and similar applications. It optionally includes the fields annotation,

abstract, library, and file in the bibliography. If desired, it also adds var-
ious kinds of short headers to the bibliography. This style also provides the ad-
ditional preamble options entryhead, entrykey, annotation, abstract,
library, and file which control whether or not the corresponding items are
printed in the bibliography. See the style example for details. See also § 3.14.8. The
style will set the following package options at load time: loadfiles=true,
entryhead=true, entrykey=true, annotation=true, abstract=
true, library=true, file=true.

The following bibliography styles are special purpose styles. They are not intended
for the final version of a document:

81

http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/30-style-numeric-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/40-style-alphabetic-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/50-style-authoryear-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/60-style-authortitle-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/70-style-verbose-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/80-style-reading-biber.pdf

draft This draft style includes the entry keys in the bibliography. The bibliography will be Style example:
local, online.sorted by entry key. The style will set the following package options at load time:

sorting=debug.

debug This style prints all bibliographic data in tabular format. It is intended for debugging Style example:
local, online.only and will set the following package options at load time: sorting=debug.

3.4 Extended Name Format

The parsing rules for BibTeX names are rather archaic and not suited to many
international name formats. biber supports an extended name format which
allows explicit specification of the parts of names. This allows the use of custom
name parts apart from the four standard BibTeX parts. Extended name formats are
supported in all name fields and can be used along with the usual BibTeX name
format. Recognition of extended name format can be disabled with the biber
option --noxname in case you do not need the extended format and the auto-
detection causes problems with normal name parsing. The separator = which comes
between the namepart names and values is customisable with the biber option
--xnamesep. Here is an example:

AUTHOR = {Hans Harman and Simon de Beumont}

AUTHOR = {given=Hans, family=Harman and given=Simon,

↪→ prefix=de, family=Beumont}

These two name specifications are equivalent but the extended format explicitly
names the parts. The supported parts are those specified by the biblatex data
mode constant nameparts, see § 4.2.3. As with traditional BibTeX name parsing,
initials are automatically generated but it is also possible to specify these explicitly:

AUTHOR = {given=Jean, prefix=de la, prefix-i=d, family=

↪→ Rousse}

AUTHOR = {given={Jean Pierre Simon}, given-i=JPS}

Initials are specified by adding the suffix -i to the namepart name. Compound parts
may be protected with braces:

AUTHOR = {given={Jean Pierre}}

If a namepart contains a comma, the whole namepart should be protected with
quotes:

AUTHOR = {"family={Robert and Sons, Inc.}"}

Traditional BibTeX name formats and the extended form may be used together:

AUTHOR = {Hans Harman and given=Simon, prefix=de, family

↪→ =Beumont}

Per-namelist and per-name options may be specified in the extended name format,
see § 3.1.3.1:

AUTHOR = {nosortothers=true and Hans Harman and

given=Simon, family=Beumont, prefix=de,

↪→ useprefix=true}

82

http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/81-style-draft-biber.pdf
http://mirrors.ctan.org/macros/latex/contrib/biblatex/doc/examples/82-style-debug-biber.pdf

3.5 Related Entries

Almost all bibliography styles require authors to specify certain types of relation-
ship between entries such as “Reprint of”, “Reprinted in” etc. It is impossible to
provide data fields to cover all of these relationships and so biblatex provides a
general mechanism for this using the entry fields related, relatedtype and
relatedstring. A related entry does not need to be cited and does not appear in
the bibliography itself (unless of course it is also cited itself independently) as a clone
is taken of the related entry to be used as a data source. The relatedtype field
should specify a localisation string which will be printed before the information from
the related entries is printed, for example “Orig. Pub. as”. The relatedstring
field can be used to override the string determined via relatedtype. Some exam-
ples:

@Book{key1,

...

related = {key2},

relatedtype = {reprintof},

...

}

@Book{key2,

...

}

Here we specify that entry key1 is a reprint of entry key2. In the bibliography
driver for Book entries, when \usebibmacro{related} is called for entry
key1:

• If the localisation string “reprintof” is defined, it is printed in the
relatedstring:reprintof format. If this formatting directive is unde-
fined, the string is printed in the relatedstring:default format.

• If the related:reprintof macro is defined, it is used to format the infor-
mation contained in entry key2, otherwise the related:default macro
is used

• If the related:reprintof format is defined, it is used to format both the
localisation string and data. If this format is not defined, then the related
format is used instead.

It is also supported to have cascading and/or circular relations:

@Book{key1,

...

related = {key2},

relatedtype = {reprintof},

...

}

@Book{key2,

...

related = {key3},

83

relatedtype = {translationof},

...

}

@Book{key3,

...

related = {key2},

relatedtype = {translatedas},

...

}

Multiple relations to the same entry are also possible:

@MVBook{key1,

...

related = {key2,key3},

relatedtype = {multivolume},

...

}

@Book{key2,

...

}

@Book{key3,

...

}

Note the order of the keys in lists of multiple related entries is important. The data
from multiple related entries is printed in the order of the keys listed in this field.
See § 4.5.1 for a more details on the mechanisms behind this feature. You can turn
this feature off using the package option related from § 3.1.2.1.

You can use the relatedoptions to set options on the related entry data clone.
This is useful if you need to override the dataonly option which is set by default
on all related entry clones. For example, if you will expose some of the names in
the related clone in your document, you may want to have them disambiguated
from names in other entries but normally this won’t happen as related clones have
the per-entry dataonly option set and this in turn sets uniquename=false
and uniquelist=false. In such a case, you can set relatedoptions to just
skiplab, skipbib, skipbiblist.

3.6 Sorting Options

This package supports fully customisable sorting templates for the bibliography. The
default global sorting template is selected with the sorting package option from
§ 3.1.2.1. Apart from the regular data fields there are also some special fields which
may be used to optimize the sorting of the bibliography. Appendices C.1 and C.2
give an outline of the default alphabetic sorting templates supported by biblatex.
Chronological sorting templates are listed in appendix C.3. A few explanations
concerning the default templates are in order.

The first item considered in the sorting process is always the presort field of
the entry. If this field is undefined, biblatex will use the default value ‘mm’ as

84

a presort string. The next item considered is the sortkey field. If this field is
defined, it serves as the master sort key. Apart from the presort field, no further
data is considered in this case. If the sortkey field is undefined, sorting continues
with the name. The package will try using the sortname, author, editor, and
translator fields, in this order. Which fields are considered also depends on the
setting of the use<name> options. If all such options are disabled, the sortname
field is ignored as well. Note that all name fields are responsive to maxnames and
minnames. If no name field is available, either because all of them are undefined
or because all use<name> options are disabled, biblatex will fall back to the
sorttitle and title fields as a last resort. The remaining items are, in various
order: the sortyear field, if defined, or the first four digits of the year field
otherwise; the sorttitle field, if defined, or the title field otherwise; the
volume field. Note that the sorting templates shown in appendix C.2 include an
additional item: labelalpha is the label used by ‘alphabetic’ bibliography styles.
Strictly speaking, the string used for sorting is labelalpha + extraalpha.
The sorting templates in appendix C.2 are intended to be used in conjunction with
alphabetic styles only.

The chronological sorting templates presented in appendix C.3 also make use
of the presort and sortkey fields, if defined. The next item considered is the
sortyear or the year field, depending on availability. The ynt template extracts
the first four Arabic figures from the field. If both fields are undefined, the string
9999 is used as a fallback value. This means that all entries without a year will be
moved to the end of the list. The ydnt template is similar in concept but sorts the
year in descending order. As with the ynt template, the string 9999 is used as a
fallback value. The remaining items are similar to the alphabetic sorting templates
discussed above. Note that the ydnt sorting template will only sort the date in
descending order. All other items are sorted in ascending order as usual.

Using special fields such as sortkey, sortname, or sorttitle is usually
not required. The biblatex package is quite capable of working out the desired
sorting order by using the data found in the regular fields of an entry. You will only
need them if you want to manually modify the sorting order of the bibliography or
if any data required for sorting is missing. Please refer to the field descriptions in
§ 2.2.3 for details on possible uses of the special fields.

3.7 Data Annotations

Ideally, there should be no formatting information in a bibliography data file, how-
ever, sometimes such questionable practice seems to the only way in which the
desired results can be achieved. Data annotations are a way of addressing this by
allowing users to attach semantic information (rather than typographical markup)
to information in a bibliography data source so that the information can be used at
markup time by a style. For example, if you wanted to highlight certain names in a
work depending on whether they were a student author (indicated by a superscript
asterisk in the references) or a corresponding author (indicated by bold face), then
you might be tempted to try:

@MISC{Article1,

AUTHOR = {Last1*, First1 and \textbf

↪→ {Last2}, \textbf{First2} and Last3, First3}

}

85

There are several problems with this. Firstly, it will break BibTeX’s fragile name
parsing routines and probably won’t compile at all. Secondly, it is not only mixing
up data with markup, it does so in a hard-coded way: this data can’t easily be shared
and used with other styles. While it is possible to achieve this formatting using
biblatex internals in a style or document, this is a complex and unreliable method
which many users will not wish to use.

In order to address these issues, biblatex has a general data annotation facility
which allows you to attach any number of a comma-separated list of annotations to
data fields, items within data field lists (like names) and even parts of specific items
such as parts of names (given name, family name etc.). There are macros provided to
check for annotations which can be used in formatting directives.

There are three “scopes” for data annotations, in order of increasing specificity:

• field—applied to top-level fields in a data source entry

• item—applied to items within a list field in a data source entry

• part—applied to parts within items within a list field in a data source entry

Data annotations are supported for BibTeX and biblatexml data sources.

@MISC{ann1,

AUTHOR = {Last1, First1 and Last2, First2

↪→ and Last3, First3},

AUTHOR+an = {1:family=student;2=corresponding},

TITLE = {The Title},

TITLE+an:default = {=titleannotation},

TITLE+an:cat = {="Provisional"}

}

Here the field name suffix +an is a user-definable21 suffix which marks a data field
as an annotation of the unsuffixed field. Multiple annotations can be provided for
the same field since all annotations are named. After the annotation marker is
the optional named annotation marker 22 and an optional annotation name. The
annotation name is ‘default’ if not specified and so in the above example the following
two are equivalent:

TITLE+an = {=titleannotation},

TITLE+an:default = {=titleannotation},

The format of annotation fields in BibTeX data sources is is as follows:

<annotationspecs> ::= <annotationspec> [";" <

↪→ annotationspec>]

<annotationspec> ::= [<itemcount> [":" <part>]] "="

↪→ <annotations>

<annotations> ::= <annotation> ["," <annotation>]

<annotation> ::= ["] (string) ["]

21See biber’s --annotation-marker option.
22See biber’s --named-annotation-marker option.

86

That is, one or more specifications separated by semicolons. Each specification is an
equals sign followed by a comma-separated list of annotation keywords or a string
enclosed in double-quotes (a ‘literal’ annotation, see below). To annotate a specific
item in a list, put the number of the list item before the equals sign (lists start at 1). If
you need to annotate a specific part of the list item, give its name after the list item
number, preceded by a colon. Name part names are defined in the data model, see
§ 4.2.3. Some further examples:

AUTHOR = {Last1, First1 and Last2, First2 and Last3

↪→ , First3},

AUTHOR+an = {3:given=annotation1, annotation2},

TITLE = {A title},

TITLE+an = {=a title annotation, another title

↪→ annotation},

LANGUAGE = {english and french},

LANGUAGE+an = {1=annotation3; 2=annotation4}

}

Attaching annotations to data is similar in biblatexml data sources. Using the
example above, we would have:

<bltx:entries xmlns:bltx="http://biblatex-biber.

↪→ sourceforge.net/biblatexml">

<bltx:entry id="test" entrytype="misc">

<bltx:names type="author">

<bltx:name>

<bltx:namepart type="given" initial="F">First1</

↪→ bltx:namepart>

<bltx:namepart type="family" initial="L">Last1</

↪→ bltx:namepart>

</bltx:name>

<bltx:name>

<bltx:namepart type="given" initial="F">First2</

↪→ bltx:namepart>

<bltx:namepart type="family" initial="L">Last2</

↪→ bltx:namepart>

</bltx:name>

<bltx:name>

<bltx:namepart type="given" initial="F">First3</

↪→ bltx:namepart>

<bltx:namepart type="family" initial="L">Last3</

↪→ bltx:namepart>

</bltx:name>

</bltx:names>

</bltx:annotation field="author" item="1" part="

↪→ family">student</bltx:annotation>

</bltx:annotation field="author" item="2">

↪→ corresponding</bltx:annotation>

</bltx:entry>

</bltx:entries>

87

To access the annotation information when formatting bibliography data, macros
are provided, corresponding to the three annotation scopes:

\iffieldannotation[〈msform〉][〈mslang〉][〈entryfield〉][〈annotationname〉]{〈annotation〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the data field 〈entryfield〉 (optionally a multiscript field of
〈msform〉/〈mslang〉) has an annotation 〈annotation〉 for the annotation called
〈annotationname〉 and false otherwise. If 〈annotationname〉 is not given, then the
annotation named ‘default’ is assumed (this is the name given to annotations defined
without an explicit name). If 〈entryfield〉 is not given, the current data field as in-
dicated by \currentfield, \currentlist or \currentname (see § 4.4.2)
is assumed. Of course, this is only possible if these commands are defined, that is,
inside formatting directives.

\ifitemannotation[〈msform〉][〈mslang〉][〈entryfield〉][〈annotationname〉][〈item〉]{〈annotation〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the item 〈item〉 in the data field 〈entryfield〉 (optionally amultiscript
field of 〈msform〉/〈mslang〉) has an annotation 〈annotation〉 and false otherwise. If
〈annotationname〉 is not given, then the annotation named ‘default’ is assumed (this
is the name given to annotations definedwithout an explicit name). The optional argu-
ment 〈entryfield〉 can be inferred if not provided as with \iffieldannotation.
If 〈item〉 is not given, the number of the item currently being processed as given by
listcount is used.

\ifpartannotation[〈msform〉][〈mslang〉][〈entryfield〉][〈annotationname〉][〈item〉]{〈part〉}{〈annotation〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the part named 〈part〉 in item 〈item〉 in the data field 〈entryfield〉
(optionally a multiscript field of 〈msform〉/〈mslang〉) has an annotation 〈annotation〉
and false otherwise. If 〈annotationname〉 is not given, then the annotation named
‘default’ is assumed (this is the name given to annotations defined without an explicit
name). The two optional arguments 〈entryfield〉 and 〈item〉 can be inferred as in
\ifitemannotation. The parameter 〈part〉 can never be inferred and is therefore
a mandatory argument.

Date fields are special and handled in a context where \currentfield is not
accessible. Thus there is a fourth command to test annotations for dates.

\ifdateannotation[〈annotationname〉]{〈datetype〉}{〈annotation〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the date field 〈datetype〉 has an annotation 〈annotation〉 and false
otherwise. If 〈annotationname〉 is not given, then the annotation named ‘default’ is
assumed (this is the name given to annotations defined without an explicit name).
The 〈datetype〉 argument is mandatory, because it cannot be inferred in most contexts
where \ifdateannotation will be used.

\hasfieldannotation[〈msform〉][〈mslang〉][〈entryfield〉][〈annotationname〉]{〈true〉}{〈false〉}

Executes 〈true〉 if the data field 〈entryfield〉 (optionally a multiscript field of
〈msform〉/〈mslang〉) has a literal annotation 〈annotationname〉 defined and false
otherwise. If 〈annotationname〉 is not given, then the annotation named ‘default’ is
assumed (this is the name given to annotations defined without an explicit name). If
〈entryfield〉 is not given, the current data field as indicated by \currentfield,
\currentlist or \currentname (see § 4.4.2) is assumed. Of course, this is
only possible if these commands are defined, that is, inside formatting directives.

88

\hasitemannotation[〈msform〉][〈mslang〉][〈entryfield〉][〈annotationname〉][〈item〉]{〈true〉}{〈false〉}

Executes 〈true〉 if the item 〈item〉 in the data field 〈entryfield〉 (optionally a multi-
script field of 〈msform〉/〈mslang〉) has a literal annotation 〈annotationname〉 defined
and false otherwise. If 〈annotationname〉 is not given, then the annotation named
‘default’ is assumed (this is the name given to annotations defined without an explicit
name). The optional argument 〈entryfield〉 can be inferred if not provided as with
\iffieldannotation. If 〈item〉 is not given, the number of the item currently
being processed as given by listcount is used.

\haspartannotation[〈msform〉][〈mslang〉][〈entryfield〉][〈annotationname〉][〈item〉]{〈part〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the part named 〈part〉 in the item 〈item〉 in the data field
〈entryfield〉 (optionally a multiscript field of 〈msform〉/〈mslang〉) has a literal an-
notation 〈annotationname〉 defined and false otherwise. If 〈annotationname〉 is not
given, then the annotation named ‘default’ is assumed (this is the name given to anno-
tations defined without an explicit name). The two optional arguments 〈entryfield〉
and 〈item〉 can be inferred as in \ifitemannotation. The parameter 〈part〉 can
never be inferred and is therefore a mandatory argument.

Date fields are special and handled in a context where \currentfield is not
accessible. Thus there is a fourth command to test the existence of annotations for
dates.

\hasdateannotation[〈annotationname〉]{〈datetype〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the date field 〈datetype〉 has any annotation 〈annotationname〉
defined and false otherwise. If 〈annotationname〉 is not given, then the annotation
named ‘default’ is assumed (this is the name given to annotations defined without an
explicit name). The 〈datetype〉 argument is mandatory, because it cannot be inferred
in most contexts where \ifdateannotation will be used.

As an example of how to use the annotation information to solve the problem
originally presented in this section, this could be used in the name formatting
directives to put an asterisk after all family names annotated as “student”:

\ifpartannotation{family}{student}

{*}

{}%

To put the given and family names of name list items annotated as “corresponding”
in boldface:

\renewcommand*{\mkbibnamegiven}[1]{%

\ifitemannotation{corresponding}

{\textbf{#1}}

{#1}}

\renewcommand*{\mkbibnamefamily}[1]{%

\ifitemannotation{corresponding}

{\textbf{#1}}

{#1}}

89

3.7.1 Literal Annotations

If the annotation is a string enclosed in double-quotes, the annotation is a ‘literal’
annotation. In this case the annotation can be retrieved and used as a string rather
than as meta-information used to determine formatting. This is useful in order to
be able to attached specific annotations to data which are to be printed as-is. For
example:

AUTHOR = {{American Educational Research Association}

↪→ and {American Psychological Association}

and {National Council on Measurement in

↪→ Education}},

AUTHOR+an = {1:family="AERA"; 2:family="APA"; 3:family="

↪→ NCME"}

}

Such annotations are not keys whose presence can be tested for but are rather literal
information attached to the data. The values are retrieved by the following macros

\getfieldannotation[〈msform〉][〈mslang〉][〈entryfield〉][〈annotationname〉]

Retrieves any literal annotation for the field 〈entryfield〉 (optionally a multiscript
field of 〈msform〉/〈mslang〉). If 〈annotationname〉 is not given, then the annotation
named ‘default’ is assumed (this is the name given to annotations defined without
an explicit name). If 〈entryfield〉 is not given, the current data field as indicated by
\currentfield, \currentlist or \currentname (see § 4.4.2) is assumed.
Of course, this is only possible if these commands are defined, that is, inside format-
ting directives.

\getitemannotation[〈entryfield〉][〈annotationname〉][〈item〉]

Retrieves any literal annotation for the item 〈item〉 in the field 〈entryfield〉 (optionally
a multiscript field of 〈msform〉/〈mslang〉). If 〈annotationname〉 is not given, then the
annotation named ‘default’ is assumed (this is the name given to annotations defined
without an explicit name). The optional argument 〈entryfield〉 can be inferred if not
provided as with \getfieldannotation. If 〈item〉 is not given, the number of
the item currently being processed as given by listcount is used.

\getpartannotation[〈msform〉][〈mslang〉][〈entryfield〉][〈annotationname〉][〈item〉]{〈part〉}

Retrieves any literal annotation for the part 〈part〉 of the item number 〈item〉
in the field 〈entryfield〉 (optionally a multiscript field of 〈msform〉/〈mslang〉). If
〈annotationname〉 is not given, then the annotation named ‘default’ is assumed (this
is the name given to annotations defined without an explicit name). The two optional
arguments 〈entryfield〉 and 〈item〉 can be inferred as in \getitemannotation.
The parameter 〈part〉 can never be inferred and is therefore a mandatory argument.
Date fields are special and handled in a context where \currentfield is not
accessible. Thus there is a fourth command to access literal annotations for dates.

\getdateannotation[〈annotationname〉]{〈datetype〉}

Retrieve a literal annotation for the datefield 〈datetype〉. If 〈annotationname〉 is not
given, then the annotation named ‘default’ is assumed (this is the name given to an-
notations defined without an explicit name). The 〈datetype〉 argument is mandatory,
because it cannot be inferred in most contexts where \getdateannotation will
be used.

90

So, for example, given the bibliography entry above, we could put the following in
the preamble:

\renewcommand*{\mkbibnamefamily}[1]{%

#1\space\mkbibparens{\getpartannotation{family}}}

In order to get something like this in the bibliography when formatting names:

American Educational Research Association (AERA) and

American Psychological Association (APA), and

National Council on Measurement in Education (NCME)

}

Naturally there are semantically more elegant ways of dealing with corporate authors
without using the ‘family’ namepart (see § 4.2.3) but this example demonstrates clearly
a use for literal annotations.

3.8 Bibliography Commands

3.8.1 Resources

\addbibresource[〈options〉]{〈resource〉}

Adds a 〈resource〉, such as a .bib file, to the default resource list. This command is
only available in the preamble. It replaces the \bibliography legacy command.
Note that files must be specified with their full name, including the extension. With
biber, the resource name can be a BSD-style glob pattern. This only makes sense
when resources refer to files with an absolute or relative path and does not work when
looking for data resources in biber s input/output directories or with resources
located by 〈kpsewhich〉 etc. When running on Windows, biber will switch to a
Windows compatible globbing mode where backslashes are also useable as path
separators and case does not matter. If the resources contain duplicate entries
(that is, duplicate entrykeys), it is backend dependent what then happens. For
example, by default biber will ignore further occurrence of entrykeys unless its
--noskipduplicates options is used. Invoke \addbibresource multiple
times to add more resources, for example:

\addbibresource{bibfile1.bib}

\addbibresource{bibfile2.bib}

\addbibresource[glob]{bibfiles/bibfile*.bib}

\addbibresource[glob]{bibfile-num?.bib}

\addbibresource[glob]{bibfile{1,2,3}.bib}

\addbibresource[location=remote]{https://raw.

↪→ githubusercontent.com/plk/biblatex/master/bibtex/

↪→ bib/biblatex/biblatex-examples.bib}

\addbibresource[location=remote,label=lan]{ftp

↪→ ://192.168.1.57/~user/file.bib}

Since the 〈resource〉 string is read in a verbatim-like mode, it may contain arbitrary
characters. The only restriction is that any curly braces must be balanced. The
following 〈options〉 are available:

91

bibencoding=〈bibencoding〉
This option can be used to override the global bibencoding option for a particular
〈resource〉.
label=〈identifier〉
Assigns a label to a resource. The 〈identifier〉 may be used in place of the full resource
name in the optional argument of refsection (see § 3.8.4). The label is a unique
identifier for the 〈resource〉, so each label should only be used once.
location=〈location〉 default: local
The location of the resource. The 〈location〉 may be either local for local resources
or remote for urls. Remote resources require biber. The protocols http/https
and ftp are supported. The remote url must be a fully qualified path to a bib file
or a url which returns a bib file.
type=〈type〉 default: file
The type of resource. Currently, the only supported type is file.
datatype=〈datatype〉 default: bibtex
The data type (format) of the resource. The following formats are currently supported:
bibtex BibTeX format.
biblatexml Experimental XML format for biblatex. See § D.
glob=true, false
Whether biber should glob (expand according to pattern) the datasource name.
There is a global setting for this in biber (false by default and settable to true using
the --glob-datasources option). This option allows overriding the biber
default on a per-resource basis.

\addglobalbib[〈options〉]{〈resource〉}

This command differs from \addbibresource in that the 〈resource〉 is added to
the global resource list. The difference between default resources and global resources
is only relevant if there are reference sections in the document and the optional
argument of refsection (§ 3.8.4) is used to specify alternative resources which
replace the default resource list. Any global resources are added to all reference
sections.

\addsectionbib[〈options〉]{〈resource〉}

This command differs from \addbibresource in that the resource 〈options〉 are
registered but the 〈resource〉 not added to any resource list. This is only required for
resources which 1) are given exclusively in the optional argument of refsection
(§ 3.8.4) and 2) require options different from the default settings. In this case,
\addsectionbib is employed to qualify the 〈resource〉 prior to using it by setting
the appropriate 〈options〉 in the preamble. The label option may be useful to assign
a short name to the resource.

\bibliography{〈bibfile, …〉}
Deprecated

The legacy command for adding bibliographic resources, supported for backwards
compatibility. Like \addbibresource, this command is only available in the
preamble and adds resources to the default resource list. Its argument is a comma-
separated list of bib files. The .bib extension may be omitted from the filename.
Invoking this commandmultiple times to addmore files is permissible. This command
is deprecated. Please consider using \addbibresource instead.

92

3.8.2 The Bibliography

\printbibliography[〈key=value, …〉]

This command prints the bibliography. It takes one optional argument, which is a
list of options given in 〈key〉=〈value〉 notation. The following options are available:

env=〈name〉 default: bibliography/shorthands

The ‘high-level’ layout of the bibliography and the list of shorthands is con-
trolled by environments defined with \defbibenvironment. This op-
tion selects an environment. The 〈name〉 corresponds to the identifier used
when defining the environment with \defbibenvironment. By default,
the \printbibliography command uses the identifier bibliography;
\printbiblist uses shorthands. See also §§ 3.8.3 and 3.8.7.

heading=〈name〉 default: bibliography/shorthands

Thebibliography and the list of shorthands typically have a chapter or section heading.
This option selects the heading 〈name〉, as defined with \defbibheading. By
default, the\printbibliography command uses the headingbibliography;
\printbiblist uses shorthands. See also §§ 3.8.3 and 3.8.7.

title=〈text〉

This option overrides the default title provided by the heading selected with the
heading option, if supported by the heading definition. See § 3.8.7 for details.

label=〈label〉

If 〈label〉 is nonempty, issue \label{〈label〉} after typesetting the heading. No
sanity checking is done whether or not it is useful to set a label after the heading
(e. g., if the heading is not numbered a \ref to the label might not result in useful
output).

block=none, space, par, nbpar, ragged default: global setting (none)

This option overrides the global block option (see § 3.1.2.1, the meaning of the
settings is explained there as well).

prenote=〈name〉

The prenote is an arbitrary piece of text to be printed after the heading but be-
fore the list of references. This option selects the prenote 〈name〉, as defined with
\defbibnote. By default, no prenote is printed. The note is printed in the standard
text font. It is not affected by \bibsetup and \bibfont but it may contain its
own font declarations. See § 3.8.8 for details.

postnote=〈name〉

The postnote is an arbitrary piece of text to be printed after the list of references.
This option selects the postnote 〈name〉, as defined with \defbibnote. By default,
no postnote is printed. The note is printed in the standard text font. It is not affected
by \bibsetup and \bibfont but it may contain its own font declarations. See
§ 3.8.8 for details.

93

section=〈integer〉 default: current section

Print only entries cited in reference section 〈integer〉. The reference sections are
numbered starting at 1. All citations given outside a refsection environment are
assigned to section 0. See § 3.8.4 for details and § 3.14.3 for usage examples.

segment=〈integer〉

Print only entries cited in reference segment 〈integer〉. The reference segments are
numbered starting at 1. All citations given outside a refsegment environment
are assigned to segment 0. See § 3.8.5 for details and § 3.14.3 for usage examples.
Remember that segments within a section are numbered local to the section so the
segment you request will be the nth segment in the requested (or currently active
enclosing) section.

type=〈entrytype〉

Print only entries whose entry type is 〈entrytype〉.

nottype=〈entrytype〉

Print only entries whose entry type is not 〈entrytype〉. This option may be used
multiple times.

subtype=〈subtype〉

Print only entries whose entrysubtype is defined and 〈subtype〉.

notsubtype=〈subtype〉

Print only entries whose entrysubtype is undefined or not 〈subtype〉. This option
may be used multiple times.

keyword=〈keyword〉

Print only entries whose keywords field includes 〈keyword〉. This option may be
used multiple times.

notkeyword=〈keyword〉

Print only entries whose keywords field does not include 〈keyword〉. This option
may be used multiple times.

category=〈category〉

Print only entries assigned to category 〈category〉. This option may be used multiple
times.

notcategory=〈category〉

Print only entries not assigned to category 〈category〉. This option may be used
multiple times.

filter=〈name〉

Filter the entries with filter 〈name〉, as defined with \defbibfilter. See § 3.8.9
for details.

94

check=〈name〉

Filter the entries with check 〈name〉, as defined with \defbibcheck. See § 3.8.9
for details.

resetnumbers=〈true,false,number〉

This option applies to numerical citation/bibliography styles only and requires that
the defernumbers option from § 3.1.2.1 be enabled globally. If enabled, it will
reset the numerical labels assigned to the entries in the respective bibliography,
i. e., the numbering will restart at 1. You can also pass a number to this option, for
example: resetnumbers=10 to reset numbering to the specified number to aid
numbering continuity across documents. Use this option with care as biblatex
can not guarantee unique labels globally if they are reset manually.

omitnumbers=true, false

This option applies to numerical citation/bibliography styles only and requires
that the defernumbers option from § 3.1.2.1 be enabled globally. If enabled,
biblatex will not assign a numerical label to the entries in the respective biblio-
graphy. This is useful when mixing a numerical subbibliography with one or more
subbibliographies using a different scheme (e. g., author-title or author-year).

locallabelwidth=true, false default: false

Calculate \labelnumberwidth, \labelalphawidth and similar lengths
locally for the present bibliography and not globally for all entries. See also
labelnumberwidth in § 3.1.2.1.

\bibbysection[〈key=value, …〉]

This command automatically loops over all reference sections. This is equivalent
to giving one \printbibliography command for every section but has the
additional benefit of automatically skipping sections without references. Note that
\bibbysection starts looking for references in section 1. It will ignore ref-
erences given outside of refsection environments since they are assigned to
section 0. See § 3.14.3 for usage examples. The options are a subset of those sup-
ported by \printbibliography. Valid options are env, heading, prenote,
postnote. The current bibliography context sorting template is used for all sections
(see § 3.8.10).

\bibbysegment[〈key=value, …〉]

This command automatically loops over all reference segments. This is equivalent
to giving one \printbibliography command for every segment in the current
refsection but has the additional benefit of automatically skipping segments
without references. Note that \bibbysegment starts looking for references in
segment 1. It will ignore references given outside of refsegment environments
since they are assigned to segment 0. See § 3.14.3 for usage examples. The options
are a subset of those supported by \printbibliography. Valid options are
env, heading, prenote, postnote. The current bibliography context sorting
template is used for all segments (see § 3.8.10).

95

\bibbycategory[〈key=value, …〉]

This command loops over all bibliography categories. This is equivalent to giving one
\printbibliography command for every category but has the additional benefit
of automatically skipping empty categories. The categories are processed in the order
in which they were declared. See § 3.14.3 for usage examples. The options are a subset
of those supported by \printbibliography. Valid options are env, prenote,
postnote, section. Note that heading is not available with this command.
The name of the current category is automatically used as the heading name. This
is equivalent to passing heading=〈category〉 to \printbibliography and
implies that there must be a matching heading definition for every category. The
current bibliography context sorting template is used for all categories (see § 3.8.10).

\printbibheading[〈key=value, …〉]

This command prints a bibliography heading defined with \defbibheading. It
takes one optional argument, which is a list of options given in 〈key〉=〈value〉 nota-
tion. The options are a small subset of those supported by \printbibliography.
Valid options are heading, title and label. By default, this command uses the
heading bibliography. See § 3.8.7 for details. Also see §§ 3.14.3 and 3.14.4 for
usage examples.

\DeclarePrintbibliographyDefaults{〈key=value, …〉}

This command can be used to globally set defaults for some options
to \printbibliography, the \bibby... bibliography commands and
\printbibheading. The supported keys are

•env

•heading

•title

•prenote

•postnote

•filter

To print a bibliography with a different sorting template than the global sorting
template, use the bibliography context switching commands from § 3.8.10.

3.8.3 Bibliography Lists

biblatex can, in addition to printing normal bibliographies, also print arbitrary
lists of information derived from the bibliography data such as a list of shorthand
abbreviations for particular entries or a list of abbreviations of journal titles.

A bibliography list differs from a normal bibliography in that the same bibliography
driver is used to print all entries rather than a specific driver being used for each
entry depending on the entry type.

\printbiblist[〈key=value, …〉]{〈biblistname〉}

This command prints a bibliography list. It takes an optional argument, which is a list
of options given in 〈key〉=〈value〉 notation. Valid options are all options supported
by\printbibliography (§ 3.8.2) exceptresetnumbers andomitnumbers.
Additionaly, the two options driver and biblistfilter are available. If there

96

are any refsection environments in the document, the bibliography list will be
local to these environments; see § 3.8.4 for details. By default, this command uses
the heading biblist. See § 3.8.7 for details.

The 〈biblistname〉 is a mandatory argument which names the bibliography list. This
name is used to identify:

•The default bibliography driver used to print the list entries

•A default bibliography list filter declared with \DeclareBiblistFilter
(see § 4.5.7) used to filter the entries returned from biber

•A default check declared with \defbibcheck (see § 3.8.9) used to post-
process the list entries

•The default bib environment to use

•The default sorting template to use

The two additional options can be used to change some of the defaults set by the
mandatory argument.

driver=〈driver〉 default: 〈biblistname〉
Change the bibliography driver used to print the list entries.

biblistfilter=〈biblistfilter〉 default: 〈biblistname〉
Change the bibliography list filter used to filter the entries. 〈biblistfilter〉 must be a
valid bibliography list filter defined with \DeclareBiblistFilter (see § 4.5.7).

In terms of sorting the list, the default is to sort using the sorting template named
after the bibliography list (if it exists) and only then to fall back to the current context
sorting template if this is not defined (see § 3.8.10).

The most common bibliography list is a list of shorthand abbreviations for certain
entries and so this has a convenience alias \printshorthands[…] for backwards
compatibility which is defined as:

\printbiblist[...]{shorthand}

biblatex provides automatic support for data source fields in the default data
model marked as ‘Label fields’ (See § 2.2.2). Such fields automatically have defined
for them:

•A default bib environment (See § 3.8.7)

•A bibliography list filter (See § 4.5.7)

•Some supporting formats and lengths (See § 4.10.5 and § 4.10.4)

Therefore only a minimal setup is required to print bibliography lists with such fields.
For example, to print a list of journal title abbreviations, you can minimally put this
in your preamble:

\DeclareBibliographyDriver{shortjournal}{%

\printfield{journaltitle}}

Then you can put this in your document where you want to print the list:

97

\printbiblist[title={Journal Shorthands}]{shortjournal}

Since shortjournal is defined in the default data model as a ‘Label field’, this
example:

•Uses the automatically created ‘shortjournal’ bib environment

•Uses the automatically created ‘shortjournal’ bibliography list filter to return
only entries with a shortjournal field in the .bbl

•Uses the defined ‘shortjournal’ bibliography driver to print the entries

•Uses the default ‘biblist’ heading but overrides the title with ‘Journal Short-
hands’

•Uses the current bibliography context sorting template if no template exists
with the name shortjournal

Often, you will want to sort on the label field of the list and since a sorting template
is automatically picked up if it is named after the list, in this case you could simply
do:

\DeclareSortingTemplate{shortjournal}{

\sort{

\field{shortjournal}

}

}

Naturally all defaults can be overridden by options to \printbiblist and defini-
tions of the environments, filters etc. and in this way arbitrary types of bibliography
lists can be printed containing a variety of information from the bibliography data.

Bibliography lists are often used to print lists of various kinds of shorthands and
this can result in duplicate entries if more than one bibliography entry has the same
shorthand. For example, several journal articles in the same journal would result
in duplicate entries in a list of journal shorthands. You can use the fact that such
lists automatically pick up a \bibcheck with the same name as the list to define
a check to remove duplicates. If you are defining a list to print all of the journal
shorthands using the shortjournal field, you could define a \bibcheck like
this:

\defbibcheck{shortjournal}{%

\iffieldundef{shortjournal}

{\skipentry}

{\iffieldundef{journaltitle}

{\skipentry}

{\ifcsdef{sjcheck@\therefsection

-\strfield{shortjournal}=\strfield{journaltitle}}

{\skipentry}

{\savefieldcs{journaltitle}{sjcheck@\therefsection

-\strfield{shortjournal}=\strfield{journaltitle}}}}}}

98

3.8.4 Bibliography Sections

The refsection environment is used in the document body to mark a reference
section. This environment is useful if you want separate, independent bibliographies
and bibliography lists in each chapter, section, or any other part of a document.
Within a reference section, all cited works are assigned labels which are local to
the environment. Technically, reference sections are completely independent from
document divisions such as \chapter and \section even though they will most
likely be used per chapter or section. See the refsection package option in
§ 3.1.2.1 for a way to automate this. Also see § 3.14.3 for usage examples.

\begin{refsection}[〈resource, …〉]
\end{refsection}

The optional argument is a comma-separated list of resources specific to the reference
section. If the argument is omitted, the reference section will use the default re-
source list, as specified with \addbibresource in the preamble. If the argument
is provided, it replaces the default resource list. Global resources specified with
\addglobalbib are always considered. refsection environments may not
be nested, but you may use refsegment environments within a refsection to
subdivide it into segments. Use the section option of \printbibliography
to select a section when printing the bibliography, and the corresponding option
of \printbiblist when printing bibliography lists. Bibliography sections are
numbered starting at 1. The number of the current section is also written to the
transcript file. All citations given outside a refsection environment are assigned
to section 0. If \printbibliography is used within a refsection, it will
automatically select the current section. The section option is not required in
this case. This also applies to \printbiblist. Beginning a new reference section
automatically ends the active reference context (see § 3.8.10).

\newrefsection[〈resource, …〉]

This command is similar to the refsection environment except that it is a stand-
alone command rather than an environment. It automatically ends the previous
reference section (if any) and immediately starts a new one. Note that the reference
section started by the last\newrefsection command in the document will extend
to the very end of the document. Use \endrefsection if you want to terminate
it earlier.

3.8.5 Bibliography Segments

The refsegment environment is used in the document body to mark a reference
segment. This environment is useful if you want one global bibliography which
is subdivided by chapter, section, or any other part of the document. Technically,
reference segments are completely independent from document divisions such as
\chapter and \section even though they will typically be used per chapter or
section. See the refsegment package option in § 3.1.2.1 for a way to automate
this. Also see § 3.14.3 for usage examples.

\begin{refsegment}

\end{refsegment}

The difference between a refsection and a refsegment environment is that
the former creates labels which are local to the environment whereas the latter

99

provides a target for the segment filter of \printbibliography without af-
fecting the labels. They will be unique across the entire document. refsegment
environments may not be nested, but you may use them in conjunction with
refsection to subdivide a reference section into segments. In this case, the
segments are local to the enclosing refsection environment. Use the segment
option of \printbibliography to select a segment when printing the biblio-
graphy. Within a section, the reference segments are numbered starting at 1 and
the number of the current segment will be written to the transcript file. All citations
given outside a refsegment environment are assigned to segment 0. In contrast to
the refsection environment, the current segment is not selected automatically
if \printbibliography is used within a refsegment environment.

\newrefsegment This command is similar to the refsegment environment except that it is a stand-
alone command rather than an environment. It automatically ends the previous
reference segment (if any) and immediately starts a new one. Note that the reference
segment started by the last \newrefsegment command will extend to the end of
the document. Use \endrefsegment if you want to terminate it earlier.

3.8.6 Bibliography Categories

Bibliography categories allow you to split the bibliography into multiple parts dedi-
cated to different topics or different types of references, for example primary and
secondary sources. See § 3.14.4 for usage examples.

\DeclareBibliographyCategory{〈category〉}

Declares a new 〈category〉, to be used in conjunction with \addtocategory

and the category and notcategory filters of \printbibliography. This
command is used in the document preamble.

\addtocategory{〈category〉}{〈key〉}

Assigns a 〈key〉 to a 〈category〉, to be used in conjunction with the category and
notcategory filters of \printbibliography. This command may be used in
the preamble and in the document body. The 〈key〉 may be a single entry key or a
comma-separated list of keys. The assignment is global.

3.8.7 Bibliography Headings and Environments

\defbibenvironment{〈name〉}{〈begin code〉}{〈end code〉}{〈item code〉}

This command defines bibliography environments. The 〈name〉 is an identifier passed
to the env option of \printbibliography and \printbiblistwhen select-
ing the environment. The 〈begin code〉 is LaTeX code to be executed at the beginning
of the environment; the 〈end code〉 is executed at the end of the environment; the
〈item code〉 is code to be executed at the beginning of each entry in the bibliography
or a bibliography list. Here is an example of a definition based on the standard LaTeX
list environment:

\defbibenvironment{bibliography}

{\list{}

{\setlength{\leftmargin}{\bibhang}%

\setlength{\itemindent}{-\leftmargin}%

\setlength{\itemsep}{\bibitemsep}%

100

\setlength{\parsep}{\bibparsep}}}

{\endlist}

{\item}

As seen in the above example, usage of \defbibenvironment is roughly similar
to \newenvironment except that there is an additional mandatory argument for
the 〈item code〉.

\defbibheading{〈name〉}[〈title〉]{〈code〉}

This command defines bibliography headings. The 〈name〉 is an identifier to be passed
to theheading option of\printbibliography or\printbibheading and
\printbiblist when selecting the heading. The 〈code〉 should be LaTeX code
generating a fully-fledged heading, including page headers and an entry in the table of
contents, if desired. If \printbibliography or \printbiblist are invoked
with a title option, the title will be passed to the heading definition as #1. If not,
the default title specified by the optional 〈title〉 argument is passed as #1 instead.
The 〈title〉 argument will typically be \bibname, \refname, or \biblistname
(see § 4.9.2.1). This command is often needed after changes to document headers in
the preamble. Here is an example of a simple heading definition:

\defbibheading{bibliography}[\bibname]{%

\chapter*{#1}%

\markboth{#1}{#1}}

The following headings, which are intended for use with
\printbibliography and \printbibheading, are predefined:

bibliography

This is the default heading used by \printbibliography if the heading op-
tion is not given. Its default definition depends on the document class. If the class
provides a \chapter command, the heading is similar to the bibliography heading
of the standard LaTeX book class, i. e., it uses \chapter* to create an unnum-
bered chapter heading which is not included in the table of contents. If there is
no \chapter command, it is similar to the bibliography heading of the standard
LaTeX article class, i. e., it uses \section* to create an unnumbered section
heading which is not included in the table of contents. The string used in the heading
also depends on the document class. With book-like classes the localisation string
bibliography is used, with other classes it is references (see § 4.9.2). See
also §§ 3.15.1 and 3.15.2 for class-specific hints.

subbibliography

Similar to bibliography but one sectioning level lower. This heading def-
inition uses \section* instead of \chapter* with a book-like class and
\subsection* instead of \section* otherwise.

bibintoc

Similar to bibliography above but adds an entry to the table of contents.

101

subbibintoc

Similar to subbibliography above but adds an entry to the table of contents.

bibnumbered

Similar to bibliography above but uses \chapter or \section to create a
numbered heading which is also added to the table of contents.

subbibnumbered

Similar to subbibliography above but uses \section or \subsection to
create a numbered heading which is also added to the table of contents.

none

A blank heading definition. Use this to suppress the heading.

The following headings intended for use with \printbiblist are predefined:

biblist

This is the default heading used by \printbiblist if the heading option is
not given. It is similar to bibliography above except that it uses the localisation
string shorthands instead of bibliography or references (see § 4.9.2). See
also §§ 3.15.1 and 3.15.2 for class-specific hints.

biblistintoc

Similar to biblist above but adds an entry to the table of contents.

biblistnumbered

Similar to biblist above but uses \chapter or \section to create a numbered
heading which is also added to the table of contents.

3.8.8 Bibliography Notes

\defbibnote{〈name〉}{〈text〉}

Defines the bibliography note 〈name〉, to be used via the prenote and postnote
options of \printbibliography and \printbiblist. The 〈text〉 may be
any arbitrary piece of text, possibly spanning several paragraphs and containing font
declarations. Also see § 3.15.6.

3.8.9 Bibliography Filters and Checks

\defbibfilter{〈name〉}{〈expression〉}

Defines the custom bibliography filter 〈name〉, to be used via the filter option of
\printbibliography. The 〈expression〉 is a complex test based on the logical
operators and, or, not, the group separator (...), and the following atomic tests:

segment=〈integer〉

Matches all entries cited in reference segment 〈integer〉.

102

type=〈entrytype〉

Matches all entries whose entry type is 〈entrytype〉.

subtype=〈subtype〉

Matches all entries whose entrysubtype is 〈subtype〉.

keyword=〈keyword〉

Matches all entries whose keywords field includes 〈keyword〉. If the 〈keyword〉
contains spaces, it needs to be wrapped in braces.

category=〈category〉

Matches all entries assigned to 〈category〉 with \addtocategory.

Here is an example of a filter expression:

\defbibfilter{example}{%

(type=book or type=inbook)

and keyword=abc

and not keyword={x y z}

}

This filter will match all entries whose entry type is either @book or @inbook
and whose keywords field includes the keyword ‘abc’ but not ‘x y z’. As seen
in the above example, all elements are separated by whitespace (spaces, tabs, or
line endings). There is no spacing around the equal sign. The logical operators are
evaluated with the \ifboolexpr command from the etoolbox package. See the
etoolbox manual for details about the syntax. The syntax of the \ifthenelse
command from the ifthen package, which has been employed in older versions of
biblatex, is still supported. This is the same test using ifthen-like syntax:

\defbibfilter{example}{%

\(\type{book} \or \type{inbook} \)

\and \keyword{abc}

\and \not \keyword{x y z}

}

Note that custom filters are local to the reference section in which they are used. Use
the section filter of \printbibliography to select a different section. This
is not possible from within a custom filter.

\defbibcheck{〈name〉}{〈code〉}

Defines the custom bibliography filter 〈name〉, to be used via the check op-
tion of \printbibliography. \defbibcheck is similar in concept to
\defbibfilter but much more low-level. Rather than a high-level expression,
the 〈code〉 is LaTeX code, much like the code used in driver definitions, which may
perform arbitrary tests to decide whether or not a given entry is to be printed. The
bibliographic data of the respective entry is available when the 〈code〉 is executed.
Issuing the command \skipentry in the 〈code〉 will cause the current entry to be
skipped. For example, the following filter will only output entries with anabstract
field:

103

\defbibcheck{abstract}{%

\iffieldundef{abstract}{\skipentry}{}}

...

\printbibliography[check=abstract]

The following check will exclude all entries published before the year 2000:

\defbibcheck{recent}{%

\iffieldint{year}

{\ifnumless{\thefield{year}}{2000}

{\skipentry}

{}}

{\skipentry}}

See the author guide, in particular §§ 4.6.2 and 4.6.3, for further details.

3.8.10 Reference Contexts

References in a bibliography are cited and printed in a ‘context’. The context deter-
mines the data which is actually used to cite or provide bibliographic data for an
entry. A context consists of the following information:

• A sorting template

• A template for constructing the sorting keys for names

• A string prefix for citation schemes which use alphabetic or numeric labels

• A template for calculating name uniqueness information

• A template for constructing alphabetic labels for names

• A multiscript default ‘form’

• A multiscript default ‘language’

The purpose of bibliography contexts is twofold. Firstly, they are used to set options
which influence a printed bibliography and secondly to influence the data printed by
citation commands. The former use is the most common when one needs to print
more than one bibliography list with different, for example, sorting.

\usepackage[sorting=nyt]{biblatex}

\begin{document}

\cite{one}

\cite{two}

\printbibliography

\newrefcontext[sorting=ydnt]

\printbibliography

Here we print two bibliographies, one with the default ‘nyt’ sorting template and
one with the ‘ydnt’ sorting template.

104

To demonstrate the second type of use of bibliography contexts, we have to
understand that the actual data for an entry can vary depending on the context.
This is most obvious in the case of the extra* fields like extradate which are
generated by the backend according to the order of entries after sorting so that they
come out in the expected ‘a, b, c’ order. This clearly shows that the data in an entry
can be different between sorting templates. If a document contains more than one
bibliography list with different sorting templates, it can happen then that the .bbl
contains sorting lists with the same entry but containing different data (a different
value for extradate, for example). The purpose of bibliography contexts is to
encapsulate things inside a context so that biblatex can use the correct entry
data. An example is printing a bibliography list with a different sorting order to
the global sorting order where the extra* fields are different for the same entry
between sorting lists:

\usepackage[sorting=nyt,style=authoryear]{biblatex}

\DeclareSortingTemplate{yntd}{

\sort{

\field[strside=left,strwidth=4]{sortyear}

\field[strside=left,strwidth=4]{year}

\literal{9999}

}

\sort{

\field{sortname}

\field{author}

\field{editor}

}

\sort[direction=descending]{

\field{sorttitle}

\field{title}

}

}

\begin{document}

\cite{one}

\cite{two}

\printbibliography

\newrefcontext[sorting=yntd]

\cite{one}

\cite{two}

\printbibliography

Here, the second use of the citations, along with the \printbibliography
command will use data from the context of the custom ‘yntd’ sorting template which
may well be different from the data associated with the default ‘nyt’ template. That is,
the citation labels (in an authoryear style which uses extradate) may be different
for the exact same entries between different bibliography contexts and so the citations
themselves may look different.

Reference contexts can be declared with \DeclareRefcontext and referred
to by name, see below.

By default, data for a citation is drawn from the reference context of the last
bibliography in which it was printed. For example:

105

\DeclareRefcontext{ap}{labelprefix=A}

\begin{document}

\cite{book, article, misc}

\printbibliography[type=book]

\newrefcontext{ap}

\printbibliography[type=article]

\newrefcontext[sorting=ydnt]

\printbibliography[type=misc]

\end{document}

This example also shows the declaration and use of a named reference context.
Assuming the entrykeys are indicative of their entrytypes, this is the default situation
for the citations which corresponds to what users normally expect:

• The citation of entry book would draw its data from the global reference
context, because the last bibliography in which it was printed was the one in
the global reference context.

• The citation of entry article would draw its data from reference context
with labelprefix=A and would therefore have a ‘A’ prefix when cited.

• The citation of entry misc would draw its data from the reference context
with sorting=ydnt

In cases where the user has entries which occur in multiple bibliographies in differ-
ent forms or with potentially different labels (in a numeric scheme with different
labelprefix values for example), it may be necessary to tell biblatex from
which reference context you wish to draw the citation information. As shown above
this can be done by explicitly putting citations inside reference contexts. This can
be onerous in a large document and so there is specific functionality for assigning
citations to reference contexts programatically, see the \assignrefcontext*
macros below.

\DeclareRefcontext{〈name〉}{〈key=value, …〉}

Declares a named reference context with name 〈name〉. The 〈key=value〉 options
define the context attributes. All context attributes are optional and default to the
global settings if absent. The valid options are:

msform=〈form〉 default: default

The default multiscript field alternate ‘form’. Must be one of the forms declared in
‘multiscriptforms’ constant. This controls the default ‘form’ for multiscript aware
macros and citations within the scope of the refcontext. See 3.17.

mslang=〈bcp47tag〉 default: en-us

The default multiscript field alternate ‘language’ as a BCP47 tag. This controls the
default ‘language’ for multiscript aware macros and citations within the scope of the
refcontext. See 3.17.

106

sorting=〈name〉
Specify a sorting template defined previously with\DeclareSortingTemplate.
This template is used to determine which data to retrieve and/or print for an entry
in the commands inside the context.
sortingnamekeytemplatename=〈name〉
Specify a sorting name key template defined previously with
\DeclareSortingNamekeyTemplate. This template is used to con-
struct sorting keys for names inside the context. The template name can also be
specified (in increasing order of preference) per-entry, per-name list and per-name.
See § E for information on setting per-option, per-namelist and per-name options.
uniquenametemplatename=〈name〉
Specify a uniquename template defined previously with
\DeclareUniquenameTemplate (see § 4.11.4). This template is used to
calculate uniqueness information for names inside the context. The template name
can also be specified (in increasing order of preference) per-entry, per-name list and
per-name. See § E for information on setting per-option, per-namelist and per-name
options.
labelalphanametemplatename=〈name〉
Specify a template defined previouslywith\DeclareLabelalphaNameTemplate
(see § 4.5.5). This template is used to construct name parts of alphabetic labels for
names inside the context. The template name can also be specified (in increasing
order of preference) per-entry, per-name list and per-name. See § E for information
on setting per-option, per-namelist and per-name options.
nametemplates=〈name〉
A convenience meta-option which sets sortingnamekeytemplate,
uniquenametemplate and labelalphanametemplate to the same
template name. This option can also be specified (in increasing order of preference)
per-entry, per-name list and per-name. See § E for information on setting per-option,
per-namelist and per-name options.
labelprefix=〈string〉
This option applies to numerical citation/bibliography styles only and requires that
the defernumbers option from § 3.1.2.1 be enabled globally. Setting this op-
tion will implicitly enable resetnumbers for the any \printbibliography
in the scope of the context (unless overridden by a user-specified value for
resetnumbers). The option assigns the 〈string〉 as a prefix to all entries in the
reference context. For example, if the 〈string〉 is A, the numerical labels printed
will be [A1], [A2], [A3], etc. This is useful for subdivided numerical bibliogra-
phies where each subbibliography uses a different prefix. The 〈string〉 is available
to styles in the labelprefix field of all affected entries. Note that the 〈string〉
is fully expanded, which means that you can use context-dependent macros like
\thechapter, but not unexpandable commands such as \dag. If you need to
pass unexpandable code to 〈string〉, protect it from expansion with \detokenize.
See § 4.2.4.2 for details.

\begin{refcontext}[〈key=value, …〉]{〈name〉}
\end{refcontext}

Wraps a reference context environment. The possible 〈key=value〉 optional argu-
ments are as for \DeclareRefcontext and override options given for the named

107

reference context 〈name〉. 〈name〉 can also be omitted as {} or by omitting even the
empty braces23.

The refcontext environment cannot be nested and biblatex will generate an
error if you try to do so.

\newrefcontext[〈key=value, …〉]{〈name〉}

This command is similar to the refcontext environment except that it is a stand-
alone command rather than an environment. It automatically ends any previous
reference context section begun with \newrefcontext (if any) and immediately
starts a new one. Note that the context section started by the last\newrefcontext
command in the document will extend to the end of the current refsection. Use
\endrefcontext if you want to terminate it earlier.

\localrefcontext[〈key=value, …〉]{〈name〉}

This command is similar to the newrefcontext command except that it sets up
the reference context only locally. This is useful if the reference context needs to be
changed within a group. There is no need to end a local reference context, it will
automatically be reset once the group ends.

At the beginning of the document, there is always a global context containing global
settings for each of the reference context options. Here is an example summarising
the reference contexts with various settings:

\usepackage[sorting=nty]{biblatex}

\DeclareRefcontext{testrc}{sorting=nyt}

% Global reference context:

% sorting=nty

% sortingnamekeytemplate=global

% labelprefix=

\begin{document}

\begin{refcontext}{testrc}

% reference context:

% sorting=nyt

% sortingnamekeytemplate=global

% labelprefix=

\end{refcontext}

\begin{refcontext}[labelprefix=A]{testrc}

% reference context:

% sorting=nyt

% sortingnamekeytemplate=global

% labelprefix=A

\end{refcontext}

\begin{refcontext}[sorting=ydnt,labelprefix=A]

23This slightly odd syntax possibility is a result of backwards compatibility with biblatex <3.5

108

% reference context:

% sorting=ydnt

% sortingnamekeytemplate=global

% labelprefix=A

\end{refcontext}

\newrefcontext}[labelprefix=B]

% reference context:

% sorting=nty

% sortingnamekeytemplate=global

% labelprefix=B

\endrefcontext

\newrefcontext}[sorting=ynt,labelprefix=C]{testrc}

% reference context:

% sorting=ynt

% sortingnamekeytemplate=global

% labelprefix=C

\endrefcontext

\assignrefcontextkeyws[〈key=value, …〉]{〈keyword1,keyword2, …〉}
\assignrefcontextkeyws*[〈key=value, …〉]{〈keyword1,keyword2, …〉}
\assignrefcontextcats[〈key=value, …〉]{〈category1, category2, …〉}
\assignrefcontextcats*[〈key=value, …〉]{〈category1, category2, …〉}
\assignrefcontextentries[〈key=value, …〉]{〈entrykey1, entrykey2, …〉}
\assignrefcontextentries*[〈key=value, …〉]{〈entrykey1, entrykey2, …〉}
\assignrefcontextentries[〈key=value, …〉]{〈*〉}
\assignrefcontextentries*[〈key=value, …〉]{〈*〉}

These commands automate putting citations into refcontexts when the de-
fault behaviour is not sufficient. The 〈key=value〉 options are as for
\DeclareRefcontext with the addition of the name = refcontextname

option which sets all options from those defined for the named refcontext
〈refcontextname〉. Use name=default to use the global default refcontext options.
The specific 〈key〉=〈value〉 options override those set by any named 〈refcontextname〉.
The default behaviour is that the data for a citation is drawn from the refcontext of
the most recently processed bibliography in which it was printed24. For citations
that are used in some way but not printed in a bibliography or bibliography list, they
default to drawing their data from the global refcontext established at the beginning
of the document. To override this behaviour, instead of manually wrapping citation
commands in refcontext environments, which might be error-prone and tedious,
you can register a comma-separated list of 〈keywords〉, 〈categories〉 or 〈entrykeys〉
which, respectively, make the entries with any of the specified keywords, entries
in any of the specified categories (see § 3.14.4) or entries with any of the specified
citation keys draw their data from a particular named refcontext and/or specified
〈refcontext key/values〉. Such refcontext auto-assignments are specific to the current
refsection. You may specify the same citation key in any of these commands but be

24This does not always mean what one might think. In a document containing multiple bibliographies,
the last bibliography will be the context for any citations before the first bibliography because all
bibliographies are processed when the .bbl is read.

109

aware that assignment is done in the order 〈keywords〉, 〈categories〉, 〈entrykeys〉 with
the later specifications overriding the earlier. \assignrefcontextentries
accepts a single asterisk instead of a list of entrykeys which allows the assignment
of all keys in a refsection to a refcontext with having to explicitly list them. An
example:

\assignrefcontextentries[labelprefix=A]{key2}

\cite{key1}

\begin{refcontext}[labelprefix=B]

\cite{key2}

\end{refcontext}

Here, the data for the citation of key2 will be drawn from refcontext
labelprefix=A and not labelprefix=B (resulting in a label with prefix ‘A’
and not ‘B’). The starred versions do not override a local refcontext and so with:

\assignrefcontextentries*[labelprefix=A]{key2}

\cite{key1}

\begin{refcontext}[labelprefix=B]

\cite{key2}

\end{refcontext}

the data for the citation of key2 will be drawn from refcontext labelprefix=B.
Note that these commands are rarely necessary unless you have multiple bib-
liographies in which the same citations occur and biblatex cannot by de-
fault tell which bibliography list a citation should refer to. See the example file
94-labelprefix.tex for more details.

\DeclareRefcontext{testrc}{labelprefix=A}

\assignrefcontextentries[name=testrc]{key2}

\cite{key1}

\begin{refcontext}[labelprefix=B]

\cite{key2}

\end{refcontext}

Here, the data for the citation of key2 will be drawn from the refcontext named
‘testrc’ which has labelprefix=A and not labelprefix=B (resulting in a label
with prefix ‘A’ and not ‘B’).

\DeclareRefcontext{testrc}{labelprefix=A}

\assignrefcontextentries[name=testrc,labelprefix=C]{

↪→ key2}

\cite{key1}

\begin{refcontext}[labelprefix=B]

\cite{key2}

\end{refcontext}

Here, the data for the citation of key2 will be drawn from refcontext with
labelprefix=C and not labelprefix=A since the explicit options override
the named refcontext (resulting in a label with prefix ‘C’ and not ‘A’ or ‘B’).

110

\GenRefcontextData{〈key=value, …〉}

This command takes the same key/value options as \DeclareRefcontext.
It forces the currently active refcontext, optionally modified by the key/-
value options, to be written to the .bcf so that biber will create a sorted
data list for the specified refcontext. Normally this is automatic when
\printbibliography/\prinbiblist is used in a reference context but there
are situations where the data for a refcontext will be needed but no reference list is
generated in that context e.g. to sort citations with the sortcites option when
the sorting of citations requires a different refcontext to that used for the actual
reference list.

3.8.11 Dynamic Entry Sets

In addition to the @set entry type, biblatex also supports dynamic entry sets
defined on a per-document/per-refsection basis. The following command, which
may be used in the document preamble or the document body, defines the set 〈key〉:

\defbibentryset{〈key〉}{〈key1,key2,key3, …〉}

The 〈key〉 is the entry key of the set, which is used like any other entry keywhen refer-
ring to the set. The 〈key〉 must be unique and it must not conflict with any other entry
key. The second argument is a comma-separated list of the entry keys which make
up the set. \defbibentryset implies the equivalent of a \nocite command,
i. e., all sets which are declared are also added to the bibliography. When declaring
the same set more than once, only the first invocation of \defbibentryset will
define the set. Subsequent definitions of the same 〈key〉 are ignored and work like
\nocite〈key〉. Dynamic entry sets defined in the document body are local to the
enclosing refsection environment, if any. Otherwise, they are assigned to refer-
ence section 0. Those defined in the preamble are assigned to reference section 0.
See § 3.14.5 for further details.

3.9 Citation Commands

All citation commands generally take one mandatory and two optional arguments.
The 〈prenote〉 is text to be printed at the beginning of the citation. This is usually
a notice such as ‘see’ or ‘compare’. The 〈postnote〉 is text to be printed at the very
end of the citation. This is usually a page number. If only one of these arguments is
given, it is taken as a postnote. If you want to specify a prenote but no postnote, you
need to leave the second optional argument empty, as in \cite[see][]{key}.
The 〈key〉 argument to all citation commands is mandatory. This is the entry key or
a comma-separated list of keys corresponding to the entry keys in the bib file. In
sum, all basic citations commands listed further down have the following syntax:

\command[〈prenote〉][〈postnote〉]{〈keys〉}〈punctuation〉

If the autopunct package option from § 3.1.2.1 is enabled, they will scan ahead
for any 〈punctuation〉 immediately following their last argument. This is useful to
avoid spurious punctuation marks after citations. This feature is configured with
\DeclareAutoPunctuation, see § 4.7.5 for details.

111

3.9.1 Standard Commands

The following commands are defined by the citation style. Citation styles may
provide any arbitrary number of specialized commands, but these are the standard
commands typically provided by general-purpose styles.

\cite[〈prenote〉][〈postnote〉]{〈key〉}
\Cite[〈prenote〉][〈postnote〉]{〈key〉}

These are the bare citation commands. They print the citation without any addi-
tions such as parentheses. The numeric and alphabetic styles still wrap the label in
square brackets since the reference may be ambiguous otherwise. \Cite is similar
to \cite but capitalizes the name prefix of the first name in the citation if the
useprefix option is enabled, provided that there is a name prefix and the citation
style prints any name at all.

\parencite[〈prenote〉][〈postnote〉]{〈key〉}
\Parencite[〈prenote〉][〈postnote〉]{〈key〉}

These commands use a format similar to \cite but enclose the entire citation
in parentheses. The numeric and alphabetic styles use square brackets instead.
\Parencite is similar to \parencite but capitalizes the name prefix of the first
name in the citation if the useprefix option is enabled, provided that there is a
name prefix and the citation style prints any name at all.

\footcite[〈prenote〉][〈postnote〉]{〈key〉}
\footcitetext[〈prenote〉][〈postnote〉]{〈key〉}

These command use a format similar to\cite but put the entire citation in a footnote
and add a period at the end. In the footnote, they automatically capitalize the name
prefix of the first name if the useprefix option is enabled, provided that there is a
name prefix and the citation style prints any name at all. \footcitetext differs
from \footcite in that it uses \footnotetext instead of \footnote.

3.9.2 Style-specific Commands

The following additional citation commands are only provided by some of the citation
styles which come with this package.

\textcite[〈prenote〉][〈postnote〉]{〈key〉}
\Textcite[〈prenote〉][〈postnote〉]{〈key〉}

These citation commands are provided by all styles that come with this package.
They are intended for use in the flow of text, replacing the subject of a sentence.
They print the authors or editors followed by a citation label which is enclosed in
parentheses. Depending on the citation style, the label may be a number, the year
of publication, an abridged version of the title, or something else. The numeric and
alphabetic styles use square brackets instead of parentheses. In the verbose styles,
the label is provided in a footnote. Trailing punctuation is moved between the author
or editor names and the footnote mark. \Textcite is similar to \textcite but
capitalizes the name prefix of the first name in the citation if the useprefix option
is enabled, provided that there is a name prefix.

112

\smartcite[〈prenote〉][〈postnote〉]{〈key〉}
\Smartcite[〈prenote〉][〈postnote〉]{〈key〉}

Like \parencite in a footnote and like \footcite in the body.

\cite*[〈prenote〉][〈postnote〉]{〈key〉}

This command is provided by all author-year and author-title styles. It is similar to
the regular \cite command but merely prints the year or the title, respectively.

\parencite*[〈prenote〉][〈postnote〉]{〈key〉}

This command is provided by all author-year and author-title styles. It is similar to the
regular \parencite command but merely prints the year or the title, respectively.

\supercite{〈key〉}

This command, which is only provided by the numeric styles, prints numeric ci-
tations as superscripts without brackets. It uses \supercitedelim instead of
\multicitedelim as citation delimiter. Note that any 〈prenote〉 and 〈postnote〉
arguments are ignored. If they are given, \supercite will discard them and issue
a warning message.

3.9.3 Qualified Citation Lists

This package supports a class of special citation commands called ‘multicite’ com-
mands. The point of these commands is that their argument is a list of citations where
each item forms a fully qualified citation with a pre- and/or postnote. This is particu-
larly useful with parenthetical citations and citations given in footnotes. It is also
possible to assign a pre- and/or postnote to the entire list. The multicite commands
are built on top of backend commands like \parencite and \footcite. The ci-
tation style provides a multicite definition with \DeclareMultiCiteCommand
(see § 4.3.1). The following example illustrates the syntax of multicite commands:

\parencites[35]{key1}[88--120]{key2}[23]{key3}

The format of the arguments is similar to that of the regular citation commands,
except that only one citation command is given. If only one optional argument is
given for an item in the list, it is taken as a postnote. If you want to specify a prenote
but no postnote, you need to leave the second optional argument of the respective
item empty:

\parencites[35]{key1}[chapter 2 in][]{key2}[23]{key3}

In addition to that, the entire citation list may also have a pre- and/or postnote. The
syntax of these global notes differs from other optional arguments in that they are
given in parentheses rather than the usual brackets:

\parencites(and chapter 3)[35]{key1}[78]{key2}[23]{key3

↪→ }

\parencites(Compare)()[35]{key1}[78]{key2}[23]{key3}

\parencites(See)(and the introduction)[35]{key1}[78]{

↪→ key2}[23]{key3}

113

Note that the multicite commands keep on scanning for arguments until they en-
counter a token that is not the start of an optional or mandatory argument. If a
left brace or bracket follows a multicite command, you need to mask it by adding
\relax or a control space (a backslash followed by a space) after the last valid
argument. This will cause the scanner to stop.

\parencites[35]{key1}[78]{key2}\relax[...]

\parencites[35]{key1}[78]{key2}\ {...}

By default, this package provides the following multicite commands which corre-
spond to regular commands from §§ 3.9.1 and 3.9.2:

\cites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}
\Cites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}

The multicite version of \cite and \Cite, respectively.

\parencites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}
\Parencites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}

The multicite version of \parencite and \Parencite, respectively.

\footcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}
\footcitetexts(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}

The multicite version of \footcite and \footcitetext, respectively.

\smartcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}
\Smartcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}

The multicite version of \smartcite and \Smartcite, respectively.

\textcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}
\Textcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}

The multicite version of \textcite and \Textcite, respectively.

\supercites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}

The multicite version of \supercite. This command is only provided by the
numeric styles.

3.9.4 Style-independent Commands

Sometimes it is desirable to give the citations in the source file in a format that is
not tied to a specific citation style and can be modified globally in the preamble.
The format of the citations is easily changed by loading a different citation style.
However, when using commands such as \parencite or \footcite, the way
the citations are integrated with the text is still effectively hard-coded. The idea
behind the \autocite command is to provide higher-level citation markup which
makes global switching from inline citations to citations given in footnotes (or
as superscripts) possible. The \autocite command is built on top of backend
commands like \parencite and \footcite. The citation style provides an
\autocite definition with \DeclareAutoCiteCommand (see § 4.3.1). This
definition may be activated with the autocite package option from § 3.1.2.1. The

114

citation style will usually initialize this package option to a value which is suitable
for the style, see § 3.3.1 for details. Note that there are certain limits to high-level
citation markup. For example, inline author-year citation schemes often integrate
citations so tightly with the text that it is virtually impossible to automatically convert
them to footnotes. The \autocite command is only applicable in cases in which
you would normally use \parencite or \footcite (or \supercite, with a
numeric style). The citations should be given at the end of a sentence or a partial
sentence, immediately preceding the terminal punctuation mark, and they should
not be a part of the sentence in a grammatical sense (like \textcite, for example).

\autocite[〈prenote〉][〈postnote〉]{〈key〉}
\Autocite[〈prenote〉][〈postnote〉]{〈key〉}

In contrast to other citation commands, the \autocite command does not only
scan ahead for punctuation marks following its last argument to avoid double
punctuation marks, it actually moves them around if required. For example, with
autocite=footnote, a trailing punctuation mark will be moved such that
the footnote mark is printed after the punctuation. \Autocite is similar to
\autocite but capitalizes the name prefix of the first name in the citation if
the useprefix option is enabled, provided that there is a name prefix and the
citation style prints any name at all.

\autocite*[〈prenote〉][〈postnote〉]{〈key〉}
\Autocite*[〈prenote〉][〈postnote〉]{〈key〉}

The starred variants of \autocite do not behave differently from the regular
ones. The asterisk is simply passed on to the backend command. For example, if
\autocite is configured to use \parencite, then \autocite* will execute
\parencite*.

\autocites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}
\Autocites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉][〈postnote〉]{〈key〉}...[〈prenote〉][〈postnote〉]{〈key〉}

This is the multicite version of \autocite. It also detects and moves punctua-
tion if required. Note that there is no starred variant. \Autocites is similar to
\autocites but capitalizes the name prefix of the first name in the citation if the
useprefix option is enabled, provided that there is a name prefix and the citation
style prints any name at all.

3.9.5 Text Commands

The following commands are provided by the core of biblatex. They are intended
for use in the flow of text. Note that all text commands are excluded from citation
tracking.

\citeauthor[〈prenote〉][〈postnote〉]{〈key〉}
\citeauthor*[〈prenote〉][〈postnote〉]{〈key〉}
\Citeauthor[〈prenote〉][〈postnote〉]{〈key〉}
\Citeauthor*[〈prenote〉][〈postnote〉]{〈key〉}

These commands print the authors. Strictly speaking, it prints the labelname list,
which may be the author, the editor, or the translator. \Citeauthor is
similar to \citeauthor but capitalizes the name prefix of the first name in the
citation if the useprefix option is enabled, provided that there is a name prefix.

115

The starred variants effectively force maxcitenames to 1 for just this command on
so only print the first name in the labelname list (potentially followed by the “et
al” string if there are more names). This allows more natural textual flow when
refering to a paper in the singular when otherwise \citeauthor would generate
a (naturally plural) list of names.

\citetitle[〈prenote〉][〈postnote〉]{〈key〉}
\citetitle*[〈prenote〉][〈postnote〉]{〈key〉}

This command prints the title. It will use the abridged title in the shorttitle
field, if available. Otherwise it falls back to the full title found in the title field.
The starred variant always prints the full title.

\citeyear[〈prenote〉][〈postnote〉]{〈key〉}
\citeyear*[〈prenote〉][〈postnote〉]{〈key〉}

This command prints the year (year field or year component of date). The starred
variant includes the extradate information, if any.

\citedate[〈prenote〉][〈postnote〉]{〈key〉}
\citedate*[〈prenote〉][〈postnote〉]{〈key〉}

This command prints the full date (date or year). The starred variant includes the
extradate information, if any.

\citeurl[〈prenote〉][〈postnote〉]{〈key〉}

This command prints the url field.

\parentext{〈text〉}

This command wraps the 〈text〉 in context sensitive parentheses.

\brackettext{〈text〉}

This command wraps the 〈text〉 in context sensitive brackets.

3.9.6 Special Commands

The following special commands are also provided by the core of biblatex.

\nocite{〈key〉}
\nocite{*}

This command is similar to the standard LaTeX\nocite command. It adds the 〈key〉
to the bibliography without printing a citation. If the 〈key〉 is an asterisk, all entries
available in the in-scope bibliography datasource(s) are added to the bibliography.
Like all other citation commands, \nocite commands in the document body are
local to the enclosing refsection environment, if any. In contrast to standard
LaTeX, \nocite may also be used in the document preamble. In this case, the
references are assigned to reference section 0. For the purposes of ordering citations
by appearance \nocite will behave like all other cite commands, with the added
rule that a \nocite issued in the preamble is treated as coming before all explicit
citations in reference section 0 from the document body.

116

\fullcite[〈prenote〉][〈postnote〉]{〈key〉}

This command uses the bibliography driver for the respective entry type to create a
full citation similar to the bibliography entry. It is thus related to the bibliography
style rather than the citation style.

\footfullcite[〈prenote〉][〈postnote〉]{〈key〉}

Similar to \fullcite but puts the entire citation in a footnote and adds a period
at the end.

\volcite[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}
\Volcite[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}

These commands are similar to \cite and \Cite but intended for references to
multi-volume works which are cited by volume and page number. Instead of the
〈postnote〉, they take a mandatory 〈volume〉 and an optional 〈pages〉 argument. Since
theymerely compose the postnote and pass it to the\cite command provided by the
citation style as a 〈postnote〉 argument, these commands are style independent. The
volume and pages/text portion are formatted with the macro \mkvolcitenote
when they are passed on to the citation command. Additionally they are made
available in the special fields volcitevolume and volcitevolume (§ 4.3.2)
The format of the volume portion is controlled by the field formatting directive
volcitevolume, the format of the pages/text portion is controlled by the field
formatting directive volcitepages (§ 4.10.4). The delimiter printed between the
volume portion and the pages/text portion may be modified by redefining the macro
\volcitedelim (§ 4.10.1).

\volcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}

\Volcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}

The multicite version of \volcite and \Volcite, respectively.

\pvolcite[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}
\Pvolcite[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}

Similar to \volcite but based on \parencite.

\pvolcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}

\Pvolcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}

The multicite version of \pvolcite and \Pvolcite, respectively.

\fvolcite[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}
\ftvolcite[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}

Similar to \volcite but based on \footcite and \footcitetext, respec-
tively.

117

\fvolcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}

\Fvolcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}

The multicite version of \fvolcite and \Fvolcite, respectively.

\svolcite[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}
\Svolcite[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}

Similar to \volcite but based on \smartcite.

\svolcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}

\Svolcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}

The multicite version of \svolcite and \Svolcite, respectively.

\tvolcite[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}
\Tvolcite[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}

Similar to \volcite but based on \textcite.

\tvolcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}

\Tvolcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}

The multicite version of \tvolcite and \Tvolcite, respectively.

\avolcite[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}
\Avolcite[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}

Similar to \volcite but based on \autocite.

\avolcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}

\Avolcites(〈multiprenote〉)(〈multipostnote〉)[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}
...[〈prenote〉]{〈volume〉}[〈pages〉]{〈key〉}

The multicite version of \avolcite and \Avolcite, respectively.

\notecite[〈prenote〉][〈postnote〉]{〈key〉}
\Notecite[〈prenote〉][〈postnote〉]{〈key〉}

These commands print the 〈prenote〉 and 〈postnote〉 arguments but no citation. This
may be useful for authors who incorporate implicit citations in their writing, only
giving information not mentioned before in the running text, but who still want to
take advantage of the automatic 〈postnote〉 formatting and citation tracking. This is
a generic, style-independent citation command. Special citation styles may provide
smarter facilities for the same purpose. The capitalized version forces capitalization
(note that this is only applicable if the note starts with a command which is sensitive
to biblatex’s punctuation tracker).

118

\pnotecite[〈prenote〉][〈postnote〉]{〈key〉}
\Pnotecite[〈prenote〉][〈postnote〉]{〈key〉}

Similar to \notecite but the notes are printed in parentheses.

\fnotecite[〈prenote〉][〈postnote〉]{〈key〉}

Similar to \notecite but the notes are printed in a footnote.

3.9.7 Low-level Commands

The following commands are also provided by the core of biblatex. They grant
access to all lists and fields at a lower level.

\citefield[〈prenote〉][〈postnote〉]{〈key〉}[〈format〉][〈msform〉][〈mslang〉]{〈field〉}

The 〈format〉 is a formatting directive defined with \DeclareFieldFormat. For-
matting directives are discussed in § 4.4.2. If this optional argument is omitted, this
command falls back to the format citefield. The last argument is the name of a
〈field〉 (optionally a multiscript field of 〈msform〉/〈mslang〉), in the sense explained
in § 2.2.

\citelist[〈prenote〉][〈postnote〉]{〈key〉}[〈format〉][〈msform〉][〈mslang〉]{〈literal list〉}

The 〈format〉 is a formatting directive defined with \DeclareListFormat. For-
matting directives are discussed in § 4.4.2. If this optional argument is omitted,
this command falls back to the format citelist. The last argument is the name
of a 〈literal list〉 (optionally a multiscript list of 〈msform〉/〈mslang〉), in the sense
explained in § 2.2.

\citename[〈prenote〉][〈postnote〉]{〈key〉}[〈format〉][〈msform〉][〈mslang〉]{〈name list〉}

The 〈format〉 is a formatting directive defined with \DeclareNameFormat. For-
matting directives are discussed in § 4.4.2. If this optional argument is omitted, this
command falls back to the format citename. The last argument is the name of
a 〈name list〉 (optionally a multiscript name of 〈msform〉/〈mslang〉), in the sense
explained in § 2.2.

3.9.8 Miscellaneous Commands

The commands in this section are little helpers related to citations.

\citereset This command resets the citation style. This may be useful if the style replaces
repeated citations with abbreviations like ibidem, idem, op. cit., etc. and you want
to force a full citation at the beginning of a new chapter, section, or some other
location. The command executes a style specific initialization hook defined with
the \InitializeCitationStyle command from § 4.3.1. It also resets the
internal citation trackers of this package. The reset will affect the \ifciteseen,
\ifentryseen, \ifciteibid, and \ifciteidem tests discussed in § 4.6.2.
When used inside a refsection environment, the reset of the citation tracker is
local to the current refsection environment. Also see the citereset package
option in § 3.1.2.1.

\citereset* Similar to \citereset but only executes the style’s initialization hook, without
resetting the internal citation trackers.

119

\mancite Use this command to mark manually inserted citations if you mix automatically
generated and manual citations. This is particularly useful if the citation style
replaces repeated citations by an abbreviation like ibidem which may get ambiguous
or misleading otherwise. Always use \mancite in the same context as the manual
citation, e. g., if the citation is given in a footnote, include \mancite in the footnote.
The \mancite command executes a style specific reset hook defined with the
\OnManualCitation command from § 4.3.1. It also resets the internal ‘ibidem’
and ‘idem’ trackers of this package. The reset will affect the \ifciteibid and
\ifciteidem tests discussed in § 4.6.2.

\pno This command forces a single page prefix in the 〈postnote〉 argument to a citation
command. See § 3.15.3 for further details and usage instructions. Note that this
command is only available locally in citations and the bibliography.

\ppno Similar to \pno but forces a range prefix. See § 3.15.3 for further details and usage
instructions. Note that this command is only available locally in citations and the
bibliography.

\nopp Similar to \pno but suppresses all prefixes. See § 3.15.3 for further details and usage
instructions. Note that this command is only available locally in citations and the
bibliography.

\psq In the 〈postnote〉 argument to a citation command, this command indicates a range of
two pages where only the starting page is given. See § 3.15.3 for further details and
usage instructions. The suffix printed is the localisation string sequens, see § 4.9.2.
The spacing inserted between the suffix and the page number may be modified by
redefining the macro \sqspace. The default is an unbreakable interword space.
Note that this command is only available locally in citations and the bibliography.

\psqq Similar to \psq but indicates an open-ended page range. See § 3.15.3 for further de-
tails and usage instructions. The suffix printed is the localisation string sequentes,
see § 4.9.2. This command is only available locally in citations and the bibliography.

\pnfmt{〈text〉}

This command formats its argument 〈text〉 in the same format as postnote. The
command can be used to format a page range while adding additional text in the
postnote argument of a cite command.

\autocite[\pnfmt{378-381, 383} and more]{sigfridsson}

\RN{〈integer〉}

This command prints an integer as an uppercase Roman numeral. The formatting
applied to the numeral may be modified by redefining the macro \RNfont.

\Rn{〈integer〉}

Similar to \RN but prints a lowercase Roman numeral. The formatting applied to
the numeral may be modified by redefining the macro \Rnfont.

120

3.9.9 natbib Compatibility Commands

The natbib package option loads a natbib compatibility module. The module
defines aliases for the citation commands provided by the natbib package. This
includes aliases for the core citation commands \citet and \citep as well as the
variants\citealt and\citealp. The starred variants of these commands, which
print the full author list, are also supported. The \cite command, which is handled
in a particular way by natbib, is not treated in a special way. The text commands
(\citeauthor, \citeyear, etc.) are also supported, as are all commands which
capitalize the name prefix (\Citet, \Citep, \Citeauthor, etc.). Aliasing with
\defcitealias, \citetalias, and \citepalias is possible as well. Note
that the compatibility commands will not emulate the citation format of the natbib
package. They merely alias natbib’s commands to functionally equivalent facilities
of the biblatex package. The citation format depends on the main citation style.
However, the compatibility style will adapt \nameyeardelim to match the default
style of the natbib package.

3.9.10 mcite-like Citation Commands

The mcite package option loads a special citation module which provides mcite/
mciteplus-like citation commands. Strictly speaking, what the module provides
are wrappers for the commands of the main citation style. For example, the following
command:

\mcite{key1,setA,*keyA1,*keyA2,*keyA3,key2,setB,*keyB1

↪→ ,*keyB2,*keyB3}

is essentially equivalent to this:

\defbibentryset{setA}{keyA1,keyA2,keyA3}%

\defbibentryset{setB}{keyB1,keyB2,keyB3}%

\cite{key1,setA,key2,setB}

The \mcite command will work with any style since the \cite backend command
is controlled by the main citation style as usual. The mcite module provides
wrappers for the standard commands in §§ 3.9.1 and 3.9.2. See table 9 for an overview.
Pre and postnotes as well as starred variants of all commands are also supported.
The parameters will be passed to the backend command. For example:

\mcite*[pre][post]{setA,*keyA1,*keyA2,*keyA3}

will execute:

\defbibentryset{setA}{keyA1,keyA2,keyA3}%

\cite*[pre][post]{setA}

Note that the mcite module is not a compatibility module. It provides commands
which are very similar but not identical in syntax and function to mcite’s commands.
When migrating from mcite/mciteplus to biblatex, legacy files must be
updated. With mcite, the first member of the citation group is also the identifier of
the group as a whole. Borrowing an example from the mcite manual, this group:

121

Table 8: mcite-like commands
Standard Command mcite-like Command

\cite \mcite

\Cite \Mcite

\parencite \mparencite

\Parencite \Mparencite

\footcite \mfootcite

\footcitetext \mfootcitetext

\textcite \mtextcite

\Textcite \Mtextcite

\supercite \msupercite

\autocite \mautocite

\Autocite \Mautocite

\cite{glashow,*salam,*weinberg}

consists of three entries and the entry key of the first one also serves as identifier of
the entire group. In contrast to that, a biblatex entry set is an entity in its own
right. Therefore, it requires a unique entry key which is assigned to the set as it is
defined:

\mcite{set1,*glashow,*salam,*weinberg}

Once defined, an entry set is handled like any regular entry in a bib file. When
using one of the numeric styles which come with biblatex and activating its
subentry option, it is even possible to refer to set members. See table 9 for some
examples. Restating the original definition of the set is redundant, but permissible.
In contrast to mciteplus, however, restating a part of the original definition is
invalid. Use the entry key of the set instead.

3.10 Localization Commands

The biblatex package provides translations for key terms such as ‘edition’ or
‘volume’ as well as definitions for language specific features such as the date format
and ordinals. These definitions, which are loaded automatically, may be modified or
extended in the document preamble or the configuration file with the commands
introduced in this section.

\DefineBibliographyStrings{〈language〉}{〈definitions〉}

This command is used to define localisation strings. The 〈language〉 must be a
language name known to the babel/polyglossia packages, i. e., one of the
identifiers listed in table 2 on page 30. The 〈definitions〉 are 〈key〉=〈value〉 pairs
which assign an expression to an identifier:

\DefineBibliographyStrings{american}{%

bibliography = {Bibliography},

shorthands = {Abbreviations},

editor = {editor},

editors = {editors},

}

122

Table 9: mcite-like syntax (sample output with style = numeric and
subentry option)

Input Output Comment

\mcite{set1,*glashow,*salam,*weinberg} [1] Defining and citing the set
\mcite{set1} [1] Subsequent citation of the set
\cite{set1} [1] Regular \citeworks as usual
\mcite{set1,*glashow,*salam,*weinberg} [1] Redundant, but permissible
\mcite{glashow} [1a] Citing a set member
\cite{weinberg} [1c] Regular \cite works as well

A complete list of all keys supported by default is given is § 4.9.2. Note that all
expressions should be capitalized as they usually are when used in the middle of
a sentence. The biblatex package will automatically capitalize the first word
when required at the beginning of a sentence. Expressions intended for use in
headings should be capitalized in a way that is suitable for titling. In contrast
to \DeclareBibliographyStrings, \DefineBibliographyStrings
overrides both the full and the abbreviated version of the string. See § 4.9.1 for
further details.

\DefineBibliographyExtras{〈language〉}{〈code〉}

This command is used to adapt language specific features such as the date for-
mat and ordinals. The 〈language〉 must be a language name known to the
babel/polyglossia packages. The 〈code〉, which may be arbitrary LaTeX code,
will usually consist of redefinitions of the formatting commands from § 3.12.3.

\UndefineBibliographyExtras{〈language〉}{〈code〉}

This command is used to restore the original definition of any commands modified
with \DefineBibliographyExtras. If a redefined command is included in
§ 3.12.3, there is no need to restore its previous definition since these commands are
adapted by all language modules anyway.

\DefineHyphenationExceptions{〈language〉}{〈text〉}

This is a LaTeX frontend to TeX’s \hyphenation command which defines hy-
phenation exceptions. The 〈language〉 must be a language name known to the
babel/polyglossia packages. The 〈text〉 is a whitespace-separated list of words.
Hyphenation points are marked with a dash:

\DefineHyphenationExceptions{american}{%

hy-phen-ation ex-cep-tion

}

\NewBibliographyString{〈key〉}

This command declares new localisation strings, i. e., it initializes a new 〈key〉 to be
used in the 〈definitions〉 of \DefineBibliographyStrings. The 〈key〉 argu-
ment may also be a comma-separated list of key names. The keys listed in § 4.9.2 are
defined by default.

123

3.11 EntryQuerying Commands

The commands in this section are user-facing equivalents of the identically-named
commands in section § 4.6.2. They can be used to test for the presence and attributes
of specific bibliography entries. See section § 4.6.2 for usage.

\ifentryseen{〈entrykey〉}{〈true〉}{〈false〉}
\ifentryinbib{〈entrykey〉}{〈true〉}{〈false〉}

\ifentrycategory{〈entrykey〉}{〈category〉}{〈true〉}{〈false〉}
\ifentrykeyword{〈entrykey〉}{〈keyword〉}{〈true〉}{〈false〉}

3.12 Formatting Commands

The commands and facilities presented in this section may be used to adapt the
format of citations and the bibliography.

3.12.1 Generic Commands and Hooks

The commands in this section may be redefined with \renewcommand in the
document preamble. Those marked as ‘Context Sensitive’ in the margin can also (and
generally should) be customised with \DeclareDelimFormat and are printed
with \printdelim (§ 3.12.2). Note that all commands starting with \mk… take
one argument. All of these commands are defined in biblatex.def.

\bibsetup Arbitrary code to be executed at the beginning of the bibliography, intended for
commands which affect the layout of the bibliography.

\bibfont Arbitrary code setting the font used in the bibliography. This is very similar to
\bibsetup but intended for switching fonts.

\citesetup Arbitrary code to be executed at the beginning of each citation command.

\newblockpunct The separator inserted between ‘blocks’ in the sense explained in § 4.7.1. The default
definition is controlled by the package option block (see § 3.1.2.1).

\newunitpunct The separator inserted between ‘units’ in the sense explained in § 4.7.1. This will
usually be a period or a comma plus an interword space. The default definition is a
period and a space.

\finentrypunct The punctuation printed at the very end of every bibliography entry, usually a
period. The default definition is a period.

\entrysetpunct The punctuation printed between bibliography subentries of an entry set. The
default definition is a semicolon and a space.

\bibnamedelima This delimiter controls the spacing between the elements which make up a name
part. It is inserted automatically by the backend after the first name element if
the element is less than three characters long and before the last element. The
default definition is \addhighpenspace, i. e., a space penalized by the value
of the highnamepenalty counter (§ 3.12.4). Please refer to § 3.15.4 for further
details.

124

\bibnamedelimb This delimiter controls the spacing between the elements which make up a name
part. It is inserted automatically by the backend between all name elements where
\bibnamedelima does not apply. The default definition is \addlowpenspace,
i. e., a space penalized by the value of the lownamepenalty counter (§ 3.12.4).
Please refer to § 3.15.4 for further details.

\bibnamedelimc This delimiter controls the spacing between name parts. The default name formats
use it between the name prefix and the family name if useprefix=true. The
default definition is \addhighpenspace, i. e., a space penalized by the value
of the highnamepenalty counter (§ 3.12.4). Please refer to § 3.15.4 for further
details.

\bibnamedelimd This delimiter controls the spacing between name parts. The default name formats
use it between all name parts where \bibnamedelimc does not apply. The de-
fault definition is \addlowpenspace, i. e., a space penalized by the value of the
lownamepenalty counter (§ 3.12.4). Please refer to § 3.15.4 for further details.

\bibnamedelimi This delimiter replaces \bibnamedelima/b after initials. Note that this only
applies to initials given as such in the bib file, not to the initials automatically
generated by biblatex which use their own set of delimiters.

\bibinitperiod The punctuation inserted automatically by the backend after all initials unless
\bibinithyphendelim applies. The default definition is a period (\adddot).
Please refer to § 3.15.4 for further details.

\bibinitdelim The spacing inserted automatically by the backend between multiple initials un-
less \bibinithyphendelim applies. The default definition is an unbreakable
interword space. Please refer to § 3.15.4 for further details.

\bibinithyphendelim The punctuation inserted automatically by the backend between the initials
of hyphenated name parts, replacing \bibinitperiod and \bibinitdelim.
The default definition is a period followed by an unbreakable hyphen. Please refer to
§ 3.15.4 for further details.

\bibindexnamedelima Replaces \bibnamedelima in the index.

\bibindexnamedelimb Replaces \bibnamedelimb in the index.

\bibindexnamedelimc Replaces \bibnamedelimc in the index.

\bibindexnamedelimd Replaces \bibnamedelimd in the index.

\bibindexnamedelimi Replaces \bibnamedelimi in the index.

\bibindexinitperiod Replaces \bibinitperiod in the index.

\bibindexinitdelim Replaces \bibinitdelim in the index.

\bibindexinithyphendelim Replaces \bibinithyphendelim in the index.

\revsdnamepunct The punctuation to be printed between the given and family name parts when a
name is reversed. The default is a comma. Here is an example showing a name with
the default comma as \revsdnamedelim:

Jones, Edward

125

This command should be used with \bibnamedelimd as a reversed-name sep-
arator in formatting directives for name lists. Please refer to § 3.15.4 for further
details.

\bibnamedash The dash to be used as a replacement for recurrent authors or editors in the biblio-
graphy. The default is an ‘em’ or an ‘en’ dash, depending on the indentation of the
list of references.

\labelnamepunct A separator to be printed after the name used for alphabetizing in the bib- Deprecated
liography (author or editor, if the author field is undefined) instead of
\newunitpunct. The default is \newunitpunct, i. e., it is not handled dif-
ferently from regular unit punctuation but permits convenient reconfiguration.
This punctuation command is deprecated and has been superseded by the context-
sensitive \nametitledelim (see § 3.12.2). For backwards compatibility rea-
sons, however, \nametitledelim still defaults to \labelnamepunct in the
bib and biblist contexts. Style authors may want to consider replacing
\labelnampunct with \printdelim{nametitledelim} and users may
want to prefer modifying the context-sensitive nametitledelim in the bib con-
text with \DeclareDelimFormat over redefining \labelnamepunct, e. g.,

\DeclareDelimFormat[bib]{nametitledelim}{%

\addcolon\space}

\subtitlepunct The separator printed between the fields title and subtitle, booktitle
and booksubtitle, as well as maintitle and mainsubtitle. With the
default styles, this separator replaces \newunitpunct at this location. The default
definition is \newunitpunct, i. e., it is not handled differently from regular unit
punctuation.

\intitlepunct The separator between the word “in” and the following title in entry types such as
@article, @inbook, @incollection, etc. The default definition is a colon
plus an interword space (e. g., “Article, in: Journal” or “Title, in: Book”). Note that
this is the separator string, not only the punctuation mark. If you don’t want a colon
after “in”, \intitlepunct should still insert a space.

\bibpagespunct The separator printed before the pages field. The default is a comma plus an
interword space.

\bibpagerefpunct The separator printed before the pageref field. The default is an interword
space.

\bibeidpunct The separator printed before the eid field (similar to \bibpagespunct). The
default is a comma plus an interword space.

\multinamedelim The delimiter printed between multiple items in a name list like author or Context Sensitive
editor if there are more than two names in the list. The default is a comma plus
an interword space. See \finalnamedelim for an example.25

\finalnamedelim The delimiter printed instead of \multinamedelim before the final name in Context Sensitive
a name list. The default is the localised term ‘and’, separated by interword spaces.
Here is an example:
25Note that \multinamedelim is not used at all if there are only two names in the list. In this case,

the default styles use the \finalnamedelim.

126

Michel Goossens, Frank Mittelbach and Alexander Samarin

Edward Jones and Joe Williams

The comma in the first example is the \multinamedelim whereas the string
‘and’ in both examples is the \finalnamedelim. See also \finalandcomma
in § 3.12.3.

\revsdnamedelim An extra delimiter printed after the first name in a name list if the first name is Context Sensitive
reversed (only in lists with two names). The default is an empty string, i. e., no extra
delimiter will be printed. Here is an example showing a name list with a comma as
\revsdnamedelim:

Jones, Edward, and Joe Williams

In this example, the comma after ‘Edward’ is the \revsdnamedelim whereas the
string ‘and’ is the \finalnamedelim, printed in addition to the former.

\andothersdelim The delimiter printed before the localisation string ‘andothers’ if a name list Context Sensitive
like author or editor is truncated. The default is an interword space.

\multilistdelim The delimiter printed between multiple items in a literal list like publisher or Context Sensitive
location if there are more than two items in the list. The default is a comma plus
an interword space. See \multinamedelim for further explanation.

\finallistdelim The delimiter printed instead of \multilistdelim before the final item in a Context Sensitive
literal list. The default is the localised term ‘and’, separated by interword spaces. See
\finalnamedelim for further explanation.

\andmoredelim The delimiter printed before the localisation string ‘andmore’ if a literal list like Context Sensitive
publisher or location is truncated. The default is an interword space.

\multicitedelim The delimiter printed between citations if multiple entry keys are passed to a
single citation command. The default is a semicolon plus an interword space.

\multiciterangedelim The delimiter printed between two citations if they are compressed to a
range. The default is \bibrangedash.

\multicitesubentrydelim The delimiter printed between subentry citations of the same set. This
delimiter is only used in citation styles that reduce citations of the same set to a more
compact form (subentry of numeric-comp). The default is a comma.

\multicitesubentryrangedelim The delimiter printed between two citations of the same set if
they are compressed to a range. The default is \multiciterangedelim.

\supercitedelim Similar to \multicitedelim, but used by the \supercite command only.
The default is a comma.

\superciterangedelim Analogue of \multiciterangedelim for \supercite. The default
is \bibrangedash.

\supercitesubentrydelim Analogue of \multicitesubentrydelim for \supercite.
The default is \supercitedelim.

\supercitesubentryrangedelim Analogue of \multicitesubentryrangedelim for
\supercite. The default is \superciterangedelim.

127

\compcitedelim Similar to \multicitedelim, but used by certain citation styles when ‘com-
pressing’ multiple citations. The default definition is a comma plus an interword
space.

\textcitedelim Similar to \multicitedelim, but used by \textcite and related commands
(§ 3.9.2). The default is a comma plus an interword space. The standard styles modify
this provisional definition to ensure that the delimiter before the final citation is the
localised term ‘and’, separated by interword spaces. See also \finalandcomma
and \finalandsemicolon in § 3.12.3.

\nametitledelim The delimiter printed between the author/editor and the title by author-title and Context Sensitive
some verbose citation styles and in the bibliography. In author-year bibliography
styles this delimiter is placed after the author/editor and year and before the title. The
default definition inside bibliographies is the now deprecated \labelnamepunct
and is a comma plus an interword space otherwise.

\nameyeardelim Thedelimiter printed between the author/editor and the year by author-year citation Context Sensitive
and bibliography styles. The default definition is an interword space.

\namelabeldelim The delimiter printed between the name/title and the label by alphabetic and Context Sensitive
numeric citation styles. The default definition is an interword space.

\nonameyeardelim The delimiter printed between the substitute for the labelname when it does Context Sensitive
not exist (usually the label or title in standard styles) and the year in author-year
citation and bibliography styles. This is only used when there is no labelname since
when the labelname exists, \nameyeardelim is used. The default definition is an
interword space.

\authortypedelim The delimiter printed between the author and the authortype. The default is Context Sensitive
a comma followed by a space.

\editortypedelim The delimiter printed between the editor and the editor or editortype Context Sensitive
string. The default is a comma followed by a space.

\translatortypedelim The delimiter printed between the translator and the translator string. Context Sensitive
The default is a comma followed by a space.

\labelalphaothers A string to be appended to the non-numeric portion of the labelalpha
field (i. e., the field holding the citation label used by alphabetic citation styles) if the
number of authors/editors exceeds the maxalphanames threshold or the author/
editor list was truncated in the bib file with the keyword ‘and others’. This
will typically be a single character such as a plus sign or an asterisk. The default is a
plus sign. This command may also be redefined to an empty string to disable this
feature. In any case, it must be redefined in the preamble.

\sortalphaothers Similar to \labelalphaothers but used in the sorting process. Setting it to
a different value is advisable if the latter contains formatting commands, for example:

\renewcommand*{\labelalphaothers}{\textbf{+}}

\renewcommand*{\sortalphaothers}{+}

If \sortalphaothers is not redefined, it defaults to \labelalphaothers.

\volcitedelim The delimiter printed between the volume portion and the page/text portion of
\volcite and related commands (§ 3.9.6).

128

\mkvolcitenote{〈volume〉}{〈pages〉}

This macro formats the 〈volume〉 and 〈pages〉 arguments of \volcite and related
commands (§ 3.9.6) when they are passed on to the underlying citation command.

\prenotedelim The delimiter printed after the 〈prenote〉 argument of a citation command. See § 3.9 Context Sensitive
for details. The default is an interword space.

\postnotedelim The delimiter printed before the 〈postnote〉 argument of a citation command. See Context Sensitive
§ 3.9 for details. The default is a comma plus an interword space.

\extpostnotedelim The delimiter printed between the citation and the parenthetical 〈postnote〉 Context Sensitive
argument of a citation command when the postnote occurs outside of the citation
parentheses. In the standard styles, this occurs when the citation uses the shorthand
field of the entry. See § 3.9 for details. The default is an interword space.

\multiprenotedelim Thedelimiter printed after the 〈multiprenote〉 argument of a citation command. Context Sensitive
See § 3.9 for details. The default is \prenotedelim.

\multipostnotedelim The delimiter printed before the 〈multipostnote〉 argument of a citation Context Sensitive
command. See § 3.9 for details. The default is \postnotedelim.

\mkbibname‘namepart’{〈text〉}This command, which takes one argument, is used to format the

name part ‘namepart’ of name list fields. The default datamodel defines the name
parts ‘family’, ‘given’, ‘prefix’ and ‘suffix’ and therefore the following macros are
automatically defined:

\mkbibnamefamily

\mkbibnamegiven

\mkbibnameprefix

\mkbibnamesuffix

For backwards compatibility with the legacy BibTeX name parts, the following are
also defined, will generate warnings and will set the correct macro:

\mkbibnamelast

\mkbibnamefirst

\mkbibnameaffix

\mkbibcompletenamefamily{〈text〉}This command, which takes one argument, is used to format

the complete name in family format order.

\mkbibcompletenamefamilygiven{〈text〉}This command, which takes one argument, is used to

format the complete name in family-given format order.

\mkbibcompletenamegivenfamily{〈text〉}This command, which takes one argument, is used to

format the complete name in given-family format order.

\mkbibcompletename{〈text〉}The initial value of all default formatting hooks

\mkbibcompletename‘formatorder’.

129

\datecircadelim When formatting dates with the global option datecirca enabled, the delimiter Context Sensitive
printed after any localised ‘circa’ term. Defaults to interword space.

\dateeradelim When formatting dates with the global option dateera set, the delimiter printed Context Sensitive
before the localisation era term. Defaults to interword space.

\dateuncertainprint Prints date uncertainty information when the global option
dateuncertain is enabled and the \ifdateuncertain test is true.
By default, prints the language specific \bibdateuncertain string (§ 3.12.3).

\enddateuncertainprint Prints date uncertainty information when the global option
dateuncertain is enabled and the \ifenddateuncertain test is true. By
default, prints the language specific \bibdateuncertain string (§ 3.12.3).

\datecircaprint Prints date circa information when the global option datecirca is enabled
and the \ifdatecirca test is true. By default, prints the ‘circa’ localised term
(§ 4.9.2.21) and the datecircadelim delimiter.

\enddatecircaprint Prints date circa information when the global option datecirca is enabled
and the \ifenddatecirca test is true. By default, prints the ‘circa’ localised term
(§ 4.9.2.21) and the datecircadelim delimiter.

\datecircaprintiso Prints iso8601-2 format date circa information when the global op-
tion datecirca is enabled and the \ifdatecirca test is true. Prints
\textasciitilde.

\enddatecircaprintiso Prints iso8601-2 format date circa information when the global op-
tion datecirca is enabled and the \ifenddatecirca test is true. Prints
\textasciitilde.

\dateeraprint{〈yearfield〉}Prints date era information when the global option dateera is set

to ‘secular’ or ‘christian’. By default, prints the dateeradelim delimiter and the
appropriate localised era term (§ 4.9.2.21). If the dateeraauto option is set, then
the passed 〈yearfield〉 (which is the name of a year field such as ‘year’, ‘origyear’,
‘endeventyear’ etc.) is tested to see if its value is earlier than the dateeraauto
threshold and if so, then the BCE/CE localisation will be output too. The default
setting fordateeraauto is 0 and so only BCE/BC localisation strings are candidates
for output. Detects whether the start or end year era information is to be printed by
looking at the 〈yearfield〉 name passed to it.

\dateeraprintpre Prints date era information when the global option dateera is set to ‘astro-
nomical’. By default, prints bibdataeraprefix. Detects whether the start or
end year era information is to be printed by looking at the 〈yearfield〉 name passed
to it.

\relatedpunct The separator between the relatedtype bibliography localisation string and the
data from the first related entry. Here is an example with \relatedpunct set to
a dash:

A. Smith. Title. 2000, (Orig. pub. as-Origtitle)

130

\relateddelim The generic separator between the data of multiple related entries. The default
definition is an optional dot plus linebreak. Here is an example where volumes A-E
are related entries of the 5 volume main work:

Donald E. Knuth. Computers & Typesetting. 5 vols.

↪→ Reading, Mass.: Addison-Wesley, 1984-1986.

Vol. A: The TEXbook. 1984.

Vol. B: TEX: The Program. 1986.

Vol. C: The METAFONTbook. By. 1986.

Vol. D: METAFONT: The Program. 1986.

Vol. E: Computer Modern Typefaces. 1986.

\relateddelim<relatedtype> The separator between the data of multiple related entries inside
related entries of type ‘relatedtype’. There is no default, if such a type-specific
delimiter does not exist, \relateddelim is used.

\begrelateddelim The generic separator before the block of related entries. The default definition
is \newunitpunct.

\begrelateddelim<relatedtype> The separator between the block of related entries of type
‘relatedtype’. There is no default, if such a type-specific delimiter does not exist,
\relateddelim is used.

3.12.2 Context-sensitive Delimiters

Many delimiters described in § 3.12.1 are globally defined. That is, no matter where
you use them, they print the same thing. This is not necessarily desirable for de-
limiters which you might want to print different things in different contexts. Here
‘context’ means things like ‘inside a text citation’ or ‘inside a bibliography item’.
For this reason, biblatex provides a more sophisticated delimiter specification
and user interface alongside the standard one based on normal macros defined with
\newcommand.

For backwards compatibility reasons all context-sensitive delimiters (i. e., all
delimiters marked as ‘context sensitive’ in § 3.12.1) can be redefined with
\renewcommand in the global context. It is, however, strongly recommended
to use the interface documented below (primarily \DeclareDelimFormat) to
redefine these delimiters—even if \renewcommand would suffice for the job at
hand.

\DeclareDelimFormat[〈context, …〉]{〈name〉}{〈code〉}
\DeclareDelimFormat*[〈context, …〉]{〈name〉}{〈code〉}

Declares the delimiter macro 〈name〉 with the replacement text 〈code〉. If the optional
comma-separated list of 〈contexts〉 is given, declare 〈name〉 only for those contexts.
〈name〉 defined without any 〈contexts〉 behaves just like the global delimiter defi-
nitions which \newcommand gives—just a plain macro with a replacement which
can be used as \name. However, you can also call delimiter macros defined in this
way by using \printdelim, which is context-aware. The starred version clears
all 〈context〉 specific declarations for all 〈names〉 first.

131

\DeclareDelimAlias[〈alias context, …〉]{〈alias〉}[〈delim context〉]{〈delim〉}

Declares 〈alias〉 to be an alias for the delimiter 〈delim〉. If the optional
〈alias context, …〉 nor 〈delim context〉 are given, the assigment is performed for all
existing contexts of the target 〈delim〉 separately, so that 〈alias〉 becomes an exact
copy of 〈delim〉 in all contexts. If only the second optional argument 〈delim context〉
is given, all existing contexts of 〈alias〉 will be cleared and the global/empty context
becomes an alias of 〈delim〉 in the context 〈delim context〉. The first optional argu-
ment 〈alias context, …〉 may hold a list of contexts for which the alias is assigned. In
that case the second optional argument 〈delim context〉 specifies the context of the
target delimiter. This argument may not be a list, it can only hold one context. If it is
missing, the 〈alias context〉 is assumed (if 〈alias context〉 is a list, the assignment is
performed separately for each list item), if it is empty the global context is used.

\DeclareDelimAlias[bib,biblist]{finalnamedelim}[]{

↪→ multinamedelim}

Defines the bib and biblist contexts of \finalnamedelim as aliases of
\multinamedelim in global context. On the other hand

\DeclareDelimAlias[bib,biblist]{finalnamedelim}{

↪→ multinamedelim}

defines \finalnamedelim in the context bib to be an alias of
\multinamedelim in the bib context and defines \finalnamedelim

in biblist context to be an alias of \multinamedelim in biblist.

\DeclareDelimAlias*[〈alias context, …〉]{〈alias〉}[〈delim context〉]{〈delim〉}
Deprecated

The starred version of \DeclareDelimAlias is deprecated in favour of using
unstarred \DeclareDelimAlias with optional arguments.

It assigns the delimiter alias for specific contexts only. The first optional argu-
ment 〈alias context〉 holds a list of contexts for which the assignment is going to
be performed. If it is empty or missing the global/empty context is assumed. The
second optional argument 〈delim context〉 specifies the context of the target delimiter.
This argument may not be a list, it can only hold one context. If it is missing the
〈alias context〉 is assumed (if 〈alias context〉 is a list, the assignment is performed
separately for each list item), if it is empty the global context is used.

\printdelim[〈context〉]{〈name〉}

Prints a delimiter with name 〈name〉, locally establishing a optional 〈context〉 first.
Without the optional 〈context〉, \printdelim uses the currently active delimiter
context.

Delimiter contexts are simply a string, the value of the internal macro
\blx@delimcontext which can be set manually by the command
\delimcontext

\delimcontext{〈context〉}

Set the delimiter context to 〈context〉. This setting is not global so that delimiter
contexts can be nested using the usual LaTeX group method.

132

\DeclareDelimcontextAlias{〈alias〉}{〈name〉}

The context-sensitive delimiter system creates delimiter contexts based on
the name of citation commands (‘parencite’, ‘textcite’ etc.) passed to
\DeclareCiteCommand. In certain cases where there are nested definitions
of citation commands where \DeclareCiteCommand calls itself (see the defini-
tion of \textcite in authoryear-icomp for example). The delimiter context
is then usually incorrect and the delimiter specifications do not work. For exam-
ple, the definition of \textcite in fact defines and uses \cbx@textcite and
so the context is automatically set to cbx@textcite when printing the citation.
Delimiter definitions expecting to see the context textcite therefore do not work.
Therefore this command is provided for style authors which aliases the context
〈alias〉 to the context 〈name〉. For example:

\DeclareDelimcontextAlias{cbx@textcite}{textcite}

This (which is a default setting), makes sure that when inside the \cbx@textcite
citation command, the context is in fact textcite as expected.

\UndeclareDelimcontextAlias{〈alias〉}

Removes the delimiter context alias declared for 〈alias〉.

biblatex has several default contexts which are established automatically in
various places:

none At begin document

bib Inside a bibliography begun with \printbibliography or inside a
\usedriver

biblist Inside a bibliography list begun with \printbiblist

‘citecommand’ Inside a citation command \citecommand defined with
\DeclareCiteCommand

For example, the defaults for \nametitledelim are:

\DeclareDelimFormat{nametitledelim}{\addcomma\space}

\DeclareDelimFormat[bib,biblist]{nametitledelim}{

↪→ \labelnamepunct}

\DeclareDelimFormat[textcite]{nametitledelim}{\addspace

↪→ }

This means that \nametitledelim is defined globally as ‘\addcomma\space’
as per the standard delimiter interface. However, in addition, the delimiter can be
printed using \printdelim which would print the same as \nametitledelim
apart from inside a \textcite, in which it would print \addspace which is
more suitable for running text, and in a bibliography (list) in which it takes the
value of \labelnamepunct for compatibility reasons. If desired, a context can be
forced with the optional argument to \printdelim, so

\printdelim[textcite]{nametitledelim}

133

would print \addspace regardless of the surrounding context of the
\printdelim. Contexts are just arbitrary strings and so you can establish them
at any time, using \delimcontext. If \printdelim finds no special value for
the delimiter 〈name〉 in the current context, it simply prints \name. This means
that style authors can use \printdelim and users expecting to be able to use
\renewcommand to redefine delimiters can do so with one caveat—such a definition
won’t change any context-specific delimiters which are defined:

\DeclareDelimFormat{delima}{X}

\DeclareDelimFormat[textcite]{delima}{Y}

\renewcommand*{\delima}{Z}

Here, \delima always prints ‘Z’. \printdelim{delima} in any context other
than ‘textcite’ also prints \delima and hence ‘Z’ but in a ‘textcite’ context prints
‘Y’. See the 04-delimiters.tex example file that comes with biblatex for
more information.

3.12.3 Language-specific Commands

The commands in this section are language specific. When redefining them, you need
to wrap the new definition in a \DeclareBibliographyExtras command (in
an .lbx file) or a \DefineBibliographyExtras command (user documents),
see § 3.10 for details. Note that all commands starting with \mk… take one or more
arguments.

\bibrangedash The language specific dash to be used for ranges of numbers. Defaults to
\textendash.

\bibrangessep The language specific separator to be used between multiple ranges. Defaults to a
comma followed by a space.

\bibdatesep The language specific separator used between date components in terse date formats.
Defaults to \hyphen.

\bibdaterangesep The language specific separator to be used for date ranges. Defaults to
\textendash for all date formats apart from ymd which defaults to a \slash.
The date format option iso is hard-coded to \slash since this is a standards
compliant format.

\mkbibdatelong Takes the names of three field as arguments which correspond to three date com-
ponents (in the order year/month/day) and uses their values to print the date in the
language specific long date format.

\mkbibdateshort Similar to \mkbibdatelong but using the language specific short date format.

\mkbibtimezone Modifies a timezone string passed in as the only argument. By default this changes
‘Z’ to the value of \bibtimezone.

\bibdateuncertain The language specific marker to be used after uncertain dates when the global
option dateuncertain is enabled. Defaults to a space followed by a question
mark.

\bibdateeraprefix The language specific marker which is printed as a prefix to beginning BCE/BC
dates in a date range when the option dateera is set to ‘astronomical’. Defaults to
\textminus, if defined and \textendash otherwise.

134

\bibdateeraendprefix The language specific marker which is printed as a prefix to end BCE/BC
dates in a date range when the option dateera is set to ‘astronomical’. Defaults
to a thin space followed by \bibdateeraprefix when \bibdaterangesep
is set to a dash and to \bibdateeraprefix otherwise. This is a separate macro
so that you may add extra space before a negative date marker which, for example
follows a dash date range marker as this can look a little odd.

\bibtimesep The language specific marker which separates time components. Defaults to a colon.

\bibutctimezone The language specific string printed for the UTC timezone. Defaults to ‘Z’.

\bibtimezonesep The language specific marker which separates an optional time zone component
from a time. Empty by default.

\bibtzminsep The language specific marker which separates hour and minute component of offset
timezones. Defaults to a \bibtimesep.

\bibdatetimesep The language specific separator printed between date and time compo-
nents when printing time components along with date components (see the
<datetype>dateusetime option in § 3.1.2.1). Defaults to a space for
non-iso8601-2 output formats, and ’T’ for iso8601-2 output format.

\finalandcomma Prints the comma to be inserted before the final ‘and’ in a list, if applicable in the
respective language. Here is an example:

Michel Goossens, Frank Mittelbach, and Alexander

↪→ Samarin

\finalandcomma is the comma before the word ‘and’. See also
\multinamedelim, \finalnamedelim, \textcitedelim, and
\revsdnamedelim in § 3.12.1.

\finalandsemicolon Prints the semicolon to be inserted before the final ‘and’ in a list of lists, if
applicable in the respective language. Here is an example:

Goossens, Mittelbach, and Samarin; Bertram and Wenworth

↪→ ; and Knuth

\finalandsemicolon is the semicolon before the word ‘and’. See also
\textcitedelim in § 3.12.1.

\mkbibordinal{〈integer〉}

This command, which takes an integer as its argument, prints an ordinal number.

\mkbibmascord{〈integer〉}

Similar to \mkbibordinal, but prints a masculine ordinal, if applicable in the
respective language.

\mkbibfemord{〈integer〉}

Similar to \mkbibordinal, but prints a feminine ordinal, if applicable in the
respective language.

135

\mkbibneutord{〈integer〉}

Similar to \mkbibordinal, but prints a neuter ordinal, if applicable in the respec-
tive language.

\mkbibordedition{〈integer〉}

Similar to \mkbibordinal, but intended for use with the term ‘edition’.

\mkbibordseries{〈integer〉}

Similar to \mkbibordinal, but intended for use with the term ‘series’.

3.12.4 Lengths and Counters

The length registers and counters in this section may be changed in the document
preamble with \setlength and \setcounter, respectively.

\bibhang The hanging indentation of the bibliography, if applicable. This length is initialized
to \parindent at load-time. If \parindent is zero length for some reason,
\bibhang will default to 1em.

\biblabelsep The horizontal space between entries and their corresponding labels in the biblio-
graphy. This only applies to bibliography styles which print labels, such as the
numeric and alphabetic styles. This length is initialized to twice the value of
\labelsep at load-time.

\bibitemsep The vertical space between the individual entries in the bibliography. This length is
initialized to \itemsep at load-time. Note that \bibitemsep, \bibnamesep,
and \bibinitsep obey the rules for \addvspace, that is, when vertical space
introduced by any of these commands immediately follows on from space introduced
by another of them, the resulting total space is equal to the largest of them.

\bibnamesep Vertical space to be inserted between two entries in the bibliography whenever
an entry starts with a name which is different from the initial name of the pre-
vious entry. The default value is zero. Setting this length to a positive value
greater than \bibitemsep will group the bibliography by author/editor name.
Note that \bibitemsep, \bibnamesep, and \bibinitsep obey the rules for
\addvspace, that is, when vertical space introduced by any of these commands
immediately follows on from space introduced by another of them, the resulting
total space is equal to the largest of them.

\bibinitsep Vertical space to be inserted between two entries in the bibliography whenever
an entry starts with a letter which is different from the initial letter of the pre-
vious entry. The default value is zero. Setting this length to a positive value
greater than \bibitemsep will group the bibliography alphabetically. Note
that \bibitemsep, \bibnamesep, and \bibinitsep obey the rules for
\addvspace, that is, when vertical space introduced by any of these commands
immediately follows on from space introduced by another of them, the resulting
total space is equal to the largest of them.

\bibparsep The vertical space between paragraphs within an entry in the bibliography. The
default value is zero.

136

abbrvpenalty This counter, which is used by the localisation modules, holds the penalty used in
short or abbreviated localisation strings. For example, a linebreak in expressions
such as “et al.” or “ed. by” is unfortunate, but should still be possible to prevent
overfull boxes. This counter is initialized to \hyphenpenalty at load-time. The
idea is making TeX treat the whole expression as if it were a single, hyphenatable
word as far as line-breaking is concerned. If you dislike such linebreaks, use a higher
value. If you do not mind them at all, set this counter to zero. If you want to suppress
them unconditionally, set it to ‘infinite’ (10 000 or higher).26

highnamepenalty This counter holds a penalty affecting line-breaking in names. Please refer to
§§ 3.15.4 and 3.12.1 for explanation. The counter is initialized to \hyphenpenalty
at load-time. Use a higher value if you dislike the respective linebreaks. If you do not
mind them at all, set this counter to zero. If you prefer the traditional BibTeX behavior
(no linebreaks at highnamepenalty breakpoints), set it to ‘infinite’ (10 000 or
higher).

lownamepenalty Similar to highnamepenalty. Please refer to §§ 3.15.4 and 3.12.1 for explanation.
The counter is initialized to half the \hyphenpenalty at load-time. Use a higher
value if you dislike the respective linebreaks. If you do not mind them at all, set this
counter to zero.

biburlnumpenalty If this counter is set to a value greater than zero, biblatex will permit line-
breaks after numbers in all strings formatted with the \url command from the url
package. This will affect urls and dois in the bibliography. The breakpoints will be
penalized by the value of this counter. If urls and/or dois in the bibliography run
into the margin, try setting this counter to a value greater than zero but less than
10000 (you normally want to use a high value like 9000). Setting the counter to zero
disables this feature. This is the default setting.

biburlucpenalty Similar to biburlnumpenalty, except that it will add a breakpoint after all
uppercase letters.

biburllcpenalty Similar to biburlnumpenalty, except that it will add a breakpoint after all
lowercase letters.

biburlbigbreakpenalty The biblatex version of url’s \UrlBigBreakPenalty. The de-
fault value is 100.

biburlbreakpenalty The biblatex version of url’s \UrlBreakPenalty. The default value
is 200.

\biburlbigskip The biblatex version of \Urlmuskip. This length holds the additional (stretch-
able) space inserted around breakable characters in the \url command from the
url package. The default value is 0mu plus 3mu.

26The default values assigned to abbrvpenalty, lownamepenalty, and highnamepenalty
are deliberately very low to prevent overfull boxes. This implies that you will hardly notice any
effect on line-breaking if the text is set justified. If you set these counters to 10 000 to suppress the
respective breakpoints, you will notice their effect but you may also be confronted with overfull
boxes. Keep in mind that line-breaking in the bibliography is often more difficult than in the body
text and that you can not resort to rephrasing a sentence. In some cases it may be preferable to set
the entire bibliography \raggedright to prevent suboptimal linebreaks. In this case, even the
fairly low default penalties will make a visible difference.

137

\biburlnumskip The additional space inserted after numbers in strings formatted with the \url
command from the url package. This will affect urls and dois in the bibliography.
If urls and/or dois in the bibliography run into the margin, it may help to set this
length to add some small stretchable space, for example 0mu plus 1mu. The
default setting is 0mu. This value is only used if biburlnumpenalty is set to a
value different from zero.

\biburlucskip Similar to biburlnumskip, except that it will add space after all uppercase letters.

\biburllcskip Similar to biburlnumskip, except that it will add space after all uppercase letters.

3.12.5 All-purpose Commands

The commands in this section are all-purpose text commands which are generally
available, not only in citations and the bibliography.

\bibellipsis An ellipsis symbol with brackets: ‘[…]’.

\noligature Disables ligatures at this position and adds some space. Use this command to break
up standard ligatures like ‘fi’ and ‘fl’. It is similar to the "| shorthand provided by
some language modules of the babel/polyglossia packages.

\hyphenate A conditional hyphen. In contrast to the standard \- command, this one allows
hyphenation in the rest of the word. It is similar to the "- shorthand provided by
some language modules of the babel/polyglossia packages.

\hyphen An explicit, breakable hyphen intended for compound words. In contrast to a literal
‘-’, this command allows hyphenation in the rest of the word. It is similar to the
"= shorthand provided by some language modules of the babel/polyglossia
packages.

\nbhyphen An explicit, non-breakable hyphen intended for compound words. In contrast to a
literal ‘-’, this command does not permit line breaks at the hyphen but still allows
hyphenation in the rest of the word. It is similar to the "~ shorthand provided by
some language modules of the babel/polyglossia packages.

\nohyphenation A generic switch which suppresses hyphenation locally. Its scope should normally
be confined to a group. The command uses a language without hyphenation patterns
to suppress hyphenation. The idea was taken from Peter Wilson’s hyphenat
package. Note that this command should only be used for small portions of text and
that its effects are negated if babel/polyglossia is used to switch the language
while it is active.

\textnohyphenation{〈text〉}

Similar to \nohyphenation but restricted to the 〈text〉 argument.

\mknumalph{〈integer〉}

Takes an integer in the range 1–702 as its argument and converts it to a string as
follows: 1=a, …, 26=z, 27=aa, …, 702=zz. This is intended for use in formatting
directives for the extradate, extraname and extraalpha fields.

\mkbibacro{〈text〉}

Generic command which typesets an acronym using the small caps variant of the
current font, if available, and as-is otherwise. The acronym should be given in
uppercase letters.

138

\autocap{〈character〉}

Automatically converts the 〈character〉 to its uppercase form if biblatex’s punc-
tuation tracker would capitalize a localisation string at the current location. This
command is robust. It is useful for conditional capitalization of certain strings in an
entry. Note that the 〈character〉 argument is a single character given in lowercase.
For example:

\autocap{s}pecial issue

will yield ‘Special issue’ or ‘special issue’, as appropriate. If the string to be capitalized
starts with an inflected character given in us-ascii notation, include the accent
command in the 〈character〉 argument as follows:

\autocap{\'e}dition sp\'eciale

This will yield ‘Édition spéciale’ or ‘édition spéciale’. If the string to be capitalized
starts with a command which prints a character, such as \ae or \oe, simply put
the command in the 〈character〉 argument:

\autocap{\oe}uvres

This will yield ‘Œuvres’ or ‘œuvres’.

3.13 Language-specific Notes

The facilities discussed in this section are specific to certain localisation modules.

3.13.1 American

The American localisation module uses \uspunctuation from § 4.7.5 to enable
‘American-style’ punctuation. If this feature is enabled, all trailing commas and
periods after \mkbibquote will be moved inside the quotes. If you want to disable
this feature, use \stdpunctuation as follows:

\DefineBibliographyExtras{american}{%

\stdpunctuation

}

By default, the ‘American punctuation’ feature is enabled by the american localisa-
tion module only. The above code is only required if you want American localisation
without American punctuation. Since standard punctuation is the package default, it
would be redundant with any other language.

It is highly advisable to always specify american, british, australian, etc.
rather than english when loading the babel/polyglossia packages to avoid
any possible confusion. Older versions of the babel package used to treat english
as an alias for british; more recent ones treat it as an alias for american. The
biblatex package essentially treats english as an alias for american, except
for the above feature which is only enabled if american is requested explicitly.

139

3.13.2 Bulgarian

Like the Greek localisation module, the Bulgarian module also requires utf-8 support.
It will not work with any other encoding.

3.13.3 Greek

The Greek localisation module requires utf-8 support. It will not work with any
other encoding. Generally speaking, the biblatex package is compatible with the
inputenc package and with the Unicode engines LuaLaTeX and XeLaTeX.The ucs
package will not work. Note that you may need to load additional packages which set
up Greek fonts. As a rule of thumb, a setup which works for regular Greek documents
should also work with biblatex. However, there is one fundamental limitation.
As of this writing, biblatex has no support for switching scripts. Greek titles in
the bibliography should work fine, but English and other titles in the bibliography
may be rendered in Greek letters. If you need multi-script bibliographies, using a
Unicode engine is the only sensible choice.

3.13.4 Hungarian

The Hungarian localisation module needs to redefine certain field formats to obtain
the grammatically correct word order. This means that these field formats are
overwritten whenever the Hungarian localisation is active, no matter whether they
were defined in the preamble or by a custom style. So please be aware that using
the Hungarian localisation module may cause the bibliography output to deviate
from the format dictated by the loaded style and preamble definitions. Changes
to this behaviour need to be made using \DefineBibliographyExtras. In
particular \mkpageprefix is redefined to output the ‘page’ or ‘pages’ string as
a suffix after the page number following Hungarian conventions, and all formats
of fields involving pages, chapters and volumes were modified so that numbers are
printed as ordinals.

3.13.5 Latvian

The Latvian localisation module, like the Hungarian language module, needs to
redefine certain field formats to obtain the grammatically correct word order. This
means that these field formats are overwritten whenever the Latvian localisation
is active, no matter whether they were defined in the preamble or by a custom
style. So please be aware that using the Latvian localisation module may cause
the bibliography output to deviate from the format dictated by the loaded style
and preamble definitions. Changes to this behaviour need to be made using
\DefineBibliographyExtras. In particular \mkpageprefix is redefined
to output the ‘page’ or ‘pages’ string as a suffix after the page number following
Latvian conventions, and all formats of fields involving pages, chapters and volumes
were modified so that numbers are printed as ordinals.

3.13.6 Lithuanian

The Lithuanian localisation module needs utf-8 support and will only work with
this encoding.

140

3.13.7 Marathi

The Marathi localisation module needs utf-8 support and will only work with this
encoding, but users typesetting significant portions of Marathi will probably be using
a Unicode engine anyway.

Like the Hungarian language module, the Marathi localisation needs to redefine
certain field formats and internal formatting macros to obtain acceptable output.
This means that these field formats are overwritten whenever the Marathi local-
isation is active, no matter whether they were defined in the preamble or by a
custom style. So please be aware that using the Marathi localisation module may
cause the bibliography output to deviate from the format dictated by the loaded
style and preamble definitions. Changes to this behaviour need to be made using
\DefineBibliographyExtras.

There is some limited support for numeric operations with non-us-ascii Devana-
gari numerals. Due to the limitations of arithmetic operations to us-ascii numerals
and backwards compatibility reasons additional work may be needed to support
Devanagari numerals in places where they do not work at the moment.

3.13.8 Romanian

The Romanian localisation module needs utf-8 support and will only work with this
encoding.

Like the Hungarian and Latvian localisation modules, the Romanian lbx

file applies some changes to macros that are usually not affected by locali-
sation. \newunitpunct is set to produce a comma followed by a space.
\intitlepunct only produces a space.

3.13.9 Russian

Like the Greek and Lithuanian localisation module, the Russian module also requires
utf-8 support. It will not work with any other encoding.

3.13.10 Spanish

Handling the word ‘and’ is more difficult in Spanish than in the other languages
supported by this package because it may be ‘y’ or ‘e’, depending on the initial sound
of the following word. Therefore, the Spanish localisation module does not use the
localisation string ‘and’ but a special internal ‘smart and’ command. The behavior
of this command is controlled by the smartand counter.

smartand This counter controls the behavior of the internal ‘smart and’ command. When set
to 1, it prints ‘y’ or ‘e’, depending on the context. When set to 2, it always prints ‘y’.
When set to 3, it always prints ‘e’. When set to 0, the ‘smart and’ feature is disabled.
This counter is initialized to 1 at load-time and may be changed in the preamble.
Note that setting this counter to a positive value implies that the Spanish localisation
module ignores \finalnamedelim and \finallistdelim.

\forceE Use this command in bib files if biblatex gets the ‘and’ before a certain name
wrong. As its name suggests, it will enforce ‘e’. This command must be used in a
special way to be correct BibTeX datafile format. Here is an example:

author = {Edward Jones and Eoin Maguire},

author = {Edward Jones and {\forceE{E}}oin Maguire},

141

Note that the initial letter of the respective name component is given as an argument
to \forceE and that the entire construct is wrapped in an additional pair of curly
braces.

\forceY Similar to \forceE but enforces ‘y’.

3.13.11 Turkish

By default babel’s Turkish localisation module makes ‘=’ a ‘shorthand’, which
breaks the 〈key〉=〈value〉 parser uses by biblatex. This problem can be resolved
by telling babel not to make ‘=’ a shorthand (for example by loading babel with
the option shorthands=:!) or by loading a 〈key〉=〈value〉 package that can deal
with active characters (kvsetkeys and xkeyval)27.

3.14 Usage Notes

The following sections give a basic overview of the biblatex package and discuss
some typical usage scenarios.

3.14.1 Overview

Using the biblatex package is slightly different from using traditional BibTeX
styles and related packages. Before we get to specific usage scenarios, we will
therefore have a look at the structure of a typical document first:

\documentclass{...}

\usepackage[...]{biblatex}

\addbibresource{bibfile.bib}

\begin{document}

\cite{...}

...

\printbibliography

\end{document}

With traditional BibTeX, the \bibliography command serves two purposes. It
marks the location of the bibliography and it also specifies the bib file(s). The file
extension is omitted. With biblatex, resources are specified in the preamble with
\addbibresource using the full name with .bib suffix. The bibliography is
printed using the \printbibliography command which may be used multiple
times (see § 3.8 for details). The document body may contain any number of citation
commands (§ 3.9). Processing this example file requires that a certain procedure be
followed. Suppose our example file is called example.tex and our bibliographic
data is in bibfile.bib. The procedure, then, is as follows:

1. Run latex on example.tex. If the file contains any citations, biblatex
will request the respective data from biber by writing commands to the
auxiliary file example.bcf.

2. Run biber on example.bcf. biberwill retrieve the data from bibfile.

bib and write it to the auxiliary file example.bbl in a format which can
be processed by biblatex.

27
https://tex.stackexchange.com/a/160428/35864

142

https://tex.stackexchange.com/a/160428/35864

3. Run latex on example.tex. biblatex will read the data from
example.bbl and print all citations as well as the bibliography.

3.14.2 Auxiliary Files

The biblatex package uses one auxiliary bcf file only. Even if there are citation
commands in a file included via \include, you only need to run biber on the
main bcf file. All information biber needs is in the bcf file, including information
about all refsections if using multiple refsection environments (see § 3.14.3).

3.14.3 Multiple Bibliographies

In a collection of articles by different authors, such as a conference proceedings
volume for example, it is very common to have one bibliography for each article
rather than a global one for the entire book. In the example below, each article would
be presented as a separate \chapter with its own bibliography.

\documentclass{...}

\usepackage{biblatex}

\addbibresource{...}

\begin{document}

\chapter{...}

\begin{refsection}

...

\printbibliography[heading=subbibliography]

\end{refsection}

\chapter{...}

\begin{refsection}

...

\printbibliography[heading=subbibliography]

\end{refsection}

\end{document}

If \printbibliography is used inside a refsection environment, it auto-
matically restricts the scope of the list of references to the enclosing refsection
environment. For a cumulative bibliography which is subdivided by chapter but
printed at the end of the book, use thesection option of\printbibliography
to select a reference section, as shown in the next example.

\documentclass{...}

\usepackage{biblatex}

\defbibheading{subbibliography}{%

\section*{References for Chapter \ref{refsection:

↪→ \therefsection}}}

\addbibresource{...}

\begin{document}

\chapter{...}

\begin{refsection}

...

\end{refsection}

\chapter{...}

143

\begin{refsection}

...

\end{refsection}

\printbibheading

\printbibliography[section=1,heading=subbibliography]

\printbibliography[section=2,heading=subbibliography]

\end{document}

Note the definition of the bibliography heading in the above example. This is the
definition taking care of the subheadings in the bibliography. The main heading is
generated with a plain \chapter command in this case. The biblatex package
automatically sets a label at the beginning of every refsection environment, us-
ing the standard \label command. The identifier used is the string refsection:
followed by the number of the respective refsection environment. The number
of the current section is accessible via the refsection counter. When using the
section option of \printbibliography, this counter is also set locally. This
means that you may use the counter in heading definitions to print subheadings
like “References for Chapter 3”, as shown above. You could also use the title of the
respective chapter as a subheading by loading the nameref package and using
\nameref instead of \ref:

\usepackage{nameref}

\defbibheading{subbibliography}{%

\section*{\nameref{refsection:\therefsection}}}

Since giving one \printbibliography command for each part of a subdivided
bibliography is tedious, biblatex provides a shorthand. The \bibbysection
command automatically loops over all reference sections. This is equivalent to giving
one \printbibliography command for every section but has the additional
benefit of automatically skipping sections without references. In the example above,
the bibliography would then be generated as follows:

\printbibheading

\bibbysection[heading=subbibliography]

When using a format with one cumulative bibliography subdivided by chapter (or
any other document division) it may be more appropriate to use refsegment
rather than refsection environments. The difference is that the refsection
environment generates labels local to the environment while refsegment does not
affect the generation of labels, hence they will be unique across the entire document.
The next example could also be given in § 3.14.4 because, visually, it creates one
global bibliography subdivided into multiple segments.

\documentclass{...}

\usepackage{biblatex}

\defbibheading{subbibliography}{%

\section*{References for Chapter \ref{refsegment:

↪→ \therefsection\therefsegment}}}

\addbibresource{...}

\begin{document}

144

\chapter{...}

\begin{refsegment}

...

\end{refsegment}

\chapter{...}

\begin{refsegment}

...

\end{refsegment}

\printbibheading

\printbibliography[segment=1,heading=subbibliography]

\printbibliography[segment=2,heading=subbibliography]

\end{document}

The use of refsegment is similar to refsection and there is also a correspond-
ing segment option for \printbibliography. The biblatex package auto-
matically sets a label at the beginning of every refsegment environment using
the string refsegment: followed by the number of the respective refsegment
environment as an identifier. There is a matching refsegment counter which may
be used in heading definitions, as shown above. As with reference sections, there is
also a shorthand command which automatically loops over all reference segments:

\printbibheading

\bibbysegment[heading=subbibliography]

This is equivalent to giving one \printbibliography command for every seg-
ment in the current refsection.

3.14.4 Subdivided Bibliographies

It is very common to subdivide a bibliography by certain criteria. For example, you
may want to list printed and online resources separately or divide a bibliography
into primary and secondary sources. The former case is straightforward because
you can use the entry type as a criterion for the type and nottype filters of
\printbibliography. The next example also demonstrates how to generate
matching subheadings for the two parts of the bibliography.

\documentclass{...}

\usepackage{biblatex}

\addbibresource{...}

\begin{document}

...

\printbibheading

\printbibliography[nottype=online,heading=

↪→ subbibliography,

title={Printed Sources}]

\printbibliography[type=online,heading=subbibliography,

title={Online Sources}]

\end{document}

You may also use more than two subdivisions:

145

\printbibliography[type=article,...]

\printbibliography[type=book,...]

\printbibliography[nottype=article,nottype=book,...]

It is even possible to give a chain of different types of filters:

\printbibliography[section=2,type=book,keyword=abc,

↪→ notkeyword=xyz]

This would print all works cited in reference section 2 whose entry type is @book
and whose keywords field includes the keyword ‘abc’ but not ‘xyz’. When using
bibliography filters in conjunction with a numeric style, see § 3.15.5. If you need
complex filters with conditional expressions, use the filter option in conjunction
with a custom filter defined with \defbibfilter. See § 3.8.9 for details on custom
filters.

\documentclass{...}

\usepackage{biblatex}

\addbibresource{...}

\begin{document}

...

\printbibheading

\printbibliography[keyword=primary,heading=

↪→ subbibliography,%

title={Primary Sources}]

\printbibliography[keyword=secondary,heading=

↪→ subbibliography,%

title={Secondary Sources}]

\end{document}

Dividing a bibliography into primary and secondary sources is possible with a
keyword filter, as shown in the above example. In this case, with only two subdivi-
sions, it would be sufficient to use one keyword as filter criterion:

\printbibliography[keyword=primary,...]

\printbibliography[notkeyword=primary,...]

Since biblatex has no way of knowing if an item in the bibliography is considered
to be primary or secondary literature, we need to supply the bibliography filter with
the required data by adding a keywords field to each entry in the bib file. These
keywords may then be used as targets for the keyword and notkeyword filters,
as shown above. It may be a good idea to add such keywords right away while
building a bib file.

@Book{key,

keywords = {primary,some,other,keywords},

...

An alternative way of subdividing the list of references are bibliography categories.
They differ from the keywords-based approach shown in the example above in that
they work on the document level and do not require any changes to the bib file.

146

\documentclass{...}

\usepackage{biblatex}

\DeclareBibliographyCategory{primary}

\DeclareBibliographyCategory{secondary}

\addtocategory{primary}{key1,key3,key6}

\addtocategory{secondary}{key2,key4,key5}

\addbibresource{...}

\begin{document}

...

\printbibheading

\printbibliography[category=primary,heading=

↪→ subbibliography,%

title={Primary Sources}]

\printbibliography[category=secondary,heading=

↪→ subbibliography,%

title={Secondary Sources}]

\end{document}

In this case it would also be sufficient to use one category only:

\printbibliography[category=primary,...]

\printbibliography[notcategory=primary,...]

It is still a good idea to declare all categories used in the bibliography explicitly
because there is a \bibbycategory command which automatically loops over
all categories. This is equivalent to giving one \printbibliography command
for every category, in the order in which they were declared.

\documentclass{...}

\usepackage{biblatex}

\DeclareBibliographyCategory{primary}

\DeclareBibliographyCategory{secondary}

\addtocategory{primary}{key1,key3,key6}

\addtocategory{secondary}{key2,key4,key5}

\defbibheading{primary}{\section*{Primary Sources}}

\defbibheading{secondary}{\section*{Secondary Sources}}

\addbibresource{...}

\begin{document}

...

\printbibheading

\bibbycategory

\end{document}

The handling of the headings is different from \bibbysection and
\bibbysegment in this case. \bibbycategory uses the name of the current
category as a heading name. This is equivalent to passing heading=〈category〉 to
\printbibliography and implies that you need to provide a matching heading
for every category.

147

3.14.5 Entry Sets

An entry set is a group of entries which are cited as a single reference and listed
as a single item in the bibliography. The individual entries in the set are separated
by \entrysetpunct (§ 4.10.1). The biblatex package supports two types of
entry sets. Static entry sets are defined in the bib file like any other entry. Dynamic
entry sets are defined with \defbibentryset (§ 3.8.11) on a per-document/per-
refsection basis in the document preamble or the document body. This section
deals with the definition of entry sets; style authors should also see § 4.11.1 for
further information. Please note that entry sets only make sense for styles which
refer to entries by labels such as the provided numeric and alphabetic styles.
Styles which refer to entries via names, titles etc. (authoryear, authortitle,
verbose etc.) rarely employ sets and do not support them by default when they
are cited directly. Custom styles may of course choose to implement some manner
of set citation support in any manner they choose.

3.14.5.1 Static entry sets

Static entry sets are defined in the bib file like any other entry. Defining an entry
set is as simple as adding an entry of type @set. The entry has an entryset field
defining the members of the set as a separated list of entry keys:

@Set{set1,

entryset = {key1,key2,key3},

}

Entries may be part of a set in one document/refsection and stand-alone references in
another one, depending on the presence of the @set entry. If the @set entry is cited,
the set members are grouped automatically. If not, they will work like any regular
entry. Note that with BibTeX as the backend, there must also be an entryset field
in the set members which point to the set parent. With biber, this is not necessary.

3.14.5.2 Dynamic entry sets

Dynamic entry sets are set up and work much like static ones. The main difference is
that they are defined in the document preamble or on the fly in the document body
using the \defbibentryset command from § 3.8.11:

\defbibentryset{set1}{key1,key2,key3}

Dynamic entry sets in the document body are local to the enclosing refsection
environment, if any. Otherwise, they are assigned to reference section 0. Those
defined in the preamble are assigned to reference section 0.

3.14.6 Data Containers

The @xdata entry type serves as a data container holding one or more fields. Data
in @xdata entries may be referenced and used by other entries. @xdata entries
may not be cited or added to the bibliography, they only serve as a data source for
other entries (including other @xdata entries). This data inheritance mechanism is
useful for fixed field combinations such as publisher/location and for other
frequently used data:

148

@XData{hup,

publisher = {Harvard University Press},

location = {Cambridge, Mass.},

}

@Book{...,

author = {...},

title = {...},

date = {...},

xdata = {hup},

}

Using a separated list of keys in its xdata field, an entry may inherit data from
several @xdata entries. Cascading @xdata entries are supported as well, i. e., an
@xdata entry may reference one or more other @xdata entries:

@XData{macmillan:name,

publisher = {Macmillan},

}

@XData{macmillan:place,

location = {New York and London},

}

@XData{macmillan,

xdata = {macmillan:name,macmillan:place},

}

@Book{...,

author = {...},

title = {...},

date = {...},

xdata = {macmillan},

}

More granular @xdata entry data may be referenced. It is not necessary to reference
only entire fields. For example:

@XData{someauthors,

author = {John Smith and Brian Brown}

}

@XData{somelocations,

location = {Location1 and Location2}

}

@XData{somenotes,

note = {A note}

}

@Book{...,

author = {Alan Drudge and xdata=someauthors-author

↪→ -2},

editor = {xdata=someauthors-author and Ann Editor

↪→ },

location = {xdata=somelocations-location-1 and

↪→ Location3},

note = {xdata=somenotes-note}

149

}

The format of granular @xdata references are as follows:

x
1
data=

2
<
3
key>-

4
<
5
field>-

6
<
7
index>

1. The value of the biber option --xdatamarker (by default ’xdata’)

2. The value of the biber option --xnamesep (by default ’=’)

3. A valid entry key of an @xdata entry

4. The value of the biber option --xdatasep (by default ’-’)

5. A valid entry field in the source @xdata entry

6. (Optional) The value of the biber option --xdatasep (by default ’-’)

7. (Optional) A valid 1-based index into a list/name field in the source @xdata
entry

There are --output-* variants of the above options for biber tool mode output
so that these separators and markers can be programatically changed. Taking the
example above, this @book would resolve to:

@Book{...,

author = {Alan Drudge and Brian Brown},

editor = {John Smith and Brian Brown and Ann

↪→ Editor},

location = {Location1 and Location3},

note = {A note}

}

Things to note with granular @xdata references:

• References must be made only to @xdata fields. A warning will be generated
otherwise and the reference will not be resolved

• References must be made only to @xdata fields of the same type (list/name
and datatype) as the referencing field. A warning will be generated otherwise
and the reference will not be resolved

• References to fields of datatype ’date’ are not possible. References to legacy
year and month fields are possible

• References to missing entries, fields or list/name indices will generate a warn-
ing and the reference will not be resolved

• If an index is missing for a reference to a list/name field, the entire xdata
name/list field will be spliced into the referencing field at the desired position.

See also §§ 2.1.1 and 2.2.3.

150

3.14.7 Electronic Publishing Information

The biblatex package provides three fields for electronic publishing information:
eprint, eprinttype, and eprintclass. The eprint field is a verbatim field
similar to doi which holds the identifier of the item. The eprinttype field holds
the resource name, i. e., the name of the site or electronic archive. The optional
eprintclass field is intended for additional information specific to the resource
indicated by the eprinttype field. This could be a section, a path, classification
information, etc. If the eprinttype field is available, the standard styles will use
it as a literal label. In the following example, they would print “Resource: identifier”
rather than the generic “eprint: identifier”:

eprint = {identifier},

eprinttype = {Resource},

The standard styles feature dedicated support for a few online archives. For arXiv
references, put the identifier in the eprint field and the string arxiv in the
eprinttype field:

eprint = {math/0307200v3},

eprinttype = {arxiv},

For papers which use the new identifier scheme (April 2007 and later) add the primary
classification in the eprintclass field:

eprint = {1008.2849v1},

eprinttype = {arxiv},

eprintclass = {cs.DS},

There are two aliases which ease the integration of arXiv entries. archiveprefix
is treated as an alias for eprinttype; primaryclass is an alias for
eprintclass. If hyperlinks are enabled, the eprint identifier will be transformed
into a link to arxiv.org. See the package option arxiv in § 3.1.2.1 for further
details.

For jstor references, put the stable jstor number in the eprint field and the
string jstor in the eprinttype field:

eprint = {number},

eprinttype = {jstor},

When using jstor’s export feature to export citations in BibTeX format, jstor uses
the url field by default (where the 〈number〉 is a unique and stable identifier):

url = {http://www.jstor.org/stable/number},

While this will work as expected, full urls tend to clutter the bibliography. With
the eprint fields, the standard styles will use the more readable “jstor: 〈number〉”
format which also supports hyperlinks. The 〈number〉 becomes a clickable link if
hyperref support is enabled.

For PubMed references, put the stable PubMed identifier in the eprint field and
the string pubmed in the eprinttype field. This means that:

151

url = {http://www.ncbi.nlm.nih.gov/pubmed/pmid},

becomes:

eprint = {pmid},

eprinttype = {pubmed},

and the standard styles will print “pmid: 〈pmid〉” instead of the lengthy url. If
hyperref support is enabled, the 〈pmid〉 will be a clickable link to PubMed.

For handles (hdls), put the handle in the eprint field and the string hdl in the
eprinttype field:

eprint = {handle},

eprinttype = {hdl},

For Google Books references, put Google’s identifier in the eprint field and the
string googlebooks in the eprinttype field. This means that, for example:

url = {http://books.google.com/books?id=XXu4AkRVBBoC},

would become:

eprint = {XXu4AkRVBBoC},

eprinttype = {googlebooks},

and the standard styles would print “Google Books: XXu4AkRVBBoC” instead of
the full url. If hyperref support is enabled, the identifier will be a clickable link to
Google Books.28

Note that eprint is a verbatim field. Always give the identifier in its unmodified
form. For example, there is no need to replace _ with _. Also see § 4.11.2 on how
to add dedicated support for other eprint resources.

3.14.8 External Abstracts and Annotations

Styles which print the fields abstract and/or annotation may support an
alternative way of adding abstracts or annotations to the bibliography. Instead of
including the text in the bib file, it may also be stored in an external LaTeX file. For
example, instead of saying

@Article{key1,

...

abstract = {This is an abstract of entry `key1'.}

}

in the bib file, you may create a file named bibabstract-key1.tex and put
the abstract in this file:

28Note that the Google Books id seems to be a bit of an ‘internal’ value. As of this writing, there does
not seem to be any way to search for an id on Google Books. You may prefer to use the url in
this case.

152

This is an abstract of entry `key1'.

\endinput

The name of the external file must be the entry key prefixed with bibabstract-
or bibannotation-, respectively. You can change these prefixes by redefining
\bibabstractprefix and \bibannotationprefix. Note that this feature
needs to be enabled explicitly by setting the package option loadfiles from
§ 3.1.2.1. The option is disabled by default for performance reasons. Also note that
any abstract and annotation fields in the bib file take precedence over the
external files. Using external files is strongly recommended if you have long abstracts
or a lot of annotations since this may increase memory requirements significantly.
It is also more convenient to edit the text in a dedicated LaTeX file. Style authors
should see § 4.11.3 for further information.

3.15 Hints and Caveats

This section provides additional usage hints and addresses some common problems
and potential misconceptions.

3.15.1 Usage with KOMA-Script Classes

When used in conjunction with a recent version29 one of the scrbook, scrreprt,
or scrartcl classes, biblatex passes control over the (default) headings
bibliography and biblist from § 3.8.7 to the class. Hence, bibliography-
heading-related class options can be used as usual. You can override the
default headings by using the heading option of \printbibliography,
\printbibheading and \printbiblist. See §§ 3.8.2, 3.8.3, 3.8.7 for details.
biblatex also tries to detect bibliography-related class options and settings

itself.30 This was required to be able to adapt the bibliography headings to the class
settings in older versions of koma-Script. If one of the above classes is detected,
biblatexwill provide the following additional tests which may be useful in custom
heading definitions. Since these tests rely on the error-prone external detection of
koma-Script settings and are no longer used with newer koma-Script versions, these
tests are deprecated and should no longer be used.

\ifkomabibtotoc{〈true〉}{〈false〉}
Deprecated

Expands to 〈true〉 if the class would add the bibliography to the table of contents,
and to 〈false〉 otherwise. This test is deprecated.

\ifkomabibtotocnumbered{〈true〉}{〈false〉}
Deprecated

Expands to 〈true〉 if the class would add the bibliography to the table of con-
tents as a numbered section, and to 〈false〉 otherwise. If this test yields 〈true〉,
\ifkomabibtotoc will always yield 〈true〉 as well, but not vice versa. This test
is deprecated.

29At least koma-Script 3.25 (2018/03/30).
30This applies to the traditional syntax of these options (bibtotoc and bibtotocnumbered)

as well as to the 〈key〉=〈value〉 syntax introduced in koma-Script 3.x, i. e., to bibliography=
nottotoc, bibliography=totoc, and bibliography=totocnumbered. The global
toc=bibliography and toc=bibliographynumbered options as well as their aliases
are detected as well. In any case, the options must be set globally in the optional argument to
\documentclass.

153

3.15.2 Usage with the Memoir Class

When using biblatex with the memoir class, most class facilities for adapting
the bibliography have no effect. Use the corresponding facilities of this package in-
stead (§§ 3.8.2, 3.8.7, 3.8.8). Instead of redefining memoir’s \bibsection, use the
heading option of \printbibliography and \defbibheading (§§ 3.8.2
and 3.8.7). Instead of \prebibhook and \postbibhook, use the prenote and
postnote options of \printbibliography and \defbibnote (§§ 3.8.2 and
3.8.8). All default headings are adapted at load-time such that they blend well with the
default layout of this class. The default headings bibliography and biblist
(§ 3.8.7) are also responsive to memoir’s \bibintoc and \nobibintoc switches.
The length register \bibitemsep is used by biblatex in a way similar to
memoir (§ 3.12.4). This section also introduces some additional length registers
which correspond to memoir’s \biblistextra. Lastly, \setbiblabel does
not map to a single facility of the biblatex package since the style of all labels
in the bibliography is controlled by the bibliography style. See § 4.2.2 in the author
section of this manual for details. If the memoir class is detected, biblatex will
also provide the following additional test which may be useful in custom heading
definitions:

\ifmemoirbibintoc{〈true〉}{〈false〉}

Expands to 〈true〉 or 〈false〉, depending on memoir’s \bibintoc and
\nobibintoc switches. This is a LaTeX frontend to memoir’s \ifnobibintoc
test. Note that the logic of the test is reversed.

3.15.3 Page Numbers in Citations

If the 〈postnote〉 argument to a citation command is a page number or page range,
biblatex will automatically prefix it with ‘p.’ or ‘pp.’ by default. This works
reliably in typical cases, but sometimes manual intervention may be required. In
this case, it is important to understand how this argument is handled in detail. First,
biblatex checks if the postnote is an Arabic or Roman numeral (case insensitive).
If this test succeeds, the postnote is considered as a single page or other number which
will be prefixed with ‘p.’ or some other string which depends on the pagination
field (see § 2.3.12). If it fails, a second test is performed to find out if the postnote is a
range or a list of Arabic or Roman numerals. If this test succeeds, the postnote will
be prefixed with ‘pp.’ or some other string in the plural form. If it fails as well, the
postnote is printed as is. Note that both tests expand the 〈postnote〉. All commands
used in this argument must therefore be robust or prefixed with \protect. Here
are a few examples of 〈postnote〉 arguments which will be correctly recognized as a
single number, a range of numbers, or a list of numbers, respectively:

\cite[25]{key}

\cite[vii]{key}

\cite[XIV]{key}

\cite[34--38]{key}

\cite[iv--x]{key}

\cite[185/86]{key}

\cite[XI \& XV]{key}

\cite[3, 5, 7]{key}

\cite[vii--x; 5, 7]{key}

154

In some other cases, however, the tests may get it wrong and you need to resort to the
auxiliary commands \pnfmt, \pno, \ppno, and \nopp from § 3.9.8. For example,
suppose a work is cited by a special pagination scheme consisting of numbers and
letters. In this scheme, the string ‘27a’ would mean ‘page 27, part a’. Since this
string does not look like a number or a range to biblatex, you need to force the
prefix for a single number manually:

\cite[\pno~27a]{key}

There is also a \ppno command which forces a range prefix as well as a \nopp
command which suppresses all prefixes:

\cite[\ppno~27a--28c]{key}

\cite[\nopp 25]{key}

These commands may be used anywhere in the 〈postnote〉 argument. They may also
be used multiple times. For example, when citing by volume and page number, you
may want to suppress the prefix at the beginning of the postnote and add it in the
middle of the string:

\cite[VII, \pno~5]{key}

\cite[VII, \pno~3, \ppno~40--45]{key}

\cite[see][\ppno~37--46, in particular \pno~40]{key}

The command \pnfmt can be used for 〈postnote〉s consisting of a page range and
some additional text. \pnfmt prints its argument in the format specified for the
postnote and can be used to format the page range automatically without the need
for \pno and \ppno.

\cite[\pnfmt{37-46}, in particular \pnfmt{40}]{key}

There are also two auxiliary command for suffixes like ‘the following page(s)’. Instead
of inserting such suffixes literally (which would require \ppno to force a prefix):

\cite[\ppno~27~sq.]{key}

\cite[\ppno~55~sqq.]{key}

use the auxiliary commands \psq and \psqq. Note that there is no space between
the number and the command. This space will be inserted automatically and may be
modified by redefining the macro \sqspace.

\cite[27\psq]{key}

\cite[55\psqq]{key}

Since the postnote is printed without any prefix if it includes any character which is
not an Arabic or Roman numeral, you may also type the prefix manually—though
this is discouraged:

\cite[p.~5]{key}

155

It is possible to suppress the prefix on a per-entry basis by setting the pagination
field of an entry to ‘none’, see § 2.3.12 for details. If you do not want any prefixes at
all or prefer to type them manually, you can also disable the entire mechanism in
the document preamble or the configuration file as follows:

\DeclareFieldFormat{postnote}{#1}

The 〈postnote〉 argument is handled as a field and the formatting of this field is
controlled by a field formatting directive which may be freely redefined. The above
definition will simply print the postnote as is. See §§ 4.3.2 and 4.4.2 in the author
guide for further details.

3.15.4 Name Parts and Name Spacing

The biblatex package gives users and style authors very fine-grained control of
name spacing and the line-breaking behavior of names. The commands discussed in
the following are documented in §§ 3.12.1 and 4.10.1. This section is meant to give
an overview of how they are put together. A note on terminology: a name part is
a basic part of the name, for example the given or the family name. Each part of a
name may be a single name or it may be composed of multiple names. For example,
the name part ‘given name’ may be composed of a given and a middle name. The
latter are referred to as name elements in this section. Let’s consider a simple name
first: “John Edward Doe”. This name is composed of the following parts:

Given John Edward
Prefix —
Family Doe
Suffix —

The spacing, punctuation and line-breaking behavior of names is controlled by six
macros:

a=\bibnamedelima Inserted by the backend after the first element of every
name part if that element is less than three characters
long and before the last element of every name part.

b=\bibnamedelimb Inserted by the backend between all elements of a name
part where \bibnamedelima does not apply.

c=\bibnamedelimc Inserted by a formatting directive between the name
prefix and the family name if useprefix=true. If
useprefix=false, \bibnamedelimd is used
instead.

d=\bibnamedelimd Inserted by a formatting directive between name parts
where \bibnamedelimc does not apply.

i=\bibnamedelimi Replaces \bibnamedelima/b after initials
p=\revsdnamepunct Inserted by a formatting directive after the family name

when the name parts are reversed.

This is how the delimiters are employed:

John
a
Edward

d
Doe

Doe,
p d
John

a
Edward

156

Initials in the bib file get a special delimiter:

J.
i
Edward

d
Doe

Let’s consider a more complex name: “Charles-Jean Étienne Gustave Nicolas de La
Vallée Poussin”. This name is composed of the following parts:

Given Charles-Jean Étienne Gustave Nicolas
Prefix de
Family La Vallée Poussin
Suffix —

The delimiters:

Charles-Jean
b
Étienne

b
Gustave

a
Nicolas

d
de

c
La

a
Vallée

a
Poussin

Note that \bibnamedelima/b/i are inserted by the backend. The backend
processes the name parts and takes care of the delimiters between the elements
that make up a name part, processing each part individually. In contrast to that,
the delimiters between the parts of the complete name (\bibnamedelimc/d)
are added by name formatting directives at a later point in the processing chain.
The spacing and punctuation of initials is also handled by the backend and may be
customized by redefining the following three macros:

a=\bibinitperiod Inserted by the backend after initials.
b=\bibinitdelim Inserted by the backend between multiple initials.
c=\bibinithyphendelim Inserted by the backend between the initials of

hyphenated name parts, replacing
\bibinitperiod and \bibinitdelim.

This is how they are employed:

J.
a b
E.

a
Doe

K.-
c
H.

a
Mustermann

3.15.5 Split Bibliographies and Citation Labels

The citation labels generated by this package are assigned to the full list of references
before it is split up by any bibliography filters. They are guaranteed to be unique
across the entire document (or a refsection environment), no matter how many
bibliography filters you are using. When using a numeric citation scheme, however,
this will most likely lead to discontinuous numbering in split bibliographies. Use
the defernumbers package option to avoid this problem. If this option is enabled,
numeric labels are assigned the first time an entry is printed in any bibliography.

Compare the output of the following example with defernumbers=true and
defernumbers=false.

\documentclass{article}

\usepackage[defernumbers=true]{biblatex}

\addbibresource{biblatex-examples.bib}

157

\begin{document}

Lorem \autocite{worman} ipsum \autocite{sigfridsson}

dolor \autocite{nussbaum} sit \autocite{aksin}

\printbibheading[title={Bibliography}]

\printbibliography[heading=subbibliography,

type=book, title={Books}]

\printbibliography[heading=subbibliography,

type=article, title={Articles}]

\end{document}

There are pathological cases where neither defernumbers=true nor
defernumbers=false produce fully desirable output. Thismay be the case when
entries can end up in several of the split bibliographies—or if there is an additional
global bibliography. But in most cases with non-overlapping split bibliographies
defernumbers=true produces better results. biblatex will therefore suggest
setting defernumbers to true in a warning when a split bibliography setup is
detected. That warning can be suppressed in case setting defernumbers to true
is not desirable.

3.15.6 Active Characters in Bibliography Headings

Packages using active characters, such as babel, polyglossia, csquotes, or
underscore, usually do not make them active until the beginning of the docu-
ment body to avoid interference with other packages. A typical example of such
an active character is the us-ascii quote ", which is used by various language mod-
ules of the babel/polyglossia packages. If shorthands such as "< and "a are
used in the argument to \defbibheading and the headings are defined in the
document preamble, the non-active form of the characters is saved in the heading
definition. When the heading is typeset, they do not function as a command but
are simply printed literally. The most straightforward solution consists in mov-
ing \defbibheading after \begin{document}. Alternatively, you may use
babel’s \shorthandon and \shorthandoff commands to temporarily make
the shorthands active in the preamble. The above also applies to bibliography notes
and the \defbibnote command.

3.15.7 Grouping in Reference Sections and Segments

All LaTeX environments enclosed in \begin and \end form a group. This may have
undesirable side effects if the environment contains anything that does not expect to
be usedwithin a group. This issue is not specific torefsection andrefsegment
environments, but it obviously applies to them as well. Since these environments
will usually enclose much larger portions of the document than a typical itemize
or similar environment, they are simply more likely to trigger problems related to
grouping. If you observe any malfunctions after adding refsection environments
to a document (for example, if anything seems to be ‘trapped’ inside the environment),
try the following syntax instead:

\chapter{...}

\refsection

...

\endrefsection

158

This will not form a group, but otherwise works as usual. As far as biblatex
is concerned, it does not matter which syntax you use. The alternative syntax
is also supported by the refsegment environment. Note that the commands
\newrefsection and \newrefsegment do not form a group. See §§ 3.8.4 and
3.8.5 for details.

3.16 Using the fallback BibTeX backend

To utilise all of the features described here, biblatexmust be used with the biber
program as a backend. Indeed, the documentation in general assumes this. However,
for a limited subset of use cases it is possible to use the long-established BibTeX
program (either the 7-bit bibtex or 8-bit bibtex8) as the supporting backend.
This works in much the same way as for biber with the only proviso being that
BibTeX is much more limited as a backend.

Using BibTeX as the backend requires that the option backend=bibtex or
backend=bibtex8 is given at load time. The biblatex package will then write
appropriate data for use by BibTeX into the auxiliary file(s) and a special data file
(automatically included in those to be read by BibTeX). The BibTeX (8) program
should then be run on each auxiliary file: biblatex will list all of the required
files in the log.

Key limitations of the BibTeX backend are:

• Sorting is global and is limited to us-ascii ordering

• No re-encoding is possible and thus database entries must be in LICR form to
work reliably

• The data model is fixed

• Cross-referencing is more limited and entry sets must be written into the .bib
file

• Fixed memory capacity (using the --wolfgang option with bibtex8 is
strongly recommended to minimize the likelihood of an issue here)

3.17 Multiscript Support

biblatex and biber allow the user to specify ‘alternates’ for entryfields desig-
nated as ‘multiscript’ in the bibliography data. Here and below ‘entryfield’ is any
bibliography field, whether a plain field, list or name. The ‘alternates’ are simply al-
ternative ‘form’ and ‘language’ combinations of the same entryfield data. Multiscript
support consists of the following features:

• Data entryfields in the datasources (.bib, .bltxml etc.) may have more
than one ‘alternates’

• All macros which accept the name of an entryfield have optional ‘msform’ and
‘mslang’ arguments to allow the specification of a particular ‘alternate’ of the
entryfield, with the default ‘alternate’ determined by the global/per-refcontext
msform and mslang options.

• The language of individual items in name list or plain list entryfields can be
specified using a dedicated data annotation to allow script/language switching
on a per-item basis.

159

• For name list and plain list entryfields, all alternates of the item being printed
are available as macros

• Options are available to determine how automatic script/language switching
is performed at a per-field and per-listitem level.

• The alternate for labelname and labeltitle can be determined dynam-
ically depending on the current msform and mslang settings at time of
printing.

The ‘form’ of an alternate entryfield value is one of the vales of the ‘multiscript-
forms’ constant, the default for which is:

\DeclareDatamodelConstant[type=list]{multiscriptforms}{

↪→ default,transliteration,transcription,translation}

↪→

The ‘language’ of an alternate entryfield value is a standard IETF BCP4731 language
tag which specifies a language code along with optional subtags specifying dialects
etc. In most cases, these are obvious and well-known tags such as ‘en’ for English,
‘en-us’ for US-english, ‘fr’ for French, ‘de’ for German etc.

The default multiscript language used when selecting entryfields to print etc. is
determined from the babel/polyglossia main language with a fallback to ‘en-us’. The
langid datasource entry option plays an important role in multiscript support as it
determines the default alternate language on a per-entry basis. biber has amslang
option which sets the default alternate language for all multiscript entryfields which
do not specify a language explicitly for the field or for the entry using langid
as described above. biber will by default use the global mslang option setting
from biblatex but this can be overridden using biber’s own mslang option
(which defaults to ‘en-us’). For maximum control over multiscript functionality, it is
recommended to consistently set the langid field in your datasource entries so that
you always know which multiscript language will be used by default when printing
data from an entry. See below for details on how alternates are selected for printing.

Bibliographic entryfields which support multiscript alternates are specified in
the datamodel using \DeclareDatamodelMultiscriptEntryfields. The
default includes most name, list and literal fields in the standard datamodel. Multi-
script enabled entryfields always have a ‘form’ and ‘language’ associated with them
which default to the global msform and mslang options respectively. These global
defaults can be overriden on a per-refcontext basis by the msform and mslang
options to the refcontext macros.

The biblatex options:

• \DeclareLabelname

• \DeclareLabeltitle

• \DeclareSortingTemplate

• \DeclareLabelalphaTemplate

are multiscript aware and allow the selection of specific entryfield alternates by use
of the form and lang options. For example, declaring the labelname template
like this:
31https://tools.ietf.org/html/bcp47

160

\DeclareLabelname{%

\field[form=transliteration,lang=ru-Cyrl]{author}

\field{author}

}

Would set the labelname to a Russian Cyrillic alternate of the author name field,
if found, before trying the default alternate ‘form’ and ‘language’ alternate of the
author name field.

Here is an example of the bibermultiscript support syntax for .bib datasources:

@ARTICLE{mstest,

AUTHOR = {Bill Smith and Пушкин, Александр and 徐冰},

AUTHOR+an:mslang = {2="ru-Cyrl";3="zh-Hant"},

AUTHOR_transliteration_ru-Latn = {Bill Smith and Pushkin,

↪→ Aleksandr and Xu, Bing},

AUTHOR_transliteration_ru-Latn+an:mslang = {1="en-US";3="zh-Latn"},

↪→
AUTHOR_transliteration_ru-Grek = {Bill Smith and Πούσκιν,

↪→ Ἀλεξάντρ and Ξού, Μπίνγκ},

AUTHOR_transliteration_ru-Grek+an:mslang = {1="en-US";3="zh-Grek"},

↪→
LOCATION = {locationa and Standortb},

LOCATION+an:mslang = {2="de"},

LOCATION_translation_fr = {emplacementa and Standortb},

LOCATION_translation_fr+an:mslang = {2="de"},

TITLE = {Title},

TITLE_translation_fr = {Titre},

DATE = {1995}

}

This example demonstrates the multiscript entryfield alternate syntax where the
‘form’ and ‘language’ follow the entryfield name, separated by a (customisable)
separator (the default is an underscore). Notice that there are alternates for the
author, location and title entryfields.

It is also possible to override the ‘language’ of an alternate on a per-item basis
using the biber data annotation feature (see 3.7). biber’s multiscript support
reserves the mslang named literal annotation for this purpose. These annotations
are available via the interfaces described in 3.7.

Within formats, \currentmsform and \currentmslang contain the mul-
tiscript form and BCP47 language tag respectively for the current field/list item.
\currentmsforms and \currentmslangs contain etoolbox lists of all mul-
tiscript forms and BCP47 language tags respectively of the current entryfield. The
macros are all empty in non-multiscript fields.

The standard langid entryfield plays a special role in multiscript support as it
is a per-entry override for the default alternate ‘language’ for all entryfields in the
entry. For example:

@ARTICLE{mstest,

LANGID = {russian},

AUTHOR = {Bill Smith and Пушкин, Александр},

AUTHOR+an:mslang = {1="en-US"},

}

161

The name ‘Пушкин, Александр’ will be processed by biber with the ‘language’
ru-Cyrl due to the langid entryfield which overrides the global mslang setting
of biblatex which is passed to biber.

Within field, list and name formatting directives, themacros\currentmsforms
and \currentmslangs are etoolbox lists of valid multiscript forms/langs for
the current entryfield which allow, for example, looping over valid multiscript forms
and languages for the entryfield being processed. See 4.4.2 and 4.10.5.

Inside the formats for multiscript name list and plain list fields, macros are automat-
ically made available which contain all alternates of the current list item/nameparts.
See 4.2.3 and 4.4.2.

Automatic babel/polyglossia language and biblatex bibstring switching
on a per-list item/namepart basis is controlled by the options autofieldlang
and autofieldlangstrings which allow switching at a more granular level
than autolang. Granular automatic language switching relies on a mapping of
BCP47 language tags to biblatex/babel/polyglossia language identifiers
so that these packages know which language to switch to (this is necessary until
BCP47 support is native to biblatex, babel and polyglossia. biblatex
has default mappings as defined in Appendix § F. In addition, you may override or
add new mappings with the \maplangtag command:

\maplangtag{〈BCP47tag〉}{〈langid〉}

Provides a mapping between the BCP47 language tags used in multiscript entryfield
alternate specifications and biblatex/babel/polyglossia language identi-
fiers.

The biblatex option dynamiclabel allows dynamic selection of
labelname and labeltitle depending on the current msform and mslang
settings. For example, suppose the following:

@ARTICLE{mstest,

AUTHOR = {Pushkin, Alexander},

AUTHOR_transliteration_ru = Пушкин{, Александр},

}

The default \DeclareLabelname setting would select the English author field
alternate as the value of labelname and the following would print ‘Pushkin’
for both citations in an authoryear style since citations in such styles use
labelname by default:

\cite{mtest}

\begin{refcontext}[msform=transliteration,mslang=ru]

\cite{mtest}

\end{refcontext}

labelname here is the same in both refcontexts, as determined by the
\DeclareLabelname setting. However, with ‘dynamiclabel=true’, the
second citation would determine labelname from the current (refcontext) set-
tings for msform and mslang and the second citation would read ‘Пушкин’.
It is also possible to select particular alternates of name list fields using the
optional arguments to \DeclareLabelname but bear in mind that these are
still static settings–labelname selection will not be dynamic and override the

162

\DeclareLabelname choice unless ‘dynamiclabel=true’. Similar consider-
ations apply to labeltitle.

3.18 Selection of Multiscript Alternates

When selecting or printing a multiscript alternate with:

• \printfield

• \printlist

• \printname

• \indexfield

• \indexlist

• \indexname

the multiscript alternate to use is selected using the following rules:

• If an explicit form/lang is specified, then only this alternate is considered

• If no explicit form/lang is specified, then the following are considered, in order

– The alternate identified by the currently active form/lang (see below)

– Thefirst alternate found in themultiscript select list for the entrylangid
(if it exists) or else the currently active multiscript language

– The alternate identified by the currently active multiscipt form and the
entry langid (if it exists) or else the currently active multiscript lan-
guage

The active multiscript form/language are determined by, in ascending order of
override:

• The global msform and mslang settings derived respectively from the global
option and babel/polyglossia document language

• The refcontext msform/mslang options

The multiscript select list for a langid is defined using the following macro:

\DeclareMsselect{〈langid〉}{〈specification〉}

Defines the multiscript alternates to look for, in order, when attempting to print
a multiscript field in the context of the language with 〈langid〉. 〈langid〉 can be a
babel/polyglossia language specifier or BCP47 language tag. The language context is
either the langid of the entry (if it exists) or the active mslang. The 〈specification〉
is one or more \alternate macros:

163

\alternate{〈form〉}{〈BCP47tag〉}
A multiscript alternate to look for, specified by form and BCP47tag.

For example, to specify a multiscript select list for entries with langid of ‘japanese’
(or entries with no langid field in a context where the active mslang is the BCP47
language tag equivalent ‘ja-jp’).

\DeclareMsselect{japanese}{

\alternate{transcription}{ja-hira}

\alternate{transliteration}{ja-latn}

}

This could also be specified as:

\DeclareMsselect{ja-jp}{

\alternate{transcription}{ja-hira}

\alternate{transliteration}{ja-latn}

}

For example, consider the following data with two multiscript entryfields (the logic
is the same for lists and names):

@ARTICLE{mstest,

LANGID = {lang4},

MSFIELD1 = {Value1},

MSFIELD1_form1_lang1 = {Value2},

MSFIELD1_form2_lang2 = {Value3},

MSFIELD1_form4_lang4 = {Value4},

MSFIELD2 = {Value5},

MSFIELD2_form1_lang1 = {Value6},

MSFIELD2_form3_lang3 = {Value7},

}

the values selected to be printed would be:

% Assume global defaults of form=form1, lang=lang1

\DeclareMsselect{lang4}{

\alternate{form2}{lang2}

}

% Explicit form/lang

\printfield[form1][lang1]{MSFIELD1} => "Value2"

\printfield[form3][lang3]{MSFIELD1} => ""

\printfield[form1][lang1]{MSFIELD2} => "Value6"

% global form/lang alternates exist for both fields

\printfield{MSFIELD1} => "Value2"

\printfield{MSFIELD2} => "Value6"

% refcontext can change defaults for form/lang

% but doesn't effect explicit form/lang

\newrefcontext[msform=form3,mslang=lang3]

\printfield[form1][lang1]{MSFIELD1} => "Value2"

164

\printfield[form3][lang3]{MSFIELD1} => ""

\printfield[form1][lang1]{MSFIELD2} => "Value6"

% MSFIELD2 has a value for refcontext default form3/lang3

\printfield{MSFIELD2} => "Value7"

% MSFIELD1 does not have an alternate for refcontext

% default form3/lang3 but due to \DeclareMsselect, we

% can use form2/lang2 for MSFIELD1

\printfield{MSFIELD1} => "Value3"

\newrefcontext[msform=form4,mslang=lang4]

\printfield{MSFIELD1} => "Value4"

% MSFIELD2 does not have an alternate for refcontext

% default form4/lang4 alternate for MSFIELD2, also there

% is no form2/lang2 in the select list for the LANGID

% of the entry and no form1/lang4 alternate

\printfield{MSFIELD2} => ""

4 Author Guide

This part of the manual documents the author interface of the biblatex package.
The author guide covers everything you need to know in order to write new citation
and bibliography styles or localisation modules. You should read the user guide first
before continuing with this part of the manual.

4.1 Overview

Before we get to the commands and facilities provided by biblatex, we will have
a look at some of its fundamental concepts. The biblatex package uses auxiliary
files in a special way. Most notably, the bbl file is used differently and there is no
concept of a style-dependent bst file. With LaTeX’s standard bibliographic facilities,
a document includes any number of citation commands in the document body plus
\bibliographystyle and \bibliography, usually towards the end of the
document. The location of the former is arbitrary, the latter marks the spot where
the list of references is to be printed:

\documentclass{...}

\begin{document}

\cite{...}

...

\bibliographystyle{...}

\bibliography{...}

\end{document}

Processing this files requires that a certain procedure be followed. This procedure is
as follows:

1. Run latex: On the first run, \bibstyle and \bibdata commands are
written to the aux file, along with \citation commands for all citations.
At this point, the references are undefined because LaTeX is waiting for BibTeX
to supply the required data. There is also no bibliography yet.

165

2. Run bibtex: BibTeX writes a thebibliography environment to the bbl
file, supplying all entries from the bib file which were requested by the
\citation commands in the aux file.

3. Run latex: Starting with the second run, the \bibitem commands in the
thebibliography environment write one \bibcite command for each
bibliography entry to the aux file. These \bibcite commands define the
citation labels used by \cite. However, the references are still undefined
because the labels are not available until the end of this run.

4. Run latex: Starting with the third run, the citation labels are defined as the
aux file is read in at the end of the preamble. All citations can now be printed.

Note that all bibliographic data is written to the bbl file in the final format. The
bbl file is read in and processed like any printable section of the document. For
example, consider the following entry in a bib file:

@Book{companion,

author = {Michel Goossens and Frank Mittelbach and

↪→ Alexander Samarin},

title = {The LaTeX Companion},

publisher = {Addison-Wesley},

address = {Reading, Mass.},

year = {1994},

}

With the plain.bst style, BibTeX exports this entry to the bbl file as follows:

\bibitem{companion}

Michel Goossens, Frank Mittelbach, and Alexander

↪→ Samarin.

\newblock {\em The LaTeX Companion}.

\newblock Addison-Wesley, Reading, Mass., 1994.

By default, LaTeX generates numeric citation labels, hence \bibitem writes lines
such as the following to the aux file:

\bibcite{companion}{1}

Implementing a different citation style implies that more data has to be transferred
via the aux file. With the natbib package, for example, the aux file contains lines
like this one:

\bibcite{companion}{{1}{1994}{{Goossens et~al.}}{{

↪→ Goossens, Mittelbach,

and Samarin}}}

The biblatex package supports citations in any arbitrary format, hence citation
commands need access to all bibliographic data. What this would mean within
the scope of the procedure outlined above becomes obvious when looking at the
output of the jurabib package which also makes all bibliographic data available
in citations:

166

\bibcite{companion}{{Goossens\jbbfsasep

↪→ Mittelbach\jbbstasep Samarin}%

{}{{0}{}{book}{1994}{}{}{}{}{Reading, Mass.\bpubaddr

↪→ {}Addison-Wesley%

\bibbdsep{} 1994}}{{The LaTeX Companion

↪→ }{}{}{2}{}{}{}{}{}}{\bibnf

{Goossens}{Michel}{M.}{}{}\Bibbfsasep\bibnf{

↪→ Mittelbach}{Frank}{F.}%

{}{}\Bibbstasep\bibnf{Samarin}{Alexander}{A.}{}{}}{

↪→ \bibtfont{The

LaTeX Companion}.\ \apyformat{Reading, Mass.\bpubaddr

↪→ {}

Addison-Wesley\bibbdsep{} 1994}}}

In this case, the contents of the entire thebibliography environment are effec-
tively transferred via the aux file. The data is read from the bbl file, written to the
aux file, read back from the aux file and then kept in memory. The bibliography
itself is still generated as the bbl file is read in. The biblatex package would also
be forced to cycle all data through the aux file. This implies processing overhead
and is also redundant because the data has to be kept in memory anyway.

The traditional procedure is based on the assumption that the full bibliographic
data of an entry is only required in the bibliography and that all citations use short
labels. This makes it very effective in terms of memory requirements, but it also
implies that it does not scale well. That is why biblatex takes a different ap-
proach. First of all, the document structure is slightly different. Instead of using
\bibliography in the document body, database files are specified in the pream-
ble with \addbibresource, \bibliographystyle is omitted entirely (all
features are controlled by package options), and the bibliography is printed using
\printbibliography:

\documentclass{...}

\usepackage[...]{biblatex}

\addbibresource{...}

\begin{document}

\cite{...}

...

\printbibliography

\end{document}

In order to streamline the whole procedure, biblatex essentially employs the
bbl file like an aux file, rendering \bibcite obsolete. We then get the following
procedure:

1. Run latex: The first step is similar to the traditional procedure described
above: \bibstyle and \bibdata commands are written to th bcf file,
along with \citation commands for all citations. We then wait for the
backend to supply the required data.

2. Run biber: The backend supplies those entries from the bib file which were
requested by the \citation commands in the auxiliary file. However, it
does not write a printable bibliography to the bbl file, but rather a structured

167

representation of the bibliographic data. Just like an aux file, this bbl file
does not print anything when read in. It merely puts data in memory.

3. Run latex: Starting with the second run, the bbl file is processed right at
the beginning of the document body, just like an aux file. From this point on,
all bibliographic data is available in memory so that all citations can be printed
right away.32 The citation commands have access to the complete bibliographic
data, not only to a predefined label. The bibliography is generated frommemory
using the same data and may be filtered or split as required.

Let’s consider the sample entry given above once more:

@Book{companion,

author = {Michel Goossens and Frank Mittelbach and

↪→ Alexander Samarin},

title = {The LaTeX Companion},

publisher = {Addison-Wesley},

address = {Reading, Mass.},

year = {1994},

}

This entry is essentially exported in the following format:

\entry{companion}{book}{}

\labelname{author}{3}{}{%

{{uniquename=0,hash=...}{Goossens}{G.}{Michel}{M

↪→ .}{}{}{}{}}%

{{uniquename=0,hash=...}{Mittelbach}{M.}{Frank}{F

↪→ .}{}{}{}{}}%

{{uniquename=0,hash=...}{Samarin}{S.}{Alexander}{A

↪→ .}{}{}{}{}}%

}

\name{author}{3}{}{%

{{uniquename=0,hash=...}{Goossens}{G.}{Michel}{M

↪→ .}{}{}{}{}}%

{{uniquename=0,hash=...}{Mittelbach}{M.}{Frank}{F

↪→ .}{}{}{}{}}%

{{uniquename=0,hash=...}{Samarin}{S.}{Alexander}{A

↪→ .}{}{}{}{}}%

}

\list{publisher}{1}{%

{Addison-Wesley}%

}

\list{location}{1}{%

{Reading, Mass.}%

}

\field{title}{The LaTeX Companion}

\field{year}{1994}

32If the defernumbers package option is enabled biblatex uses an algorithm similar to the
traditional procedure to generate numeric labels. In this case, the numbers are assigned as the
bibliography is printed and then cycled through the backend auxiliary file. It will take an additional
LaTeX run for them to be picked up in citations.

168

\endentry

As seen in this example, the data is presented in a structured format that resembles
the structure of a bib file to some extent. At this point, no decision concerning
the final format of the bibliography entry has been made. The formatting of the
bibliography and all citations is controlled by LaTeX macros, which are defined in
bibliography and citation style files.

4.2 Bibliography Styles

A bibliography style is a set of macros which print the entries in the bibliography.
Such styles are defined in files with the suffix bbx. The biblatex package loads
the selected bibliography style file at the end of the package. Note that a small
repertory of frequently used macros shared by several of the standard bibliography
styles is included in biblatex.def. This file is loaded at the end of the package
as well, prior to the selected bibliography style.

4.2.1 Bibliography Style Files

Before we go over the individual components of a bibliography style, consider this
example of the overall structure of a typical bbx file:

\ProvidesFile{example.bbx}[2006/03/15 v1.0 biblatex

↪→ bibliography style]

\defbibenvironment{bibliography}

{...}

{...}

{...}

\defbibenvironment{shorthand}

{...}

{...}

{...}

\InitializeBibliographyStyle{...}

\DeclareBibliographyDriver{article}{...}

\DeclareBibliographyDriver{book}{...}

\DeclareBibliographyDriver{inbook}{...}

...

\DeclareBibliographyDriver{shorthand}{...}

\endinput

The main structure of a bibliography style file consists of the following commands:

\RequireBibliographyStyle{〈style〉}

This command is optional and intended for specialized bibliography styles built on
top of a more generic style. It loads the bibliography style style.bbx.

\InitializeBibliographyStyle{〈code〉}

Specifies arbitrary 〈code〉 to be inserted at the beginning of the bibliography, but
inside the group formed by the bibliography. This command is optional. It may be
useful for definitions which are shared by several bibliography drivers but not used

169

outside the bibliography. Keep in mind that there may be several bibliographies in a
document. If the bibliography drivers make any global assignments, they should be
reset at the beginning of the next bibliography.

\DeclareBibliographyDriver{〈entrytype〉}{〈code〉}

Defines a bibliography driver. A ‘driver’ is a macro which handles a specific entry
type (when printing bibliography lists) or a specific named bibliography list (when
printing bibliography lists). The 〈entrytype〉 corresponds to the entry type used in
bib files, specified in lowercase letters (see § 2.1). The 〈entrytype〉 argument may
also be an asterisk. In this case, the driver serves as a fallback which is used if no
specific driver for the entry type has been defined. The 〈code〉 is arbitrary code
which typesets all bibliography entries of the respective 〈entrytype〉. This command
is mandatory. Every bibliography style should provide a driver for each entry type.

\DeclareBibliographyAlias{〈alias〉}{〈entrytype〉}

If a bibliography driver covers more than one entry type, this command may be used
to define an alias where 〈entrytype〉 is the name of a defined driver. This command is
optional. The 〈alias〉 argument may also be an asterisk. In this case, the 〈entrytype〉
driver serves as a fallback which is used if no specific driver for an entry has been
defined.

Note that an alias declared with \DeclareBibliographyAlias only ‘reroutes’
the bibliography driver from 〈alias〉 to 〈entrytype〉. Type-specific formatting direc-
tives still operate with the old 〈alias〉 name. \DeclareBibliographyAlias
thus provides only a ‘soft’ alias. If a complete alias is desired so that 〈alias〉 and
〈entrytype〉 are completely indistinguishable and use the same type-specific format-
ting, an approach with source mapping would be more appropriate (cf. the mappings
for § 2.1.2 in § A.1, this would give a ‘hard’ alias).

\DeclareBibliographyOption[〈datatype〉]{〈key〉}[〈value〉]{〈code〉}

This command defines additional preamble options in 〈key〉=〈value〉 format. The
〈key〉 is the option key. The 〈code〉 is arbitrary TeX code to be executed whenever
the option is used. The value passed to the option is passed on to the 〈code〉 as #1.
The optional 〈value〉 is a default value to be used if the bare key is given without any
value. This is useful for boolean switches. The 〈datatype〉 is a the datatype for the
option. If omitted, it defaults to ‘boolean’. For example, with a definition like the
following:

\DeclareBibliographyOption[boolean]{somekey}[true]{...}

giving ‘somekey’ without a value is equivalent to ‘somekey = true’. Valid
〈datatype〉 values are defined in the default biber Datamodel as:

\DeclareDatamodelConstant[type=list]{optiondatatypes}{

↪→ boolean,integer,string,xml}

170

\DeclareTypeOption[〈datatype〉]{〈key〉}[〈value〉]{〈code〉}

Similar to \DeclareBibliographyOption but defines options
which are settable on a per-type basis using the optional argument of
\ExecuteBibliographyOptions (see § 3.2.2). The 〈code〉 is executed
whenever biblatex prepares the data of an entry of the type for which the option
has been set for use by a citation command or a bibliography driver.

\DeclareEntryOption[〈datatype〉]{〈key〉}[〈value〉]{〈code〉}

Similar to \DeclareBibliographyOption but defines options which are set-
table on a per-entry basis in the options field from § 2.2.3. The 〈code〉 is executed
whenever biblatex prepares the data of the entry for use by a citation command
or a bibliography driver.

\DeclareBiblatexOption{〈scope,…〉}[〈datatype〉]{〈key〉}[〈value〉]{〈code〉}

This command is a convenient interface to declare an option for several scopes at
once. The 〈scope〉 argument may be a comma-separated list of scopes for which the
option will be declared. Currently the scopes global, type, entry, namelist
and name are supported, the first three of which are equivalent to defining the
option with \DeclareBibliographyOption, \DeclareTypeOption and
\DeclareEntryOption, respectively.

4.2.2 Bibliography Environments

Apart from defining bibliography drivers, the bibliography style is also responsible
for the environments which control the layout of the bibliography and bibliography
lists. These environments are defined with \defbibenvironment. By default,
\printbibliography uses the environment bibliography. Here is a def-
inition suitable for a bibliography style which does not print any labels in the
bibliography:

\defbibenvironment{bibliography}

{\list

{}

{\setlength{\leftmargin}{\bibhang}%

\setlength{\itemindent}{-\leftmargin}%

\setlength{\itemsep}{\bibitemsep}%

\setlength{\parsep}{\bibparsep}}}

{\endlist}

{\item}

This definition employs a list environment with hanging indentation, using the
\bibhang length register provided by biblatex. It allows for a certain degree of
configurability by using \bibitemsep and \bibparsep, two length registers
provided by biblatex for this very purpose (see § 4.10.3). The authoryear and
authortitle bibliography styles use a definition similar to this example.

\defbibenvironment{bibliography}

{\list

{\printfield[labelnumberwidth]{labelnumber}}

{\setlength{\labelwidth}{\labelnumberwidth}%

171

\setlength{\leftmargin}{\labelwidth}%

\setlength{\labelsep}{\biblabelsep}%

\addtolength{\leftmargin}{\labelsep}%

\setlength{\itemsep}{\bibitemsep}%

\setlength{\parsep}{\bibparsep}}%

\renewcommand*{\makelabel}[1]{\hss##1}}

{\endlist}

{\item}

Some bibliography styles print labels in the bibliography. For example, a bibliography
style designed for a numeric citation scheme will print the number of every entry
such that the bibliography looks like a numbered list. In the first example, the first
argument to \list was empty. In this example, we need it to insert the number,
which is provided by biblatex in the labelnumber field. We also employ
several length registers and other facilities provided by biblatex, see §§ 4.10.4
and 4.10.5 for details. The numeric bibliography style uses the definition given
above. The alphabetic style is similar, except that labelnumber is replaced
by labelalpha and labelnumberwidth by labelalphawidth.

Bibliography lists are handled in a similar way. \printbiblist uses the en-
vironment named after the bibliography list by default. A typical example is given
below. See §§ 4.10.4 and 4.10.5 for details on the length registers and facilities used
in this example.

\defbibenvironment{shorthand}

{\list

{\printfield[shorthandwidth]{shorthand}}

{\setlength{\labelwidth}{\shorthandwidth}%

\setlength{\leftmargin}{\labelwidth}%

\setlength{\labelsep}{\biblabelsep}%

\addtolength{\leftmargin}{\labelsep}%

\setlength{\itemsep}{\bibitemsep}%

\setlength{\parsep}{\bibparsep}%

\renewcommand*{\makelabel}[1]{##1\hss}}}

{\endlist}

{\item}

4.2.3 Bibliography Drivers

Before we go over the commands which form the data interface of the biblatex
package, it may be instructive to have a look at the structure of a bibliography driver.
Note that the example given below is greatly simplified, but still functional. For the
sake of readability, we omit several fields which may be part of a @book entry and
also simplify the handling of those which are considered. The main point is to give
you an idea of how a driver is structured. For information about the mapping of the
BibTeX file format fields to biblatex’s data types, see § 2.2.

\DeclareBibliographyDriver{book}{%

\printnames{author}%

\newunit\newblock

\printfield{title}%

172

\newunit\newblock

\printlist{publisher}%

\newunit

\printlist{location}%

\newunit

\printfield{year}%

\finentry}

The standard bibliography styles employ two bibliography macros begentry and
finentry:

\DeclareBibliographyDriver{entrytype}{%

\usebibmacro{begentry}

...

\usebibmacro{finentry}}

with the default definitions

\newbibmacro*{begentry}{}

\newbibmacro*{finentry}{\finentry}

Use of these macros is recommended for easy hooks into the beginning and end of
the driver.

Returning to the driver for the book entrytype above, there is still one piece
missing: the formatting directives used by \printnames, \printlist, and
\printfield. To give you an idea of what a formatting directive looks like, here
are some fictional ones used by our sample driver. Field formats are straightforward,
the value of the field is passed to the formatting directive as an argument which may
be formatted as desired. The following directive will simply wrap its argument in an
\emph command:

\DeclareFieldFormat{title}{\emph{#1}}

List formats are slightly more complex. After splitting up the list into individual
items, biblatex will execute the formatting directive once for every item in the
list. The item is passed to the directive as an argument. The separator to be inserted
between the individual items in the list is also handled by the corresponding directive,
hence we have to check whether we are in the middle of the list or at the end when
inserting it.

\DeclareListFormat{location}{%

#1%

\ifthenelse{\value{listcount}<\value{liststop}}

{\addcomma\space}

{}}

Formatting directives for names are similar to those for literal lists.
Names depend on the datamodel constant ‘nameparts’ which has the default

definition:

173

\DeclareDatamodelConstant[type=list]{nameparts}

{prefix,family,

↪→ suffix,given}

This can be customised to add more name parts to deal with things like patronymics
(see the example file 93-nameparts.tex). This needs an extended name for-
mat for data sources since the standard BibTeX name format is very limited.
biblatexml (§ D) handles this natively and there is an extended name format
which can handle custom nameparts when using biber (see § 3.4).

Inside name formats, the ‘nameparts’ constant declaration makes available two or
three macros for each name part defined in the datamodel:

\namepart<namepart> \% The full <namepart>

\namepart<namepart>i \% The initials of the <namepart>

\namepart<namepart>un \% Numeric value indicating

↪→ uniqueness level for <namepart>

\namepart‘namepart’un only exists if the package option uniquename is
not set to ‘false’ and can take the following values.

0 ‘namepart’ was not used in disambiguating the name (because
disambiguation=none was set in \DeclareUniquenameTemplate,
see § 4.11.4). In this case the style should decide what to print for this
‘namepart’

1 Initials only should be printed for ‘namepart’ to ensure uniqueness according
to the uniquename package option setting

2 The full ‘namepart’ should be printed to ensure uniqueness according to the
uniquename package option setting

Note these per-namepart uniqueness macros are essentially an override of the
uniquename value (see § 4.6.2) for the name as a whole. Styles can choose to use
either the less granular uniquename value or the more detailed per-namepart val-
ues. Usually the general uniquename value is enough for ordinary Western names
but the more granular information per-namepart is provided to allow sophisticated
name uniqueness processing for more complex name schemata.

For multiscript name lists, these macros refer to the particular name list multiscript
alternate being printed. It is also useful to be able to access alternates of the particular
name list item being printed and so all available alternates of the current name list
item are available in name formats via macros:

\namepart<namepart><msform><mslang>

Note that ‘mslang’ is a BCP47 tag which may contain hyphens and so raw macro
use will not work. It is therefore safer to refer to these macros with \csuse e.g.:

\csuse{namepartfamilydefaulten-us}

Also note that any babel shorthands in the value of these macros will not work
as they are automatically defined in the preamble. The name formatting directive
is executed once for each name in the name list. Here is a simplified example—the
standard name formats are more intricate:

174

\DeclareNameFormat{author}{%

\ifthenelse{\value{listcount}=1}

{\namepartfamily%

\ifdefvoid{\namepartgiven}{}{

↪→ \addcomma\space\namepartgiven}}

{\ifdefvoid{\namepartgiven}{}{\namepartgiven\space

↪→ }%

\namepartfamily}%

\ifthenelse{\value{listcount}<\value{liststop}}

{\addcomma\space}

{}}

The above directive reverses the name of the first author (“Family, Given”) and prints
the remaining names in their regular sequence (“Given Family”). Note that the only
component which is guaranteed to be available is the family name, hence we have
to check which parts of the name are actually present. If a certain name part is
not available, the corresponding macro will be empty. As with directives for literal
lists, the separator to be inserted between the individual items in the name list is
also handled by the formatting directive, hence we have to check whether we are
in the middle of the list or at the end when inserting it. This is what the second
\ifthenelse test does. See also § 4.4.2.

A similar output that also respects the \multinamedelim and
\finalnamedelim commands as well as the ‘prefix’ and ‘suffix’ name
parts can be achieved with

\DeclareNameAlias{author}{family-given/given-family}

4.2.4 Special Fields

The following lists and fields are used by biblatex to pass data to bibliography
drivers and citation commands. They are not used in bib files but defined automati-
cally by the package. From the perspective of a bibliography or citation style, they
are not different from the fields in a bib file.

4.2.4.1 Generic Fields

<datetype>dateunspecified field (string)

If <datetype>date held an iso8601-2 4.3 ‘unspecified’, this field will be set to
one of yearindecade, yearincentury, monthinyear, dayinmonth or
dayinyear which specifies the granularity of the unspecified information. These
strings can be tested for and along with the date ranges which are automatically
created for such ‘unspecified’ dates, a style may choose to format the date in a special
way. See § 2.3.8. For example, an entry with dates such as:

@book{key,

date = {19uu},

origdate = {199u}

}

175

would result in the same information in the .bbl as:

@book{key,

date = {1900/1999},

origdate = {1990/1999}

}

but would additionally have the field dateunspecified set to ‘yearincentury’
and origdateunspecified set to ‘yearindecade’. This information could be
used to render the date as perhaps ‘20th century’ and origdate as ‘The 1990s’,
information which cannot be derived from the date ranges alone. Since such auto-
generated ranges have known values, given the ‘unspecified’ meta-information, it is
relatively easy to use the range values to format special cases. While the standard
styles do not do this, examples are given in the file 96-dates.tex.

entrykey field (string)

The entry key of an item in the bib file. This is the string used by biblatex and
the backend to identify an entry in the bib file.

Note that the set of characters allowed and usable in the string for entrykey de-
pends on the backend (biber, BibTeX) as well as the LaTeX engine (pdfLaTeX, Lua-
LaTeX, XeLaTeX). Generally, us-ascii-letters (a-z, A-Z) and numbers (0-9) are safe,
so are the punctuation characters full stop (.) and solidus (/). The punctuation char-
acters -_:;!? are also safe even if they are made active by babel/polyglossia.
If a Unicode engine is used, non-us-ascii characters are also acceptable. Curly braces
({}), commas, spaces, backslashes (\), hashes (#), percent characters (%) and tildes
(~) are always forbidden. biber additionally forbids round brackets (()), quotation
marks (", '), and the equals sign (=). The entrykey is case sensitive, but it is not
recommended to exploit that fact too much by introducing two different entries
whose key differs only in capitalisation (e. g., sigfridsson and Sigfridsson).
For full portability it is advisable to stick to a scheme of lowercase (and if so de-
sired uppercase) us-ascii-letters, numbers and a small set of acceptable punctuation
characters, say .:-.

childentrykey field (string)

This field is no longer necessary or recommended.For backwards compatibility, it is Deprecated
merely a copy of the entrykey field in any set children.

labelnamesource field (literal)

Holds the name of the field used to populate labelname, determined by
\DeclareLabelname.

labeltitlesource field (literal)

Holds the name of the field used to populate labeltitle, determined by
\DeclareLabeltitle.

labeldatesource field (literal)

Holds one of:

• The prefix coming before ‘date’ of the date field name chosen by
\DeclareLabeldate

176

• The name of a field

• A literal or localisation string

Normally holds the prefix coming before ‘date’ of the date field name chosen by
\DeclareLabeldate. For example, if the labeldate field is eventdate, then
labeldatesource will be ‘event’. In case \DeclareLabeldate selects the
date field, then labeldatesource will be defined but will be an empty string
as the prefix coming before ‘date’ in the date label name is empty. This is so that
the contents of labeldatesource can be used in constructing references to the
field which \DeclareLabeldate chooses. Since \DeclareLabeldate can
also select literal strings for fallbacks, labeldatesource may not refer to a field
or may be undefined. Bear in mind that \DeclareLabeldate can also be used
to select non-date fields as a fallback and so labeldatesource might contain a
field name. So, in summary, the rules are

\iffieldundef{labeldatesource}

{}% labeldate package option is not set

{\iffieldundef{\thefield{labeldatesource}year}

% \DeclareLabeldate resolved to either a literal/

↪→ localisation

% string or a non-date field since

% if a date is defined by a date field, there is

% at least a year

{\iffieldundef{\thefield{labeldatesource}}

{}% \DeclareLabeldate resolved to a literal/

↪→ localisation string

{}% \DeclareLabeldate resolved to a non-date

↪→ field

}

{} % \DeclareLabeldate resolved a date field name

↪→ prefix like "" or "orig"

}

entrytype field (string)

The entry type (@book, @inbook, etc.), given in lowercase letters.

childentrytype field (string)

This field is no longer necessary or recommended.For backwards compatibility, it is Deprecated
merely a copy of the entrytype field in any set children.

entrysetcount field (integer)

This field holds an integer indicating the position of a set member in the entry set
(starting at 1). This field is only available in the subentries of an entry set.

hash field (string)

This field is special in that it is only available locally in name formatting directives.
It holds a hash string which uniquely identifies individual names in a name list. This
information is available for all names in all name lists. See also namehash and
fullhash.

177

namehash field (string)

A hash string which uniquely identifies the labelname list. This is useful for
recurrence checks. For example, a citation style which replaces recurrent authors or
editors with a string like ‘idem’ could save the namehash field with \savefield
and use it in a comparison with \iffieldequals later (see §§ 4.6.1 and 4.6.2).
The namehash is derived from the truncated labelname list, i. e., it is responsive
to maxcitenames and mincitenames. See also hash and fullhash.

bibnamehash field (string)

As namehash but responsive to maxbibnames and minbibnames. This is not
used in standard styles but may be used to make tests in bibliography lists (such as
those used to determine whether dashes should replace repeated authors) behave
differently.

<namelist><msform><mslang>namehash field (string)

As namehash for the name list ‘namelist’ with multiscript form ‘msform’ and mul-
tiscript language ‘mslang’. For example ‘authortranslationdenamehash’.

<namelist><msform><mslang>bibnamehash field (string)

As bibnamehash for the name list ‘namelist’ with multiscript form ‘msform’
and multiscript language ‘mslang’. For example ‘authortransliterationru-
cyrlbibnamehash’.

fullhash field (string)

A hash string which uniquely identifies the labelname list. This fields differs
from namehash in two details: 1) The shortauthor and shorteditor lists
are ignored when generating the hash. 2) The hash always refers to the full list,
ignoring maxnames and minnames. See also hash and namehash.

<namelist><msform><mslang>fullhash field (string)

As fullhash for the name list ‘namelist’ with multiscript form ‘msform’ and mul-
tiscript language ‘mslang’. For example ‘authortranslationdefullhash’.

pageref list (literal)

If the backref package option is enabled, this list holds the page numbers of the
pages on which the respective bibliography entry is cited. If there are refsection
environments in the document, the back references are local to the reference sections.

sortinit field (literal)

This field holds the initial character of the information used during sorting.

sortinithash field (string)

This field holds a hash of the (locale-specific) Unicode Collation Algorithm primary
weight of the first extended grapheme cluster (essentially the first character) of
the string used during sorting. This is useful when subdividing the bibliography
alphabetically and is used internally by \bibinitsep (see § 3.12.4).

178

clonesourcekey field (string)

This field holds the entry key of the entry from which an entry was cloned. Clones
are created for entries which are mentioned in related fields as part of related
entry processing, for example.

urlraw field (verbatim)

This is the unencoded, raw version of any url. This is intended for use when the
display version and clickable link version of a URL are different. This can be the case
when the URL contains special or Unicode characters. In the case where no such
characters occur, may be identical to the url.

4.2.4.2 Fields for Use in Citation Labels

labelalpha field (literal)

A label similar to the labels generated by the alpha.bst style of traditional BibTeX.
This default label consists of initials drawn from the labelname list plus the last
two digits of the publication year. The label field may be used to override its non-
numeric portion. If the label field is defined, biblatex will use its value and ap-
pend the last two digits of the publication year when generating labelalpha. The
shorthand field may be used to override the entire label. If defined, labelalpha
is the shorthand rather than an automatically generated label. Users can specify a
template used to construct the alphabetic label (see § 4.5.5) and the default template
mirrors the format mentioned for bibtex above. A complete ‘alphabetic’ label consists
of the fields labelalpha plus extraalpha. Note that the labelalpha and
extraalpha fields need to be requested with the package option labelalpha
(§ 3.1.2.3). See also extraalpha as well as \labelalphaothers in § 3.12.1.

extraalpha field (integer)

The ‘alphabetic’ citation scheme usually requires a letter to be appended to the label
if the bibliography contains two or more works by the same author which were all
published in the same year. In this case, the extraalpha field holds an integer
which may be converted to a letter with \mknumalph or formatted in some other
way. This field is similar to the role of extradate in the author-year scheme. A
complete ‘alphabetic’ label consists of the fields labelalpha plus extraalpha.
Note that the labelalpha and extraalpha fields need to be requested with the
package option labelalpha, see § 3.1.2.3 for details. See also labelalpha as
well as \labelalphaothers in § 3.12.1. Table 7 summarises the various extra*
disambiguation counters and what they track.

labelname list (name)

The name to be printed in citations. This list is a copy of either the shortauthor,
the author, the shorteditor, the editor, or the translator list, which
are normally checked for in this order. If no authors and editors are available, this
list is undefined. Note that this list is also responsive to the use<name>, options,
see § 3.1.3. Citation styles should use this list when printing the name in a citation.
This list is provided for convenience only and does not carry any additional meaning.
This field may be customized. See § 4.5.11 for details.

179

extraname field (integer)

Holds a count of the number of bibliography entries within a refsection which
derive from the same labelname list. This counter takes account of uniquename
settings (see § 3.1.2.3). While not used by any standard styles, this field is useful in
styles which wish to number bibliography entries on a per-labelname basis. This
field will only exist if there is a labelname. The extraname counter is related
to, but conceptually different from \ifsingletitle (see § 3.1.2.3 and § 4.6.2).

labelnumber field (literal)

The number of the bibliography entry, as required by numeric citation schemes. If the
shorthand field is defined, biblatex does not assign a number to the respective
entry. In this case labelnumber is the shorthand rather than a number. Numeric
styles must use the value of this field instead of a counter. Note that this field needs
to be requested with the package option labelnumber, see § 3.1.2.3 for details.
Also see the package option defernumbers in § 3.1.2.1.

labelprefix field (literal)

If the labelprefix option of \newrefcontext has been set in order to pre-
fix all entries in a subbibliography with a fixed string, this string is available in
the labelprefix field of all affected entries. If no prefix has been set, the
labelprefix field of the respective entry is undefined. See the labelprefix
option of \newrefcontext in § 3.8.10 for details. If the shorthand field is
defined, biblatex does not assign the prefix to the labelprefix field of the
respective entry. In this case, the labelprefix field is undefined.

labeltitle field (literal)

The printable title of a work. In some circumstances, a style might need to choose a
title from a list of a possible title fields. For example, citation styles printing short
titles may want to print the shorttitle field if it exists but otherwise print the
title field. The list of fields to be consideredwhen constructinglabeltitlemay
be customized. See § 4.5.11 for details. Note that the extratitle field needs to be
requested with the package option labeltitle, see § 3.1.2.3 for details. See also
extratitle. Note also that the extratitleyear field needs to be requested
with the package option labeltitleyear. See also extratitleyear.

extratitle field (integer)

It is sometimes useful, for example in author-title citation schemes, to be able to
disambiguate works with the same title. For works by the same labelname with
the same labeltitle, the extratitle field holds an integer which may be
converted to a letter with \mknumalph or formatted in some other way (or it can
be merely used as a flag to say that some other field such as a date should be used in
conjunction with the labeltitle field). This field is undefined if there is only one
work with the same labeltitle by the same labelname in the bibliography.
Note that the extratitle field needs to be requested with the package option
labeltitle, see § 3.1.2.3 for details. See also labeltitle. Table 7 summarises
the various extra* disambiguation counters and what they track.

extratitleyear field (integer)

It is sometimes useful, for example in author-title citation schemes, to be able to disam-
biguate works with the same title in the same year but with no author. For works with

180

the same labeltitle and with the same labelyear, the extratitleyear
field holds an integer which may be converted to a letter with \mknumalph or
formatted in some other way (or it can be merely used as a flag to say that some other
field such as a publisher should be used in conjunction with the labelyear field).
This field is undefined if there is only one work with the same labeltitle and
labelyear in the bibliography. Note that theextratitleyear field needs to be
requested with the package option labeltitleyear, see § 3.1.2.3 for details. See
also labeltitleyear. Table 7 summarises the various extra* disambiguation
counters and what they track.

labelyear field (literal)

The year of the date field selected by \DeclareLabeldate (§ 4.5.11) or the year
field, for use in author-year labels. A complete author-year label consists of the fields
labelyear plus extradate. Note that the labelyear and extradate fields
need to be requested with the package option labeldateparts, see § 3.1.2.3 for
details. See also extradate.

labelendyear field (literal)

The end year of the date field selected by \DeclareLabeldate (§ 4.5.11) if the
selected date is a range.

labelmonth field (datepart)

The month of the date field selected by \DeclareLabeldate (§ 4.5.11), or the
month field for use in author-year labels. Note that the labelmonth field needs to
be requested with the package option labeldateparts, see § 3.1.2.3 for details.

labelendmonth field (datepart)

The end month of the date field selected by \DeclareLabeldate (§ 4.5.11) if the
selected date is a range.

labelday field (datepart)

The month of the date field selected by \DeclareLabeldate (§ 4.5.11) for use in
author-year labels. Note that the labelday field needs to be requested with the
package option labeldateparts, see § 3.1.2.3 for details.

labelendday field (datepart)

The end day of the date field selected by \DeclareLabeldate (§ 4.5.11) if the
selected date is a range.

extradate field (integer)

The author-year citation scheme usually requires a letter to be appended to the
year if the bibliography contains two or more works by the same author (actually
the labelname, which is usually the author by default but which need not be)
which were all published in the same year. In this case, the extradate field holds
an integer which may be converted to a letter with \mknumalph or formatted in
some other way. This field is undefined if there is only one work by the author in
the bibliography or if all works by the author have different publication years. A
complete author-year label consists of the fields labelyear plus extradate.
Note that the labelyear and extradate fields need to be requested with the

181

package option labeldateparts, see § 3.1.2.3 for details. See also labelyear.
Table 7 summarises the various extra* disambiguation counters and what they
track. Note that biblatex allows a generalisation of this behaviour and the default
context for extradate disambiguation can be changed to allow other contexts than
the author. The default will fall back to the labeltitle if there is no labelname
(which is usually the author). See \DeclareExtradateContext in § 4.5.11 to
customise the extradate context.

extradatescope field (literal)

This field contains the name of the most specific date part which determined the
value of extradate. It is not used by the standard styles but may be useful in
controlling the placement of the extradate field value. For example, if two works
by the same author with dates ‘2020-05-04’ and ‘2020-06-04’ were disambiguated by
extradate, then extradatascope would contain ‘labelyear’ for both entries
as the most specific difference is the (label)year. If the dates were ‘2020-05-04’
and ‘2020-05-02’, then extradatascope would contain ‘labelmonth’. See also
\DeclareExtradate (§ 4.5.11) which describes how to change the scope used to
track dates.

4.2.4.3 Date Component Fields

Note that it is possible to define new date fields in the datamodel which behave
exactly like the default data model date fields described in this section.

See table 10 for an overview of how the date fields in bib files are related to the
date fields provided by the style interface. When testing for a field like origdate
in a style, use code like:

\iffieldundef{origyear}{...}{...}

This will tell you if the corresponding date is defined at all. This test:

\iffieldundef{origendyear}{...}{...}

will tell you if the corresponding date is defined and a (fully specified) range. This
test:

\iffieldequalstr{origendyear}{}{...}{...}

will tell you if the corresponding date is defined and an open-ended range. Open-
ended ranges are indicated by an empty endyear component (as opposed to an
undefined endyear component). See § 2.3.8 and table 3 on page 40 for further
examples.

Table 10: Date Interface

bib File Data Interface

Field Value (Example) Field Value (Example)

date 1988 day undefined

month undefined

year 1988

yeardivision undefined

endday undefined

182

Table 10: Date Interface (cont’d)
endmonth undefined

endyear undefined

endyeardivision undefined

hour undefined

minute undefined

second undefined

timezone undefined

endhour undefined

endminute undefined

endsecond undefined

endtimezone undefined

date 1997/ day undefined

month undefined

year 1997

yeardivision undefined

endday undefined

endmonth undefined

endyear empty

endyeardivision undefined

hour undefined

minute undefined

second undefined

timezone undefined

endhour undefined

endminute undefined

endsecond undefined

endtimezone undefined

urldate 2009-01-31 urlday 31

urlmonth 01

urlyear 2009

urlyeardivision undefined

urlendday undefined

urlendmonth undefined

urlendyear undefined

urlendyeardivision undefined

urlhour undefined

urlminute undefined

urlsecond undefined

urltimezone undefined

urlendhour undefined

urlendminute undefined

urlendsecond undefined

urlendtimezone undefined

urldate 2009-01-31T15:34:04Z urlday 31

urlmonth 01

urlyear 2009

urlyeardivision undefined

urlendday undefined

urlendmonth undefined

urlendyear undefined

urlendyeardivision undefined

urlhour 15

urlminute 34

urlsecond 04

urltimezone Z

urlendhour undefined

urlendminute undefined

urlendsecond undefined

urlendtimezone undefined

urldate 2009-01-31T15:34:04+05:00 urlday 31

urlmonth 01

urlyear 2009

183

Table 10: Date Interface (cont’d)
urlyeardivision undefined

urlendday undefined

urlendmonth undefined

urlendyear undefined

urlendyeardivision undefined

urlhour 15

urlminute 34

urlsecond 04

urltimezone +0500

urlendhour undefined

urlendminute undefined

urlendsecond undefined

urlendtimezone undefined

urldate 2009-01-31T15:34:04/

2009-01-31T16:04:34

urlday 31

urlmonth 1

urlyear 2009

urlyeardivision undefined

urlendday 31

urlendmonth 1

urlendyear 2009

urlendyeardivision undefined

urlhour 15

urlminute 34

urlsecond 4

urltimezone floating

urlendhour 16

urlendminute 4

urlendsecond 34

urlendtimezone floating

origdate 2002-21/2002-23 origday undefined

origmonth 01

origyear 2002

origyeardivision spring

origendday undefined

origendmonth 02

origendyear 2002

origendyeardivision autumn

orighour undefined

origminute undefined

origsecond undefined

origtimezone undefined

origendhour undefined

origendminute undefined

origendsecond undefined

origendtimezone undefined

eventdate 1995-01-31/1995-02-05 eventday 31

eventmonth 01

eventyear 1995

eventyeardivision undefined

eventendday 05

eventendmonth 02

eventendyear 1995

eventendyeardivision undefined

eventhour undefined

eventminute undefined

eventsecond undefined

eventtimezone undefined

eventendhour undefined

eventendminute undefined

eventendsecond undefined

184

Table 10: Date Interface (cont’d)
eventendtimezone undefined

hour field (datepart)

This field holds the hour component of the date field. If the date is a range, it holds
the hour component of the start date.

minute field (datepart)

This field holds the minute component of the date field. If the date is a range, it
holds the minute component of the start date.

second field (datepart)

This field holds the second component of the date field. If the date is a range, it
holds the second component of the start date.

timezone field (datepart)

This field holds the timezone component of the date field. If the date is a range, it
holds the timezone component of the start date.

day field (datepart)

This field holds the day component of the date field. If the date is a range, it holds
the day component of the start date.

month field (datepart)

This field is the month as given in the database file or it holds the month component
of the date field. If the date is a range, it holds the month component of the start
date.

year field (datepart)

This field is the year as given in the database file or it holds the year component of
the date field. If the date is a range, it holds the year component of the start date.

yeardivision field (datepart)

This field holds the year division (season, quarter, quadrimester etc.) component of
the date field as specified by iso8601-2 4.8 (§ 2.3.8). It contains a localisation string
(§ 4.9.2.21). If the date is a range, it holds the year division component of the start
date.

season field (datepart)

Deprecated

This field holds the season component of the date field as specified by iso8601-2
4.8 (§ 2.3.8). It contains a season localisation string (§ 4.9.2.21). If the date is a range,
it holds the season component of the start date. This is deprecated in favour of
yeardivision which is more generalised.

endhour field (datepart)

If the date specification in the date field is a range, this field holds the hour compo-
nent of the end date.

185

endminute field (datepart)

If the date specification in the date field is a range, this field holds the minute
component of the end date.

endsecond field (datepart)

If the date specification in the date field is a range, this field holds the second
component of the end date.

endtimezone field (datepart)

If the date specification in the date field is a range, this field holds the timezone
component of the end date.

endday field (datepart)

If the date specification in thedate field is a range, this field holds the day component
of the end date.

endmonth field (datepart)

If the date specification in the date field is a range, this field holds the month
component of the end date.

endyear field (datepart)

If the date specification in the date field is a range, this field holds the year compo-
nent of the end date. A blank (but defined) endyear component indicates an open
ended date range.

endyeardivision field (datepart)

If the date specification in the date field is a range, this field holds the year division
(season, quarter, quadrimester etc.) component of the end date as specified by
iso8601-2 4.8 (§ 2.3.8). It contains a year division localisation string (§ 4.9.2.21). A
blank (but defined) endyeardivision component indicates an open ended date
range.

endseason field (datepart)

Deprecated

If the date specification in the date field is a range, this field holds the season com-
ponent of the end date as specified by iso8601-2 4.8 (§ 2.3.8). It contains a season lo-
calisation string (§ 4.9.2.21). A blank (but defined) endseason component indicates
an open ended date range. This is deprecated in favour of endyeardivision
which is more generalised.

orighour field (datepart)

This field holds the hour component of the origdate field. If the date is a range, it
holds the hour component of the start date.

origminute field (datepart)

This field holds the minute component of the origdate field. If the date is a range,
it holds the minute component of the start date.

186

origsecond field (datepart)

This field holds the second component of the origdate field. If the date is a range,
it holds the second component of the start date.

origtimezone field (datepart)

This field holds the timezone component of the origdate field. If the date is a
range, it holds the timezone component of the start date.

origday field (datepart)

This field holds the day component of the origdate field. If the date is a range, it
holds the day component of the start date.

origmonth field (datepart)

This field holds the month component of the origdate field. If the date is a range,
it holds the month component of the start date.

origyear field (datepart)

This field holds the year component of the origdate field. If the date is a range, it
holds the year component of the start date.

origyeardivision field (datepart)

This field holds the year division (season, quarter, quadrimester etc.) component
of the origdate field as specified by iso8601-2 4.7 (§ 2.3.8). It contains a year
division localisation string (§ 4.9.2.21). If the date is a range, it holds the year division
component of the start date. This is deprecated in favour of origyeardivision
which is more generalised.

origseason field (datepart)

Deprecated

This field holds the season component of the origdate field as specified by
iso8601-2 4.7 (§ 2.3.8). It contains a season localisation string (§ 4.9.2.21). If the
date is a range, it holds the season component of the start date. This is deprecated in
favour of origyeardivision which is more generalised.

origendhour field (datepart)

If the date specification in the origdate field is a range, this field holds the hour
component of the end date.

origendminute field (datepart)

If the date specification in the origdate field is a range, this field holds the minute
component of the end date.

origendsecond field (datepart)

If the date specification in the origdate field is a range, this field holds the second
component of the end date.

187

origendtimezone field (datepart)

If the date specification in theorigdate field is a range, this field holds the timezone
component of the end date.

origendday field (datepart)

If the date specification in the origdate field is a range, this field holds the day
component of the end date.

origendmonth field (datepart)

If the date specification in the origdate field is a range, this field holds the month
component of the end date.

origendyear field (datepart)

If the date specification in the origdate field is a range, this field holds the year
component of the end date. A blank (but defined) origendyear component
indicates an open ended origdate range.

origendyeardivision field (datepart)

If the date specification in the origdate field is a range, this field holds the year
division (season, quarter, quadrimester etc.) component of the end date as specified
by iso8601-2 4.8 (§ 2.3.8). It contains a year division localisation string (§ 4.9.2.21). A
blank (but defined) origendyeardivision component indicates an open ended
origdate range.

origendseason field (datepart)

Deprecated

If the date specification in the origdate field is a range, this field holds the season
component of the end date as specified by iso8601-2 4.8 (§ 2.3.8). It contains a
season localisation string (§ 4.9.2.21). A blank (but defined) origendseason
component indicates an open ended origdate range. This is deprecated in favour
of origendyeardivision which is more generalised.

eventhour field (datepart)

This field holds the hour component of the eventdate field. If the date is a range,
it holds the hour component of the start date.

eventminute field (datepart)

This field holds the minute component of the eventdate field. If the date is a
range, it holds the minute component of the start date.

eventsecond field (datepart)

This field holds the second component of the eventdate field. If the date is a range,
it holds the second component of the start date.

eventtimezone field (datepart)

This field holds the timezone component of the eventdate field. If the date is a
range, it holds the timezone component of the start date.

188

eventday field (datepart)

This field holds the day component of the eventdate field. If the date is a range,
it holds the day component of the start date.

eventmonth field (datepart)

This field holds the month component of the eventdate field. If the date is a range,
it holds the month component of the start date.

eventyear field (datepart)

This field holds the year component of the eventdate field. If the date is a range,
it holds the year component of the start date.

eventyeardivision field (datepart)

This field holds the year division (season, quarter, quadrimester etc.) component
of the eventdate field as specified by iso8601-2 4.8 (§ 2.3.8). It contains a year
division localisation string (§ 4.9.2.21). If the date is a range, it holds the year division
component of the start date.

eventseason field (datepart)

Deprecated

This field holds the season component of the eventdate field as specified by
iso8601-2 4.8 (§ 2.3.8). It contains a season localisation string (§ 4.9.2.21). If the date
is a range, it holds the season component of the start date. This is deprecated in
favour of eventyeardivision which is more generalised.

eventendhour field (datepart)

If the date specification in the eventdate field is a range, this field holds the hour
component of the end date.

eventendminute field (datepart)

If the date specification in the eventdate field is a range, this field holds the minute
component of the end date.

eventendsecond field (datepart)

If the date specification in the eventdate field is a range, this field holds the second
component of the end date.

eventendtimezone field (datepart)

If the date specification in the eventdate field is a range, this field holds the
timezone component of the end date.

eventendday field (datepart)

If the date specification in the eventdate field is a range, this field holds the day
component of the end date.

eventendmonth field (datepart)

If the date specification in the eventdate field is a range, this field holds the month
component of the end date.

189

eventendyear field (datepart)

If the date specification in the eventdate field is a range, this field holds the year
component of the end date. A blank (but defined) eventendyear component
indicates an open ended eventdate range.

eventendyeardivision field (datepart)

If the date specification in the eventdate field is a range, this field holds the year
division (season, quarter, quadrimester etc.) component of the end date as specified
by iso8601-2 4.8 (§ 2.3.8). It contains a year division localisation string (§ 4.9.2.21).
A blank (but defined) eventendyeardivision component indicates an open
ended eventdate range.

eventendseason field (datepart)

Deprecated

If the date specification in the eventdate field is a range, this field holds the
season component of the end date as specified by iso8601-2 4.8 (§ 2.3.8). It contains
a season localisation string (§ 4.9.2.21). A blank (but defined) eventendseason
component indicates an open ended eventdate range. This is deprecated in favour
of eventendyeardivision which is more generalised.

urlhour field (datepart)

This field holds the hour component of the urldate field. If the date is a range, it
holds the hour component of the start date.

urlminute field (datepart)

This field holds the minute component of the urldate field. If the date is a range,
it holds the minute component of the start date.

urlsecond field (datepart)

This field holds the second component of the urldate field. If the date is a range,
it holds the second component of the start date.

timezone field (urldatepart)

This field holds the timezone component of the urldate field. If the date is a range,
it holds the timezone component of the start date.

urlday field (datepart)

This field holds the day component of the urldate field.

urlmonth field (datepart)

This field holds the month component of the urldate field.

urlyear field (datepart)

This field holds the year component of the urldate field.

190

urlyeardivision field (datepart)

This field holds the year division (season, quarter, quadrimester etc.) component
of the urldate field as specified by iso8601-2 4.8 (§ 2.3.8). It contains a year
division localisation string (§ 4.9.2.21). If the date is a range, it holds the year division
component of the start date.

urlseason field (datepart)

Deprecated

This field holds the season component of the urldate field as specified by iso8601-2
4.8 (§ 2.3.8). It contains a season localisation string (§ 4.9.2.21). If the date is a range,
it holds the season component of the start date. This is deprecated in favour of
urlyeardivision which is more generalised.

urlendhour field (datepart)

If the date specification in the urldate field is a range, this field holds the hour
component of the end date.

urlendminute field (datepart)

If the date specification in the urldate field is a range, this field holds the minute
component of the end date.

urlendsecond field (datepart)

If the date specification in the urldate field is a range, this field holds the second
component of the end date.

urlendtimezone field (datepart)

If the date specification in the urldate field is a range, this field holds the timezone
component of the end date.

urlendday field (datepart)

If the date specification in the urldate field is a range, this field holds the day
component of the end date.

urlendmonth field (datepart)

If the date specification in the urldate field is a range, this field holds the month
component of the end date.

urlendyear field (datepart)

If the date specification in the urldate field is a range, this field holds the year
component of the end date. A blank (but defined)urlendyear component indicates
an open ended urldate range.

urlendyeardivision field (datepart)

If the date specification in the urldate field is a range, this field holds the year
division (season, quarter, quadrimester etc.) component of the end date as specified
by iso8601-2 4.8 (§ 2.3.8). It contains a year division localisation string (§ 4.9.2.21). A
blank (but defined) urlendyeardivision component indicates an open ended
urldate range.

191

urlendseason field (datepart)

Deprecated

If the date specification in the urldate field is a range, this field holds the sea-
son component of the end date as specified by iso8601-2 4.8 (§ 2.3.8). It contains
a season localisation string (§ 4.9.2.21). A blank (but defined) urlendseason
component indicates an open ended urldate range. This is deprecated in favour
of urlendyeardivision which is more generalised.

4.3 Citation Styles

A citation style is a set of commands such as \cite which print different types
of citations. Such styles are defined in files with the suffix cbx. The biblatex
package loads the selected citation style file at the end of the package. Note that a
small repertory of frequently used macros shared by several of the standard citation
styles is also included in biblatex.def. This file is loaded at the end of the
package as well, prior to the selected citation style. It also contains the definitions of
the commands from § 3.9.5.

4.3.1 Citation Style Files

Before we go over the individual commands available in citation style files, consider
this example of the overall structure of a typical cbx file:

\ProvidesFile{example.cbx}[2006/03/15 v1.0 biblatex

↪→ citation style]

\DeclareCiteCommand{\cite}{...}{...}{...}{...}

\DeclareCiteCommand{\parencite}[\mkbibparens

↪→]{...}{...}{...}{...}

\DeclareCiteCommand{\footcite}[\mkbibfootnote

↪→]{...}{...}{...}{...}

\DeclareCiteCommand{\textcite}{...}{...}{...}{...}

\endinput

\RequireCitationStyle{〈style〉}

This command is optional and intended for specialized citation styles built on top of
a more generic style. It loads the citation style style.cbx.

\InitializeCitationStyle{〈code〉}

Specifies arbitrary 〈code〉 required to initialize or reset the citation style. This
hook will be executed once at package load-time and every time the \citereset
command from § 3.9.8 is used. The \citereset command also resets the in-
ternal citation trackers of this package. The reset will affect the \ifciteseen,
\ifentryseen, \ifciteibid, and \ifciteidem tests discussed in § 4.6.2.
When used in a refsection environment, the reset of the citation tracker is local
to the current refsection environment.

192

\OnManualCitation{〈code〉}

Specifies arbitrary 〈code〉 required for a partial reset of the citation style. This
hook will be executed every time the \mancite command from § 3.9.8 is used. It is
particularly useful in citation styles which replace repeated citations by abbreviations
like ‘ibidem’ or ‘op. cit.’ which may get ambiguous if automatically generated and
manual citations are mixed. The \mancite command also resets the internal
‘ibidem’ and ‘idem’ trackers of this package. The reset will affect the \ifciteibid
and \ifciteidem tests discussed in § 4.6.2.

\DeclareCiteCommand{〈command〉}[〈wrapper〉]{〈precode〉}{〈loopcode〉}{〈sepcode〉}{〈postcode〉}
\DeclareCiteCommand*{〈command〉}[〈wrapper〉]{〈precode〉}{〈loopcode〉}{〈sepcode〉}{〈postcode〉}

This is the core command used to define all citation commands. It takes one optional
and five mandatory arguments. The 〈command〉 is the command to be defined, for
example \cite. If the optional 〈wrapper〉 argument is given, the entire citation will
be passed to the 〈wrapper〉 as an argument, i. e., the wrapper command must take
one mandatory argument.33 The 〈precode〉 is arbitrary code to be executed at the
beginning of the citation. It will typically handle the 〈prenote〉 argument which is
available in the prenote field. It may also be used to initialize macros required by
the 〈loopcode〉. The 〈loopcode〉 is arbitrary code to be executed for each entry key
passed to the 〈command〉. This is the core code which prints the citation labels or any
other data. The 〈sepcode〉 is arbitrary code to be executed after each iteration of the
〈loopcode〉. It will only be executed if a list of entry keys is passed to the 〈command〉.
The 〈sepcode〉 will usually insert some kind of separator, such as a comma or a
semicolon. The 〈postcode〉 is arbitrary code to be executed at the end of the citation.
The 〈postcode〉 will typically handle the 〈postnote〉 argument which is available in
the postnote field.34 The starred variant of \DeclareCiteCommand defines
a starred 〈command〉. For example, \DeclareCiteCommand*{cite} would
define \cite*.35

\DeclareMultiCiteCommand{〈command〉}[〈wrapper〉]{〈cite〉}{〈delimiter〉}

This command defines ‘multicite’ commands (§ 3.9.3). The 〈command〉 is the mul-
ticite command to be defined, for example \cites. It is automatically made ro-
bust. Multicite commands are built on top of backend commands defined with
\DeclareCiteCommand and the 〈cite〉 argument specifies the name of the back-
end command to be used. Note that the wrapper of the backend command (i. e.,
the 〈wrapper〉 argument passed to \DeclareCiteCommand) is ignored. Use the
optional 〈wrapper〉 argument to specify an alternative wrapper. The 〈delimiter〉 is
the string to be printed as a separator between the individual citations in the list. This
will typically be \multicitedelim. The following examples are real definitions
taken from biblatex.def:

\DeclareMultiCiteCommand{\cites}%

33Typical examples of wrapper commands are \mkbibparens and \mkbibfootnote.
34The bibliographic data available to the 〈loopcode〉 is the data of the entry currently being processed.

In addition to that, the data of the first entry is available to the 〈precode〉 and the data of the last one
is available to the 〈postcode〉. ‘First’ and ‘last’ refer to the order in which the citations are printed.
If the sortcites package option is active, this is the order of the list after sorting. Note that no
bibliographic data is available to the 〈sepcode〉.

35Note that the regular variant of \DeclareCiteCommand defines a starred version of the
〈command〉 implicitly, unless the starred version has been defined before. This is intended as
a fallback. The implicit definition is an alias for the regular variant.

193

{\cite}{\multicitedelim}

\DeclareMultiCiteCommand{\parencites}[\mkbibparens]%

{\parencite}{\multicitedelim}

\DeclareMultiCiteCommand{\footcites}[\mkbibfootnote]%

{\footcite}{\multicitedelim}

\DeclareAutoCiteCommand{〈name〉}[〈position〉]{〈cite〉}{〈multicite〉}

This command provides definitions for the \autocite and \autocites com-
mands from § 3.9.4. The definitions are enabled with the autocite package option
from § 3.1.2.1. The 〈name〉 is an identifier which serves as the value passed to the
package option. The autocite commands are built on top of backend commands
like \parencite and \parencites. The arguments 〈cite〉 and 〈multicite〉 spec-
ify the backend commands to use. The 〈cite〉 argument refers to \autocite and
〈multicite〉 refers to \autocites. The 〈position〉 argument controls the handling
of any punctuation marks after the citation. Possible values are l, r, f. rmeans that
the punctuation is placed to the right of the citation, i. e., it will not be moved around.
l means that any punctuation after the citation is moved to the left of the citation. f
is like r in a footnote and like l otherwise. This argument is optional and defaults
to r. See also \DeclareAutoPunctuation in § 4.7.5 and the autopunct
package option in § 3.1.2.1. The following examples are real definitions taken from
biblatex.def:

\DeclareAutoCiteCommand{plain}{\cite}{\cites}

\DeclareAutoCiteCommand{inline}{\parencite}{\parencites

↪→ }

\DeclareAutoCiteCommand{footnote}[l]{\footcite}{

↪→ \footcites}

\DeclareAutoCiteCommand{footnote}[f]{\smartcite}{

↪→ \smartcites}

A definition provided in the document preamble can be subsequently adopted with
the following: (see § 3.2.2).

\ExecuteBibliographyOptions{autocite=name}

\DeclareCitePunctuationPosition{〈command〉}{〈position〉}

Set up the cite command 〈command〉 to move punctuation marks after the citation
like \autocite. The 〈position〉 argument can take the values r, l, f, c, o and d.
If an unknown 〈position〉 identifier is used, it defaults to o.

r The punctuation mark is not moved and remains to the right of the
citation.

l The punctuation mark is moved to the left of the citation and thus
appears before it.

f Like r in footnotes and like l otherwise.

c Pass the punctuation on to the internal implementation of the citation
commands. It will then be executed within the 〈wrapper〉 command
if given.

194

o Retain the default setup of c for citation defined commands without
〈wrapper〉 command and l for citation commands defined with a
〈wrapper〉 command.

d Drop the explicit punctuation mark. It will only be available as the
field postpunct.

This command can not be used for \autocite, to configure \autocite use the
optional 〈position〉 argument for \DeclareAutoCiteCommand.

4.3.2 Special Fields

The following fields are used by biblatex to pass data to citation commands.
They are not used in bib files but defined automatically by the package. From the
perspective of a citation style, they are not different from the fields in a bib file. See
also § 4.2.4.

prenote field (literal)

The 〈prenote〉 argument passed to a citation command. This field is specific to
citations and not available in the bibliography. If the 〈prenote〉 argument is missing
or empty, this field is undefined.

postnote field (literal)

The 〈postnote〉 argument passed to a citation command. This field is specific to
citations and not available in the bibliography. If the 〈postnote〉 argument is missing
or empty, this field is undefined.

multiprenote field (literal)

The 〈multiprenote〉 argument passed to a multicite command. This field is specific
to citations and not available in the bibliography. If the 〈multiprenote〉 argument is
missing or empty, this field is undefined.

multipostnote field (literal)

The 〈multipostnote〉 argument passed to a multicite command. This field is specific
to citations and not available in the bibliography. If the 〈multipostnote〉 argument is
missing or empty, this field is undefined.

volcitevolume field (literal)

The 〈volume〉 argument passed to \volcite or a related citation command (§ 3.9.6).
This field is specific to \volcite citations and not available in the bibliography or
other citations.

volcitepages field (literal)

The 〈pages〉 argument passed to \volcite or a related citation command (§ 3.9.6).
This field is specific to \volcite citations and not available in the bibliography or
other citations. If the 〈pages〉 argument is missing or empty, this field is undefined.

postpunct field (punctuation command)

The trailing punctuation argument implicitly passed to a citation command. This field
is specific to citations and not available in the bibliography. If the character follow-
ing a given citation command is not specified in \DeclareAutoPunctuation
(§ 4.7.5), this field is undefined.

195

4.4 Data Interface

The data interface are the facilities used to format and print all bibliographic data.
These facilities are available in both bibliography and citation styles.

4.4.1 Data Commands

This section introduces the main data interface of the biblatex package. These
are the commands doing most of the work, i. e., they actually print the data provided
in lists and fields.

\DeprecateField{〈field〉}{〈message〉}
\DeprecateList{〈list〉}{〈message〉}
\DeprecateName{〈name〉}{〈message〉}

When an attempt is made to print 〈field〉, 〈list〉, 〈name〉, a deprecation warning is
issued with the additional 〈message〉. This aids style authors who are changing field
names in their style. Note that the deprecated item must no longer be defined in the
datamodel for this to work; 〈field〉, 〈list〉 or 〈name〉 cannot be listed anywhere as an
argument to \DeclareDatamodelFields.

\DeprecateFieldWithReplacement{〈field〉}{〈replacement〉}
\DeprecateListWithReplacement{〈list〉}{〈replacement〉}
\DeprecateNameWithReplacement{〈name〉}{〈replacement〉}

Similar to \DeprecateField, \DeprecateList and \DeprecateName.
The commands do not only issue a deprecation warning, they try to define a replace-
ment for the deprecated field that is printed in its stead. The \replacement must
be of the same type as the deprecated 〈field〉, 〈list〉 or 〈name〉. If the 〈field〉, 〈list〉
or 〈name〉 is multiscript enabled, 〈replacement〉 must also be. If the formatting of
〈replacement〉 should be applied when printing the deprecated field, that needs to be
requested with \DeclareFieldAlias (see § 4.4.2). Note that the deprecated item
must no longer be defined in the datamodel for this work; 〈field〉, 〈list〉 or 〈name〉
cannot be listed anywhere as an argument to \DeclareDatamodelFields.

\printfield[〈format〉][〈msform〉][〈mslang〉]{〈field〉}

This command prints a 〈field〉 (for amultiscript field, 〈msform〉/〈mslang〉may be spec-
ified, otherwise, see § 3.18 for the rules which select the form/lang alternate to print)
using the formatting directive 〈format〉, as defined with \DeclareFieldFormat.
If a type-specific 〈format〉 has been declared, the type-specific formatting directive
takes precedence over the generic one. If the 〈field〉 is undefined, nothing is printed.
If the 〈format〉 is omitted, \printfield tries using the name of the field as a
format name. For example, if the title field is to be printed and the 〈format〉 is
not specified, it will try to use the field format title.36 In this case, any type-
specific formatting directive will also take precedence over the generic one. If all
of these formats are undefined, it falls back to default as a last resort. Note
that \printfield provides the name of the field currently being processed in
\currentfield for use in field formatting directives.

36In other words, \printfield{title} is equivalent to \printfield[title]{title}.

196

\printlist[〈format〉][〈start〉–〈stop〉][〈msform〉][〈mslang〉]{〈literal list〉}

This command loops over all items in a 〈literal list〉 (for a multiscript list,
〈msform〉/〈mslang〉 may be specified, otherwise, see § 3.18 for the rules which select
the form/lang alternate to print), starting at item number 〈start〉 and stopping at
item number 〈stop〉, including 〈start〉 and 〈stop〉 (all lists are numbered starting
at 1). Each item is printed using the formatting directive 〈format〉, as defined with
\DeclareListFormat. If a type-specific 〈format〉 has been declared, the type-
specific formatting directive takes precedence over the generic one. If the 〈literal list〉
is undefined, nothing is printed. If the 〈format〉 is omitted, \printlist tries using
the name of the list as a format name. In this case, any type-specific formatting
directive will also take precedence over the generic one. If all of these formats are
undefined, it falls back to default as a last resort. The 〈start〉 argument defaults to
1; 〈stop〉 defaults to the total number of items in the list. If the total number is greater
than 〈maxitems〉, 〈stop〉 defaults to 〈minitems〉 (see § 3.1.2.1). See \printnames
for further details. Note that \printlist provides the name of the literal list
currently being processed in \currentlist for use in list formatting directives.

In multiscript lists, macros of the format:

\listitem<msform><mslang>

Are available for all valid combinations of ‘msform’ and ‘mslang’. They refer to
alternates of the current list item. Note that ‘mslang’ is a BCP47 tag which may
contain hyphens and so raw macro use will not work. It is therefore safer to refer to
these macros with \csuse e.g.:

\csuse{listitemdefaulten-us}

Note that any babel shorthands in the value of these macros will not work as they
are automatically defined in the preamble.

\printnames[〈format〉][〈start〉–〈stop〉][〈msform〉][〈mslang〉]{〈name list〉}

This command loops over all items in a 〈name list〉 (for a multiscript name,
〈msform〉/〈mslang〉 may be specified, otherwise, see § 3.18 for the rules which select
the form/lang alternate to print), starting at item number 〈start〉 and stopping at
item number 〈stop〉, including 〈start〉 and 〈stop〉 (all lists are numbered starting
at 1). Each item is printed using the formatting directive 〈format〉, as defined with
\DeclareNameFormat. If a type-specific 〈format〉 has been declared, the type-
specific formatting directive takes precedence over the generic one. If the 〈name list〉
is undefined, nothing is printed. If the 〈format〉 is omitted, \printnames tries
using the name of the list as a format name. In this case, any type-specific formatting
directive will also take precedence over the generic one. If all of these formats are
undefined, it falls back to default as a last resort. The 〈start〉 argument defaults
to 1; 〈stop〉 defaults to the total number of items in the list. If the total number is
greater than 〈maxnames〉, 〈stop〉 defaults to 〈minnames〉 (see § 3.1.2.1). If you want
to select a range but use the default list format, the first optional argument must still
be given, but is left empty:

\printnames[][1-3]{...}

197

One of 〈start〉 and 〈stop〉 may be omitted, hence the following arguments are all
valid:

\printnames[...][-1]{...}

\printnames[...][2-]{...}

\printnames[...][1-3]{...}

If you want to override 〈maxnames〉 and 〈minnames〉 and force printing of the entire
list, you may refer to the listtotal counter in the second optional argument:

\printnames[...][-\value{listtotal}]{...}

Whenever \printnames and \printlist process a list, information concerning
the current state is accessible by way of four counters: the listtotal counter
holds the total number of items in the current list, listcount holds the number
of the item currently being processed, liststart is the 〈start〉 argument passed
to \printnames or \printlist, liststop is the 〈stop〉 argument. These
counters are intended for use in list formatting directives. listtotal may also be
used in the second optional argument to \printnames and \printlist. Note
that these counters are local to list formatting directives and do not hold meaningful
values when used anywhere else. For every list, there is also a counter by the same
name which holds the total number of items in the corresponding list. For example,
the author counter holds the total number of items in the author list. These
counters are similar to listtotal except that they may also be used independently
of list formatting directives. There are also maxnames and minnames as well as
maxitems and minitems counters which hold the values of the corresponding
package options. See § 4.10.5 for a complete list of such internal counters. Note that
\printnames provides the name of the name list currently being processed in
\currentname for use in name formatting directives.

\printtext[〈format〉]{〈text〉}

This command prints 〈text〉, which may be printable text or arbitrary code gen-
erating printable text. It clears the punctuation buffer before inserting 〈text〉 and
informs biblatex that printable text has been inserted. This ensures that all pre-
ceding and following \newblock and \newunit commands have the desired
effect. \printfield and \printnames as well as \bibstring and its com-
panion commands (see § 4.8) do that automatically. Using this command is required
if a bibliography styles inserts literal text (including the commands from §§ 4.7.3 and
4.7.4) to ensure that block and unit punctuation works as advertised in § 4.7.1. The
optional 〈format〉 argument specifies a field formatting directive to be used to format
〈text〉. This may also be useful when several fields are to be printed as one chunk,
for example, by enclosing the entire chunk in parentheses or quotation marks. If a
type-specific 〈format〉 has been declared, the type-specific formatting directive takes
precedence over the generic one. If the 〈format〉 is omitted, the 〈text〉 is printed as
is. See also § 4.11.7 for some practical hints.

\printfile[〈format〉]{〈file〉}

This command is similar to \printtext except that the second argument is a file
name rather than literal text. The 〈file〉 argument must be the name of a valid LaTeX

198

file found in TeX’s search path. \printfile will use \input to load this 〈file〉.
If there is no such file, \printfile does nothing. The optional 〈format〉 argument
specifies a field formatting directive to be applied to the 〈file〉. If a type-specific
〈format〉 has been declared, the type-specific formatting directive takes precedence
over the generic one. If the 〈format〉 is omitted, the 〈file〉 is printed as is. Note that
this feature needs to be enabled explicitly by setting the package option loadfiles
from § 3.1.2.1. By default, \printfile will not input any files.

\printdate This command prints the date of the entry, as specified in the fields date or month/
year. The date format is controlled by the package option date from § 3.1.2.1.
Additional formatting (fonts etc.) may be applied by adjusting the field format date
(§ 4.10.4). Note that this command interfaces with the punctuation tracker. There is
no need to wrap it in a \printtext command.

\printdateextra Similar to \printdate but incorporates the extradate field in the date spec-
ification. This is useful for bibliography styles designed for author-year citations.

\printlabeldate Similar to \printdate but prints the date field determined by
\DeclareLabeldate. The date format is controlled by the package op-
tion labeldate from § 3.1.2.1. Additional formatting may be applied by adjusting
the field format labeldate (§ 4.10.4).

\printlabeldateextra Similar to \printlabeldate but incorporates the extradate field in
the date specification. This is useful for bibliography styles designed for author-year
citations.

\print<datetype>date As \printdate but prints the <datetype>date of the entry.
The date format is controlled by the package option <datetype>date from
§ 3.1.2.1. Additional formatting may be applied by adjusting the field format
<datetype>date (§ 4.10.4). The <datetype>s in the default data model are
‘’ (for the main date field), ‘orig’, ‘event’ and ‘url’.

\printtime This command prints the time range of the entry, as specified in the date field (see
§ 2.3.8). The time format is controlled by the package option time from § 3.1.2.1.
Additional formatting (fonts etc.) may be applied by adjusting the field format
time (§ 4.10.4). Relevant to time formatting are the timezeros option and the
\bibtimesep and \bibtimezonesep macros (§ 3.12.3). Note that this com-
mand interfaces with the punctuation tracker. There is no need to wrap it in a
\printtext command. Note that this command prints a stand-alone time range
apart from the date elements. With the <datepart>dateusetime option, you
can have the time printed along with a date when printing a date range instead of
printing the time range completely separately, which is what this command allows
for.

\print<datetype>time As \printtime but prints the <datetype>time of the entry.
The time format is controlled by the package option <datetype>time from
§ 3.1.2.1. Additional formatting may be applied by adjusting the field format
<datetype>time (§ 4.10.4). The <datetype>s in the default data model are
‘’ (for the main date field), ‘orig’, ‘event’ and ‘url’.

\indexfield[〈format〉][〈msform〉][〈mslang〉]{〈field〉}

This command is similar to \printfield except that the 〈field〉 is not printed
but added to the index using the formatting directive 〈format〉, as defined with
\DeclareIndexFieldFormat. For a multiscript field, 〈msform〉/〈mslang〉 may

199

be specified, otherwise, the global or refcontext override values of msform/mslang
are used. If a type-specific 〈format〉 has been declared, it takes precedence over the
generic one. If the 〈field〉 is undefined, this command does nothing. If the 〈format〉
is omitted, \indexfield tries using the name of the field as a format name. In
this case, any type-specific formatting directive will also take precedence over the
generic one. If all of these formats are undefined, it falls back to default as a last
resort.

\indexlist[〈format〉][〈start〉–〈stop〉][〈msform〉][〈mslang〉]{〈literal list〉}

This command is similar to \printlist except that the items in the list are not
printed but added to the index using the formatting directive 〈format〉, as definedwith
\DeclareIndexListFormat. For a multiscript list, 〈msform〉/〈mslang〉 may be
specified, otherwise, the global or refcontext override values of msform/mslang
are used. If a type-specific 〈format〉 has been declared, the type-specific formatting
directive takes precedence over the generic one. If the 〈literal list〉 is undefined, this
command does nothing. If the 〈format〉 is omitted, \indexlist tries using the
name of the list as a format name. In this case, any type-specific formatting directive
will also take precedence over the generic one. If all of these formats are undefined,
it falls back to default as a last resort.

\indexnames[〈format〉][〈start〉–〈stop〉][〈msform〉][〈mslang〉]{〈name list〉}

This command is similar to \printnames except that the items in the list are not
printed but added to the index using the formatting directive 〈format〉, as definedwith
\DeclareIndexNameFormat. For a multiscript name, 〈msform〉/〈mslang〉 may
be specified, otherwise, the global or refcontext override values of msform/mslang
are used. If a type-specific 〈format〉 has been declared, the type-specific formatting
directive takes precedence over the generic one. If the 〈name list〉 is undefined, this
command does nothing. If the 〈format〉 is omitted, \indexnames tries using the
name of the list as a format name. In this case, any type-specific formatting directive
will also take precedence over the generic one. If all of these formats are undefined,
it falls back to default as a last resort.

\entrydata{〈key〉}{〈code〉}
\entrydata*{〈key〉}{〈code〉}

Data commands like \printfield normally use the data of the entry currently
being processed. You may use \entrydata to switch contexts locally. The 〈key〉 is
the entry key of the entry to use locally. The 〈code〉 is arbitrary code to be executed in
this context. This code will be executed in a group. See § 4.11.6 for an example. Note
that this command will automatically switch languages if the autolang package
option is enabled. The starred version \entrydata* will clone all fields of the
enclosing entry, using field, counter, and other resource names prefixed with the
string ‘saved’. This is useful when comparing two data sets. For example, inside the
〈code〉 argument, the author field holds the author of entry 〈key〉 and the author of
the enclosing entry is available as savedauthor. The author counter holds the
number of names in the author field of 〈key〉; the savedauthor counter refers
to the author count of the enclosing entry.

\entryset{〈precode〉}{〈postcode〉}

This command is intended for use in bibliography drivers handling @set entries. It
will loop over all members of the set, as indicated by theentryset field, and execute

200

the appropriate driver for the respective set member. This is similar to executing the
\usedriver command from § 4.6.4 for each set member. The 〈precode〉 is arbitrary
code to be executed prior to processing each item in the set. The 〈postcode〉 is arbitrary
code to be executed immediately after processing each item. Both arguments are
mandatory in terms of the syntax but may be left empty. See § 4.11.1 for usage
examples.

\DeclareFieldInputHandler{〈field〉}{〈code〉}

This command can be used to define a data input handler for 〈field〉 when it is
read from the .bbl. The 〈code〉 is passed one argument (#1), which contains the
input field value, it should then redefine the command \NewValue, which holds
the desired output field value. For example, to ignore the volumes field when it
appears, you could do

\DeclareFieldInputHandler{volumes}{\def\NewValue{}}

Generally, you would want to use \DeclareSourcemap (see § 4.5.3) to remove
and modify fields but this alternative method may be useful in some circumstances
when the emphasis is on appearance rather than data since the 〈code〉 can be arbitraty
TeX.

In general, \DeclareFieldInputHandler should not be used to apply format-
ting to a field, since that should happen with \DeclareFieldFormat, so the
following is just a toy example that shows how \DeclareFieldInputHandler

works.

\DeclareFieldInputHandler{volumes}{\def\NewValue{

↪→ \textbf{#1}}}

\DeclareListInputHandler{〈list〉}{〈code〉}

As \DeclareFieldInputHandler but for lists. Within the 〈code〉, the macro
\NewValue contains the value of the list and \NewCount contains the number
of items in the list. Note that \NewValue as well as the single argument to 〈code〉
contain the internal representation of the list.

\DeclareNameInputHandler{〈name〉}{〈code〉}

As \DeclareFieldInputHandler but for names. Within the 〈code〉, the macro
\NewValue contains the value of the name, \NewCount contains the number of
individual names in the name and \NewOption contains any per-name options
passed in the .bbl. Note that \NewValue as well as the single argument to 〈code〉
contain the internal representation of the name list.

4.4.2 Formatting Directives

This section introduces the commands used to define the formatting directives re-
quired by the data commands from § 4.4.1. Note that all standard formats are defined
in biblatex.def.

201

\DeclareFieldFormat[〈entrytype, …〉]{〈format〉}{〈code〉}
\DeclareFieldFormat*{〈format〉}{〈code〉}

Defines the field format 〈format〉. This formatting directive is arbitrary 〈code〉 to
be executed by \printfield. The value of the field will be passed to the 〈code〉
as its first and only argument. The name of the field currently being processed
is available to the 〈code〉 as \currentfield. For multiscript fields, the defined
forms/langs of all alternates are provided as etoolbox lists \currentmsforms
and \currentmslangs. If an 〈entrytype〉 is specified, the format is specific to
that type. The 〈entrytype〉 argument may be a comma-separated list of values. The
starred variant of this command is similar to the regular version, except that all
type-specific formats are cleared. Do not put any whitespace between the arguments
to this macro as the definitions are quite complex and you will get unexpected results.

\DeclareListFormat[〈entrytype, …〉]{〈format〉}{〈code〉}
\DeclareListFormat*{〈format〉}{〈code〉}

Defines the literal list format 〈format〉. This formatting directive is arbitrary 〈code〉
to be executed for every item in a list processed by \printlist. The current item
will be passed to the 〈code〉 as its first and only argument. The name of the literal list
currently being processed is available to the 〈code〉 as \currentlist. For multi-
script fields, the defined forms/langs of all alternates are provided as etoolbox lists
\currentmsforms and \currentmslangs. If an 〈entrytype〉 is specified, the
format is specific to that type. The 〈entrytype〉 argument may be a comma-separated
list of values. Note that the formatting directive also handles the punctuation to be
inserted between the individual items in the list. You need to check whether you are
in the middle of or at the end of the list, i. e., whether listcount is smaller than or
equal to liststop. The starred variant of this command is similar to the regular
version, except that all type-specific formats are cleared. Do not put any whitespace
between the arguments to this macro as the definitions are quite complex and you will
get unexpected results.

\DeclareNameFormat[〈entrytype, …〉]{〈format〉}{〈code〉}
\DeclareNameFormat*{〈format〉}{〈code〉}

Defines the name list format 〈format〉. This formatting directive is arbitrary 〈code〉 to
be executed for every name in a list processed by \printnames. If an 〈entrytype〉
is specified, the format is specific to that type. The 〈entrytype〉 argument may be a
comma-separated list of values. The individual parts of a name will be available in
automatically created macros (see below). The default data mode defines four name
part which correspond to the standard BibTeX name parts arguments:

family The family name(s), know as ‘last’ in BibTeX. If a name consists of a single
part only (for example, ‘Aristotle’), this part will be treated as the family name.

given The given name(s). Note that given names are referred to as the ‘first’
names in the BibTeX file format documentation.

prefix Any name prefices, for example von, van, of, da, de, del, della, etc. Note
that name prefices are referred to as the ‘von’ part of the name in the BibTeX
file format documentation.

suffix Any name suffices, for example Jr, Sr. Note that name suffices are referred
to as the ‘Jr’ part of the name in the BibTeX file format documentation.

202

The value of the datamodel ‘nameparts’ constant (see § 4.2.3) creates two macros for
each name part in the datamodel for the name. So, for example, in the default data
model, name formats will have defined the following macros:

\namepartprefix

\namepartprefixi

\namepartfamily

\namepartfamilyi

\namepartsuffix

\namepartsuffixi

\namepartgiven

\namepartgiveni

If a certain part of a name is not available, the corresponding macro will be empty,
hence youmay use, for example, theetoolbox tests like\ifdefvoid to check for
the individual parts of a name. The name of the name list currently being processed
is available to the 〈code〉 as \currentname. For multiscript fields, the defined
forms/langs of all alternates are provided as etoolbox lists \currentmsforms
and \currentmslangs.

For multiscript name lists, all available alternates of the current name list item are
available in name formats via macros:

\namepart<namepart><msform><mslang>

Note that ‘mslang’ is a BCP47 tag which may contain hyphens and so raw macro
use will not work. It is therefore safer to refer to these macros with \csuse e.g.:

\csuse{namepartfamilydefaulten-us}

Also note that any babel shorthands in the value of these macros will not work as
they are automatically defined in the preamble.

Note that the formatting directive also handles the punctuation to be inserted between
separate names and between the individual parts of a name. You need to check
whether you are in the middle of or at the end of the list, i. e., whether listcount
is smaller than or equal to liststop. See also § 3.15.4. The starred variant of
this command is similar to the regular version, except that all type-specific formats
are cleared. Do not put any whitespace between the arguments to this macro as the
definitions are quite complex and you will get unexpected results.

\DeclareListWrapperFormat[〈entrytype, …〉]{〈format〉}{〈code〉}
\DeclareListWrapperFormat*{〈format〉}{〈code〉}

Defines the list wrapper format 〈format〉. This formatting directive is arbitrary 〈code〉
to be executed once for the entire list processed by \printlist. The name of the
literal list currently being processed is available to the 〈code〉 as \currentlist.
If an 〈entrytype〉 is specified, the format is specific to that type. The 〈entrytype〉
argument may be a comma-separated list of values. The starred variant of this
command is similar to the regular version, except that all type-specific formats are
cleared.

203

\DeclareNameWrapperFormat[〈entrytype, …〉]{〈format〉}{〈code〉}
\DeclareNameWrapperFormat*{〈format〉}{〈code〉}

Defines the name list wrapper format 〈format〉. This formatting directive is arbitrary
〈code〉 to be executed once for the entire name list processed by \printnames.
The name of the name list currently being processed is available to the 〈code〉 as
\currentname. If an 〈entrytype〉 is specified, the format is specific to that type.
The 〈entrytype〉 argument may be a comma-separated list of values. The starred
variant of this command is similar to the regular version, except that all type-specific
formats are cleared.

\DeclareIndexFieldFormat[〈entrytype, …〉]{〈format〉}{〈code〉}
\DeclareIndexFieldFormat*{〈format〉}{〈code〉}

Defines the field format 〈format〉. This formatting directive is arbitrary 〈code〉 to
be executed by \indexfield. The value of the field will be passed to the 〈code〉
as its first and only argument. The name of the field currently being processed
is available to the 〈code〉 as \currentfield. If an 〈entrytype〉 is specified, the
format is specific to that type. The 〈entrytype〉 argument may be a comma-separated
list of values. This command is similar to \DeclareFieldFormat except that
the data handled by the 〈code〉 is not intended to be printed but written to the index.
Note that \indexfield will execute the 〈code〉 as is, i. e., the 〈code〉 must include
\index or a similar command. The starred variant of this command is similar to
the regular version, except that all type-specific formats are cleared.

\DeclareIndexListFormat[〈entrytype, …〉]{〈format〉}{〈code〉}
\DeclareIndexListFormat*{〈format〉}{〈code〉}

Defines the literal list format 〈format〉. This formatting directive is arbitrary 〈code〉 to
be executed for every item in a list processed by \indexlist. The current itemwill
be passed to the 〈code〉 as its only argument. The name of the literal list currently be-
ing processed is available to the 〈code〉 as \currentlist. If an 〈entrytype〉 is spec-
ified, the format is specific to that type. The 〈entrytype〉 argument may be a comma-
separated list of values. This command is similar to \DeclareListFormat ex-
cept that the data handled by the 〈code〉 is not intended to be printed but written
to the index. Note that \indexlist will execute the 〈code〉 as is, i. e., the 〈code〉
must include \index or a similar command. The starred variant of this command
is similar to the regular version, except that all type-specific formats are cleared.

\DeclareIndexNameFormat[〈entrytype, …〉]{〈format〉}{〈code〉}
\DeclareIndexNameFormat*{〈format〉}{〈code〉}

Defines the name list format 〈format〉. This formatting directive is arbitrary 〈code〉 to
be executed for every name in a list processed by \indexnames. The name of the
name list currently being processed is available to the 〈code〉 as \currentname.
If an 〈entrytype〉 is specified, the format is specific to that type. The 〈entrytype〉
argument may be a comma-separated list of values. The parts of the name will
be passed to the 〈code〉 as separate arguments. This command is very similar to
\DeclareNameFormat except that the data handled by the 〈code〉 is not intended
to be printed but written to the index. Note that \indexnames will execute the
〈code〉 as is, i. e., the 〈code〉 must include \index or a similar command. The starred
variant of this command is similar to the regular version, except that all type-specific
formats are cleared.

204

\DeclareFieldAlias[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Declares 〈alias〉 to be an alias for the field format 〈format〉. If an 〈entrytype〉 is
specified, the alias is specific to that type. The 〈format entry type〉 is the entry type
of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

\DeclareListAlias[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Declares 〈alias〉 to be an alias for the literal list format 〈format〉. If an 〈entrytype〉
is specified, the alias is specific to that type. The 〈format entry type〉 is the entry
type of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

\DeclareNameAlias[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Declares 〈alias〉 to be an alias for the name list format 〈format〉. If an 〈entrytype〉
is specified, the alias is specific to that type. The 〈format entry type〉 is the entry
type of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

\DeclareListWrapperAlias[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Declares 〈alias〉 to be an alias for the outer list format 〈format〉. If an 〈entrytype〉
is specified, the alias is specific to that type. The 〈format entry type〉 is the entry
type of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

\DeclareNameWrapperAlias[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Declares 〈alias〉 to be an alias for the outer name list format 〈format〉. If an
〈entrytype〉 is specified, the alias is specific to that type. The 〈format entry type〉
is the entry type of the backend format. This is only required when declaring an
alias for a type-specific formatting directive.

\DeclareIndexFieldAlias[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Declares 〈alias〉 to be an alias for the field format 〈format〉. If an 〈entrytype〉 is
specified, the alias is specific to that type. The 〈format entry type〉 is the entry type
of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

\DeclareIndexListAlias[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Declares 〈alias〉 to be an alias for the literal list format 〈format〉. If an 〈entrytype〉
is specified, the alias is specific to that type. The 〈format entry type〉 is the entry
type of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

\DeclareIndexNameAlias[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Declares 〈alias〉 to be an alias for the name list format 〈format〉. If an 〈entrytype〉
is specified, the alias is specific to that type. The 〈format entry type〉 is the entry
type of the backend format. This is only required when declaring an alias for a type-
specific formatting directive.

205

\DeprecateFieldFormatWithReplacement[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Declares 〈alias〉 to be an alias for the name list format 〈format〉 and issue a depre-
cation warning. If an 〈entrytype〉 is specified, the alias is specific to that type. The
〈format entry type〉 is the entry type of the backend format. This is only required
when declaring an alias for a type-specific formatting directive.

\DeprecateListFormatWithReplacement[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Similar to \DeprecateFieldFormatWithReplacement but for list formats.

\DeprecateNameFormatWithReplacement[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Similar to \DeprecateFieldFormatWithReplacement but for name for-
mats.

\DeprecateListWrapperFormatWithReplacement[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Similar to \DeprecateFieldFormatWithReplacement but for outer list for-
mats.

\DeprecateNameWrapperFormatWithReplacement[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Similar to \DeprecateFieldFormatWithReplacement but for outer name
formats.

\DeprecateIndexFieldFormatWithReplacement[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Similar to \DeprecateFieldFormatWithReplacement but for index field
formats.

\DeprecateIndexListFormatWithReplacement[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Similar to \DeprecateFieldFormatWithReplacement but for index list
formats.

\DeprecateIndexNameFormatWithReplacement[〈entry type〉]{〈alias〉}[〈format entry type〉]{〈format〉}

Similar to \DeprecateFieldFormatWithReplacement but for index name
formats.

4.5 Customization

4.5.1 Related Entries

The related entries feature comprises the following components:

• Special fields in an entry to set up and describe relationships

• Optionally, localisation strings to prefix the related data

• Macros to extract and print the related data

• Formats to format the localisation string and related data

The special fields are related, relatedtype, relatedstring and
relatedoptions:

206

related A separated list of keys of entries which are related to this entry in some way. Note
the order of the keys is important. The data from multiple related entries is printed
in the order of the keys listed in this field.

relatedtype The type of relationship. This serves three purposes. If the value of this field
resolves to a localisation string identifier, then the resulting localised string is
printed before the data from the related entries. Secondly, if there is a macro called
related:〈relatedtype〉, this is used to format the data from the related entries. If
no such macro exists, then the macro related:default is used. Lastly, if there
is a format named related:〈relatedtype〉, then it is used to format both the
localised string and related entry data. If there is no related type specific format, the
related format is used.

relatedstring If an entry contains this field, then if value of the field resolves to a localisation
string identifier, the localisation key value specified is printed before data from the
related entries. If the field does not specify a localisation key, its value is printed
literally. If both relatedtype and relatedstring are present in an entry,
relatedstring is used for the pre-data string (but relatedtype is still used
to determine the macro and format to use when printing the data).

relatedoptions A list of per-entry options to set on the related entry (actually on the clone of the
related entry which is used as a data source—the actual related entry is not modified
because it might be cited directly itself).

The related entry feature is enabled by default by the package option related
from § 3.1.2.1. The related information entry data from the related entries is included
via a \usebibmacro{related} call. Standard styles call this macro towards
the end of each driver. Style authors should ensure the existence of (or take note of
existing) localisation strings which are useful as values for the relatedtype field,
such as translationof or perhaps translatedas. A plural variant can be
identified with the localisation key 〈relatedtype〉s. This key’s corresponding string is
printedwhenevermore than one entry is specified inrelated. Bibliographymacros
and formatting directives for printing entries related by 〈relatedtype〉 should be
defined using the name related:〈relatedtype〉. The file biblatex.def contains
macros and formats for some common relation types which can be used as templates.
In particular, the \entrydata* command is essential in such macros in order to
make the data of the related entries available. Examples of entries using this feature
can be found in the biblatex distribution examples file biblatex-examples.
bib. There are some specific formatting macros for this feature which control
delimiters and separators in related entry information, see § 4.10.1.

4.5.2 Datasource Sets

It is useful to be able to define named sets of datasource field names for use in loops
etc. In addition, biber can use such sets in order to apply options and perform
operations on particular sets of datasource fields. The followingmacros allow the user
to define arbitrary sets of datasource fields, exposed to biblatex as etoolbox
lists and to biber in the .bcf.

\DeclareDatafieldSet{〈name〉}{〈specification〉}

Declare a set of datasource fields with name 〈name〉.

name=〈set name〉
The name of the set.

The 〈specification〉 is one or more \member items:

207

\member

fieldtype=〈fieldtype〉
datatype=〈datatype〉
field=〈fieldname〉

A \member specification appends fields to the set. Fields can be specified by data-
model 〈fieldtype〉 and/or 〈datatype〉 (see § 4.5.4). Alternatively, fields can be explic-
itly added by name using the 〈field〉 option. Once defined, the set is available as
an etoolbox list called \datafieldset‘setname’ and is also passed via the
.bcf to biber.
For example, here are the default sets defined by biblatex for name fields and
title fields:

\DeclareDatafieldSet{setnames}{

\member[datatype=name, fieldtype=list]

}

\DeclareDatafieldSet{settitles}{

\member[field=title]

\member[field=booktitle]

\member[field=eventtitle]

\member[field=issuetitle]

\member[field=journaltitle]

\member[field=maintitle]

\member[field=origtitle]

}

This defines the macros \datafieldsetsetnames and
\datafieldsetsettitles as etoolbox lists containing the names of
the member datasource fields specified.

4.5.3 Dynamic Modification of Data

Bibliographic data sources which are automatically generated or which you have no
control over can be a problem if you need to edit them in some way. For this reason,
biber has the ability to modify data as it is read so that you can apply modifications
to the source data stream without actually changing it. The modification can be
defined in biber’s config file (see biber docs), or via biblatexmacros in which
case you can apply the modification only for specific documents, styles or globally.

Source mapping happens during data parsing and therefore before any other
operation such as inheritance and sorting.

Source mappings can be defined at different “levels” which are applied in a defined
order. See the biblatex manual regarding these macros:

user-level maps defined with \DeclareSourcemap→
user-level maps defined in the biber config file (see biber docs)→
style-level maps defined with \DeclareStyleSourcemap→
driver-level maps defined with \DeclareDriverSourcemap

208

\DeclareSourcemap{〈specification〉}

Defines source data modification (mapping) rules which can be used to perform any
combination of the following tasks:

•Map data source entrytypes to different entrytypes

•Map datasource fields to different fields

•Add new fields to an entry

•Remove fields from an entry

•Modify the contents of a field using standard Perl regular expression match
and replace37

•Restrict any of the above operations to entries coming from particular data-
sources which you defined in \addresource macros

•Restrict any of the above operations to entries only of a certain entrytype

•Restrict any of the above operations to entries in a particular reference section

The 〈specification〉 is an undelimited list of \maps directives which specify contain-
ers for mappings rules applying to a particular data source type (§ 3.8.1). Spaces, tabs,
and line endings may be used freely to visually arrange the 〈specification〉. Blank
lines are not permissible. This command may only be used in the preamble and can
be used multiple times, the maps being run in order of definition.

\maps[〈options〉]{〈elements〉}

Contains an ordered set of \map elements each of which is a logically related set of
mapping steps to apply to the data source. The 〈options〉 are:

datatype=bibtex, biblatexml default: bibtex

Data source type to which the contained \map directives apply (§ 3.8.1).

overwrite=true, false default: false

Specify whether a mapping rule is allowed to overwrite already existing data in
an entry. If this option is not specified, the default is false. The short form
overwrite is equivalent to overwrite=true.

\map[〈options〉]{〈restrictions,steps〉}

A container for an ordered set of map \steps, optionally restricted to particular
entrytypes or data sources. This is a grouping element to allow a set of mapping steps
to apply only to specific entrytypes or data sources. Mapping steps must always be
contained within a \map element. The 〈options〉 are:

overwrite=true, false

As the same option on the parent \maps element. This option allows an override on
a per-map group basis. If this option is not specified, the default is the parent \maps
element option value. The short form overwrite is equivalent to overwrite=
true.

37See for example https://perldoc.perl.org/perlretut.html, https://perldoc.
perl.org/perlrequick.html and https://perldoc.perl.org/perlre.html.
There are many more resources available about regular expessions in Perl.

209

https://perldoc.perl.org/perlretut.html
https://perldoc.perl.org/perlrequick.html
https://perldoc.perl.org/perlrequick.html
https://perldoc.perl.org/perlre.html

foreach=〈loopval〉
Loop over all \steps in this \map, setting the special variable $MAPLOOP to each
of the comma-separated values contained in 〈loopval〉. 〈loopval〉 can either be the
name of a datafield set defined with \DeclareDatafieldSet (see § 4.5.2), a
datasource field which is fetched and parsed as a comma-separated values list or
an explicit comma-separated values list. 〈loopval〉 is determined in this order. This
allows the user to repeat a group of \steps for each value 〈loopval〉. Using regexp
maps, it is possible to create a CSV field for use with this functionality. The special
variable $MAPUNIQ may also be used in the \steps to generate a random unique
string. This can be useful when creating keys for new entries. An example:

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map[overwrite, foreach={author,editor, translator

↪→ }]{

\step[fieldsource=\regexp{$MAPLOOP}, match={Smith

↪→ }, replace={Jones}]

}

}

}

refsection=〈integer〉
Only apply the contained \step commands to entries in the reference section with
number 〈refsection〉.

\perdatasource{〈datasource〉}

Restricts all \steps in this \map element to entries from the named 〈datasource〉.
The 〈datasource〉 name should be exactly as given in a \addresource macro
defining a data source for the document. Multiple \perdatasource restrictions
are allowed within a \map element.

\pertype{〈entrytype〉}

Restricts all \steps in this \map element to entries of the named 〈entrytype〉.
Multiple \pertype restrictions are allowed within a \map element.

\pernottype{〈entrytype〉}

Restricts all \steps in this \map element to entries not of the named 〈entrytype〉.
Multiple \pernottype restrictions are allowed within a \map element.

\step[〈options〉]

A mapping step. Each step is applied sequentially to every relevant entry where
‘relevant’ means those entries which correspond to the data source type, entrytype
and data source name restrictions mentioned above. Each step is applied to the entry
as it appears after the application of all previous steps. The mapping performed by
the step is determined by the following 〈option〉s:

typesource=〈entrytype〉
typetarget=〈entrytype〉

210

fieldsource=〈entryfield〉
fieldsourcemsform=〈msform〉
fieldsourcemslang=〈mslang〉
notfield=〈entryfield〉
fieldtarget=〈entryfield〉
fieldtargetmsform=〈msform〉
fieldtargetmslang=〈mslang〉
match=〈regexp〉
matchi=〈regexp〉
notmatch=〈regexp〉
notmatchi=〈regexp〉
matches=〈regexp〉
matchesi=〈regexp〉
replace=〈regexp〉
fieldset=〈entryfield〉
fieldvalue=〈string〉
entryclone=〈clonekey〉
entrynew=〈entrynewkey〉
entrynewtype=〈string〉
entrytarget=〈string〉
cited=true, false default: false

nocited=true, false default: false

citedornocited=true, false default: false

allnocited=true, false default: false

starnocited=true, false default: false

entrynocite=true, false default: false

entrynull=true, false default: false

append=true, false default: false

appendstrict=true, false default: false

final=true, false default: false

null=true, false default: false

origfield=true, false default: false

origfieldval=true, false default: false

origentrytype=true, false default: false

For all boolean \step options, the short form option is equivalent to option=
true. The following rules for a mapping step apply:

Note that the options cited, nocited, citedornocited, allnocited and
starnocited are unique in that they can make the results of a sourcemap differ
depending on the refsection. This is because a datasource to which source mapping
applies may be used in several refsections and source mappings are applied when

211

fetching the data from the datasources for a refsection. Citation commands are
local to a refsection and therefore may differ for the same entry from refsection
to refsection. For example, the same entry may be \cited in one refsection but
\nocited in another, resulting in different source map results and therefore data
between the refsections. This can be avoided if desired, by limiting source maps to
specific refsections only (see refsection option to the \map command above).

•If final is true for a step then no more steps after this one are run within
the current map for the current entry if the conditions for the step so far are not
satisfied. Examples are given in the descriptions for specific steps as to what
this means for their particular semantics.

•If entrynew is set, a new entry is created with the entry key entrynewkey
and the entry type given in the option entrynewtype. This entry is only
in-scope during the processing of the current entry and can be referenced
by entrytarget. In entrynewkey, you may use standard Perl regular
expression backreferences to captures from a previous match step.

•When a fieldset step has entrytarget set to the entrykey of an entry
created by entrynew, the target for the field set will be the entrytarget
entry rather than the entry being currently processed. This allows users to
create new entries and set fields in them.

•If entrynocite is used in a entrynew or entryclone step, the new/clone
entry will be included in the .bbl as if the entry/clone had been \nociteed
in the document.

•If entrynull is set, processing of the \map immediately terminates and
the current entry is not created. It is as if it did not exist in the datasource.
Obviously, you should select the entries which you want to apply this to using
prior mapping steps.

•If entryclone is set, a clone of the entry is created with an entry key
clonekey. Obviously this may cause labelling problems in author/year styles
etc. and should be used with care. The cloned entry is in-scope during the
processing of the current entry and can be modified by passing its key as the
value to entrytarget. In clonekey, you may use standard Perl regular
expression backreferences to captures from a previous match step.

•If cited is used then only apply the step if the entry key of an entry was
specifically cited via \cite.

•If nocited is used then only apply the step if the entry key of an entry was
specifically nocited via \nocite or was included via \nocite{*}.

•If citedornocited is used then only apply the step if the entry key of an
entry was specifically cited via \cite or specifically nocited via \nocite.

•If allnocited is used then only apply the step if the entry key of an entry
was included via \nocite{*}.

•If starnocited is used then only apply the step if the entry key of an entry
was included solely because of \nocite{*}. This implies that the entry was
neither explicitly \citeed nor explicitly \nociteed.

•Change the typesource 〈entrytype〉 to the typetarget 〈entrytype〉, if
defined. If final is true then if the 〈entrytype〉 of the entry is not
typesource, processing of the parent \map immediately terminates.

212

•Change the fieldsource 〈entryfield〉 (optionally a particular alter-
nate of the fieldsource as specified by fieldsourcemsform and
fieldsourcemslang) to fieldtarget (optionally a particular alter-
nate of the fieldtarget as specified by fieldtargetmsform and
fieldtargetmslang), if defined. Any data annotations of a renamed field
are automatically renamed appropriately. If final is true then if there is
no fieldsource 〈entryfield〉 in the entry, processing of the parent \map
immediately terminates.

•If notfield is true only if the 〈entryfield〉 does not exist. Usually used with
final so that if an entry does contain 〈entryfield〉, the map terminates.

•If match is defined but replace is not, only apply the step if the
fieldsource 〈entryfield〉 matches the match regular expression (logic is
reversed if you use notmatch and case-insensitive if you use the versions
ending in ‘i’)38. You may use capture parenthesis as usual and refer to these
($1…$9) in later fieldvalue specifications. This allows you to pull out parts
of some fields and put these parts in other fields.

•Perform a regular expression match and replace on the value of the
fieldsource 〈entryfield〉 if match and replace are defined.

•If matches is defined, it should be a comma-separated list of literal strings
which are replaced by corresponding locations in a comma-separated list pro-
vided in replace. The lists must have the same number of elements or the
step will be skipped. matchesi is the same but case-insensitive.

•If fieldset is defined, then its value is 〈entryfield〉 which will be set to a
value specified by further options. If overwrite is false for this step and
the field to set already exists then the map step is ignored. If final is also
true when overwrite is false for this step, then processing of the parent map
stops at this point. If append is true, then the value to set is appended to the
current value of 〈entryfield〉. appendstrict only appends to 〈entryfield〉 if
〈entryfield〉 is not empty. The value to set is specified by a mandatory one and
only one of the following options:

◦ fieldvalue — The fieldset 〈entryfield〉 is set to the fieldvalue
〈string〉

◦ null — The fieldset 〈entryfield〉 is ignored, as if it did not exist in the
datasource

◦ origentrytype — The fieldset 〈entryfield〉 is set to the most re-
cently mentioned typesource 〈entrytype〉 name

◦ origfield — The fieldset 〈entryfield〉 is set to the most recently
mentioned fieldsource 〈entryfield〉 name

◦ origfieldval—The fieldset 〈entryfield〉 is set to the most recently
mentioned fieldsource value

With BibTeX datasources, you may specify the pseudo-field entrykey for
fieldsource which is the citation key of the entry. With biblatexml the
entrykey is a normal attribute and can be reference like any other attribute. Natu-
rally, this ‘field’ cannot be changed (used as fieldset, fieldtarget or changed
using replace).

38Regular expressions are full Perl 5.16 regular expressions. This means you may need to deal with
special characters, see examples.

213

Macros used in \step are expanded. Unexpandable contents should be pro-
tected with \detokenize, regular expressions can be escaped using the dedicated
\regexp command (see the examples below).

\DeclareStyleSourcemap{〈specification〉}

This command sets the source mappings used by a style. Such mappings are concep-
tually separate from user mappings defined with \DeclareSourcemap and are
applied directly after user maps. The syntax is identical to \DeclareSourcemap.
This command is provided for style authors so that any maps defined for the
style do not interfere with user maps or the default driver maps defined with
\DeclareDriverSourcemap. This command is for use in style files and can be
used multiple times, the maps being run in order of definition.

\DeclareDriverSourcemap[〈datatype=driver〉]{〈specification〉}

This command sets the driver default source mappings for the specified
〈driver〉. Such mappings are conceptually separate from user mappings
defined with \DeclareSourcemap and style mapping defined with
\DeclareStyleSourcemap. They consist of mappings which are part
of the driver setup. Users should not normally need to change these. Driver
default mapping are applied after user mappings (\DeclareSourcemap) and
style mappings (\DeclareStyleSourcemap). These defaults are described in
Appendix § A. The 〈specification〉 is identical to that for \DeclareSourcemap
but without the \maps elements: the 〈specification〉 is just a list of \map elements
since each \DeclareDriverSourcemap only applies to one datatype driver.
See the default definitions in Appendix § A for examples.

\regexp{〈PCRE〉}

This command can be used with any command accepting a regular expression key to
protect a regular expression from being interpreted by TEX so that it is passed through
to biber correctly. Regular expressions often contain sequences of characters that
are also valid TEX commands but which should not be interpreted as such. The
argument is a normal PCRE (Perl Compatible Regular Expression39). Perl escape
sequences like \t for a tab, \n for a newline, \A for the start of a string or \d for
a digit can be used, without TEX trying to execute them as commands, as can be
special characters like ^, _ or {..} and #. Only the % must be protected: to match
a single % in the bib, use \% in the regular expression, a \% is matched by \\%.

Here are some data source mapping examples:

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\perdatasource{example1.bib}

\perdatasource{example2.bib}

\step[fieldset=keywords, fieldvalue={keyw1, keyw2

↪→ }]

\step[fieldsource=entrykey]

\step[fieldset=note, origfieldval]

39
https://perldoc.perl.org/perlre

214

https://perldoc.perl.org/perlre

}

}

}

This would add a keywords field with value ‘keyw1, keyw2’ and set the note field
to the entry key to all entries which are found in either the examples1.bib or
examples2.bib files.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\step[fieldsource=title]

\step[fieldset=note, origfieldval]

}

}

}

Copy the title field to the note field unless the note field already exists.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\step[typesource=chat, typetarget=customa, final]

\step[fieldset=type, origentrytype]

}

}

}

Any chat entrytypes would become customa entrytypes and would automatically
have a type field set to ‘chat’ unless the type field already exists in the entry
(because overwrite is false by default). This mapping applies only to entries of
type @chat since the first step has final set and so if the typesource does not
match the entry entrytype, processing of this \map immediately terminates.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\perdatasource{examples.bib}

\pertype{article}

\pertype{book}

\step[fieldset=abstract, null]

\step[fieldset=note, fieldvalue={Auto-created

↪→ this field}]

}

}

}

Any entries of entrytype @article or @book from the examples.bib data-
source would have their abstract fields removed and a note field added with
value ‘Auto-created this field’.

215

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\step[fieldset=abstract, null]

\step[fieldsource=conductor, fieldtarget=namea]

\step[fieldsource=gps, fieldtarget=usera]

}

}

}

This removes abstract fields from any entry, changes conductor fields to
namea fields and changes gps fields to usera fields.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\step[fieldsource=pubmedid, fieldtarget=eprint,

↪→ final]

\step[fieldset=eprinttype, origfield]

\step[fieldset=userd, fieldvalue={Some string of

↪→ things}]

}

}

}

Applies only to entries with pubmed fields and maps pubmedid fields to eprint
fields, sets the eprinttype field to ‘pubmedid’ and also sets the userd field to
the string ‘Some string of things’.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\step[fieldsource=series,

match=\regexp{\A\d*(.+)},

replace=\regexp{\L$1}]

}

}

}

Here, the contents of the series field have leading numbers stripped and the
remainder of the contents lowercased. Since regular expressions usually contain all
sort of special characters, it is best to enclose them in the provided \regexp macro
as shown—this will pass the expression through to biber correctly.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\step[fieldsource=maintitle,

match=\regexp{Collected\s+Works.+Freud},

final]

216

\step[fieldset=keywords, fieldvalue=freud]

}

}

}

Here, if for an entry, the maintitle field matches a particular regular expression,
we set a special keyword so we can, for example, make a references section just for
certain items.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\step[fieldsource=lista, match=\regexp{regexp},

↪→ final]

\step[fieldset=lista, null]

}

}

}

If an entry has a lista field which matches regular expression ‘regexp’, then it is
removed.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map[overwrite=false]{

\step[fieldsource=author]

\step[fieldset=editor, origfieldval, final]

\step[fieldsource=editor, match=\regexp{\A(.+?)

↪→ \s+and.*}, replace={$1}]

}

}

}

For any entry with an author field, try to set editor to the same as author. If
this fails because editor already exists, stop, otherwise truncate editor to just
the first name in the name list.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\step[fieldsource=author,

match={Smith, Bill},

replace={Smith, William}]

\step[fieldsource=author,

match={Jones, Baz},

replace={Jones, Barry}]

}

}

}

217

Here, we use multiple match/replace for the same field to regularise some inconstant
name variants. Bear in mind that \step processing within a map element is se-
quential and so the changes from a previous \steps are already committed. Note
that we don’t need the \regexp macro to protect the regular expressions in this
example as they contain no characters which need special escaping. Please note that
due to the difficulty of protecting regular expressions in LaTeX, there should be no
literal spaces in the argument to \regexp. Please use escape code equivalents if
spaces are needed. For example, this example, if using \regexp, should be:

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\step[fieldsource=author,

match=\regexp{Smith,\s+Bill},

replace=\regexp{Smith,\x20William}]

\step[fieldsource=author,

match=\regexp{Jones,\s+Baz},

replace=\regexp{Jones,\x20Barry}]

}

}

}

Here, we have used the hexadecimal escape sequence ‘\x20’ in place of literal spaces
in the replacement strings.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map[overwrite]{

\step[fieldsource=author, match={Doe,}, final]

\step[fieldset=shortauthor, origfieldval]

\step[fieldset=sortname, origfieldval]

\step[fieldsource=shortauthor,

match=\regexp{Doe,\s*(?:\.|ohn)(?:[-]*)(?:

↪→ P\.|Paul)*},

replace={Doe, John Paul}]

\step[fieldsource=sortname,

match=\regexp{Doe,\s*(?:\.|ohn)(?:[-]*)(?:

↪→ P\.|Paul)*},

replace={Doe, John Paul}]

}

}

}

Only applies to entries with an author field matching ‘Doe,’. First the author
field is copied to both the shortauthor and sortname fields, overwriting them
if they already exist. Then, these two new fields are modified to canonicalise a
particular name, which presumably has some variants in the data source.

\DeclareSourcemap{

\maps[datatype=bibtex]{

218

\map[overwrite]{

\step[fieldsource=verba, final]

\step[fieldset=verbb, fieldvalue=/, append]

\step[fieldset=verbb, origfieldval, append]

\step[fieldsource=verbb, final]

\step[fieldset=verbc, fieldvalue=/, append]

\step[fieldset=verbc, origfieldval, append]

}

}

}

This example demonstrates the sequential nature of the step processing and the
append option. If an entry has a verba field then first, a forward slash is appended
to the verbb field. Then, the contents of verba are appended to the verbb field. A
slash is then appended to the verbc field and the contents of verbb are appended
to the verbc field.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map[overwrite]{

\step[fieldset=autourl, fieldvalue={http://

↪→ scholar.google.com/scholar?q="}]

\step[fieldsource=title]

\step[fieldset=autourl, origfieldval, append]

\step[fieldset=autourl, fieldvalue={"+author:},

↪→ append]

\step[fieldsource=author, match=\regexp{\A([^,]+)

↪→ \s*,}]

\step[fieldset=autourl, fieldvalue={$1}, append]

\step[fieldset=autourl, fieldvalue={&as_ylo=},

↪→ append]

\step[fieldsource=year]

\step[fieldset=autourl, origfieldval, append]

\step[fieldset=autourl, fieldvalue={&as_yhi=},

↪→ append]

\step[fieldset=autourl, origfieldval, append]

}

}

}

This example assumes you have created a field called autourl using the datamodel
macros from § 4.5.4 in order to hold, for example, a Google Scholar query URL auto-
created from elements of the entry. The example progressively extracts information
from the entry, constructing the URL as it goes. It demonstrates that it is possible
to refer to parenthetical matches from the most recent match in any following
fieldvaluewhich allows extracting the family name from the author, assuming
a ‘family, given’ format. The resulting field could then be used as a hyperlink from,
for example, the title of the work in the bibliography.

\DeclareSourcemap{

\maps[datatype=bibtex]{

219

\map{

\step[fieldsource=title, match={A Title}, final]

\step[entrynull]

}

}

}

Any entry with a title field matching ‘A Title’ will be completely ignored.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\pernottype{book}

\pernottype{article}

\step[entrynull]

}

}

}

Any entry which is not a @book or @article will be ignored.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\perdatasource{biblatex-examples.bib}

\step[entryclone={rel-}]

}

}

}

Here, a clone of an entry from the specified data source will be created. The entry
key of the clone will be the same as the original but prefixed by the value of the
entryclone parameter. The cloned entry would still need to be cited in the docu-
ment using its new entry key. This type of mapping step should be used with care
as it may produce labelling problems in authoryear styles which use, for example,
extradate. One use case is for numeric styles which contain multiple bibliogra-
phies containing the same entry. In this case, you may need different bibliography
number labeld for the same entry and this is very tricky when there is only one entry
which needs different labels. Creating clones with different entry keys solves this
problem.

\DeclareSourcemap{

\maps[datatype=bibtex]{

\map{

\step[fieldsource=note]

\step[fieldset=usera, origfieldval]

\step[fieldsource=usera, matchesi={string1,

↪→ string2,StriNg3}, replace={1,2,3}]

}

}

220

}

Here, any note field is copied to usera and then ‘string1’, ‘string2’ and ‘string3’
are matched case-insensitively in the usera field and replaced with ‘1’, ‘2’ and ‘3’
respectively. The value of matches and matchesi are not regular expressions,
they are CSV lists of literal strings, as is the value of replace when either of
matches or matchesi are used. The lengths of the match/replace CSV lists
must be the same. This is useful when creating a new field to sort by in a custom
sorting scheme when the field you wish to sort by has a defined order which is not
alphabetical or numeric, such as when sorting by level of court in legal bibliographies.
Using matches is simply more efficient than using many individual match maps
in serial.
biblatexml datasources are more structured than BibTeX since they are XML.

Sourcemapping is possible with biblatexml too but the specifications of source
and target fields etc. also support XPath 1.0 paths in order to be able to work with
the structured data. Fields can be specified as per the BibTeX examples above and
these are converted into XPath 1.0 queries internally as necessary. For example:

\DeclareSourcemap{

\maps[datatype=biblatexml]{

\map{

\step[fieldsource=\regexp{./bltx:names[@type='author

↪→ ']/bltx:name[2]/bltx:namepart[@type='family']},

match=\regexp{\ASmith},

replace={Jones}]

}

\map{

\step[fieldsource=editor, fieldtarget=translator]

}

\map{

\step[fieldsource=\regexp{./bltx:names[@type='

↪→ editor']},

fieldtarget=\regexp{./bltx:names[@type='

↪→ translator']}]

}

\map{

\step[fieldset=\regexp{./bltx:names[@type='author

↪→ ']/bltx:name[2]/@useprefix},

fieldvalue={false}]

}

}

}

These maps, respectively,

• Replace the family name ‘Smith’ of the second author name with ‘Jones’

• Move the editor to translator

• Move the editor to translator but with explicit XPaths

• Set the per-namelist useprefix option on the author name list to ‘false’

221

4.5.4 Data Model Specification

The data model which biblatex uses consists of four main elements:

• Specification of constant strings and lists of strings

• Specification of valid Entrytypes

• Specification of valid Fields along with their type, datatype and any special
flags

• Specification of which Fields are valid in which Entrytypes

• Specification of constraints which can be used to validate data against the data
model

The default data model is defined in the core biblatex file blx-dm.def using
the macros described in this section. The default data model is described in detail
in § 2. The data model is used internally by biblatex and also by the backend.
In practice, changing the data model means that you can define the entrytypes and
fields for your datasources and validate your data against the data model. Naturally,
this is not much use unless your style supports any new entrytypes or fields and it
raises issues of portability between styles (although this can be mitigated by using
the dynamic data modification functionality described in § 4.5.3).

Note that while the biber/BibTeX input site is not case sensitive when it comes
to entry types and field names (Perl’s Unicode case folding is used to normalise
field names and entry types), the LaTeX side is case sensitive and uses the exact
capitalisation from the data model.

Validation against the data model means that after mapping your data sources into
the data model, biber (using its --validate_datamodel option) can check:

• Whether all entrytypes are valid entrytypes

• Whether all fields are valid fields for their entrytype

• Whether the fields obey various constraints on their format which you specify

Redefining the data model can be done in several places. Style authors can
create a .dbx file which contains the data model macros required and this will
be loaded automatically when using the biblatex package style option by
looking for a file named after the style with a .dbx extension (just like the
.cbx and .bbx files for a style). If the style option is not used but rather the
citestyle and bibstyle options, then the package will try to load .dbx

files called <citestyle>.dbx and <bibstyle>.dbx. Alternatively, the
name of the data model file can be different from any of the style option names by
specifying the name (without .dbx extension) to the package datamodel option.
After loading the style data model file, biblatex then loads, if present, a users
biblatex-dm.cfg which should be put somewhere biblatex can find it, just
like the main configuration file biblatex.cfg. To summarise, the data model is
determined by adding to the data model from each of these locations, in order:

blx-dm.def→
<datamodel option>.dbx →

<style option>.dbx →
<citestyle option>.dbx and <bibstyle option>.dbx →

222

biblatex-dm.cfg

It is not possible to add to a loaded data model by using the macros below in your
preamble as the preamble is read after biblatex has defined critical internal macros
based on the data model. If any data model macro is used in a document, it will
be ignored and a warning will be generated. The data model is defined using the
following macros:

\DeclareDatamodelConstant[〈options〉]{〈name〉}{〈constantdef 〉}

Declares the 〈name〉 as a datamodel constant with definition 〈constantdef 〉. Such
constants are typically used internally by biber.

type=string, list default: string
A constant can be a simple string (default if the 〈type〉 option is omitted) or a comma-
separated list of strings.

\DeclareDatamodelEntrytypes[〈options〉]{〈entrytypes〉}

Declares the comma-separated list of 〈entrytypes〉 to be valid entrytypes in the data
model. As usual in TeX csv lists, make sure each element is immediately followed by
a comma or the closing brace—no extraneous whitespace.

skipout=true, false default: false
This entrytype is not output to the .bbl. Typically used for special entrytypes
which are processed and consumed by the backend such as @xdata.

\DeclareDatamodelFields[〈options〉]{〈fields〉}

Declares the comma-separated list of 〈fields〉 to be valid fields in the data model
with associated comma-separated 〈options〉. The 〈type〉 and 〈datatype〉 options are
mandatory. All valid 〈options〉 are:

type=〈field type〉
Set the type of the field as described in § 2.2.1, typically ‘field’ or ‘list’.
format=〈field format〉
Any special format of the field. Normally unspecified but can take the value ‘xsv’
which tells biber that this field has a separated values format. The exact separator
can be controlled with the biber option xsvsep and defaults to the expected
comma surrounded by optional whitespace.
datatype=〈field datatype〉
Set the datatype of the field as described in § 2.2.1. For example, ‘name’ or ‘literal’.
nullok=true, false default: false
The field is allowed to be defined but empty.
skipout=true, false default: false
The field is not output to the .bbl and is therefore not present during biblatex
style processing. As usual in TeX csv lists, make sure each element is immediately
followed by a comma or the closing brace—no extraneous whitespace.
label=true, false default: false
The field can be used as a label in a bibliography or bibliography list. Specifying
this causes biblatex to create several helper macros for the field so that there are
some internal lengths and headings etc. defined.

223

\DeclareDatamodelEntryfields[〈entrytypes〉]{〈fields〉}

Declares that the comma-separated list of 〈fields〉 is valid for the comma-separated
list of 〈entrytypes〉. If 〈entrytypes〉 is not given, the fields are valid for all entrytypes.
As usual in TeX csv lists, make sure each element is immediately followed by a
comma or the closing brace—no extraneous whitespace.

\DeclareDatamodelMultiscriptEntryfields{〈fields〉}

Declares that the comma-separated list of 〈fields〉 are valid multiscript enabled fields.
See 3.17. As usual in TeX csv lists, make sure each element is immediately followed
by a comma or the closing brace—no extraneous whitespace.

\DeclareDatamodelConstraints[〈entrytypes〉]{〈specification〉}

If a comma-separated list of 〈entrytypes〉 is given, the constraints apply only to those
entrytypes. The 〈specification〉 is an undelimited list of \constraint directives
which specify a constraint. Spaces, tabs, and line endings may be used freely to
visually arrange the 〈specification〉. Blank lines are not permissible.

\constraint[〈type=constrainttype〉]{〈elements〉}

Specifies a constraint of type 〈constrainttype〉. Valid constraint types are:

type=data, mandatory, conditional

Constraints of type ‘data’ put restrictions on the value of a field. Constraints of type
‘mandatory’ specify which fields or combinations of fields an entrytype should have.
Constraints of type ‘conditional’ allow more sophisticated conditional and quantified
field constraints.

datatype=integer, isbn, issn, ismn, datepart, pattern

For constraints of type 〈data〉, constrain field values to be the given datatype.

rangemin=〈num〉
For constraints of 〈type〉 ‘data’ and 〈datatype〉 ‘integer’, constrain field values to be
at least 〈num〉.
rangemax=〈num〉
For constraints of 〈type〉 ‘data’ and 〈datatype〉 ‘integer’, constrain field values to be
at most 〈num〉.
pattern=〈patt〉
For constraints of 〈type〉 ‘data’ and 〈datatype〉 ‘pattern’, constrain field values to
match regular expression pattern 〈patt〉. It is best to wrap any regular expression in
the macro \regexp, see § 4.5.3.

A \constraint macro may contain any of the following:

\constraintfieldsor{〈fields〉}

For constraints of 〈type〉 ‘mandatory’, specifies that an entry must contain a boolean
OR of the \constraintfields.

\constraintfieldsxor{〈fields〉}

For constraints of 〈type〉 ‘mandatory’, specifies that an entry must contain a boolean
XOR of the \constraintfields.

224

\antecedent[〈quantifier=quantspec〉]{〈fields〉}

For constraints of 〈type〉 ‘conditional’, specifies a quantified set of
\constraintfields which must be satisfied before the \consequent

of the constraint is checked. 〈quantspec〉 should have one of the following values:

quantifier=all, one, none

Specifies how many of the \constrainfield’s inside the \antecedent have
to be present to satisfy the antecedent of the conditional constraint.

\consequent[〈quantifier=quantspec〉]{〈fields〉}

For constraints of 〈type〉 ‘conditional’, specifies a quantified set of
\constraintfields which must be satisfied if the preceding \antecedent
of the constraint was satisfied. 〈quantspec〉 should have one of the following values:

quantifier=all, one, none

Specifies howmany of the \constraintfield’s inside the \consequent have
to be present to satisfy the consequent of the conditional constraint.

\constraintfield{〈field〉}

For constraints of 〈type〉 ‘data’, the constraint applies to this 〈field〉. For constraints
of 〈type〉 ‘mandatory’, the entry must contain this 〈field〉.
The data model declaration macros may be used multiple times as they append to the
previous definitions. In order to replace, change or remove existing definitions (such
as the default model which is loaded with biblatex), you should reset (clear) the
current definition and then set what you want using the following macros. Typically,
these macros will be the first things in any biblatex-dm.cfg file:

\ResetDatamodelEntrytypes

Clear all data model entrytype information.

\ResetDatamodelFields

Clear all data model field information.

\ResetDatamodelEntryfields

Clear all data model fields for entrytypes information.

\ResetDatamodelMultiscriptEntryfields

Clear all data model multiscript fields information.

\ResetDatamodelConstraints

Clear all data model fields Constraints information.

Here is an example of a simple data model. Refer to the core biblatex file
blx-dm.def for the default data model specification.

225

\ResetDatamodelEntrytypes

\ResetDatamodelFields

\ResetDatamodelEntryfields

\ResetDatamodelConstraints

\DeclareDatamodelEntrytypes{entrytype1, entrytype2}

\DeclareDatamodelFields[type=field, datatype=literal]{

↪→ field1,field2,field3,field4}

\DeclareDatamodelEntryfields{field1}

\DeclareDatamodelEntryfields[entrytype1]{field2,field3}

\DeclareDatamodelEntryfields[entrytype2]{field2,field3,

↪→ field4}

\DeclareDatamodelConstraints[entrytype1]{

\constraint[type=data, datatype=integer, rangemin=3,

↪→ rangemax=10]{

\constraintfield{field1}

}

\constraint[type=mandatory]{

\constraintfield{field1}

\constraintfieldsxor{

\constraintfield{field2}

\constraintfield{field3}

}

}

}

\DeclareDatamodelConstraints{

\constraint[type=conditional]{

\antecedent[quantifier=none]{

\constraintfield{field2}

}

\consequent[quantifier=all]{

\constraintfield{field3}

\constraintfield{field4}

}

}

}

This model specifies:

• Clear the default data model completely

• Two valid entry types @entrytype1 and @entrytype2

• Four valid literal field fields

• field1 is valid for all entrytypes

• field2 and field3 are valid for entrytype1

• field2, field3 and field4 are valid for @entrytype2

226

• For @entrytype1:

– field1 must be an integer between 3 and 10

– field1 must be present

– One and only one of field2 or field3 must be present

• For any entrytype, if field2 is not present, field3 and field4 must be
present

4.5.5 Labels

Alphabetic styles use a label to identify bibliography entries. This label is constructed
from components of the entry using a template which describes how to build the
label. The template can be customised on a global or per-type basis. A separate
template is used to specify how to extract parts of name fields for labels, since names
can be quite complex fields.

\DeclareLabelalphaTemplate[]{〈specification〉}

Defines the alphabetic label template for the given entrytypes. If no entrytypes
are specified in the first argument, then the global label template is defined. The
〈specification〉 is an undelimited list of \labelelement directives which specify
the elements used to build the label. Spaces, tabs, and line endings may be used
freely to visually arrange the 〈specification〉. Blank lines are not permissible. This
command may only be used in the preamble.

\labelelement{〈elements〉}

Specifies the elements used to build the label. The 〈elements〉 are an undelimited
list of \field or \literal commands which are evaluated in the order in which
they are given. The first \field or \literal which expands to a non-empty
string is used as the \labelelement expansion and the next \labelelement,
if any, is then processed.

\field[〈key=value, …〉]{〈field〉}

If 〈field〉 is non-empty, use it as the current label \labelelement, subject to
the options below. Useful values for 〈field〉 are typically the name list type fields,
date fields, and title fields. You may also use the ‘citekey’ or ‘entrykey‘ pseudo-
fields to specify the citation/entry key as part of the label. Name list fields are
treated specially and when a name list field is specified, the template defined with
\DeclareLabelalphaNameTemplate is used to extract parts from the name
which then returns the string that the \field option uses. Non-name list fields are
treated specially in that the result of the labelpart for the field is the concatenation
of applying the template to each item in the list.

form=〈string〉
The multiscript form of the 〈field〉. Must be one of the ‘multiscriptforms’ constants
declared with \DeclareDatamodelConstant. See 3.17. Defaults to the global
msform option.

lang=〈bcp47tag〉
The multiscript BCP47 language tag of the 〈field〉. Defaults to the global mslang
option.

227

final=true, false default: false

This option marks a \field directive as the final one in the 〈specification〉. If the
〈field〉 is non-empty, then this field is used for the label and the remainder of the
〈specification〉 will be ignored. The short form final is equivalent to final=
true.

lowercase=true, false default: false

Forces the label part derived from the field to lowercase. By default, the case is taken
from the field source and not modified.

strwidth=〈integer〉 default: 1

The number of characters of the 〈field〉 to use. This setting may be overrid-
den by an individual name part when extracting characters from a name. See
\DeclareLabelalphaNameTemplate below.

strside=left, right default: left

The side of the string from which to take the strwidth number of characters. This
setting may be overridden by an individual name part when extracting characters
from a name. See \DeclareLabelalphaNameTemplate below.

padside=left, right default: right

Side to pad the label part when using the padchar option. Only for use with
fixed-width label strings (strwidth).

padchar=〈character〉
If present, pads the label part on the padside side with the specified character to
the length of strwidth. Only for use with fixed-width label strings (strwidth).

uppercase=true, false default: false

Forces the label part derived from the field to uppercase. By default, the case is taken
from the field source and not modified.

varwidth=true, false default: false

Use a variable width, left-side substring of characters from the string returned for
〈field〉. The length of the string is determined by the minimum length needed to
disambiguate the substring from all other 〈field〉 elements in the same position in
the label. For name list fields, this means that each name substring is disambiguated
from all other name substrings which occur in the same position in the name list
(see examples below). This option overrides strwidth if both are used. The
short form varwidth is equivalent to varwidth=true. For name list fields, the
\nameparts with the pre option set are prepended to the string returned from
this disambiguation.

varwidthnorm=true, false default: false

As varwidth but will force the disambiguated substrings for the 〈field〉 to be the
same length as the longest disambiguated substring. This can be used to regularise
the format of the labels if desired. This option overrides strwidth if both are used.
The short form varwidthnorm is equivalent to varwidthnorm=true.

varwidthlist=true, false default: false

Alternative method of automatic label disambiguation where the field as a whole
is disambiguated from all other fields in the same label position. For non-name list
fields, this is equivalent to varwidth. For name list fields, names in a name list are
not disambiguated from other names in the same position in their name lists but

228

instead the entire name list is disambiguated as a whole from other name lists (see
examples below). This option overrides strwidth if both are used. The short form
varwidthlist is equivalent to varwidthlist=true. For name list fields, the
\nameparts with the pre option set are prepended to the string returned from
this disambiguation.
strwidthmax=〈integer〉
When using varwidth, this option sets a limit (in number of characters) on the
length of variable width substrings. This option can be used to regularise the label.
strfixedcount=〈integer〉 default: 1
When using varwidthnorm, there must be at least strfixedcount disam-
biguated substrings with the same, maximal length to trigger the forcing of all
disambiguated substrings to this same maximal length.
ifnames=〈range〉
Only use this \field specification if it is a name list field with a number of names
matching the ifnames range value. This allows a \labelelement to be condi-
tionalised on name length (see below). The range can specified as in the following
examples:

ifnames=3 -> Only apply to name lists containing

↪→ exactly 3 names

ifnames={2-4} -> Only apply to name lists containing

↪→ minimum 2 and maximum 4 names

ifnames={-3} -> Only apply to name lists containing at

↪→ most 3 names

ifnames={2-} -> Only apply to name lists containing at

↪→ least 2 names

names=〈range〉
By default, for name list fields, the names used range from the first name to the
maxalphanames/minalphanames truncation. This option can be used to over-
ride this with an explicit range of names to consider. The plus ‘+’ sign is a special end
of range marker denoting the truncation point of max/minalphanames. The range
separator can be any number of characters with the Unicode Dash property. For
example:

names=3 -> Use first 3 names in the name list

names={2-3} -> Use second and thirds names only

names={-3} -> Same as 1-3

names={2-} -> Use all names starting with the second

↪→ name (ignoring max/minalphanames truncation)

names={2-+} -> Use all names starting with the second

↪→ name (respecting max/minalphanames truncation)

namessep=〈string〉 default: empty
An arbitrary string separator to put between names in a namelist.
noalphaothers=true, false default: false
By default, \labelalphaothers is appended to label parts derived from name
lists if there are more names in the list than are shown in the label part. This option
can be used to disable the default behaviour.

229

\literal{〈characters〉}

Insert the literal 〈characters〉 into the label at this point.

When a name list \field is specified, the method of extracting the string is specified
by a separate template specified by the following command:

\DeclareLabelalphaNameTemplate[〈name〉]{〈specification〉}

Defines the labelalphaname template 〈name〉. The 〈name〉 is optional and de-
faults to 〈‘global’〉.
Such templates specify how to extract a label string from a name list when a \field
specification in \DeclareLabelalphaTemplate contains a name list.

\namepart[〈options〉]{〈namepart〉}

〈namepart〉 is one of the datamodel nameparts defined with the
\DeclareDatamodelConstant command (see § 4.2.3). The 〈options〉
are:

use=true, false default: false

Only use the 〈namepart〉 in constructing the label information if there is a corre-
sponding option use‘namepart’ and that option is true.

pre=true, false default: false

When constructing label strings from names, the \namepart without a
pre option will be used to construct label string, passing through disam-
biguation, substring etc. operations as specified by the \field options in
\DeclareLabelalpaTemplate. Then the \namepart options with the pre
option set will be prepended to the result, (in the order given, if there are more than
one such \nameparts). This allows to unconditionally prepend certain namepart
information to name label strings, like name prefices. Note that the uppercase
and lowercase options of \field in \DeclareLabelalphaTemplate are
applied to the entire label returned from \DeclareLabelalphaTemplate, both
pre parts and non pre.

compound=true, false default: false

For static (non-varwidth) disambiguation in \DeclareLabelalphaTemplate,
treat nameparts separated by whitespace or hyphens (compound names) as separate
names for label generation. This means that when forming a label out of, for example
the surname ‘Ballam Forsyth’ with a 1 character, left-side substring, this name would
give ‘BF’ with compound=true and ‘B’ with compound=false. The short form
compound is equivalent to compound=true.

strwidth=〈integer〉 default: 1

The number of characters of the 〈namepart〉 to use.

strside=left, right default: left

The side of the string from which to take the strwidth number of characters.

Note that the templates for labels can be defined per-type and you should be aware
of this when using the automatically disambiguated label functionality. Disambigua-
tion is not per-type as this might lead to ambiguity due to different label formats for
different types being isolated from each others disambiguation process. Normally,

230

you will want to use very different label formats for different types to make the type
obvious by the label.

Here are some examples. The default global biblatex alphabetic label tem-
plate is defined below. Firstly, shorthand has final=true and so if there is a
shorthand field, it is used as the label and nothing more of the template is consid-
ered. Next, the label field is used as the first label element if it exists. Otherwise, if
there is only one name (ifnames=1) in the labelname list, then three characters
from the left side of the family name in the labelname are used as the first label
element. If the labelname has more than one name in it, one character from the
left side of each family name is used as the first label element. The second label
element consists of 2 characters from the right side of the year field.

The default template for constructing labels from names is also shown. This
prepends the first character from the left side of any prefix (if the useprefix
option is true) to a label extracted from the family name (according to the options on
the calling \field option from \DeclareLabelalphaTemplate), allowing
for compound family names.

\DeclareLabelalphaTemplate{

\labelelement{

\field[final]{shorthand}

\field{label}

\field[strwidth=3,strside=left,ifnames=1]{labelname

↪→ }

\field[strwidth=1,strside=left]{labelname}

}

\labelelement{

\field[strwidth=2,strside=right]{year}

}

}

\DeclareLabelalphaNameTemplate{

\namepart[use=true, pre=true, strwidth=1, compound=

↪→ true]{prefix}

\namepart{family}

}

To get an idea of how the label automatic disambiguation works, consider the fol-
lowing author lists:

Agassi, Chang, Laver (2000)

Agassi, Connors, Lendl (2001)

Agassi, Courier, Laver (2002)

Borg, Connors, Edberg (2003)

Borg, Connors, Emerson (2004)

Assuming a template declaration such as:

\DeclareLabelalphaTemplate{

\labelelement{

\field[varwidth]{labelname}

}

231

}

Then the labels would be:

Agassi, Chang, Laver [AChLa]

Agassi, Connors, Lendl [AConLe]

Agassi, Courier, Laver [ACouLa]

Borg, Connors, Edberg [BConEd]

Borg, Connors, Emerson [BConEm]

With normalised variable width labels defined:

\DeclareLabelalphaTemplate{

\labelelement{

\field[varwidthnorm]{labelname}

}

}

You would get the following as the substrings of names in each position are extended
to the length of the longest substring in that same position:

Agassi, Chang, Laver [AChaLa]

Agassi, Connors, Lendl [AConLe]

Agassi, Courier, Laver [ACouLa]

Borg, Connors, Edberg [BConEd]

Borg, Connors, Emerson [BConEm]

With a restriction to two characters for the name components of the label element
defined like this:

\DeclareLabelalphaTemplate{

\labelelement{

\field[varwidthnorm,strwidthmax=2]{labelname}

}

}

This would be the result (note that the individual family name label parts are no
longer unambiguous):

Agassi, Chang, Laver [AChLa]

Agassi, Connors, Lendl [ACoLe]

Agassi, Courier, Laver [ACoLa]

Borg, Connors, Edberg [BCoEd]

Borg, Connors, Emerson [BCoEm]

Alternatively, you could choose to disambiguate the name lists as a whole with:

\DeclareLabelalphaTemplate{

\labelelement{

\field[varwidthlist]{labelname}

}

}

232

Which would result in:

Agassi, Chang, Laver [AChL]

Agassi, Connors, Lendl [ACoL]

Agassi, Courier, Laver [ACL]

Borg, Connors, Edberg [BCEd]

Borg, Connors, Emerson [BCE]

Perhaps you only want to consider at most two names for label generation but
disambiguate at the whole name list level:

\DeclareLabelalphaTemplate{

\labelelement{

\field[varwidthlist,names=2]{labelname}

}

}

Which would result in:

Agassi, Chang, Laver [ACh+]

Agassi, Connors, Lendl [ACo+]

Agassi, Courier, Laver [AC+]

Borg, Connors, Edberg [BC+a]

Borg, Connors, Emerson [BC+b]

In this last example, you can see \labelalphaothers has been appended to
show that there are more names. The last two labels now require disambiguating
with \extraalpha as there is no way of disambiguating this label name list with
only two names.

Finally, here is an example using multiple label elements:

\DeclareLabelalphaTemplate{

\labelelement{

\field[varwidthlist]{labelname}

}

\labelelement{

\literal{-}

}

\labelelement{

\field[strwidth=3,strside=right]{labelyear}

}

}

Which would result in:

Agassi, Chang, Laver [AChL-000]

Agassi, Connors, Lendl [AConL-001]

Agassi, Courier, Laver [ACouL-002]

Borg, Connors, Edberg [BCEd-003]

Borg, Connors, Emerson [BCEm-004]

233

Here is another rather contrived example showing that you don’t need to specially
quote LaTeX special characters (apart from ‘%’, obviously) when specifying padding
characters and literals:

\DeclareLabelalphaTemplate{

\labelelement{

\literal{>}

}

\labelelement{

\literal{\%}

}

\labelelement{

\field[namessep={/}, strwidth=4, padchar=_]{

↪→ labelname}

}

\labelelement{

\field[strwidth=3, padchar=&, padside=left]{title}

}

\labelelement{

\field[strwidth=2,strside=right]{year}

}

}

which given:

@Book{test,

author = {XXX YY and WWW ZZ},

title = {T},

year = {2007},

}

would resulting a label looking like this:

[>%YY/ZZ__&&T07]

Generating labels from fields may involve some difficulties when you have fields
containing diacritics, hyphens, spaces etc. Often, you want to ignore things like
separator characters or spaces when generating labels. An option is provided to
customise the regular expression(s) to strip from a field before it is passed to the
label generation system.

\DeclareNolabel{〈specification〉}

Defines regular expressions to strip from any field before generating a label part
for the field. The 〈specification〉 is an undelimited list of \nolabel directives
which specify the regular expressions to remove from fields. Spaces, tabs and line
endings may be used freely to visually arrange the 〈specification〉. Blank lines are
not permissible. This command may only be used in the preamble.

\nolabel{〈regexp〉}

Any number of\nolabel commands can be given each of which specifies to remove
the 〈regexp〉 from the copy of the field which the label generation system sees. Since

234

regular expressions usually contain special characters, it is best to enclose them in
the provided \regexp macro as shown—this will pass the expression through to
biber correctly.

If there is no \DeclareNolabel specification, biber will default to:

\DeclareNolabel{

% strip punctuation, symbols, separator and control

↪→ characters

\nolabel{\regexp{[\p{P}\p{S}\p{C}]+}}

}

This biber default strips punctuation, symbol, separator and control characters
from fields before passing the field string to the label generation system.

\DeclareNolabelwidthcount{〈specification〉}

Defines regular expressions to ignore from any field when counting charac-
ters in fixed-width substrings. The 〈specification〉 is an undelimited list of
\nolabelwidthcount directives which specify the regular expressions to ig-
nore when counting characters for fixed-width substrings. Spaces, tabs and line
endings may be used freely to visually arrange the 〈specification〉. Blank lines are
not permissible. This command may only be used in the preamble.

\nolabelwidthcount{〈regexp〉}

Any number of \nolabelwidthcount commands can be given each of which
specifies to ignore the 〈regexp〉 when generating fixed-width substrings during
label generation. Since regular expressions usually contain special characters, it is
best to enclose them in the provided \regexp macro as shown—this will pass the
expression through to biber correctly.

There is no default \DeclareNolabelwidthcount specification. Note that
this setting is only taken into account when using fixed-width substrings (non-
varwidth) during label part generation. See § 4.5.5.

4.5.6 Sorting

In addition to the predefined sorting templates discussed in § 3.6, it is possible to
define new ones or modify the default definitions. The sorting process may be
customized further by excluding certain fields from sorting on a per-type basis and
by automatically populating the presort field on a per-type basis.

\DeclareSortingTemplate[〈options〉]{〈name〉}{〈specification〉}

Defines the sorting template 〈name〉. The 〈name〉 is the identifier passed to
the sorting option (§ 3.1.2.1) when selecting the sorting template. The
\DeclareSortingTemplate command supports the following optional argu-
ments:

locale=〈locale〉
The locale for the sorting template which then overrides the global sorting locale in
the sortlocale option discussed in § 3.1.2.1.

235

The 〈specification〉 is an undelimited list of \sort directives which specify the
elements to be considered in the sorting process. Spaces, tabs, and line endings may
be used freely to visually arrange the 〈specification〉. Blank lines are not permissible.
This command may only be used in the preamble.

\sort{〈elements〉}

Specifies the elements considered in the sorting process. The 〈elements〉 are an
undelimited list of \field, \literal, \citecount, \intciteorder and
\citeorder commands which are evaluated in the order in which they are given.
If an element is defined, it is added to the sort key and the sorting routine skips to
the next \sort directive. If it is undefined, the next element is evaluated. Since
literal strings are always defined, any \literal commands should be the sole or
the last element in a \sort directive. All 〈elements〉 should be the same datatype
as described in § 2.2.2 since they will be potentially compared to any of the other
〈elements〉 in other entries.. The \sort command supports the following optional
arguments:

locale=〈locale〉
Override the locale used for sorting at the level of a particular set of sort-
ing elements. If specified, the locale overrides the locale set at the level of
\DeclareSortingTemplate and also the global setting. See also the discussion
of the global sorting locale option sortlocale in § 3.1.2.1.
direction=ascending, descending default: ascending
The sort direction, which may be either ascending or descending. The default
is ascending order.
final=true, false default: false
This option marks a \sort directive as the final one in the 〈specification〉. If one of
the 〈elements〉 is available, the remainder of the 〈specification〉 will be ignored. The
short form final is equivalent to final=true.
sortcase=true, false
Whether or not to sort case-sensitively. The default setting depends on the global
sortcase option.
sortupper=true, false
Whether or not to sort in ‘uppercase before lowercase’ (true) or ‘lowercase before
uppercase’ order (false). The default setting depends on the global sortupper
option.

\field[〈key=value, …〉]{〈field〉}

The \field element adds a 〈field〉 to the sorting specification. If the 〈field〉 is
undefined, the element is skipped. The \field command supports the following
optional arguments:

form=〈string〉
The multiscript form of the 〈field〉. Must be one of the ‘multiscriptforms’ constants
declared with \DeclareDatamodelConstant. See 3.17. Defaults to the global
msform option.
lang=〈bcp47tag〉
The multiscript BCP47 language tag of the 〈field〉. Defaults to the global mslang
option.

236

padside=left, right default: left

Pads a field on the left or right side using padchar so that its width is
padwidth. If no padding option is set, no padding is done at all. If any padding
option is specified, then padding is performed and the missing options are assigned
built-in default values. If padding and substring matching are both specified, the
substring match is performed first.

padwidth=〈integer〉 default: 4

The target width in characters.

padchar=〈character〉 default: 0

The character to be used when padding the field.

strside=left, right default: left

Performs a substring match on the left or right side of the field. The number
of characters to match is specified by the corresponding strwidth option. If no
substring option is set, no substring matching is performed at all. If any substring
option is specified, then substring matching is performed and the missing options
are assigned built-in default values. If padding and substring matching are both
specified, the substring match is performed first.

strwidth=〈integer〉 default: 4

The number of characters to match.

\literal{〈string〉}

The \literal element adds a literal 〈string〉 to the sorting specification. This is
useful as a fallback if some fields are not available.

\citecount The \citecount element has a special meaning. It requests a sort based on
the number of times an item was cited. The standard count sorting template
uses this to provide a sort in descending order of number of citations. Note
that the option citecounter must also be enabled for this to work. In ad-
dition, an additional biber run is required in order to calculate the data for
this option correctly and so the typical invocation sequence for this option is la-
tex→biber→latex→latex→biber→latex.

\citeorder The \citeorder element has a special meaning. It requests a sort based on
the lexical order of the actual citations. For entries cited within the same citation
command like:

\cite{one,two}

there is a distinction between the lexical order and the semantic order. Here “one”
and “two” have the same semantic order but a unique lexical order. The semantic
order only matters if you specify further sorting to disambiguate entries with the
same semantic order. For example, this is the definition of the none sorting template:

\DeclareSortingTemplate{lexical}{

\sort{\citeorder}

}

237

This sorts the bibliography purely lexically by the order of the keys in the citation
commands. In the example above, it sorts “one” before “two”. However, suppose that
you consider “one” and “two” to have the same order (semantic order) since they are
cited at the same time and want to further sort these by year. Suppose “two” has an
earlier year than “one”:

\DeclareSortingTemplate{lexicalyear}{

\sort{\citeorder}

\sort{year}

}

This sorts “two” before “one”, even though lexically, “one” would sort before “two”.
This is possible because the semantic order can be disambiguated by the further
sorting on year. With the standard none sorting template, the lexical order and
semantic order are identical because there is nothing further to disambiguate them.
This means that you can use \citeorder just like any other sorting specification
element, choosing how to further sort entries cited at the same time (in the same
citation command).

See also \intciteorder below.

\intciteorder The \intciteorder element has a special meaning. It requests a sort based on
the lexical order internal to the same citation command. For example:

\cite{one,two}

Here both citations have the same \citeorder but different \intciteorder.
This sorting command is basically a more granular form of \citeorder so that
order can be distinguished for citations within the same citation command. So, for
example, with the above example, this will guarantee sorting of ‘one’ before ‘two’:

\DeclareSortingTemplate{fulllexical}{

\sort{\citeorder}

\sort{\intciteorder}

}

\DeclareSortingNamekeyTemplate[〈name〉]{〈specification〉}

Defines how the sorting keys for names are constructed. This can change the sorting
order of names arbitrarily because you can choose how to put together the name parts
when constructing the string to compare when sorting. The sorting key construction
template so defined is called 〈name〉 which defaults to “global” if this optional
parameter is absent. When constructing the sorting key for a name, a sorting key for
each name part is constructed and the key for each name is formed into an ordered
key list with a special internal separator. The point of this option is to accommodate
languages or situations where sorting of names needs to be customised (for example,
Icelandic names are sometimes sorted by given names rather than by family names).
This macro may be used multiple times to define templates with different names
which can then be referred to later. Sorting name key templates can be specified at
the following scopes, in order of increasing precedence:

238

•The default template defined without the optional name argument
•Given as the sortingnamekeytemplate option to a reference context (see
§ 3.8.10)
•Given as a per-entry option sortnamekeytemplate in a bibliography data
source entry
•Given as a per-namelist option sortnamekeytemplate
•Given as a per-name option sortnamekeytemplate

By default there is only a global template which has the following 〈specification〉:

\DeclareSortingNamekeyTemplate{

\keypart{

\namepart[use=true]{prefix}

\namepart{family}

}

\keypart{

\namepart{given}

}

\keypart{

\namepart{suffix}

}

\keypart{

\namepart[use=false]{prefix}

}

}

This means that the key is constructed by concatenating, in order, the name prefix
(only if the useprefix option is true) with the family name(s), the given names(s),
the name suffix and then the name prefix (only if the useprefix option is false).
The visible number of names in the name list used to construct the key is the default
sorting visibility, see below.

\visibility{〈visibilityscope〉}

〈visibilityscope〉 determines which visibility settings to use for the name list. This
determines howmany names in the name list are visible to the sorting algorithm. This
is by default set to ‘sort’, which is the standard visibility for sorting determined by the
max*/min*names and uniquelist options. \visibility can be omitted
entirely if this default is desired. The only other scope is ‘cite’ which forces the
sorting algorithm to use the name list visibility of the citations rather than that of
the reference list sorting. This is useful when using the sortcites option in the
situation when a style has different name list truncation rules for citations than it has
for the reference list. Citations can then be forced to sort using a different reference
context that uses a modified sorting name key template that enforces the correct
name list truncation for citation sorting with:

\DeclareSortingNamekeyTemplate[mycitesorttemplate]{

\visibilty{cite}

.

.

.

239

and then force this to be used with e.g.:

\newrefcontext[sortingnamekeytemplate=

↪→ mycitesorttemplate]

\cite{a,b,c}

One thing to note is that a reference context will not be written to the .bcf if no
\printbibliography or \printbiblist occurs within it which will mean
that biber will not generate any sorted data for the refcontext. Therefore if the
requirement is to just correctly sort citations using this refcontext, you will need to
force the writing of the refcontext using \GenRefcontextData (see § 3.8.10):

% make sure sorting data using this template is

% generated since no \printbibliography/\printbiblist

% occurs in the refcontext with

% sortingnamekeytemplatename=mycitesorttemplate,

% this won't happen by default

\GenRefcontextData{sortingnamekeytemplatename=

↪→ mycitesorttemplate}

% Switch to this refcontext to use the correct

% sorted data using the sorting name key template

% which uses "cite" visibility for the name lists

\newrefcontext[sortingnamekeytemplate=

↪→ mycitesorttemplate]

% citations are correctly sorted

\cite{a,b,c}

% Switch to the default sorting name key template

% for the actual list of references which uses the

% default sorting visibility for the name lists

\newrefcontext[sortingnamekeytemplate=global]

% references are correctly sorted

\printbibliography

\keypart{〈part〉}

〈part〉 is an ordered list of of \namepart and \literal specifications which
are concatenated together when constructing a part of the name sorting key. The
\keyparts are then concatenated together with terminal padding to ensure correct
sorting.

\literal{〈string〉}

A literal string to insert into the name sorting key.

\namepart{〈name〉}

Specifies the 〈name〉 of a namepart to use in constructing the name sorting key.

use=true, false default: true

Indicates that the namepart 〈name〉 is only to be used in this concatenation position
if the corresponding use‘name’ option is set to the specified boolean value.

240

inits=true, false default: true

Indicates that only the initials of namepart 〈name〉 are to be used in constructing
the sorting specification.

As an example, suppose you wanted to be able to sort names by given name rather
than family name, you could define a sorting name key template like this:

\DeclareNamekeyTemplate[givenfirst]{

\keypart{

\namepart{given}

}

\keypart{

\namepart[use=true]{prefix}

}

\keypart{

\namepart{family}

}

\keypart{

\namepart[use=false]{prefix}

}

}

You can then use the name givenfirst at the appropriate scope in order to make
biber use this template when constructing sorting name keys. For example, you
could enable this for one bibliography list like this:

\begin{refcontext}[sortnamekeytemplate=givenfirst]

\printbibliography

\end{refcontext}

or perhaps you only want to do this for a particular entry:

@BOOK{key,

OPTIONS = {sortnamekeytemplate=givenfirst},

AUTHOR = {Arnar Vigfusson}

}

or just a name list by using the option as a pseudo-name which will be ignored:

@BOOK{key,

AUTHOR = {sortnamekeytemplate=givenfirst and Arnar

↪→ Vigfusson}

}

or just a single name by passing the option as part of the extended name information
format which biber supports (see § 3.4):

@BOOK{key,

AUTHOR = {given=Arnar, family=Vigfusson,

↪→ sortnamekeytemplate=givenfirst}

}

241

Now we give some examples of sorting templates. In the first example, we define
a simple name/title/year template. The name element may be either the author,
the editor, or the translator. Given this specification, the sorting routine will
use the first element which is available and continue with the title. Note that the
options use<name> options are considered automatically in the sorting process:

\DeclareSortingTemplate{sample}{

\sort{

\field{author}

\field{editor}

\field{translator}

}

\sort{

\field{title}

}

\sort{

\field{year}

}

}

In the next example, we define the same template in amore elaborate way, considering
special fields such as presort, sortkey, sortname, etc. Since the sortkey
field specifies the master sort key, it needs to override all other elements except for
presort. This is indicated by the final option. If the sortkey field is available,
processing will stop at this point. If not, the sorting routine continues with the
next \sort directive. This setup corresponds to the default definition of the nty
template:

\DeclareSortingTemplate{nty}{

\sort{

\field{presort}

}

\sort[final]{

\field{sortkey}

}

\sort{

\field{sortname}

\field{author}

\field{editor}

\field{translator}

\field{sorttitle}

\field{title}

}

\sort{

\field{sorttitle}

\field{title}

}

\sort{

\field{sortyear}

\field{year}

}

242

}

Finally, here is an example of a sorting template which overrides the global sorting
locale and additionally overrides again when sorting by the origtitle field. Note
the use in the template-level override of a babel/polyglossia language name instead
of a real locale identifier. biber will map this to a suitable, real locale identifier (in
this case, sv_SE):

\DeclareSortingTemplate[locale=swedish]{custom}{

\sort{

\field{sortname}

\field{author}

\field{editor}

\field{translator}

\field{sorttitle}

\field{title}

}

\sort[locale=de_DE_phonebook]{

\field{origtitle}

}

}

\DeclareSortExclusion{〈entrytype, …〉}{〈field, …〉}

Specifies fields to be excluded from sorting on a per-type basis. The 〈entrytype〉
argument and the 〈field〉 argument may be a comma-separated list of values. A
blank 〈field〉 argument will clear all exclusions for this 〈entrytype〉. A value of ‘*’ for
〈entrytype〉 will exclude 〈field,…〉 for every entrytype. This is equivalent to simply
deleting the field from the sorting specification and is only normally used in combina-
tion with \DeclareSortInclusion when one wishes to exclude a field for all
but explicitly included entrytypes. See example in \DeclareSortInclusion
below. This command may only be used in the preamble.

\DeclareSortInclusion{〈entrytype, …〉}{〈field, …〉}

Only used along with \DeclareSortExclusion. Specifies fields to be included
in sorting on a per-type basis. This allows the user to exclude a field from sorting
for all entrytypes and then to override this for certain entrytypes. This is easier
sometimes than using \DeclareSortExclusion to list exclusions for many
entrytypes. The 〈entrytype〉 argument and the 〈field〉 argument may be a comma-
separated list of values. This command may only be used in the preamble. For
example, this would use title during sorting only for @articles:

\DeclareSortExclusion{*}{title}

\DeclareSortInclusion{article}{title}

\DeclarePresort[〈entrytype, …〉]{〈string〉}

Specifies a string to be used to automatically populate the presort field of entries
without a presort field. The presort may be defined globally or on a per-type

243

basis. If the optional 〈entrytype〉 argument is given, the 〈string〉 applies to the
respective entry type. If not, it serves as the global default value. Specifying an
〈entrytype〉 in conjunction with a blank 〈string〉 will clear the type-specific setting.
The 〈entrytype〉 argument may be a comma-separated list of values. This command
may only be used in the preamble.

\DeclareSortTranslit[〈entrytype〉]{〈specification〉}

Languages which can be written in different scripts or alphabets often only have
CLDR sorting tailoring for one script and it is expected that you transliterate into
the supported script for sorting purposes. A common example is Sanskrit which
is often written in academic contexts in IAST romanised script but which needs to
be sorted in the ‘sa’ locale which expects the Devanāgarī script. Another common
case is transliteration of Russian Cyrillic into Latin as defined by the ALA-LC stan-
dard. Such requirement means that it is necessary to transliterate into the sorting
script internally. \DeclareSortTranslit declares which parts of an entry you
would like to transliterate for sorting purposes. Without the 〈entrytype〉 parame-
ter, the 〈specification〉 applies to all entrytypes. The 〈specification〉 is one or more
\translit commands:

\translit[〈langids〉]{〈field or fieldset〉}{〈from〉}{〈to〉}

Specifies that the data field field or all fields in a fieldset 〈fieldset〉 declared with
\DeclareDatafieldSet (see § 4.5.2) should be transliterated from script 〈from〉
to script 〈to〉 for sorting purposes. The field/set argument should be ‘*’ to apply
transliteration to all fields. The valid 〈from〉 and 〈to〉 values are given in table 11. The
optional 〈langids〉 parameter is a comma-separated list of langid fields and the
transliteration will apply only to bibliography entries containing one of the langids
in the list. Note that biblatex does not aim to support general transliteration,
only those which are useful for sorting purposes. Please open a GitHub ticket for
biblatex if you think you need additional transliterations.

An example of transliterating titles so that they sort correctly in Sanskrit. This
example assumes that entries that should have their title fields transliterated have a
langid field set to ‘sanskrit’.

\DeclareDatafieldSet{settitles}{

\member[field=title]

\member[field=booktitle]

\member[field=eventtitle]

\member[field=issuetitle]

\member[field=journaltitle]

\member[field=maintitle]

\member[field=origtitle]

}

\DeclareSortTranslit{

\translit[sanskrit]{settitles}{iast}{devanagari}

}

244

Table 11: Valid transliteration pairs
From To Description

iast devanagari Sanskrit IAST to Devanāgarī
russian ala-lc ALA-LC romanisation for Russian
russian bgn/pcgn-standard BGN/PCGN:1947 (Standard Variant), Cyrillic to Latin, Russian

4.5.7 Bibliography List Filters

When using customisable bibliography lists (See § 3.8.3), usually one wants to re-
turn in the .bbl only those entries which have the particular fields which the
bibliography list is summarising. For example, when printing a normal list of short-
hands, you want the list returned by biber in the .bbl to contain only those
entries which have a shorthand field. This is accomplished by defining a bibliogra-
phy list filter using the \DeclareBiblistFilter command. This differs from
the filters defined using \defbibfilter (see § 3.8.9) since the filters defined by
\defbibfilter run inside biblatex after the .bbl has been generated.

\DeclareBiblistFilter{〈name〉}{〈specification〉}

Defines a bibliography list filter with 〈name〉. The 〈specification〉 consists of one or
more \filter or \filteror macros, all of which must be satisfied for the entry
to pass the filter:

\filter[〈filterspec〉]{〈filter〉}

Filter entries according to the 〈filterspec〉 and 〈filter〉. 〈filterspec〉 can be one of:

type/nottype Entry is/is not of entrytype 〈filter〉

subtype/notsubtype Entry is/is not of subtype 〈filter〉

keyword/notkeyword Entry has/does not have keyword 〈filter〉

field/notfield Entry has/does not have a field called 〈filter〉

\filteror{〈type〉}{〈filters〉}

A wrapper around one or more \filter commands specifying that they form a
disjunctive set, i.e. any one of the 〈filters〉 must be satisfied.

Fields in the datamodel which aremarked as ‘Label fields’ (see § 4.5.4) automatically
have a filter defined for them with the same name and which filters out any entries
which do no contain the field. For example, biblatex automatically generates a
filter for the shorthand field:

\DeclareBiblistFilter{shorthand}{

\filter[type=field,filter=shorthand]

}

245

4.5.8 Controlling Name Initials Generation

Generating initials for name parts from a given name involves some difficulties when
you have names with prefixes, diacritics, hyphens etc. Often, you want to ignore
things like prefixes when generating initials so that the initials for “al-Hasan” is just
“H” instead of “a-H”. This is tricky when you also have names like “Ho-Pun” where
you want the initials to be “H-P”, for example.

\DeclareNoinit{〈specification〉}

Defines regular expressions to strip from names before generating initials. The
〈specification〉 is an undelimited list of \noinit directives which specify the regular
expressions to remove from the name. Spaces, tabs and line endings may be used
freely to visually arrange the 〈specification〉. Blank lines are not permissible. This
command may only be used in the preamble.

\noinit{〈regexp〉}

Any number of \noinit commands can be given each of which specifies to remove
the 〈regexp〉 from the copy of the name which the initials generation system sees.
Since regular expressions usually contain special characters, it is best to enclose them
in the provided \regexp macro as shown—this will pass the expression through to
biber correctly.

If there is no \DeclareNoinit specification, biber will default to:

\DeclareNoinit{

% strip lowercase prefixes like 'al-' when generating

↪→ initials from names

\noinit{\regexp{\b\p{Ll}{2}\p{Pd}}}

% strip some common diacritics when generating

↪→ initials from names

\noinit{\regexp{[\x{2bf}\x{2018}]}}

}

This biber default strips a couple of diacritics and also strips lowercase prefixes
from names before generating initials.

4.5.9 Fine Tuning Sorting

It can be useful to fine tune sorting so that it ignores certain parts of particular fields.

\DeclareNosort{〈specification〉}

Defines regular expressions to strip from particular fields or types of fields when
sorting. The 〈specification〉 is an undelimited list of \nosort directives which
specify the regular expressions to remove from particular fields or type of field.
Spaces, tabs and line endingsmay be used freely to visually arrange the 〈specification〉.
Blank lines are not permissible. This command may only be used in the preamble.

246

\nosort{〈field or datafield set〉}{〈regexp〉}

Any number of \nosort commands can be given each of which specifies to remove
the 〈regexp〉 from the 〈field〉 or 〈datafield set〉. A 〈datafield set〉 is simply a conve-
nience grouping of semantically similar fields from which you might want to remove
a regexp. See § 4.5.2 for the available sets, their members and customisation. Since
regular expressions usually contain special characters, it is best to enclose them in
the provided \regexp macro as shown—this will pass the expression through to
biber correctly.

The default is:

\DeclareNosort{

% strip prefixes like 'al-' when sorting names

\nosort{setnames}{\regexp{\A\p{L}{2}\p{Pd}}}

% strip some diacritics when sorting names

\nosort{setnames}{\regexp{[\x{2bf}\x{2018}]}}

}

This biber default strips a couple of diacritics and also strips two-letter prefixes
(like “Al-”) from names when sorting. Suppose you wanted to ignore “The” at the
beginning of the title field when sorting:

\DeclareNosort{

\nosort{title}{\regexp{\AThe\s+}}

}

Or if you wanted to ignore “The” at the beginning of any title field:

\DeclareNosort{

\nosort{settitles}{\regexp{\AThe\s+}}

}

4.5.10 Fine Tuning hashing and uniquename

\DeclareNonamestring{〈specification〉}

Defines regular expressions to strip from name fields when generating fullhash
and uniquename. The 〈specification〉 is an undelimited list of \nonamestring
directives which specify the regular expressions to remove from particular name
fields. Spaces, tabs and line endings may be used freely to visually arrange the
〈specification〉. Blank lines are not permissible. This command may only be used in
the preamble.

\nonamestring{〈namefield or datafield name set〉}{〈regexp〉}

Any number of \nonamestring commands can be given each of which spec-
ifies to remove the 〈regexp〉 from the 〈namefield〉 or 〈datafield name set〉. A
〈datafield name set〉 is simply a convenience grouping of semantically similar fields
fromwhich youmight want to remove a regexp. See § 4.5.2 for the available sets, their
members and customisation. Only set of name lists are relevant to this command.

247

Since regular expressions usually contain special characters, it is best to enclose them
in the provided \regexp macro as shown—this will pass the expression through to
biber correctly.

Suppose you wanted to ignore square brackets in names in the author name field
and treat ‘D[onald] Knuth’ the same as ‘Donald Knuth’ for purposes uniquename
and hashing so that both variants appeared together in a dashed bibliography style
and were also treated the same when calculating uniquename:

\DeclareNonamestring{

\nonamestring{author}{\regexp{[\[\]]}}

}

For consistency, it is often desirable to use the same regexp in \DeclareNosort.

4.5.11 Special Fields

Some of the automatically generated fields from § 4.2.4.2 may be customized.

\DeclareLabelname[〈entrytype, …〉]{〈specification〉}

Defines the fields to consider when generating the labelname field (see § 4.2.4.2).
The 〈specification〉 is an ordered list of \field commands. The fields are checked
in the order listed and the first field which is available will be used as labelname.
This is the default definition:

\DeclareLabelname{%

\field{shortauthor}

\field{author}

\field{shorteditor}

\field{editor}

\field{translator}

}

The labelname field may be customized globally or on a per-type basis. If the
optional 〈entrytype〉 argument is given, the specification applies to the respective
entry type. If not, it is applied globally. The 〈entrytype〉 argument may be a comma-
separated list of values. This command may only be used in the preamble.

\field[〈key=value, …〉]{〈field〉}

form=〈string〉
The multiscript form of the 〈field〉. Must be one of the ‘multiscriptforms’ constants
declared with \DeclareDatamodelConstant. See 3.17. Defaults to the global
msform option.

lang=〈bcp47tag〉
The multiscript BCP47 language tag of the 〈field〉. Defaults to the global mslang
option.

248

\DeclareLabeldate[〈entrytype, …〉]{〈specification〉}

Defines the date components to consider when generating labelyear,
labelmonth, labelday, labelendyear, labelendmonth and
labelendday fields (see § 4.2.4.2). The 〈specification〉 is an ordered list of
\field or \literal commands. The items are checked in the order listed and
the first item which is available will be used to popluate the mentioned fields. Note
that the \field items do not have to be datetype ‘date’ in the data model so that
you can create pseudo-year labels by, for example, using a pubstate field contents,
if available, as the year label by defining \DeclareLabeldate suitably. Note
also that a \literal command will always be used when found and so this should
always be the last thing in the list. If the value of a \literal command is a valid
localisation string, then this will be resolved in the current language, otherwise the
value is used as a literal string as-is. This is the default definition:

\DeclareLabeldate{%

\field{date}

\field{year}

\field{eventdate}

\field{origdate}

\field{urldate}

\literal{nodate}

}

Note that the date field is split by the backend into year, month which are also
valid fields in the default data model. In order to support legacy data which directly
sets year and/or month, the specification ‘date’ in \DeclareLabeldate will
alsomatchyear andmonth fields, if present. Thelabel* fieldsmay be customized
globally or on a per-type basis. If the optional 〈entrytype〉 argument is given, the
specification applies to the respective entry type. If not, it is applied globally. The
〈entrytype〉 argument may be a comma-separated list of values. This command may
only be used in the preamble. See also § 4.2.4.3.

\DeclareExtradate{〈specification〉}

Defines which date information used to construct the extradate field. With
the default setting for \DeclareExtradateContext, this field (see § 4.2.4.2)
is printed to disambiguate works by the same labelname (usually the author) or
labeltitle (usually the main title) which occur in the same date scope. By default,
the date scope is the year and so two works by the same author/title within the same
year will have different extradate values which are used to disambiguate the
works in the bibliography in the usual manner seen in many authoryear type styles.
The 〈specification〉 is one or more \scope specifications which can contain one or
more \field specifications. Within a \scope, the existence of each \field will
be checked and if found, the first \field is used and the rest are ignored. This
allows a fallback in case certain fields are not available in all entries. All \scopes
are used to track information and \scopes should be specified in decreasing order
of generality (e.g. year then month then day etc) The default definition is:

\DeclareExtradate{%

\scope{

249

\field{labelyear}

\field{year}

}

}

This means that the labelyear field only (or year if this does not exist) will be
used to track works by the same author. With the following datasource entries:

@BOOK{extra1,

AUTHOR = {John Doe},

DATE = {2001-01}

}

@BOOK{extra2,

AUTHOR = {John Doe},

DATE = {2001-02}

}

The default definition would result in:

Doe 2001a

Doe 2001b

Here, extradate only considers the ((label)year) information and since this is
identical, disambiguation is required. However, consider the following definition:

\DeclareExtradate{%

\scope{

\field{labelyear}

\field{year}

}

\scope{

\field{labelmonth}

}

}

The result would be:

Doe 2001

Doe 2001

If only years were printed, this would be ambiguous because extradate now
considers labelmonth and since this differs, no disambiguation is necessary.
Care should therefore be taken to synchronise the printed information with the
extradate disambiguation settings. Notice that the second definition is ‘month-
in-year’ disambiguation and quite different from:

\DeclareExtradate{%

\scope{

250

\field{labelmonth}

}

}

which is just plain ‘month’ disambiguation which is very unlikely to be what you
ever want to do since this disambiguation only based on month and ignores the year
entirely. extradate calculation should almost always be based on all information
down to the resolution you require. For example, if you wish to disambiguate right
down to the hour level (perhaps useful in large bibliographies of rapidly changing
online material), you would specify something like this:

\DeclareExtradate{%

\scope{

\field{labelyear}

\field{year}

}

\scope{

\field{labelmonth}

}

\scope{

\field{labelday}

}

\scope{

\field{labelhour}

}

}

Entries without the specified granularity of information will disambiguate at the
lowest granularity they contain, so, for example, with:

\DeclareExtradate{%

\scope{

\field{labelyear}

\field{year}

}

\scope{

\field{labelmonth}

}

}

@BOOK{extra1,

AUTHOR = {John Doe},

DATE = {2001}

}

@BOOK{extra2,

AUTHOR = {John Doe},

DATE = {2001}

}

251

The result would still be:

Doe 2001a

Doe 2001b

This command may only be used in the preamble.

\DeclareExtradateContext[〈entrytype, …〉]{〈specification〉}

Defines the context in which identical dates (as determined by
\DeclareExtradate) are tracked so that extradate can be appended
for disambiguation purposes. Normally this context is the author name so that
works of the same date by the same author can be disambiguated in authoryear
type styles. Often, when there is no author, the title appears in the author position
and the title is used as the context to disambiguate instead. Therefore, the default
definition is:

\DeclareExtradateContext{%

\field{labelname}

\field{labeltitle}

}

It is unlikely that this will need to be customised for normal use cases.

\DeclareLabeltitle[〈entrytype, …〉]{〈specification〉}

Defines the fields to consider when generating the labeltitle field (see § 4.2.4.2).
The 〈specification〉 is an ordered list of \field commands. The fields are checked
in the order listed and the first field which is available will be used as labeltitle.
This is the default definition:

\DeclareLabeltitle{%

\field{shorttitle}

\field{title}

}

The labeltitle field may be customized globally or on a per-type basis. If the
optional 〈entrytype〉 argument is given, the specification applies to the respective
entry type. If not, it is applied globally. The 〈entrytype〉 argument may be a comma-
separated list of values. This command may only be used in the preamble.

\field[〈key=value, …〉]{〈field〉}

form=〈string〉
The multiscript form of the 〈field〉. Must be one of the ‘multiscriptforms’ constants
declared with \DeclareDatamodelConstant. See 3.17. Defaults to the global
msform option.

lang=〈bcp47tag〉
The multiscript BCP47 language tag of the 〈field〉. Defaults to the global mslang
option.

252

4.5.12 Data Inheritance (crossref)

biber features a highly customizable cross-referencing mechanism with flexible
data inheritance rules. This sections deals with the configuration interface. See
appendix B for the default configuration. A note on terminology: the child or
target is the entry with the crossref field, the parent or source is the entry the
crossref field points to. The child inherits data from the parent. For multiscript
enabled fields (3.17), all alternates of the field are inherited.

\DefaultInheritance[〈exceptions〉]{〈options〉}

Configures the default inheritance behavior. This command may only be used in
the preamble. The default behavior may be customized be setting the following
〈options〉:

all=true, false default: true

Whether or not to inherit all fields from the parent by default.

all = true means that the child entry inherits all fields from the
parent, unless a more specific inheritance rule has been set up with
\DeclareDataInheritance. If an inheritance rule is defined for a field, data
inheritance is controlled by that rule. all=false means that no data is inherited
from the parent by default and each field to be inherited requires an explicit
inheritance rule set up with \DeclareDataInheritance. The package default
is all=true.

override=true, false default: false

Whether or not to overwrite target fields with source fields if both are defined.
This applies both to automatic inheritance and to explicit inheritance rules. The
package default is override=false, i. e., existing fields of the child entry are not
overwritten.

ignore=〈csv list of uniqueness options〉
This option takes a comma-separated list of one of more of ‘singletitle’, ‘uniquetitle’,
‘uniquebaretitle’ and/or ‘uniquework’. The purpose of this option is to ignore tracking
information for these three options when the field which would trigger the tracking
(table 6) is inherited. An example—Suppose that you have several @book entries
which all crossref a @mvbook from which they get their author field. You might
reasonably want the \ifsingletitle test to return ‘true’ for this author as their
only ‘work’ is the @mvbook. Similar comments would apply to situations involving
the \ifuniquetitle, \ifuniquebaretitle and \ifuniquework tests.
The ignore option lists which of these should have their tracking information
ignored when the fields which would trigger them are inherited. The idea is that
the presence of an inherited field does not contribute towards the determination of
whether some combination of name/title is unique in the bibliographic data. For exam-
ple, this modified default setting would ignore singletitle and uniquetitle
tracking:

\DefaultInheritance{ignore={singletitle,uniquetitle},

↪→ all=true, override=false}

Of course, the ignoring of tracking does nothing if the fields inherited do not play a
role in tracking. Only the fields listed in table 6 are relevant to this option.

253

The optional 〈exceptions〉 are an undelimited list of \except directives. Spaces,
tabs, and line endings may be used freely to visually arrange the 〈exceptions〉. Blank
lines are not permissible.

\except{〈source〉}{〈target〉}{〈options〉}

Defines an exception to the default inheritance rules.

\DeclareDataInheritance sets the inheritance 〈options〉 for a specific
〈source〉 and 〈target〉 combination. The 〈source〉 and 〈target〉 arguments specify
the parent and the child entry type. The asterisk matches all types and is permissible
in either argument.

\DeclareDataInheritance[〈options〉]{〈source, …〉}{〈target, …〉}{〈rules〉}

Declares inheritance rules. The 〈source〉 and 〈target〉 arguments specify the parent
and the child entry type. Either argument may be a single entry type, a comma-
separated list of types, or an asterisk. The asterisk matches all entry types. The 〈rules〉
are an undelimited list of \inherit and/or \noinherit directives. Spaces, tabs,
and line endings may be used freely to visually arrange the 〈rules〉. Blank lines are
not permissible. This command may only be used in the preamble. The options are:

ignore=〈csv list of uniqueness options〉
As the ignore option on \DefaultInheritance explained above.
When set here, it takes precedence over any global options set with
\DefaultInheritance. For example, this would ignore singletitle

and uniquetitle tracking for a @book inheriting from a @mvbook.

\DeclareDataInheritance[ignore={singletitle,uniquetitle

↪→ }]{mvbook}{book}{...}

\inherit[〈option〉]{〈source〉}{〈target〉}

Defines an inheritance rule by mapping a 〈source〉 field to a 〈target〉 field. 〈option〉
can be one of

override=true, false default: false

As the override option for \DefaultInheritance explained above.
When set here, it takes precedence over any global options set with
\DefaultInheritance.

\noinherit{〈source〉}

Unconditionally prevents inheritance of the 〈source〉 field.

\ResetDataInheritance Clears all inheritance rules defined with
\DeclareDataInheritance. This command may only be used in the
preamble.

Here are some practical examples:

\DefaultInheritance{all=true,override=false}

254

This example shows how to configure the default inheritance behavior. The above
settings are the package defaults.

\DefaultInheritance[

\except{*}{online}{all=false}

]{all=true,override=false}

This example is similar to the one above but adds one exception: entries of type
@online will, by default, not inherit any data from any parent.

\DeclareDataInheritance{collection}{incollection}{

\inherit{title}{booktitle}

\inherit{subtitle}{booksubtitle}

\inherit{titleaddon}{booktitleaddon}

}

So far we have looked at setting up standard inheritance. For example, all=true
means that the publisher field of a source entry is copied to the publisher
field of the target entry. In some cases, however, asymmetric mappings are required.
They are defined with \DeclareDataInheritance. The above example sets up
three typical rules for @incollection entries referencing a @collection. We
map the title and related fields of the source to the corresponding booktitle
fields of the target.

\DeclareDataInheritance{mvbook,book}{inbook,bookinbook

↪→ }{

\inherit{author}{author}

\inherit{author}{bookauthor}

}

This rule is an example of one-to-many mapping: it maps the author field of
the source to both the author and the bookauthor fields of the target in order
to allow for compact inbook/bookinbook entries. The source may be either a
@mvbook or a @book entry, the target either an @inbook or a @bookinbook
entry.

\DeclareDataInheritance{*}{inbook,incollection}{

\noinherit{introduction}

}

This rule prevents inheritance of the introduction field. It applies to all targets
of type @inbook or @incollection, regardless of the source entry type.

\DeclareDataInheritance{*}{*}{

\noinherit{abstract}

}

This rule, which applies to all entries, regardless of the source and target entry types,
prevents inheritance of the abstract field.

255

\DefaultInheritance{all=true,override=false}

\ResetDataInheritance

This example demonstrates how to emulate traditional BibTeX’s cross-referencing
mechanism. It enables inheritance by default, disables overwriting, and clears all
other inheritance rules and mappings.

In a bibliography entry, you can give an option ‘noinherit’ where the value is
a datafield set defined with \DeclareDatafieldSet (§ 4.5.2). This will block
inheritance of the fields in the set on a per-entry basis. For example:

\DeclareDatafieldSet{nobtitle}{

\member[field=booktitle]

}

@INBOOK{s1,

OPTIONS = {noinherit=nobtitle},

TITLE = {Subtitle},

CROSSREF = {s2}

}

@BOOK{s2,

TITLE = {Title}

}

Here, s1 will not inherit the TITLE of s2 as BOOKTITLE as this is blocked by the
datafield set given as the value to the noinherit option. One important thing to
note is that children will never inherit any dateparts of a given type if they already
contain a datepart of that type. So, for example:

@INBOOK{b1,

DATE = {2004-03-03},

ORIGDATE = {2004-03},

CROSSREF = {b2}

}

@BOOK{b2,

DATE = {2004-03-03/2005-08-09},

ORIGDATE = {2004-03/2005-08},

EVENTDATE = {2004-03/2005-08},

}

Here, b1 will not inherit any of endyear, endmonth, endday, origendyear
or origendmonth as this would make a mess of its own dates. It will, given the
inheritance defaults, inherit all of the event* date parts.

4.6 Auxiliary Commands

The facilities in this section are intended for analyzing and saving bibliographic data
rather than formatting and printing it.

256

4.6.1 Data Commands

The commands in this section grant low-level access to the unformatted bibliographic
data. They are not intended for typesetting but rather for things like saving data to a
temporary macro so that it may be used in a comparison later.

\thefield[〈msform〉][〈mslang〉]{〈field〉}

Expands to the unformatted 〈field〉 (for a multiscript field, 〈msform〉/〈mslang〉 may
be specified, otherwise, the global or refcontext override values of msform/mslang
are used). If the 〈field〉 is undefined, this command expands to an empty string.

\strfield[〈msform〉][〈mslang〉]{〈field〉}

Similar to \thefield, except that the field is automatically sanitized such that its
value may safely be used in the formation of a control sequence name.

\csfield[〈msform〉][〈mslang〉]{〈field〉}

Similar to \thefield, but prevents expansion.

\usefield{〈command〉}[〈msform〉][〈mslang〉]{〈field〉}

Executes 〈command〉 using the unformatted 〈field〉 as its argument (for a multi-
script field, 〈msform〉/〈mslang〉 may be specified, otherwise, the global or refcontext
override values of msform/mslang are used).

\thelist[〈msform〉][〈mslang〉]{〈literal list〉}

Expands to the unformatted 〈literal list〉 (for a multiscript list, 〈msform〉/〈mslang〉
may be specified, otherwise, the global or refcontext override values of
msform/mslang are used). If the list is undefined, this command expands to
an empty string. Note that this command will dump the 〈literal list〉 in the internal
format used by this package. This format is not suitable for printing.

\strlist[〈msform〉][〈mslang〉]{〈literal list〉}

Similar to \thelist (for a multiscript list, 〈msform〉/〈mslang〉 may be specified,
otherwise, the global or refcontext override values of msform/mslang are used),
except that the list internal representation is automatically sanitized such that its
value may safely be used in the formation of a control sequence name.

\thefirstlistitem[〈msform〉][〈mslang〉]{〈literal list〉}

Expands to the unformatted first item in 〈literal list〉 (for a multiscript list,
〈msform〉/〈mslang〉 may be specified, otherwise, the global or refcontext override
values of msform/mslang are used). If the 〈literal list〉 is undefined, this command
expands to an empty string.

\strfirstlistitem[〈msform〉][〈mslang〉]{〈literal list〉}

Similar to \thefirstlistitem, except that the item is automatically sanitized
such that its value may safely be used in the formation of a control sequence name.

\usefirstlistitem{〈command〉}[〈msform〉][〈mslang〉]{〈literal list〉}

Executes 〈command〉 using the unformatted first item of 〈literal list〉 as its argument
(for a multiscript list, 〈msform〉/〈mslang〉 may be specified, otherwise, the global or
refcontext override values of msform/mslang are used).

257

\thename[〈msform〉][〈mslang〉]{〈name list〉}

Expands to the unformatted 〈name list〉 (for a multiscript name, 〈msform〉/〈mslang〉
may be specified, otherwise, the global or refcontext override values of
msform/mslang are used). If the list is undefined, this command expands to
an empty string. Note that this command will dump the 〈name list〉 in the internal
format used by this package. This format is not suitable for printing.

\strname[〈msform〉][〈mslang〉]{〈name list〉}

Similar to \thename, except that the name internal representation is automatically
sanitized such that its value may safely be used in the formation of a control sequence
name.

\savefield[〈msform〉][〈mslang〉]{〈field〉}{〈macro〉}
\savefield*{〈field〉}{〈macro〉}

Copies an unformatted 〈field〉 (optionally a multiscript field of 〈msform〉/〈mslang〉)
to a 〈macro〉. The regular variant of this command defines the 〈macro〉 globally, the
starred one works locally.

\savelist[〈msform〉][〈mslang〉]{〈literal list〉}{〈macro〉}
\savelist*{〈literal list〉}{〈macro〉}

Copies an unformatted 〈literal list〉 (optionally a multiscript list of
〈msform〉/〈mslang〉) to a 〈macro〉. The regular variant of this command de-
fines the 〈macro〉 globally, the starred one works locally.

\savename[〈msform〉][〈mslang〉]{〈name list〉}{〈macro〉}
\savename*{〈name list〉}{〈macro〉}

Copies an unformatted 〈name list〉 (optionally a multiscript name of
〈msform〉/〈mslang〉) to a 〈macro〉. The regular variant of this command de-
fines the 〈macro〉 globally, the starred one works locally.

\savefieldcs[〈msform〉][〈mslang〉]{〈field〉}{〈csname〉}
\savefieldcs*{〈field〉}{〈csname〉}

Similar to \savefield, but takes the control sequence name 〈csname〉 (without a
leading backslash) as an argument, rather than a macro name.

\savelistcs[〈msform〉][〈mslang〉]{〈literal list〉}{〈csname〉}
\savelistcs*{〈literal list〉}{〈csname〉}

Similar to \savelist, but takes the control sequence name 〈csname〉 (without a
leading backslash) as an argument, rather than a macro name.

\savenamecs[〈msform〉][〈mslang〉]{〈name list〉}{〈csname〉}
\savenamecs*{〈name list〉}{〈csname〉}

Similar to \savename, but takes the control sequence name 〈csname〉 (without a
leading backslash) as an argument, rather than a macro name.

\restorefield[〈msform〉][〈mslang〉]{〈field〉}{〈macro〉}

Restores a 〈field〉 (optionally amultiscript field of 〈msform〉/〈mslang〉) from a 〈macro〉
defined with \savefield before. The field is restored within a local scope.

258

\restorelist[〈msform〉][〈mslang〉]{〈literal list〉}{〈macro〉}

Restores a 〈literal list〉 (optionally a multiscript list of 〈msform〉/〈mslang〉) from a
〈macro〉 defined with \savelist before. The list is restored within a local scope.

\restorename[〈msform〉][〈mslang〉]{〈name list〉}{〈macro〉}

Restores a 〈name list〉 (optionally a multiscript name of 〈msform〉/〈mslang〉) from a
〈macro〉 defined with \savename before. The list is restored within a local scope.

\clearfield[〈msform〉][〈mslang〉]{〈field〉}

Clears the 〈field〉 (optionally a multiscript field of 〈msform〉/〈mslang〉 of which both
or neither optional arguments must be provided) within a local scope. A field cleared
this way is treated as undefined by subsequent data commands. When no optional
〈msform〉/〈mslang〉 arguments are provided, clears all alternates of a multiscript
field.

\clearlist[〈msform〉][〈mslang〉]{〈literal list〉}

Clears the 〈literal list〉 (optionally a multiscript list of 〈msform〉/〈mslang〉 of which
both or neither optional arguments must be provided) within a local scope. A list
cleared this way is treated as undefined by subsequent data commands. When
no optional 〈msform〉/〈mslang〉 arguments are provided, clears all alternates of a
multiscript list. Clearing only one alternate of a multiscript list does not clear the
associated counters for the list.

\clearname{〈name list〉}

Clears the 〈name list〉 (optionally a multiscript name of 〈msform〉/〈mslang〉 of which
both or neither optional arguments must be provided) within a local scope. A name
cleared this way is treated as undefined by subsequent data commands. When
no optional 〈msform〉/〈mslang〉 arguments are provided, clears all alternates of a
multiscript name. Clearing only one alternate of a multiscript name does not clear
the associated counters for the list.

4.6.2 Stand-alone Tests

The commands in this section are various kinds of stand-alone tests for use in
bibliography and citation styles.

\ifmsentryfield{〈entryfield〉}{〈true〉}{〈false〉}

Returns true if the 〈entryfield〉 (i.e. data source field name, regardless of biblatex
type of field) is a multiscript field and false otherwise. Only multiscript fields have
alternate forms and languages which can be selected with the 〈msform〉 and 〈mslang〉
options to various macros.

\if<datetype>julian{〈true〉}{〈false〉}

Expands to 〈true〉 if the date ‘datetype’date (date, urldate, eventdate etc.)
Was converted to the Julian Calendar due to the settings of the julianand
gregorianstart options.

259

\ifdatejulian{〈true〉}{〈false〉}

As \if<datetype>julian but for use in \mkbibdate* formatting com-
mands (§ 4.10.2) insidewhich the appropriate\if<datetype>julian command
is aliased to this command.

\if<datetype>dateera{〈era〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the date ‘datetype’date (date, urldate, eventdate etc.)
has an era specification equal to 〈era〉 and 〈false〉 otherwise. The supported 〈era〉
strings which biber determines and passes in the .bbl are:

bce BCE/BC era

ce CE/AD era

This command is useful for determining whether to print the location strings in
§ 4.9.2.21.

\ifdateera{〈era〉}{〈true〉}{〈false〉}

As \if<datetype>dateera but for use in \mkbibdate* formatting com-
mands (§ 4.10.2) inside which the appropriate \if<datetype>dateera com-
mand is aliased to this command.

\if<datetype>datecirca{〈true〉}{〈false〉}

Expands to 〈true〉 if the date ‘datetype’date (date, urldate, eventdate etc.)
had a ‘circa’ marker in the source and 〈false〉 otherwise. See § 2.3.8. This command
is useful for determining whether to print the location strings in § 4.9.2.21.

\ifdatecirca{〈true〉}{〈false〉}

As \if<datetype>datecirca but for use in \mkbibdate* formatting com-
mands (§ 4.10.2) inside which the appropriate \if<datetype>datecirca com-
mand is aliased to this command.

\if<datetype>dateuncertain{〈true〉}{〈false〉}

Expands to 〈true〉 if the date ‘datetype’date (date, urldate, eventdate etc.)
had an uncertainty marker in the source and 〈false〉 otherwise. See § 2.3.8. This
command is useful for determining whether to print, for example, a question mark
after a year.

\ifdateuncertain{〈true〉}{〈false〉}

As \if<datetype>dateuncertain but for use in \mkbibdate*

formatting commands (§ 4.10.2) inside which the appropriate
\if<datetype>dateuncertain command is aliased to this command.

\ifenddateuncertain{〈true〉}{〈false〉}

As \ifend<datetype>dateuncertain but for use in \mkbibdate*

formatting commands (§ 4.10.2) inside which the appropriate
\ifend<datetype>dateuncertain command is aliased to this com-
mand.

260

\if<datetype>dateunknown{〈true〉}{〈false〉}

Expands to 〈true〉 if the date ‘datetype’date (date, urldate, eventdate etc.) is
marked as unknown (as opposed to open) in the source and 〈false〉 otherwise. See
§ 2.3.8.

\ifdateunknown{〈true〉}{〈false〉}

As \if<datetype>dateunknown but for use in \mkbibdate*

formatting commands (§ 4.10.2) inside which the appropriate
\if<datetype>dateunknown command is aliased to this command.

\ifenddateunknown{〈true〉}{〈false〉}

As \ifend<datetype>dateunknown but for use in \mkbibdate*

formatting commands (§ 4.10.2) inside which the appropriate
\ifend<datetype>dateunknown command is aliased to this command.

\iflabeldateisdate{〈true〉}{〈false〉}

Expands to 〈true〉 if labeldate is defined and was obtained from date, and to 〈false〉
otherwise.

\ifdatehasyearonlyprecision{〈datetype〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈datetype〉date is defined and would be shown with year
precision \print<datetype>date, and to false otherwise.

\ifdatehastime{〈datetype〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈datetype〉date is defined, has a time component and
<datetype>dateusetime is true, and to false otherwise.

\ifdateshavedifferentprecision{〈datetype1〉}{〈datetype2〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the two dates 〈datetype1〉 and 〈datetype2〉 would show
in different precision when printed with \print<datetype1>date and
\print<datetype2>date respectively, and to 〈false〉 otherwise.

\ifdateyearsequal{〈datetype1〉}{〈datetype2〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the two dates 〈datetype1〉 and 〈datetype2〉 have the same year
and era. Since the sign of the date is saved in the era field, years should be compared
using this command to avoid confusion when the two years have opposite signs

\ifdatesequal{〈datetype1〉}{〈datetype2〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the two dates 〈datetype1〉 and 〈datetype2〉 are the same. Here
〈datetype2〉 may be the ‘end’ bit of 〈datetype1〉 (or vice versa).

\ifdaterangesequal{〈datetype1〉}{〈datetype2〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the two date ranges—that is the start and the end
date—〈datetype1〉 and 〈datetype2〉 are the same.

\ifcaselang[〈language〉]{〈true〉}{〈false〉}

Expands to 〈true〉 if the optional 〈language〉 is one of those declared by
\DeclareCaseLangs (see § 4.6.4) and to 〈false〉 otherwise. Without the optional
argument, checks the current value of \currentlang.

261

\ifsortingnamekeytemplatename{〈string〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈string〉 is equal to the current in scope sorting name key
template name (see § 4.5.6), and to 〈false〉 otherwise.

\ifuniquenametemplatename{〈string〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈string〉 is equal to the current in scope uniqueness name
key template name (see § 4.5.6), and to 〈false〉 otherwise.

\iflabelalphanametemplatename{〈string〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈string〉 is equal to the current in scope alphabetic label name
template name (see § 4.5.6), and to 〈false〉 otherwise.

\ifentryfieldundef{〈entryfield〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈entryfield〉 is undefined, and to 〈false〉 otherwise.
〈entryfield〉 is the name of any entry field, regardless of type (field, list, name etc.).
This allows testing to see if there are any alternates of an entryfield defined.

\iffieldundef[〈msform〉][〈mslang〉]{〈field〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈field〉 is undefined, and to 〈false〉 otherwise. For amultiscript
field, 〈msform〉/〈mslang〉may be specified to test a specific field alternate. If 〈msform〉
and 〈mslang〉 are not specified, this macro tests to see if any alternates for a field are
defined.

\iflistundef{〈literal list〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈literal list〉 is undefined, and to 〈false〉 otherwise. For a
multiscript list, 〈msform〉/〈mslang〉 may be specified to test a specific list alternate.
If 〈msform〉 and 〈mslang〉 are not specified, this macro tests to see if any alternates
for a field are defined.

\ifnameundef[〈msform〉][〈mslang〉]{〈name list〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈name list〉 is undefined, and to 〈false〉 otherwise. For
a multiscript name, 〈msform〉/〈mslang〉 may be specified to test a specific name
alternate. If 〈msform〉 and 〈mslang〉 are not specified, this macro tests to see if any
alternates for a field are defined.

\iffieldsequal[〈msform1〉][〈mslang1〉]{〈field 1〉}[〈msform2〉][〈mslang2〉]{〈field 2〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the values of 〈field 1〉 (optionally a multiscript field
of 〈msform1〉/〈mslang1〉) and 〈field 2〉 (optionally a multiscript field of
〈msform2〉/〈mslang2〉) are equal, and to 〈false〉 otherwise.

\iflistsequal[〈msform1〉][〈mslang1〉]{〈literal list 1〉}[〈msform2〉][〈mslang2〉]{〈literal list 2〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the values of 〈literal list 1〉 (optionally a multiscript
list of 〈msform1〉/〈mslang1〉) and 〈literal list 2〉 (optionally a multiscript list of
〈msform2〉/〈mslang2〉) are equal, and to 〈false〉 otherwise.

\ifnamesequal[〈msform1〉][〈mslang1〉]{〈name list 1〉}[〈msform2〉][〈mslang2〉]{〈name list 2〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the values of 〈name list 1〉 (optionally a multiscript name
of 〈msform1〉/〈mslang1〉) and 〈name list 2〉 (optionally a multiscript name of
〈msform2〉/〈mslang2〉) are equal, and to 〈false〉 otherwise.

262

\iffieldequals[〈msform〉][〈mslang〉]{〈field〉}{〈macro〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the value of the 〈field〉 (optionally a multiscript field of
〈msform〉/〈mslang〉) is equal to the definition of 〈macro〉, and to 〈false〉 otherwise.

\iflistequals[〈msform〉][〈mslang〉]{〈literal list〉}{〈macro〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the value of the 〈literal list〉 (optionally a multiscript list of
〈msform〉/〈mslang〉) is equal to the definition of 〈macro〉, and to 〈false〉 otherwise.

\ifnameequals[〈msform〉][〈mslang〉]{〈name list〉}{〈macro〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the value of the 〈name list〉 (optionally a multiscript name of
〈msform〉/〈mslang〉) is equal to the definition of 〈macro〉, and to 〈false〉 otherwise.

\iffieldequalcs[〈msform〉][〈mslang〉]{〈field〉}{〈csname〉}{〈true〉}{〈false〉}

Similar to \iffieldequals but takes the control sequence name 〈csname〉 (with-
out a leading backslash) as an argument, rather than a macro name.

\iflistequalcs[〈msform〉][〈mslang〉]{〈literal list〉}{〈csname〉}{〈true〉}{〈false〉}

Similar to\iflistequals but takes the control sequence name 〈csname〉 (without
a leading backslash) as an argument, rather than a macro name.

\ifnameequalcs[〈msform〉][〈mslang〉]{〈name list〉}{〈csname〉}{〈true〉}{〈false〉}

Similar to\ifnameequals but takes the control sequence name 〈csname〉 (without
a leading backslash) as an argument, rather than a macro name.

\iffieldequalstr[〈msform〉][〈mslang〉]{〈field〉}{〈string〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the value of the 〈field〉 (optionally a multiscript field of
〈msform〉/〈mslang〉) is equal to 〈string〉, and 〈false〉 otherwise. This command is
robust.

\iffieldxref[〈msform〉][〈mslang〉]{〈field〉}{〈true〉}{〈false〉}

If the crossref/xref field of an entry is defined, this command checks if the
〈field〉 (optionally a multiscript field of 〈msform〉/〈mslang〉) is related to the cross-ref-
erenced parent entry. It executes 〈true〉 if the 〈field〉 of the child entry is equal to the
corresponding 〈field〉 of the parent entry, and 〈false〉 otherwise. If the crossref/
xref field is undefined, it always executes 〈false〉. This command is robust. See the
description of the crossref and xref fields in § 2.2.3 as well as § 2.4.1 for further
information concerning cross-referencing.

\iflistxref[〈msform〉][〈mslang〉]{〈literal list〉}{〈true〉}{〈false〉}

Similar to \iffieldxref but checks if a 〈literal list〉 (optionally a multiscript
list of 〈msform〉/〈mslang〉) is related to the cross-referenced parent entry. See the
description of the crossref and xref fields in § 2.2.3 as well as § 2.4.1 for further
information concerning cross-referencing.

\ifnamexref[〈msform〉][〈mslang〉]{〈name list〉}{〈true〉}{〈false〉}

Similar to \iffieldxref but checks if a 〈name list〉 (optionally a multiscript
name of 〈msform〉/〈mslang〉) is related to the cross-referenced parent entry. See the
description of the crossref and xref fields in § 2.2.3 as well as § 2.4.1 for further
information concerning cross-referencing.

263

\ifcurrentfield{〈field〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the current field is 〈field〉, and 〈false〉 otherwise. This command
is robust. It is intended for use in field formatting directives and always executes
〈false〉 when used in any other context.

\ifcurrentlist{〈literal list〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the current list is 〈literal list〉, and 〈false〉 otherwise. This command
is robust. It is intended for use in list formatting directives and always executes
〈false〉 when used in any other context.

\ifcurrentname{〈name list〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the current list is 〈name list〉, and 〈false〉 otherwise. This command
is robust. It is intended for use in list formatting directives and always executes
〈false〉 when used in any other context.

\ifuseprefix{〈true〉}{〈false〉}

Expands to 〈true〉 if the useprefix option is enabled (either globally or for the
current entry), and 〈false〉 otherwise. See § 3.1.3 for details on this option.

\ifuseauthor{〈true〉}{〈false〉}

This is just a particular case of the \ifuse<name> macro below but is men-
tioned here as author is part of the default data model. Expands to 〈true〉 if the
useauthor option is enabled (either globally or for the current entry), and 〈false〉
otherwise. See § 3.1.3 for details on this option.

\ifuseeditor{〈true〉}{〈false〉}

This is just a particular case of the \ifuse<name> macro below but is men-
tioned here as editor is part of the default data model. Expands to 〈true〉 if the
useeditor option is enabled (either globally or for the current entry), and 〈false〉
otherwise. See § 3.1.3 for details on this option.

\ifusetranslator{〈true〉}{〈false〉}

This is just a particular case of the \ifuse<name> macro below but is mentioned
here as translator is part of the default data model. Expands to 〈true〉 if the
usetranslator option is enabled (either globally or for the current entry), and
〈false〉 otherwise. See § 3.1.3 for details on this option.

\ifuse<name>{〈true〉}{〈false〉}

Expands to 〈true〉 if the use<name> option is enabled (either globally or for the
current entry), and 〈false〉 otherwise. See § 3.1.3 for details on this option.

\ifcrossrefsource{〈true〉}{〈false〉}

Expands to 〈true〉 if the entry was inclued in the .bbl due to being referenced more
than mincrossrefs times and false otherwise. See § 3.1.2.1. Also expands to false
if the entry was directly cited.

264

\ifxrefsource{〈true〉}{〈false〉}

Expands to 〈true〉 if the entry was inclued in the .bbl due to being referenced more
than minxrefs times and false otherwise. See § 3.1.2.1. Also expands to false if
the entry was directly cited.

\ifsingletitle{〈true〉}{〈false〉}

Expands to 〈true〉 if there is only one work by the labelname name in the biblio-
graphy, and to 〈false〉 otherwise. If labelname is not set for an entry, this will
always expand to 〈false〉. Note that this feature needs to be enabled explicitly with
the package option singletitle.

\ifnocite{〈true〉}{〈false〉}

Expands to 〈true〉 if the entry was only included in the .bbl via \nocite. That is,
returns 〈false〉 if an entry was both \nocite’d and \cite’d.

\ifuniquetitle{〈true〉}{〈false〉}

Expands to 〈true〉 if there is only one work with the title labeltitle and to
〈false〉 otherwise. If labeltitle is not set for an entry, this will always expand to
〈false〉. Note that this feature needs to be enabled explicitly with the package option
uniquetitle.

\ifuniquebaretitle{〈true〉}{〈false〉}

Expands to 〈true〉 if labelname is empty and there is only one work with the title
labeltitle and to 〈false〉 otherwise. If labeltitle is not set for an entry, this
will always expand to 〈false〉. Note that this feature needs to be enabled explicitly
with the package option uniquebaretitle.

\ifuniquework{〈true〉}{〈false〉}

Expands to 〈true〉 if there is only one work by the labelname name with
the labeltitle title in the bibliography, and to 〈false〉 otherwise. If neither
labelname nor labeltitle are set for an entry, this will always expand to
〈false〉. Note that this feature needs to be enabled explicitly with the package op-
tion uniquework. If both singletitle and uniquetitle are false for the
same entry, this could be because another entry has the same labdlname and
yet another, different, entry has the same labeltitle. uniquework would let
you know that there is another entry that has both the same labelname and the
same labeltitle. This could be helpful in cases where multiple people maintain
bibliography datasources and there is a risk of adding the same work with different
keys without other parties realising this. This test could help to find such duplicates.

\ifuniqueprimaryauthor{〈true〉}{〈false〉}

Expands to 〈true〉 if the primary (first) author name of labelname is unique in
the bibliography list and to 〈false〉 otherwise. This effectively answers the question
‘is there more than one author with the same base name’. The base name parts are
defined by \DeclareUniquenameTemplate see § 4.11.4. This is required by
some styles (e.g. APA) which mandates primary author disambiguation only and only
if there are (different) primary authors with the same family name. If labelname
is not set for an entry, this will always expand to 〈false〉. Note that this feature needs
to be enabled explicitly with the package option uniqueprimaryauthor.

265

\ifandothers{〈list〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈list〉 is defined and has been truncated in the bib file with
the keyword ‘and others’, and to 〈false〉 otherwise. The 〈list〉 may be a literal
list or a name list.

\ifmorenames{〈true〉}{〈false〉}

Expands to 〈true〉 if the current name list has been or will be truncated, and to 〈false〉
otherwise. This command is intended for use in formatting directives for name lists.
It will always expand to 〈false〉 when used elsewhere. This command performs the
equivalent of an \ifandothers test for the current list. If this test is negative, it
also checks if the listtotal counter is larger than liststop. This command
may be used in a formatting directive to decide if a note such as “and others” or “et
al.” is to be printed at the end of the list. Note that you still need to check whether
you are in the middle or at the end of the list, i. e., whether listcount is smaller
than or equal to liststop, see § 4.4.1 for details.

\ifmoreitems{〈true〉}{〈false〉}

This command is similar to \ifmorenames but checks the current literal list. It
is intended for use in formatting directives for literal lists. It will always expand to
〈false〉 when used elsewhere.

\if<namepart>inits{〈true〉}{〈false〉}

Expands to 〈true〉 or 〈false〉, depending on the state of the <namepart>inits
package option (see § 3.1.2.3). This command is intended for use in formatting
directives for name lists.

\ifterseinits{〈true〉}{〈false〉}

Expands to 〈true〉 or 〈false〉, depending on the state of the terseinits package
option (see § 3.1.2.3). This command is intended for use in formatting directives for
name lists.

\ifentrytype{〈type〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the entry type of the entry currently being processed is 〈type〉,
and 〈false〉 otherwise.

\ifkeyword{〈keyword〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the 〈keyword〉 is found in the keywords field of the entry cur-
rently being processed, and 〈false〉 otherwise.

\ifentrykeyword{〈entrykey〉}{〈keyword〉}{〈true〉}{〈false〉}

A variant of \ifkeyword which takes an entry key as its first argument. This is
useful for testing an entry other than the one currently processed. A user-facing
version of this command is available for use in documents see § 3.11.

\ifcategory{〈category〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the entry currently being processed has been assigned to a
〈category〉 with \addtocategory, and 〈false〉 otherwise.

266

\ifentrycategory{〈entrykey〉}{〈category〉}{〈true〉}{〈false〉}

A variant of \ifcategory which takes an entry key as its first argument. This is
useful for testing an entry other than the one currently processed. A user-facing
version of this command is available for use in documents see § 3.11

\ifciteseen{〈true〉}{〈false〉}

Executes 〈true〉 if the entry currently being processed has been cited before, and
〈false〉 otherwise. This command is robust and intended for use in citation styles. If
there are any refsection environments in the document, the citation tracking
is local to these environments. Note that the citation tracker needs to be enabled
explicitly with the package option citetracker. The behavior of this test depends
on the mode the citation tracker is operating in, see § 3.1.2.3 for details. If the citation
tracker is disabled, the test always yields 〈false〉. Also see the \citetrackertrue
and \citetrackerfalse switches in § 4.6.4.

\ifentryseen{〈entrykey〉}{〈true〉}{〈false〉}

A variant of \ifciteseen which takes an entry key as its first argument. Since
the 〈entrykey〉 is expanded prior to performing the test, it is possible to test for entry
keys in a field such as xref:

\ifentryseen{\thefield{xref}}{true}{false}

Apart from the additional argument, \ifentryseen behaves like \ifciteseen.
A user-facing version of this command is available for use in documents see § 3.11.

\ifentryinbib{〈entrykey〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the entry 〈entrykey〉 appears in the current bibliography, and
〈false〉 otherwise. A user-facing version of this command is available for use in
documents see § 3.11.

\iffirstcitekey{〈true〉}{〈false〉}

Executes 〈true〉 if the entry currently being processed is the first one in the
citation list, and 〈false〉 otherwise. This command relies on the citecount,
citetotal, multicitecount and multicitetotal counters (§ 4.10.5) and
thus is intended for use only in the 〈loopcode〉 of a citation command defined with
\DeclareCiteCommand.

\iflastcitekey{〈true〉}{〈false〉}

Similar \iffirstcitekey, but executes 〈true〉 if the entry currently being pro-
cessed is the last one in the citation list, and 〈false〉 otherwise.

\ifciteibid{〈true〉}{〈false〉}

Expands to 〈true〉 if the entry currently being processed is the same as the last one,
and to 〈false〉 otherwise. This command is intended for use in citation styles. If there
are any refsection environments in the document, the tracking is local to these
environments. Note that the ‘ibidem’ tracker needs to be enabled explicitly with the
package option ibidtracker. The behavior of this test depends on the mode the
tracker is operating in, see § 3.1.2.3 for details. If the tracker is disabled, the test always
yields 〈false〉. Also see the \citetrackertrue and \citetrackerfalse
switches in § 4.6.4.

267

\ifciteidem{〈true〉}{〈false〉}

Expands to 〈true〉 if the primary name (i. e., the author or editor) in the entry currently
being processed is the same as the last one, and to 〈false〉 otherwise. This command is
intended for use in citation styles. If there are anyrefsection environments in the
document, the tracking is local to these environments. Note that the ‘idem’ tracker
needs to be enabled explicitly with the package option idemtracker. The behavior
of this test depends on the mode the tracker is operating in, see § 3.1.2.3 for details. If
the tracker is disabled, the test always yields 〈false〉. Also see \citetrackertrue
and \citetrackerfalse in § 4.6.4.

\ifopcit{〈true〉}{〈false〉}

This command is similar to \ifciteibid except that it expands to 〈true〉 if the
entry currently being processed is the same as the last one by this author or editor.
Note that the ‘opcit’ tracker needs to be enabled explicitly with the package option
opcittracker. The behavior of this test depends on the mode the tracker is
operating in, see § 3.1.2.3 for details. If the tracker is disabled, the test always yields
〈false〉. Also see the \citetrackertrue and \citetrackerfalse switches
in § 4.6.4.

\ifloccit{〈true〉}{〈false〉}

This command is similar to \ifopcit except that it also compares the 〈postnote〉
arguments and expands to 〈true〉 only if they match and are numerical (in the sense
of \ifnumerals from § 4.6.2), i. e., \ifloccit will yield true if the citation
refers to the same page cited before. Note that the ‘loccit’ tracker needs to be enabled
explicitly with the package option loccittracker. The behavior of this test
depends on the mode the tracker is operating in, see § 3.1.2.3 for details. If the tracker
is disabled, the test always yields 〈false〉. Also see the \citetrackertrue and
\citetrackerfalse switches in § 4.6.4.

\iffirstonpage{〈true〉}{〈false〉}

The behavior of this command is responsive to the package option pagetracker.
If the option is set to page, it expands to 〈true〉 if the current item is the first one on
the page, and to 〈false〉 otherwise. If the option is set to spread, it expands to 〈true〉
if the current item is the first one on the double-page spread, and to 〈false〉 otherwise.
If the page tracker is disabled, this test always yields 〈false〉. Depending on the
context, the ‘item’ may be a citation or an entry in the bibliography or a bibliography
list. Note that this test distinguishes between body text and footnotes. For example,
if used in the first footnote on a page, it will expand to 〈true〉 even if there is a
citation in the body text prior to the footnote. Also see the \pagetrackertrue
and \pagetrackerfalse switches in § 4.6.4.

\ifsamepage{〈instance 1〉}{〈instance 2〉}{〈true〉}{〈false〉}

This command expands to 〈true〉 if two instances of a reference are located on the
same page or double-page spread, and to 〈false〉 otherwise. An instance of a reference
may be a citation or an entry in the bibliography or a bibliography list. These instances
are identified by the value of the instcount counter, see § 4.10.5. The behavior of
this command is responsive to the package option pagetracker. If this option
is set to spread, \ifsamepage is in fact an ‘if same spread’ test. If the page
tracker is disabled, this test always yields 〈false〉. The arguments 〈instance 1〉 and
〈instance 2〉 are treated as integer expressions in the sense of e-TeX’s \numexpr.

268

This implies that it is possible to make calculations within these arguments, for
example:

\ifsamepage{\value{instcount}}{\value{instcount}-1}{

↪→ true}{false}

Note that \value is not prefixed by \the and that the subtraction is included
in the second argument in the above example. If 〈instance 1〉 or 〈instance 2〉 is an
invalid number (for example, a negative one), the test yields 〈false〉. Also note
that this test does not distinguish between body text and footnotes. Also see the
\pagetrackertrue and \pagetrackerfalse switches in § 4.6.4.

\ifinteger{〈string〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the 〈string〉 is a positive integer, and 〈false〉 otherwise. This
command is robust.

\hascomputableequivalent{〈string〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the 〈string〉 can be transformed into a LaTeX-computable integer
consisting only of us-ascii characters via \getcomputableequivalent and
〈false〉 otherwise. The mapping from non-us-ascii to us-ascii numerals will usually
be given in the lbx file.

\ifiscomputable{〈string〉}{〈true〉}{〈false〉}

Returns 〈true〉 if \ifinteger or \hascomputableequivalent retrurns
〈true〉 on 〈string〉 and 〈false〉 otherwise.

\getcomputableequivalent{〈string〉}{〈macro〉}

Saves the us-ascii representation of the number given as 〈string〉 in 〈macro〉.

\ifnumeral{〈string〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the 〈string〉 is an Arabic or Roman numeral, and 〈false〉 otherwise.
This command is robust. See also \DeclareNumChars and \NumCheckSetup
in § 4.6.4.

\ifnumerals{〈string〉}{〈true〉}{〈false〉}

Executes 〈true〉 if the 〈string〉 is a range or a list of Arabic or Roman nu-
merals, and 〈false〉 otherwise. This command is robust. In contrast to
\ifnumeral, it will also execute 〈true〉 with arguments like “52–58”, “14/15”,
“1, 3, 5”, and so on. See also \DeclareNumChars, \DeclareRangeChars,
\DeclareRangeCommands, \NumCheckSetup, and \NumsCheckSetup in
§ 4.6.4.

\ifpages{〈string〉}{〈true〉}{〈false〉}

Similar to \ifnumerals, but also considers \DeclarePageCommands and
\PagesCheckSetup from § 4.6.4.

\iffieldint[〈msform〉][〈mslang〉]{〈field〉}{〈true〉}{〈false〉}

Similar to \ifinteger, but uses the value of a 〈field〉 (optionally a multiscript
field of 〈msform〉/〈mslang〉) rather than a literal string in the test. If the 〈field〉 is
undefined, it executes 〈false〉.

269

\fieldhascomputableequivalent[〈msform〉][〈mslang〉]{〈field〉}{〈true〉}{〈false〉}

Similar to \hascomputableequivalent, but uses the value of a 〈field〉 rather
than a literal string in the test. If the 〈field〉 is undefined, it executes 〈false〉.

\iffieldiscomputable[〈msform〉][〈mslang〉]{〈field〉}{〈true〉}{〈false〉}

Similar to \ifiscomputable, but uses the value of a 〈field〉 rather than a literal
string in the test. If the 〈field〉 is undefined, it executes 〈false〉.

\iffieldnum[〈msform〉][〈mslang〉]{〈field〉}{〈true〉}{〈false〉}

Similar to \ifnumeral, but uses the value of a 〈field〉 (optionally a multiscript
field of 〈msform〉/〈mslang〉) rather than a literal string in the test. If the 〈field〉 is
undefined, it executes 〈false〉.

\iffieldnums[〈msform〉][〈mslang〉]{〈field〉}{〈true〉}{〈false〉}

Similar to \ifnumerals, but uses the value of a 〈field〉 (optionally a multiscript
field of 〈msform〉/〈mslang〉) rather than a literal string in the test. If the 〈field〉 is
undefined, it executes 〈false〉.

\iffieldpages[〈msform〉][〈mslang〉]{〈field〉}{〈true〉}{〈false〉}

Similar to \ifpages, but uses the value of a 〈field〉 (optionally a multiscript field of
〈msform〉/〈mslang〉) rather than a literal string in the test. If the 〈field〉 is undefined,
it executes 〈false〉.

\ifbibstring{〈string〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the 〈string〉 is a known localisation key, and to 〈false〉 otherwise.
The localisation keys defined by default are listed in § 4.9.2. New ones may be defined
with \NewBibliographyString.

\ifbibxstring{〈string〉}{〈true〉}{〈false〉}

Similar to \ifbibstring, but the 〈string〉 is expanded.

\iffieldbibstring[〈msform〉][〈mslang〉]{〈field〉}{〈true〉}{〈false〉}

Similar to \ifbibstring, but uses the value of a 〈field〉 (optionally a multiscript
field of 〈msform〉/〈mslang〉) rather than a literal string in the test. If the 〈field〉 is
undefined, it expands to 〈false〉.

\iffieldplusstringbibstring[〈msform〉][〈mslang〉]{〈field〉}{〈string〉}{〈true〉}{〈false〉}

Similar to \iffieldbibstring, but appends 〈string〉 to the value of 〈field〉 (op-
tionally a multiscript field of 〈msform〉/〈mslang〉) and checks if the resulting string
is a known localisation key. Expands to 〈false〉 if 〈field〉 is undefined.

\ifdriver{〈entrytype〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if a driver for the 〈entrytype〉 is available, and to 〈false〉 otherwise.

\ifcapital{〈true〉}{〈false〉}

Executes 〈true〉 if biblatex’s punctuation tracker would capitalize a localisation
string at the current location, and 〈false〉 otherwise. This command is robust. It may
be useful for conditional capitalization of certain parts of a name in a formatting
directive.

270

\ifcitation{〈true〉}{〈false〉}

Expands to 〈true〉 when located in a citation, and to 〈false〉 otherwise. Note that this
command is responsive to the outermost context in which it is used. For example,
if a citation command defined with \DeclareCiteCommand executes a driver
defined with \DeclareBibliographyDriver, any \ifcitation tests in
the driver code will yield 〈true〉. See § 4.11.6 for a practical example.

\ifvolcite{〈true〉}{〈false〉}

Expands to 〈true〉 when located in \volcite or a related citation command (§ 3.9.6),
and to 〈false〉 otherwise.

\ifbibliography{〈true〉}{〈false〉}

Expands to 〈true〉 when located in a bibliography, and to 〈false〉 otherwise. Note that
this command is responsive to the outermost context in which it is used. For example,
if a driver defined with \DeclareBibliographyDriver executes a citation
command defined with \DeclareCiteCommand, any \ifbibliography tests
in the citation code will yield 〈true〉. See § 4.11.6 for a practical example.

\ifnatbibmode{〈true〉}{〈false〉}

Expands to 〈true〉 or 〈false〉 depending on the natbib option from § 3.1.1.

\ifciteindex{〈true〉}{〈false〉}

Expands to 〈true〉 or 〈false〉 depending on the indexing option from § 3.1.2.1.

\ifbibindex{〈true〉}{〈false〉}

Expands to 〈true〉 or 〈false〉 depending on the indexing option from § 3.1.2.1.

\iffootnote{〈true〉}{〈false〉}

Expands to 〈true〉 when located in a footnote, and to 〈false〉 otherwise. Note that
footnotes in minipage environments are considered to be part of the body text.
This command will only expand to 〈true〉 in footnotes a the bottom of the page and
in endnotes as provided by the endnotes package.

citecounter This counter indicates how many times the entry currently being processed is cited
in the current reference section. Note that this feature needs to be enabled explicitly
with the package option citecounter. If the option is set to context, citations
in the body text and in footnotes are counted separately. In this case, citecounter
will hold the value of the context it is used in.

maxcitecounter This counter holds the maximum value of citecounter across all entries in
the current reference section. Like citecounter it is only available if the
citecounter option is enabled and tracks footnotes and text separately if the
option is set to context.

271

uniquename This counter refers to the labelname list. It is set on a per-name basis. Its value
is 0 if the base parts of the name (by default just the ‘family’ part of the name)
are unique, 1 if adding the other non-base parts of the name (as specified in the
uniquename template defined by \DeclareUniquenameTemplate) as initials
will make it unique, and 2 if adding the full form of the non-base parts of the name
are required to disambiguate the name. This information is required by author-year
and author-title citation schemes which add additional parts of the name when
citing different authors with the same family name. For example, (given the default
\DeclareUniquenameTemplate definition) if there is one ‘John Doe’ and one
‘Edward Doe’ in the list of references, this counter will be set to 1. If there is one
‘John Doe’ and one ‘Jane Doe’, the value of the counter will be 2. If the option is
set to init/allinit/mininit, the counter will be limited to 1. This is useful
for citations styles which use initials to disambiguate names but never print the full
name in citations. If adding the initials is not sufficient to disambiguate the name,
uniquename will also be set to 0 for that name. This feature needs to be enabled
explicitly with the package option uniquename. Note that the uniquename
counter is local to \printnames and that it is only set for the labelname list
and for the name list that labelname has been derived from (typically author or
editor). Its value is zero in any other context, i.e., it must be evaluated in the name
formatting directives handling name lists. See § 4.11.4 for further details and practical
examples. This counter can be overridden on a per-namepart basis by consulting the
\namepart‘namepart’un macros during name formatting, see § 4.2.3.

uniquelist This counter refers to the labelname list. It is set on a per-field basis. Its value
indicates the number of names required to disambiguate the name list if automatic
maxnames/minnames truncation would lead to ambiguous citations. For example,
if there is one work by ‘Doe/Smith/Johnson’ and another one by ‘Doe/Edwards/
Williams’, setting maxnames=1 would lead to ‘Doe et al.’ in both cases. In this
case, uniquelist would be set to 2 on the labelname lists of both entries be-
cause at least the first two names are required to disambiguate them. Note that
the uniquelist counter is local to \printnames and that it is only set for the
labelname list and to the name list labelname has been derived from (typi-
cally author or editor). Its value is zero in any other context. If available, the
uniquelist value will be used automatically by \printnames when process-
ing the name list, i. e., it will automatically override maxnames/minnames. This
feature needs to be enabled explicitly with the package option uniquelist. See
§ 4.11.4 for further details and practical examples.

\uniquepart{〈namepart〉}

A field containing one of the valid values for the ‘nameparts’ constant defined with
\DeclareDatamodelConstant. This is defined on a per-name basis when the
package uniquename option is not false. It contains the name of the namepart
component declared by \DeclareUniquenameTemplate which determined
the setting of the uniquename counter.

\mslang{〈bcp47tag〉}

A field set on a per-name basis containing the BCP47 language tag for the name.

parenlevel The current nesting level of parentheses and/or brackets. This information is only
available if the parentracker from § 3.1.2.3 is enabled.

272

4.6.3 Tests with \ifboolexpr and \ifthenelse

The tests introduced in § 4.6.2 may also be used with the \ifboolexpr command
provided by the etoolbox package and the \ifthenelse command provided
by the ifthen package. The syntax of the tests is slightly different in this case:
the 〈true〉 and 〈false〉 arguments are omitted from the test itself and passed to the
\ifboolexpr or \ifthenelse command instead. Note that the use of these
commands implies some processing overhead. If you do not need any boolean
operators, it is more efficient to use the stand-alone tests from § 4.6.2.

\ifboolexpr{〈expression〉}{〈true〉}{〈false〉}

etoolbox command which allows for complex tests with boolean operators and
grouping:

\ifboolexpr{ (

test {\ifnameundef{editor}}

and

not test {\iflistundef{location}}

)

or test {\iffieldundef{year}}

}

{...}

{...}

\ifthenelse{〈tests〉}{〈true〉}{〈false〉}

ifthen command which allows for complex tests with boolean operators and
grouping:

\ifthenelse{ \(

\ifnameundef{editor}

\and

\not \iflistundef{location}

\)

\or \iffieldundef{year}

}

{...}

{...}

The additional tests provided by biblatex are only available when\ifboolexpr
or \ifthenelse are used in citation commands and in the bibliography.

4.6.4 Miscellaneous Commands

The section introduces miscellaneous commands and little helpers for use in biblio-
graphy and citation styles.

\newbibmacro{〈name〉}[〈arguments〉][〈optional〉]{〈definition〉}
\newbibmacro*{〈name〉}[〈arguments〉][〈optional〉]{〈definition〉}

Defines a macro to be executed via \usebibmacro later. The syntax of this com-
mand is very similar to \newcommand except that 〈name〉 may contain characters

273

such as numbers and punctuation marks and does not start with a backslash. The
optional argument 〈arguments〉 is an integer specifying the number of arguments
taken by the macro. If 〈optional〉 is given, it specifies a default value for the first
argument of the macro, which automatically becomes an optional argument. In con-
trast to \newcommand, \newbibmacro issues a warning message if the macro
is already defined, and automatically falls back to \renewbibmacro. As with
\newcommand, the regular variant of this command uses the \long prefix in
the definition while the starred one does not. If a macro has been declared to
be long, it may take arguments containing \par tokens. \newbibmacro and
\renewbibmacro are provided for convenience. Style authors are free to use
\newcommand or \def instead. However, note that most shared definitions found
in biblatex.def are defined with \newbibmacro, hence they must be used
and modified accordingly.

\renewbibmacro{〈name〉}[〈arguments〉][〈optional〉]{〈definition〉}
\renewbibmacro*{〈name〉}[〈arguments〉][〈optional〉]{〈definition〉}

Similar to \newbibmacro but redefines 〈name〉. In contrast to \renewcommand,
\renewbibmacro issues a warning message if the macro is undefined, and auto-
matically falls back to \newbibmacro.

\providebibmacro{〈name〉}[〈arguments〉][〈optional〉]{〈definition〉}
\providebibmacro*{〈name〉}[〈arguments〉][〈optional〉]{〈definition〉}

Similar to \newbibmacro but only defines 〈name〉 if it is undefined. This command
is similar in concept to \providecommand.

\letbibmacro{〈alias〉}{〈name〉}
\letbibmacro*{〈alias〉}{〈name〉}

This command defines the macro 〈alias〉 to be an alias of the macro 〈name〉. The
definition is perfomed by \csletcs. An error is issued if 〈name〉 is undefined. The
regular variant of this command sanitizes 〈name〉 while the starred variant does not.

\usebibmacro{〈name〉}
\usebibmacro*{〈name〉}

This command executes the macro 〈name〉, as defined with \newbibmacro. If the
macro takes any arguments, they are simply appended after 〈name〉. The regular
variant of this command sanitizes 〈name〉 while the starred variant does not.

\savecommand{〈command〉}
\restorecommand{〈command〉}

These commands save and restore any 〈command〉, which must be a command name
starting with a backslash. Both commands work within a local scope. They are
mainly provided for use in localisation files.

\savebibmacro{〈name〉}
\restorebibmacro{〈name〉}

These commands save and restore the macro 〈name〉, where 〈name〉 is the identifier
of a macro defined with \newbibmacro. Both commands work within a local
scope. They are mainly provided for use in localisation files.

274

\savefieldformat[〈entry type〉]{〈format〉}
\restorefieldformat[〈entry type〉]{〈format〉}

These commands save and restore the formatting directive 〈format〉, as defined with
\DeclareFieldFormat. Both commands work within a local scope. They are
mainly provided for use in localisation files.

\savelistformat[〈entry type〉]{〈format〉}
\restorelistformat[〈entry type〉]{〈format〉}

These commands save and restore the formatting directive 〈format〉, as defined with
\DeclareListFormat. Both commands work within a local scope. They are
mainly provided for use in localisation files.

\savenameformat[〈entry type〉]{〈format〉}
\restorenameformat[〈entry type〉]{〈format〉}

These commands save and restore the formatting directive 〈format〉, as defined with
\DeclareNameFormat. Both commands work within a local scope. They are
mainly provided for use in localisation files.

\savelistwrapperformat[〈entry type〉]{〈format〉}
\restorelistwrapperformat[〈entry type〉]{〈format〉}

These commands save and restore the formatting directive 〈format〉, as defined with
\DeclareListWrapperFormat. Both commands work within a local scope.
They are mainly provided for use in localisation files.

\savenamewrapperformat[〈entry type〉]{〈format〉}
\restorenamewrapperformat[〈entry type〉]{〈format〉}

These commands save and restore the formatting directive 〈format〉, as defined with
\DeclareNameWrapperFormat. Both commands work within a local scope.
They are mainly provided for use in localisation files.

\ifbibmacroundef{〈name〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the bibliography macro 〈name〉 is undefined, and to 〈false〉
otherwise.

This bibliography macro can be used in the following idiom to make a bibliography
macro more type specific.

\letbibmacro{cite:*}{cite}

\newbibmacro{cite:patent}{%

\printtext{\color{red}%

Some citation format specific to patents}}

\renewbibmacro*{cite}{%

\ifbibmacroundef{cite:\thefield{entrytype}}

{\usebibmacro{cite:*}}

{\usebibmacro*{cite:\thefield{entrytype}}}%

}

275

\iffieldformatundef[〈entry type〉]{〈name〉}{〈true〉}{〈false〉}
\iflistformatundef[〈entry type〉]{〈name〉}{〈true〉}{〈false〉}
\ifnameformatundef[〈entry type〉]{〈name〉}{〈true〉}{〈false〉}
\iflistwrapperformatundef[〈entry type〉]{〈name〉}{〈true〉}{〈false〉}
\ifnamewrapperformatundef[〈entry type〉]{〈name〉}{〈true〉}{〈false〉}

Expands to 〈true〉 if the formatting directive 〈format〉 is undefined, and to 〈false〉
otherwise.

\usedriver{〈code〉}{〈entrytype〉}

Executes the bibliography driver for an 〈entrytype〉. Calling this command in the
〈loopcode〉 of a citation command defined with \DeclareCiteCommand is a sim-
ple way to print full citations similar to a bibliography entry. Commands such as
\newblock, which are not applicable in a citation, are disabled automatically by
default. The global initialization can be changed with \AtUsedriver, see § 4.10.6.
Additional local initialization commands may be passed as the 〈code〉 argument. This
argument is executed inside the group in which \usedriver runs the respective
driver. Note that it is mandatory in terms of the syntax but may be left empty.
Also note that this command will automatically switch languages if the autolang
package option is enabled.

\bibhypertarget{〈name〉}{〈text〉}

A wrapper for hyperref’s \hypertarget command. The 〈name〉 is the name
of the anchor, the 〈text〉 is arbitrary printable text or code which serves as an anchor.
If there are any refsection environments in the document, the 〈name〉 is local
to the current environment. If the hyperref package option is disabled or the
hyperref package has not been loaded, this command will simply pass on its 〈text〉
argument. See also the formatting directive bibhypertarget in § 4.10.4.

\bibhyperlink{〈name〉}{〈text〉}

A wrapper for hyperref’s \hyperlink command. The 〈name〉 is the name of
an anchor defined with \bibhypertarget, the 〈text〉 is arbitrary printable text
or code to be transformed into a link. If there are any refsection environments
in the document, the 〈name〉 is local to the current environment. If the hyperref
package option is disabled or the hyperref package has not been loaded, this
command will simply pass on its 〈text〉 argument. See also the formatting directive
bibhyperlink in § 4.10.4.

\bibhyperref[〈entrykey〉]{〈text〉}

Transforms 〈text〉 into an internal link pointing to 〈entrykey〉 in the bibliography.
If 〈entrykey〉 is omitted, this command uses the key of the entry currently being
processed. This command is employed to transform citations into clickable links
pointing to the corresponding entry in the bibliography. The link target is marked
automatically by biblatex. If there are multiple bibliographies in a document, the
target will be the first occurence of 〈entrykey〉 in one of the bibliographies. If there
are refsection environments, the links are local to the environment. See also
the formatting directive bibhyperref in § 4.10.4.

\ifhyperref{〈true〉}{〈false〉}

Expands to 〈true〉 if the hyperref package option is enabled (which implies that
the hyperref package has been loaded), and to 〈false〉 otherwise.

276

\docsvfield[〈msform〉][〈mslang〉]{〈field〉}

Similar to the \docsvlist command from the etoolbox package, except
that it takes a field name as its argument (optionally a multiscript field of
〈msform〉/〈mslang〉). The value of this field is parsed as a comma-separated list.
If the 〈field〉 is undefined, this command expands to an empty string.

\forcsvfield{〈handler〉}[〈msform〉][〈mslang〉]{〈field〉}

Similar to the \forcsvlist command from the etoolbox package, except
that it takes a field name as its argument (optionally a multiscript field of
〈msform〉/〈mslang〉). The value of this field is parsed as a comma-separated list.
If the 〈field〉 is undefined, this command expands to an empty string.

\MakeCapital{〈text〉}

Similar to \MakeUppercase but only converts the first printable character in
〈text〉 to uppercase. Note that the restrictions that apply to \MakeUppercase also
apply to this command. Namely, all commands in 〈text〉 must either be robust or
prefixed with \protect since the 〈text〉 is expanded during capitalization. Apart
from us-ascii characters and the standard accent commands, this command also
handles the active characters of the inputenc package as well as the shorthands of
the babel package. If the 〈text〉 starts with a control sequence, nothing is capitalized.
This command is robust.

\MakeSentenceCase{〈text〉}
\MakeSentenceCase*{〈text〉}

Converts its 〈text〉 argument to sentence case, i. e., the first word is capitalized and
the remainder of the string is converted to lowercase. This command is robust. The
starred variant differs from the regular version in that it considers the language
of the entry, as specified in the langid field. If the langid field is defined and
holds a language declared with \DeclareCaseLangs (see below)40, then the
sentence case conversion is performed. If the langid field is undefined, then the
language list declared with \DeclareCaseLangs is checked for the presence
of the main document language derived from the language option. If found,
sentence case conversion is performed, if not, the 〈text〉 is not altered in any way. It
is recommended to use \MakeSentenceCase* rather than the regular variant in
formatting directives.

Depending on the option casechanger \MakeCaseChange and
\MakeCaseChange* are either implemented using the expl3 module
l3text or original LATEX2εcode.

Both variants support the traditional BibTeX convention for bib files that anything
wrapped in a pair of curly braces is not modified when changing the case. For
example:

\MakeSentenceCase{an Introduction to LaTeX}

\MakeSentenceCase{an Introduction to {LaTeX}}

40By default, converting to sentence case is enabled for the following language identifiers:
american, british, canadian, english, australian, newzealand as well as the
aliases USenglish and UKenglish. Use \DeclareCaseLangs to extend or change this
list.

277

would yield:

An introduction to latex

An introduction to LaTeX

In bib files designed with traditional BibTeX in mind, it has been fairly common to
only wrap single letters in braces to prevent case-changing:

title = {An Introduction to {L}a{T}e{X}}

The problem with this convention is that the braces will suppress the kerning on
both sides of the enclosed letter. It is preferable to wrap the entire word in braces as
shown in the first example. Macros in titles must also be protected with braces

title = {The {\TeX book}},

The behaviour of \MakeSentenceCase differs slightly between the latex2e
and expl3 implementation. Generally speaking, the expl3 code is closer
to the BibTeX behaviour of change.case$. It is also better equipped to
deal with non-us-ascii input and macros than the latex2e implementation.
\MakeSentenceCase behaves as follows.

• The first letter of its argument is capitalised with \MakeUppercase. This is
different from BibTeX’s change.case$, which does not touch the first letter
of its argument.

Note that with the latex2e code a pair of braces that starts with a control
sequence will be treated as a single character for capitalisation purposes. This
means that the entire argument of a command protected with a single pair of
braces is capitalised.

• With the latex2e code expandable commands are expanded before the case
change, which means that the case change applies to the replacement text.
Unexpandable commands are not touched.

BibTeX does not interpret macros and therefore passes commands through un-
changed (this does not necessarily apply to the arguments of those commands).
The expl3 implementation also does not expand commands and only applies
case change to the arguments.

• Text wrapped in one or more pairs of braces is protected from case change unless
it starts with a control sequence. This is the same behaviour as with BibTeX.
Note that the braces could either be explicit groups or argument delimiters.

• Text in a single pair of braces that starts with a control sequence is not pro-
tected and will be subject to case changes. Note that this need not apply to
braces that are argument delimiters, in fact the latex2e implementation of
\MakeSentenceCase may in some cases produce an error or otherwise un-
desirable output if the argument of a command starts with a control sequence.
BibTeX’s case change function does not differentiate between argument delim-
iters and brace groups and always subjects text at brace level 1 to case change
if it starts with a control sequence.

For most intents and purposes the following rules should give a sensible result.

278

• Protect all words whose case should not be changed by wrapping them in one
pair of braces.

• If words are already in the braced argument of a command such as
\mkbibquote or \emph, they are automatically protected.

– To undo this protection wrap the command in braces again.

– It is not possible to selectively re-apply protection if it has been undone
with an additional pair of braces. If a more fine-grained control is needed,
work-arounds like splitting the argument could be tried.

• While it is possible to protect words from case change at the beginning of a
field with a pair of braces, it is not possible to undo the case protection that a
command automatically implies by wrapping it in braces in that position. In
that case work-arounds are necessary.

title = {The Story of {HMS} \emph{Erebus}

in {\emph{Really}} Strong Wind},

would be converted to sentence case by \MakeSentenceCase as

The story of HMS Erebus in really strong wind

If the expl3 implementation of the case changing functions is selected, the
BibTeX case protection behaviour can be exchanged for a slightly simpler ver-
sion. When bibtexcaseprotection set to false, braces no longer auto-
matically imply case protection. Instead words can be protected from case change
with \NoCaseChange. The examples from above would then read

title = {An Introduction to \NoCaseChange{LaTeX}},

title = {The Story of \NoCaseChange{HMS \emph{Erebus}}

in \emph{Really} Strong Wind},

Generally, this option should allow for a saner case protection input, because curly
braces are no longer overloaded with different levels of meaning, but it is a big
departure from the standard case protection input that has been with the LaTeX
world for a long time.

Due to its complex implementation \MakeSentenceCase can not accept ar-
bitrary input, it only safely operates on raw text or field data. In the standard
styles the title and other title-like field formats do not work together with
\MakeSentenceCase because of their argument structure, so the standard styles
offer a dedicated titlecase field format to apply this command. To enable sen-
tence casing in standard styles for languages that support it you would use:

\DeclareFieldFormat{titlecase}{\MakeSentenceCase*{#1}}

Sentence casing can then be disabled by resetting that field format to

\DeclareFieldFormat{titlecase}{#1}

Custom styles may follow a different approach, but style authors are encouraged to
apply the same general ideas to their styles.

279

\mkpageprefix[〈pagination〉][〈postpro〉]{〈text〉}

This command is intended for use in field formatting directives which format
the page numbers in the 〈postnote〉 argument of citation commands and the
pages field of bibliography entries. It will parse its 〈text〉 argument and
prefix it with ‘p.’ or ‘pp.’ by default. The optional 〈pagination〉 argument
holds the name of a field indicating the pagination type. This may be ei-
ther pagination or bookpagination, with pagination being the default.
The spacing between the prefix and the 〈text〉 may be modified by redefining
\ppspace. The default is an unbreakable interword space. See §§ 2.3.12 and 3.15.3
for further details. See also \DeclareNumChars, \DeclareRangeChars,
\DeclareRangeCommands, and \NumCheckSetup. The optional 〈postpro〉
argument specifies a macro to be used for post-processing the 〈text〉. If only one
optional argument is given, it is taken as 〈pagination〉. Here are two typical examples:

\DeclareFieldFormat{postnote}{\mkpageprefix[pagination

↪→][\mknormrange]{#1}}

\DeclareFieldFormat{pages}{\mkpageprefix[bookpagination

↪→]{#1}}

\mkpagetotal[〈pagination〉][〈postpro〉]{〈text〉}

This command is similar to \mkpageprefix except that it is intended for the
pagetotal field of bibliography entries, i. e., it will print “123 pages” rather than
“page 123”. The optional 〈pagination〉 argument defaults to bookpagination.
The spacing inserted between the pagination suffix and the 〈text〉 may be modified
by redefining the macro \ppspace. The optional 〈postpro〉 argument specifies a
macro to be used for post-processing the 〈text〉. If only one optional argument is
given, it is taken as 〈pagination〉. Here is a typical example:

\DeclareFieldFormat{pagetotal}{\mkpagetotal[

↪→ bookpagination]{#1}}

The optional argument bookpagination is omissible in this case. The pagination
strings are taken from <pagination>total and <pagination>totals.

\mkcomprange[〈postpro〉][〈itempostpro〉]{〈text〉}
\mkcomprange*[〈postpro〉][〈itempostpro〉]{〈text〉}

This command, which is intended for use in field formatting directives, will parse its
〈text〉 argument for page ranges and compress them. For example, “125–129” may be
formatted as “125–9”. You may configure the behavior of \mkcomprange by adjust-
ing the LaTeX counters mincomprange, maxcomprange, and mincompwidth,
as illustrated in table 12. The default settings are 10, 100000, and 1, respec-
tively. This means that the command tries to compress as much as possible by
default. Use \setcounter to adjust the parameters. The scanner recognises
\bibrangedash and hyphens as range dashes. It will normalize the dash by re-
placing any number of consecutive hyphens with \bibrangedash. Lists of ranges
delimited with \bibrangessep are also supported. The scanner will normalise
any comma or semicolons surrounded by optional space by replacing them with
\bibrangessep. If you want to hide a character from the list/range scanner for

280

Table 12: \mkcomprange setup
Input Output

mincomprange=10 mincomprange=100 mincomprange=1000

11--15 11–5 11–15 11–15
111--115 111–5 111–5 111–115
1111--1115 1111–5 1111–5 1111–5

maxcomprange=1000 maxcomprange=100 maxcomprange=10

1111--1115 1111–5 1111–5 1111–5
1111--1155 1111–55 1111–55 1111–1155
1111--1555 1111–555 1111–1555 1111–1555

mincompwidth=1 mincompwidth=10 mincompwidth=100

1111--1115 1111–5 1111–15 1111–115
1111--1155 1111–55 1111–55 1111–155
1111--1555 1111–555 1111–555 1111–555

some reason, wrap the character or the entire string in curly braces. The optional
〈postpro〉 argument specifies a macro to be used for post-processing the 〈text〉. This
is important if you want to combine \mkcomprange with other formatting macros
which also need to parse their 〈text〉 argument, such as \mkpageprefix. Simply
nesting these commands will not work as expected. Use the 〈postpro〉 argument to
set up the processing chain as follows:

\DeclareFieldFormat{postnote}{\mkcomprange[{

↪→ \mkpageprefix[pagination]}]{#1}}

Note that \mkcomprange is executed first, using \mkpageprefix as post-
processor. Also note that the 〈postpro〉 argument is wrapped in an additional pair
of braces. This is only required in this particular case to prevent LaTeX’s optional
argument scanner from getting confused by the nested brackets. The starred version
of this command differs from the regular one in the way the 〈postpro〉 argument is
applied to a list of values. For example:

\mkcomprange[\mkpageprefix]{5, 123-129, 423-439}

\mkcomprange*[\mkpageprefix]{5, 123-129, 423-439}

will output:

pp. 5, 123-9, 423-39

p. 5, pp. 123-9, pp. 423-39

The second optional argument 〈itempostpro〉 is used to post-process each individual
number item in the formatted list. It can be used to convert numbers from cardinals
to ordinals. If only one optional argument is present, it is treated as 〈postpro〉.

\mknormrange[〈postpro〉][〈itempostpro〉]{〈text〉}
\mknormrange*[〈postpro〉][〈itempostpro〉]{〈text〉}

This command, which is intended for use in field formatting directives, will parse its
〈text〉 argument for page ranges and will normalise them. The command is similar to

281

\mkcomprange except that the page ranges will not be compressed. The scanner
recognises \bibrangedash and hyphens as range dashes. It will normalize the
dash by replacing any number of consecutive hyphens with \bibrangedash.
Lists of ranges delimited with \bibrangessep are also supported. The scanner
will normalise any comma or semicolons surrounded by optional space by replacing
them with \bibrangessep. If you want to hide a character from the list/range
scanner for some reason, wrap the character or the entire string in curly braces.
The optional 〈postpro〉 argument specifies a macro to be used for post-processing
the 〈text〉. See \mkcomprange on how to use this argument. The starred version
of this command differs from the regular one in the way the 〈postpro〉 argument is
applied to a list of values. The second optional argument 〈itempostpro〉 is used to
post-process each individual number item in the formatted list. It can be used to
convert numbers from cardinals to ordinals. If only one optional argument is present,
it is treated as 〈postpro〉.

\mkfirstpage[〈postpro〉][〈itempostpro〉]{〈text〉}
\mkfirstpage*[〈postpro〉][〈itempostpro〉]{〈text〉}

This command, which is intended for use in field formatting directives, will parse
its 〈text〉 argument for page ranges and print the start page of the range only. The
scanner recognizes \bibrangedash and hyphens as range dashes. Lists of ranges
delimited with \bibrangessep are also supported. If you want to hide a character
from the list/range scanner for some reason, wrap the character or the entire string
in curly braces. The optional 〈postpro〉 argument specifies a macro to be used for
post-processing the 〈text〉. See \mkcomprange on how to use this argument. The
starred version of this command differs from the regular one in the way the 〈postpro〉
argument is applied to a list of values. The second optional argument 〈itempostpro〉
is used to post-process each individual number item in the formatted list. It can be
used to convert numbers from cardinals to ordinals. If only one optional argument
is present, it is treated as 〈postpro〉. For example:

\mkfirstpage[\mkpageprefix]{5, 123-129, 423-439}

\mkfirstpage*[\mkpageprefix]{5, 123-129, 423-439}

will output:

pp. 5, 123, 423

p. 5, p. 123, p. 423

\rangelen{〈rangefield〉}

Takes the name of a bibfield declared as a range field in the data model and returns
the length of the range. This is calculated by biber and can handle many special
cases. It will return −1 for open ended ranges. Specifically \rangelen can:

•Calculate the total of multiple ranges in the same field such as ‘1-10, 20-30’

•Handle implicit ranges such as ‘22-4’ and ‘130-33’

•Handle roman numeral ranges in upper and lower case and consisting of both
us-ascii and Unicode roman numeral representations.

282

Here are some examples:
pages = ‘10’ \rangelen{pages} returns ’1’
pages = ‘10-15’ \rangelen{pages} returns ’6’
pages = ‘10-15,47-53’ \rangelen{pages} returns ’13’
pages = ‘10-’ \rangelen{pages} returns ’-1’
pages = ‘-10’ \rangelen{pages} returns ’-1’
pages = ‘48-9’ \rangelen{pages} returns ’2’
pages = ‘172-77’ \rangelen{pages} returns ’6’
pages = ‘i-vi’ \rangelen{pages} returns ’6’
pages = ‘X-XX’ \rangelen{pages} returns ’11’
pages = ‘ⅥⅠ-ⅻ’ \rangelen{pages} returns ’6’
pages = ‘ⅥⅠ-ⅻ, 145-7, 135-39’ \rangelen{pages} returns ’14’

The \rangelen command can be used in tests:

\ifnumcomp{\rangelen{pages}}{=}{1}{add 'f'}{do nothing}

\DeclareNumChars{〈characters〉}
\DeclareNumChars*{〈characters〉}

This command configures the \ifnumeral, \ifnumerals, and \ifpages

tests from § 4.6.2. The setup will also affect \iffieldnum, \iffieldnums,
\iffieldpages as well as \mkpageprefix and \mkpagetotal. The
〈characters〉 argument is an undelimited list of characters which are to be considered
as being part of a number. The regular version of this command replaces the current
setting, the starred version appends its argument to the current list. The default
setting is:

\DeclareNumChars{.}

This means that a (section or other) number like ‘3.4.5’ will be considered as a number.
Note that Arabic and Roman numerals are detected by default, there is no need to
declare them explicitly.

\DeclareRangeChars{〈characters〉}
\DeclareRangeChars*{〈characters〉}

This command configures the \ifnumerals and \ifpages tests from § 4.6.2.
The setup will also affect \iffieldnums and \iffieldpages as well as
\mkpageprefix and \mkpagetotal. The 〈characters〉 argument is an unde-
limited list of characters which are to be considered as range indicators. The regular
version of this command replaces the current setting, the starred version appends its
argument to the current list. The default setting is:

\DeclareRangeChars{~,;-+/}

For engines that fully support Unicode these defaults are extended with

\DeclareRangeChars*{–—}

283

This means that strings like ‘3–5’, ‘35+’, ‘8/9’ and so on will be considered as a
range by \ifnumerals and \ifpages. Non-range characters in such strings
are recognized as numbers. So strings like ‘3a–5a’ and ‘35b+’ are not deemed to be
ranges by default. See also §§ 2.3.12 and 3.15.3 for further details.

\DeclareRangeCommands{〈commands〉}
\DeclareRangeCommands*{〈commands〉}

This command is similar to \DeclareRangeChars, except that the 〈commands〉
argument is an undelimited list of commands which are to be considered as range
indicators. The regular version of this command replaces the current setting, the
starred version appends its argument to the current list. The default list is rather
long and should cover all common cases; here is a shorter example:

\DeclareRangeCommands{\&

↪→ \bibrangedash\textendash\textemdash\psq\psqq}

See also §§ 2.3.12 and 3.15.3 for further details.

\DeclarePageCommands{〈commands〉}
\DeclarePageCommands*{〈commands〉}

This command is similar to \DeclareRangeCommands, except that it only af-
fects the \ifpages and \iffieldpages tests but not \ifnumerals and
\iffieldnums. The default setting is:

\DeclarePageCommands{\pno\ppno}

\NumCheckSetup{〈code〉}

Use this command to temporarily redefine any commands which interfere with the
tests performed by \ifnumeral, \ifnumerals, and \ifpages from § 4.6.2.
The setup will also affect \iffieldnum, \iffieldnums, \iffieldpages as
well as \mkpageprefix and \mkpagetotal. The 〈code〉 will be executed in a
group by these commands. Since the above mentioned commands will expand the
string to be analyzed, it is possible to remove commands to be ignored by the tests
by making them expand to an empty string. See also §§ 2.3.12 and 3.15.3 for further
details.

\NumsCheckSetup{〈code〉}

Like \NumCheckSetup but only applies to \ifnumerals and \ifpages from
§ 4.6.2 and their derivative tests.

\PagesCheckSetup{〈code〉}

Like \NumCheckSetup but only applies to \ifpages from § 4.6.2 and its deriva-
tive tests. The default setting is makes \pnfmt transparent to the test:

\PagesCheckSetup{\let\pnfmt\@firstofone}

284

\DeclareBabelToExplLanguageMapping{〈babel language〉}{〈expl language〉}

This command is only available if the expl3 case changing code is used.

Use 〈expl language〉 as 〈language〉 argument for the l3text case changing func-
tions when babel language is active. This command is only required if
〈babel language〉 should correspond to a language for which l3text has special
rules set up. The default invocations of this command are

\DeclareBabelToExplLanguageMapping{dutch}{nl}

\DeclareBabelToExplLanguageMapping{greek}{el}

\DeclareBabelToExplLanguageMapping{turkish}{tr}

\UndeclareBabelToExplLanguageMapping{〈babel language〉}

This command is only available if the expl3 case changing code is used.

Removes the babel-to-expl3 language mapping for 〈babel language〉. If the argu-
ment is an asterisk *, all language mappings are removed.

\DeclareCaseLangs{〈languages〉}
\DeclareCaseLangs*{〈languages〉}

Defines the list of languages which are considered by the \MakeSentenceCase*
command as it converts a string to sentence case. The 〈languages〉 argument is a
comma-separated list of babel/polyglossia language identifiers. The regular
version of this command replaces the current setting, the starred version appends its
argument to the current list. The default setting is:

\DeclareCaseLangs{%

american,british,canadian,english,australian,

↪→ newzealand,USenglish,UKenglish}

See the babel/polyglossiamanuals and table 2 for a list of languages identifiers.

\BibliographyWarning{〈message〉}

This command is similar to \PackageWarning but prints the entry key of the
entry currently being processed in addition to the input line number. It may
be used in the bibliography as well as in citation commands. If the 〈message〉
is fairly long, use \MessageBreak to include line breaks. Note that the stan-
dard \PackageWarning command does not provide a meaningful clue when
used in the bibliography since the input line number is the line on which the
\printbibliography command was given.

\pagetrackertrue

\pagetrackerfalse

These commands activate or deactivate the citation tracker locally (this will affect the
\iffirstonpage and \ifsamepage test from § 4.6.2). They are intended for
use in the definition of citation commands or anywhere in the document body. If a
citation command is to be excluded from page tracking, use \pagetrackerfalse
in the 〈precode〉 argument of \DeclareCiteCommand. See § 4.3.1 for details.
Note that these commands have no effect if page tracking has been disabled globally.

285

\citetrackertrue

\citetrackerfalse

These commands activate or deactivate all citation trackers locally (this will af-
fect the \ifciteseen, \ifentryseen, \ifciteibid, and \ifciteidem
tests from § 4.6.2). They are intended for use in the definition of citation com-
mands or anywhere in the document body. If a citation command is to be ex-
cluded from tracking, use \citetrackerfalse in the 〈precode〉 argument of
\DeclareCiteCommand. See § 4.3.1 for details. Note that these commands have
no effect if tracking has been disabled globally.

\backtrackertrue

\backtrackerfalse

These commands activate or deactivate the backref tracker locally. They are
intended for use in the definition of citation commands or anywhere in the doc-
ument body. If a citation command is to be excluded from backtracking, use
\backtrackerfalse in the 〈precode〉 argument of \DeclareCiteCommand.
Note that these commands have no effect if the backref option has been not been
set globally.

4.7 Punctuation and Spacing

The biblatex package provides elaborate facilities designed to manage and track
punctuation and spacing in the bibliography and in citations. These facilities work
on two levels. The high-level commands discussed in § 4.7.1 deal with punctuation
and whitespace inserted by the bibliography style between the individual segments
of a bibliography entry. The commands in §§ 4.7.2, 4.7.3, 4.7.4 work at a lower level.
They use TeX’s space factor and modified space factor codes to track punctuation
in a robust and efficient way. This way it is possible to detect trailing punctua-
tion marks within fields, not only those explicitly inserted between fields. The
same technique is also used for automatic capitalization of localisation strings, see
\DeclareCapitalPunctuation in § 4.7.5 as well as § 4.8 for details. Note that
these facilities are only made available locally in citations and bibliographies. They
will not affect any other part of a document.

4.7.1 Block and Unit Punctuation

The major segments of a bibliography entry are ‘blocks’ and ‘units’. A block is the
larger segment of the two, a unit is shorter or at most equal in length. For example,
the values of fields such as title or note usually form a unit which is separated
from subsequent data by a period or a comma. A block may comprise several fields
which are treated as separate units, for example publisher, location, and
year. The segmentation of an entry into blocks and units is at the discretion of the
bibliography style. An entry is segmented by inserting \newblock and \newunit
commands at suitable places and \finentry at the very end (see § 4.2.3 for an
example). See also § 4.11.7 for some practical hints.

\newblock Records the end of a block. This command does not print anything, it merely marks
the end of the block. The block delimiter \newblockpunct will be inserted by
a subsequent \printtext, \printfield, \printlist, \printnames, or
\bibstring command. You may use \newblock at suitable places without
having to worry about spurious blocks. A new block will only be started by the next
\printfield (or similar) command if this command prints anything. See § 4.11.7
for further details.

286

\newunit Records the end of a unit and puts the default delimiter \newunitpunct in the
punctuation buffer. This command does not print anything, it merely marks the
end of the unit. The punctuation buffer will be inserted by the next \printtext,
\printfield, \printlist, \printnames, or \bibstring command. You
may use \newunit after commands like \printfield without having to worry
about spurious punctuation and whitespace. The buffer will only be inserted by the
next \printfield or similar command if both fields are non-empty. This also
applies to \printtext, \printlist, \printnames, and \bibstring. See
§ 4.11.7 for further details.

\finentry Inserts \finentrypunct. This command should be used at the very end of every
bibliography entry.

\setunit{〈punctuation〉}
\setunit*{〈punctuation〉}

The \setunit command is similar to \newunit except that it uses 〈punctuation〉
instead of \newunitpunct. The starred variant differs from the regular ver-
sion in that it checks if the last \printtext, \printfield, \printlist,
\printnames, or \bibstring command did actually print anything. If not, it
does nothing.

\printunit{〈punctuation〉}
\printunit*{〈punctuation〉}

The \printunit command is similar to \setunit except that 〈punctuation〉
persists in the buffer. This ensures that 〈punctuation〉 is inserted before the next
non-empty field printed by the \printtext, \printfield, \printlist,
\printnames, or \bibstring commands—regardless of any intermediate calls
to \newunit or \setunit.

\setpunctfont{〈command〉}

This command, which is intended for use in field formatting directives, provides an
alternative way of dealing with unit punctuation after a field printed in a different font
(for example, a title printed in italics). The standard LaTeX way of dealing with this is
adding a small amount of space, the so-called italic correction. This command allows
adapting the punctuation to the font of the preceding field. The 〈command〉 should
be a text font command which takes one argument, such as \emph or \textbf.
This command will only affect punctuation marks inserted by one of the commands
from § 4.7.3. The font adaption is applied to the next punctuation mark only and
will be reset automatically thereafter. If you want to reset it manually before it takes
effect, issue \resetpunctfont. If the punctfont package option is disabled,
this command does nothing. Note that the \mkbibemph, \mkbibitalic and
\mkbibbold wrappers from § 4.10.4 incorporate this feature by default.

\resetpunctfont This command resets the unit punctuation font defined with \setpunctfont
before it takes effect. If the punctfont package option is disabled, this command
does nothing.

4.7.2 Punctuation Tests

The following commands may be used to test for preceding punctuation marks at
any point in citations and the bibliography.

287

\ifpunct{〈true〉}{〈false〉}

Executes 〈true〉 if preceded by any punctuation mark except for an abbreviation dot,
and 〈false〉 otherwise.

\ifterm{〈true〉}{〈false〉}

Executes 〈true〉 if preceded by a terminal punctuation mark, and 〈false〉 otherwise.
A terminal punctuation mark is any punctuation mark which has been registered
for automatic capitalization, either with \DeclareCapitalPunctuation or
by default, see § 4.7.5 for details. By default, this applies to periods, exclamation
marks, and question marks.

\ifpunctmark{〈character〉}{〈true〉}{〈false〉}

Executes 〈true〉 if preceded by the punctuation mark 〈character〉, and 〈false〉 other-
wise. The 〈character〉 may be a comma, a semicolon, a colon, a period, an exclama-
tion mark, a question mark, or an asterisk. Note that a period denotes an end-of-
sentence period. Use the asterisk to test for the dot after an abbreviation. If this
command is used in a formatting directive for name lists, i. e., in the argument to
\DeclareNameFormat, the 〈character〉 may also be an apostrophe.

\ifprefchar{〈true〉}{〈false〉}

Executes 〈true〉 if preceded by any prefix character declared by
\DeclarePrefChars.

4.7.3 Adding Punctuation

The following commands are designed to prevent double punctuation marks. Bib-
liography and citation styles should always use these commands instead of literal
punctuation marks. All \add... commands in this section automatically remove
preceding whitespace with \unspace (see § 4.7.4). Note that the behavior of all
\add... commands discussed below is the package default, which is restored
whenever biblatex switches languages. This behavior may be adjusted with
\DeclarePunctuationPairs from § 4.7.5.

\adddot Adds a period unless it is preceded by any punctuation mark. The purpose of this
command is inserting the dot after an abbreviation. Any dot inserted this way is
recognized as such by the other punctuation commands. This command may also be
used to turn a previously inserted literal period into an abbreviation dot.

\addcomma Adds a comma unless it is preceded by another comma, a semicolon, a colon, or a
period.

\addsemicolon Adds a semicolon unless it is preceded by a comma, another semicolon, a colon, or a
period.

\addcolon Adds a colon unless it is preceded by a comma, a semicolon, another colon, or a
period.

\addperiod Adds a period unless it is preceded by an abbreviation dot or any other punctuation
mark. This command may also be used to turn a previously inserted abbreviation
dot into a period, for example at the end of a sentence.

\addexclam Adds an exclamation mark unless it is preceded by any punctuation mark except for
an abbreviation dot.

288

\addquestion Adds a question mark unless it is preceded by any punctuation mark except for an
abbreviation dot.

\isdot Turns a previously inserted literal period into an abbreviation dot. In contrast to
\adddot, nothing is inserted if this command is not preceded by a period.

\nopunct Adds an internal marker which will cause the next punctuation command to print
nothing.

4.7.4 Adding Whitespace

The following commands are designed to prevent spurious whitespace. Bibliography
and citation styles should always use these commands instead of literal whitespace.
In contrast to the commands in §§ 4.7.2 and 4.7.3, they are not restricted to citations
and the bibliography but available globally.

\unspace Removes preceding whitespace, i. e., removes all skips and penalties from the end
of the current horizontal list. This command is implicitly executed by all of the
following commands.

\addspace Adds a breakable interword space.

\addnbspace Adds a non-breakable interword space.

\addthinspace Adds a breakable thin space.

\addnbthinspace Adds a non-breakable thin space. This is similar to \, and \thinspace.

\addlowpenspace Adds a space penalized by the value of the lownamepenalty counter, see
§§ 3.12.4 and 4.10.3 for details.

\addhighpenspace Adds a space penalized by the value of the highnamepenalty counter, see
§§ 3.12.4 and 4.10.3 for details.

\addlpthinspace Similar to \addlowpenspace but adds a breakable thin space.

\addhpthinspace Similar to \addhighpenspace but adds a breakable thin space.

\addabbrvspace Adds a space penalized by the value of the abbrvpenalty counter, see §§ 3.12.4
and 4.10.3 for details.

\addabthinspace Similar to \addabbrvspace but using a thin space.

\adddotspace Executes \adddot and adds a space penalized by the value of the abbrvpenalty
counter, see §§ 3.12.4 and 4.10.3 for details.

\addslash Adds a breakable slash. This command differs from the \slash command in the
LaTeX kernel in that a linebreak after the slash is not penalized at all.

Note that the commands in this section implicitly execute \unspace to remove
spurious whitespace, hence they may be used to override each other. For example,
you may use \addnbspace to transform a previously inserted interword space
into a non-breakable one and \addspace to turn a non-breakable space into a
breakable one.

289

4.7.5 Configuring Punctuation and Capitalization

The following commands configure various features related to punctuation and
automatic capitalization.

\DeclarePrefChars{〈characters〉}
\DeclarePrefChars*{〈characters〉}

This command declares characters that are to be treated specially when testing to see
if \bibnamedelimc is to be inserted between a name prefix and a family name.
If a character is in the list of 〈characters〉, \bibnamedelimc is not inserted. It is
used to allow abbreviated name prefices like ‘d’Argent’ where no space should be
inserted after the apostrophe. The starred version appends its argument to the list
of prefix characters, the unstarred version replaces the current setting. The default
setting is:

\DeclarePrefChars{'-}

For engines that fully support Unicode these defaults are extended with

\DeclarePrefChars*{’}

\DeclareAutoPunctuation{〈characters〉}

This command defines the punctuation marks to be considered by the citation com-
mands as they scan ahead for punctuation. Note that 〈characters〉 is an undelimited
list of characters. Valid 〈characters〉 are period, comma, semicolon, colon, exclama-
tion and question mark. The default setting is:

\DeclareAutoPunctuation{.,;:!?}

This definition is restored automatically whenever theautopunct package option is
set to true. Executing \DeclareAutoPunctuation{} is equivalent to setting
autopunct=false, i. e., it disables this feature.

\DeclareCapitalPunctuation{〈characters〉}

When biblatex inserts localisation strings, i. e., key terms such as ‘edition’ or
‘volume’, it automatically capitalizes them after terminal punctuation marks. This
command defines the punctuation marks which will cause localisation strings to
be capitalized if one of them precedes a string. Note that 〈characters〉 is an unde-
limited list of characters. Valid 〈characters〉 are period, comma, semicolon, colon,
exclamation and question mark. The package default is:

\DeclareCapitalPunctuation{.!?}

Using \DeclareCapitalPunctuation with an empty argument is equivalent
to disabling automatic capitalization. Since this feature is language specific, this
command must be used in the argument to \DefineBibliographyExtras
(when used in the preamble) or \DeclareBibliographyExtras (when used

290

in a localisation module). See §§ 3.10 and 4.9 for details. By default, strings are
capitalized after periods, exclamation marks, and question marks. All strings are
generally capitalized at the beginning of a paragraph (in fact whenever TeX is in
vertical mode).

\DeclarePunctuationPairs{〈identifier〉}{〈characters〉}

Use this command to declare valid pairs of punctuation marks. This will affect
the punctuation commands discussed in § 4.7.3. For example, the description of
\addcomma states that this command adds a comma unless it is preceded by another
comma, a semicolon, a colon, or a period. In other words, commas after abbreviation
dots, exclamation marks, and question marks are permitted. These valid pairs are
declared as follows:

\DeclarePunctuationPairs{comma}{*!?}

The 〈identifier〉 selects the command to be configured. The identifiers correspond to
the names of the punctuation commands from § 4.7.3 without the \add prefix, i. e.,
valid 〈identifier〉 strings are dot, comma, semicolon, colon, period, exclam,
question. The 〈characters〉 argument is an undelimited list of punctuation marks.
Valid 〈characters〉 are comma, semicolon, colon, period, exclamation mark, question
mark, and asterisk. A period in the 〈characters〉 argument denotes an end-of-sentence
period, an asterisk the dot after an abbreviation. This is the default setup, which is
automatically restored whenever biblatex switches languages and corresponds
to the behavior described in § 4.7.3:

\DeclarePunctuationPairs{dot}{}

\DeclarePunctuationPairs{comma}{*!?}

\DeclarePunctuationPairs{semicolon}{*!?}

\DeclarePunctuationPairs{colon}{*!?}

\DeclarePunctuationPairs{period}{}

\DeclarePunctuationPairs{exclam}{*}

\DeclarePunctuationPairs{question}{*}

Since this feature is language specific, \DeclarePunctuationPairs must be
used in the argument to \DefineBibliographyExtras (when used in the
preamble) or \DeclareBibliographyExtras (when used in a localisation
module). See §§ 3.10 and 4.9 for details. Note that some localisation modules may
use a setup which is different from the package default.41

\DeclareQuotePunctuation{〈characters〉}

This command controls ‘American-style’ punctuation. The \mkbibquote wrapper
from § 4.10.4 can interact with the punctuation facilities discussed in §§ 4.7.1, 4.7.3,
4.7.4. Punctuation marks after \mkbibquote will be moved inside the quotes
if they have been registered with \DeclareQuotePunctuation. Note that
〈characters〉 is an undelimited list of characters. Valid 〈characters〉 are period, comma,
semicolon, colon, exclamation and question mark. Here is an example:

\DeclareQuotePunctuation{.,}

41As of this writing, the american module uses different settings for ‘American-style’ punctuation.

291

Executing \DeclareQuotePunctuation{} is equivalent to disabling this fea-
ture. This is the package default. Since this feature is language specific, this command
must be used in the argument to \DefineBibliographyExtras (when used in
the preamble) or \DeclareBibliographyExtras (when used in a localisation
module). See §§ 3.10 and 4.9 for details. See also § 3.13.1.

\uspunctuation A shorthand using the lower-level commands \DeclareQuotePunctuation
and \DeclarePunctuationPairs to activate ‘American-style’ punctuation.
See § 3.13.1 for details. This shorthand is provided for convenience only. The
effective settings are applied by the lower-level commands.

\stdpunctuation Undoes the settings applied by \uspunctuation, restoring standard punctua-
tion. As standard punctuation is the default setting, you only need this command
to override a previously executed \uspunctuation command. See § 3.13.1 for
details.

4.7.6 Correcting Punctuation Tracking

The facilities for punctuation tracking and automatic capitalization are very reli-
able under normal circumstances, but there are always marginal cases which may
require manual intervention. Typical cases are localisation strings printed as the
first word in a footnote (which is usually treated as the beginning of a paragraph as
far as capitalization is concerned, but TeX is not in vertical mode at this point) or
punctuation after periods which are not really end-of-sentence periods (for example,
after an ellipsis like “[…]” a command such as \addperiod would do nothing
since parentheses and brackets are transparent to the punctuation tracker). In such
cases, use the following commands in bibliography and citation styles to mark the
beginning or middle of a sentence if and where required:

\bibsentence This command marks the beginning of a sentence. A localisation string immediately
after this command will be capitalized and the punctuation tracker is reset, i. e., this
command hides all preceding punctuation marks from the punctuation tracker and
enforces capitalization.

\midsentence This command marks the middle of a sentence. A localisation string immediately
after this command will not be capitalized and the punctuation tracker is reset, i. e.,
this command hides all preceding punctuation marks from the punctuation tracker
and suppresses capitalization.

\midsentence* The starred variant of \midsentence differs from the regular one in that a pre-
ceding abbreviation dot is not hidden from the punctuation tracker, i. e., any code
after \midsentence*will see a preceding abbreviation dot. All other punctuation
marks are hidden from the punctuation tracker and capitalization is suppressed.

4.8 Localization Strings

Localization strings are key terms such as ‘edition’ or ‘volume’ which are automati-
cally translated by biblatex’s localisation modules. See § 4.9 for an overview and
§ 4.9.2 for a list of all strings supported by default. The commands in this section are
used to print the localised term.

\bibstring[〈wrapper〉]{〈key〉}

Prints the localisation string 〈key〉, where 〈key〉 is an identifier in lowercase letters
(see § 4.9.2). The string will be capitalized as required, see § 4.7.5 for details. De-
pending on the abbreviate package option from § 3.1.2.1, \bibstring prints

292

the short or the long version of the string. If localisation strings are nested, i. e., if
\bibstring is used in another string, it will behave like \bibxstring. If the
〈wrapper〉 argument is given, the string is passed to the 〈wrapper〉 for formatting.
This is intended for font commands such as \emph.

\biblstring[〈wrapper〉]{〈key〉}

Similar to \bibstring but always prints the long string, ignoring the
abbreviate option.

\bibsstring[〈wrapper〉]{〈key〉}

Similar to \bibstring but always prints the short string, ignoring the
abbreviate option.

\bibncpstring[〈wrapper〉]{〈key〉}

Similar to \bibstring but the term is never capitalized.

\bibncplstring[〈wrapper〉]{〈key〉}

Similar to \biblstring but the term is never capitalized.

\bibncpsstring[〈wrapper〉]{〈key〉}

Similar to \bibsstring but the term is never capitalized.

\bibcpstring[〈wrapper〉]{〈key〉}

Similar to \bibstring but the term is always capitalized.

\bibcplstring[〈wrapper〉]{〈key〉}

Similar to \biblstring but the term is always capitalized.

\bibcpsstring[〈wrapper〉]{〈key〉}

Similar to \bibsstring but the term is always capitalized.

\bibucstring[〈wrapper〉]{〈key〉}

Similar to \bibstring but the whole term is uppercased.

\bibuclstring[〈wrapper〉]{〈key〉}

Similar to \biblstring but the whole term is uppercased.

\bibucsstring[〈wrapper〉]{〈key〉}

Similar to \bibsstring but the whole term is uppercased.

\biblcstring[〈wrapper〉]{〈key〉}

Similar to \bibstring but the whole term is lowercased.

\biblclstring[〈wrapper〉]{〈key〉}

Similar to \biblstring but the whole term is lowercased.

\biblcsstring[〈wrapper〉]{〈key〉}

Similar to \bibsstring but the whole term is lowercased.

293

\bibxstring{〈key〉}

A simplified but expandable version of \bibstring. Note that this variant does
not capitalize automatically, nor does it hook into the punctuation tracker. It is
intended for special cases in which strings are nested or an expanded localisation
string is required in a test.

\bibxlstring[〈wrapper〉]{〈key〉}

Similar to \bibxstring but always uses the long string, ignoring the
abbreviate option.

\bibxsstring[〈wrapper〉]{〈key〉}

Similar to \bibxstring but always uses the short string, ignoring the
abbreviate option.

\mainlang
Deprecated

Switches from the current language to the main document language. This command
is deprecated. Use the text-macro \textmainlang instead. With babel this
command will need to be wrapped into two groups to have purely local effect.

\textmainlang{〈text〉}

Locally switches from the current language to the main document language to typeset
〈text〉. This can be used the 〈wrapper〉 argument in the localisation string commands
above.

\texouterlang{〈text〉}

Locally switches from the current language to the surrounding language (which
was not selected by biblatex) to typeset 〈text〉. This can be used the 〈wrapper〉
argument in the localisation string commands above.

It is possible to add bibliography strings to a bibliography string set to apply
additional formatting.

\DeclareBibstringSet{〈setname〉}{〈key, …〉}

This commands assigns all 〈key〉s to the bibliography string set 〈setname〉.

\UndeclareBibstringSet{〈setname〉}

Remove the bibliography string set 〈setname〉. Any formatting definitions will also
be cleared.

\UndeclareBibstringSets

Remove all existing bibliography string sets with \UndeclareBibstringSet.

\DeclareBibstringSetFormat{〈setname〉}{〈code〉}

Defines the bibliography string format for 〈setname〉. The format works exactly like
an additional 〈wrapper〉 format for \bibstring. 〈code〉 is executed whenever a
bibliography string of 〈setname〉 is printed. The text of the bibliography string is
passed to 〈code〉 as first and only argument.

294

\UneclareBibstringSetFormat{〈setname〉}

Remove any bibliography string set format defined for 〈setname〉.

Bibliography string sets can be useful to apply additional formatting to a number
of bibliography strings at the same time. These commands are intended for use in
language modules. For example in French typography it is customary to italicise
Latin terms. The French language module can define a new bibliography string set
called latin for all Latin strings and apply additional formatting only to these
strings. It is not recommended to apply the formatting dierctly in the bibliography
string definitions, since that can interfere with the capitalisation function. Assuming
that the French language .lbx file only defines two Latin strings, andothers and
andothers, the .lbx file would contain.

\DeclareBibliographyExtras{%

…

\DeclareBibstringSet{latin}{andothers,ibidem}%

\DeclareBibstringSetFormat{latin}{\mkbibemph{#1}}%

…

}

\UndeclareBibliographyExtras{%

…

\UndeclareBibstringSet{latin}%

…

}

Note that the defined sets should be undeclared after use to avoid side effects for
other languages.

4.9 Localization Modules

A localisation module provides translations for key terms such as ‘edition’ or ‘volume’
as well as definitions for language specific features such as the date format and
ordinals. These definitions are provided in files with the suffix lbx. The base name
of the file must be a language name known to the babel/polyglossia packages.
The lbx files may also be used to map babel/polyglossia language names to
the backend modules of the biblatex package. All localisation modules are loaded
on demand in the document body. Note that the contents of the file are processed in
a group and that the category code of the character @ is temporarily set to ‘letter’.

4.9.1 Localization Commands

The user-level versions of the localisation commands were already introduced in
§ 3.10. When used in lbx files, however, the syntax of localisation commands is
different from the user syntax in the preamble and the configuration file. When used
in localisation files, there is no need to specify the 〈language〉 because the mapping
of strings to a language is already provided by the name of the lbx file.

\DeclareBibliographyStrings{〈definitions〉}

This command is only available in lbx files. It is used to define localisation strings.
The 〈definitions〉 consist of 〈key〉=〈value〉 pairs which assign an expression to an

295

identifier. A complete list of all keys supported by default is given is § 4.9.2. Note that
the syntax of the value is different in lbx files. The value assigned to a key consists
of two expressions, each of which is wrapped in an additional pair of brackets. This
is best shown by example:

\DeclareBibliographyStrings{%

bibliography = {{Bibliography}{Bibliography}},

shorthands = {{List of Abbreviations}{

↪→ Abbreviations}},

editor = {{editor}{ed.}},

editors = {{editors}{eds.}},

}

The first value is the long, written out expression, the second one is an abbreviated
or short form. Both strings must always be given even though they may be identical
if an expression is always (or never) abbreviated. Depending on the setting of the
abbreviate package option (see § 3.1.2.1), biblatex selects one expression
when loading the lbx file. There is also a special key named inheritwhich copies
the strings from a different language. This is intended for languages which only
differ in a few expressions, such as German and Austrian or American and British
English. For example, here are the complete definitions for Austrian:

\DeclareBibliographyStrings{%

inherit = {german},

january = {{J\"anner}{J\"an.}},

}

The above examples are slightly simplified. Real localisation files should use the
punctuation and formatting commands discussed in §§ 4.7.3 and 3.12 instead of literal
punctuation. Here is an excerpt from a real localisation file:

bibliography = {{Bibliography}{Bibliography}},

shorthands = {{List of Abbreviations}{

↪→ Abbreviations}},

editor = {{editor}{ed\adddot}},

editors = {{editors}{eds\adddot}},

byeditor = {{edited by}{ed\adddotspace by}},

mathesis = {{Master's thesis}{

↪→ MA\addabbrvspace thesis}},

Note the handling of abbreviation dots, the spacing in abbreviated expressions, and
the capitalization in the example above. All expressions should be capitalized as they
usually are when used in the middle of a sentence. The biblatex package will
automatically capitalize the first word when required at the beginning of a sentence,
see \DeclareCapitalPunctuation in § 4.7.5 for details. Expressions intended
for use in headings are special. They should be capitalized in a way that is suitable
for titling and should not be abbreviated (but they may have a short form).

296

\InheritBibliographyStrings{〈language〉}

This command is only available in lbx files. It copies the localisation strings for
〈language〉 to the current language, as specified by the name of the lbx file.

\DeclareBibliographyExtras{〈code〉}

This command is only available in lbx files. It is used to adapt language specific
features such as the date format and ordinals. The 〈code〉, which may be arbitrary
LaTeX code, will usually consist of redefinitions of the formatting commands from
§ 4.10.2.

\UndeclareBibliographyExtras{〈code〉}

This command is only available in lbx files. It is used to restore any formatting
commands modified with \DeclareBibliographyExtras. If a redefined com-
mand is included in § 4.10.2, there is no need to restore its previous definition since
these commands are localised by all language modules anyway.

\InheritBibliographyExtras{〈language〉}

This command is only available in lbx files. It copies the bibliography extras for
〈language〉 to the current language, as specified by the name of the lbx file.

\DeclareHyphenationExceptions{〈text〉}

This command corresponds to \DefineHyphenationExceptions from § 3.10.
The difference is that it is only available inlbx files and that the 〈language〉 argument
is omitted. The hyphenation exceptions will affect the language of the lbx file
currently being processed.

\DeclareRedundantLanguages{〈language, language, …〉}{〈langid, langid, …〉}

This command provides the language mappings required by the clearlang option
from § 3.1.2.1. The 〈language〉 is the string given in the language field (without
the optional lang prefix); 〈langid〉 is babel/polyglossia’s language identi-
fier, as given in the optional argument of \usepackage when loading babel
or the argument of \setdefaultlanguage or \setotherlanguages when
using polyglossia. This command may be used in lbx files or in the document
preamble. Here are some examples:

\DeclareRedundantLanguages{french}{french}

\DeclareRedundantLanguages{german}{german,ngerman,

↪→ austrian,naustrian,

nswissgerman,swissgerman}

\DeclareRedundantLanguages{english,american}{english,

↪→ american,british,

canadian,australian,newzealand,USenglish,

↪→ UKenglish}

Note that this feature needs to be enabled globally with the clearlang option
from § 3.1.2.1. If it is disabled, all mappings will be ignored. If the 〈langid〉 parameter
is blank, biblatex will clear the mappings for the corresponding 〈language〉, i. e.,
the feature will be disabled for this 〈language〉 only.

297

\DeclareLanguageMapping{〈language〉}{〈file〉}

This command maps a babel/polyglossia language identifier to an lbx file.
The 〈language〉 must be a language name known to the babel/polyglossia
package, i. e., one of the identifiers listed in table 2. The 〈file〉 argument is the name
of an alternative lbx file without the .lbx suffix. Declaring the samemapping more
than once is possible. Subsequent declarations will simply overwrite any previous
ones. This command may only be used in the preamble. See § 4.11.8 for further
details.

\DeclareLanguageMappingSuffix{〈suffix〉}

This command defines a language file suffix which will be added when looking for
.lbx language string definition files. This is intended for styles which provide their
own .lbx files so that they will be used automatically. For example, the APA style
defines:

\DeclareLanguageMappingSuffix{-apa}

When the document language is ‘german’, biblatex will look for the file
german-apa.lbx which defines some APA specific strings and in turn loads
german.lbx. If \DeclareLanguageMapping is defined for a language, this
overrides \DeclareLanguageMappingSuffix.
The suffix will be applied to other language files loaded recursively by the loading of
a language file. For example, given the suffix defined above, when loading ‘ngerman’,
biblatex will look for the file ngerman-apa.lbx and if this recursively loads
‘german’, then biblatex will look for german-apa.lbx. Infinite recursion is of
course avoided.

\NewBibliographyString{〈key〉}

This command, which may be used in the preamble (including cbx and bbx files)
as well as in lbx files, declares new localisation strings, i. e., it initializes a new
〈key〉 to be used in the 〈definitions〉 of \DefineBibliographyStrings or
\DeclareBibliographyStrings. The 〈key〉 argument may also be a comma-
separated list of key names. When used in an lbx, the 〈key〉 is initialized only for
the language specified by the name of the lbx file. The keys listed in § 4.9.2 are
defined by default.

4.9.2 Localization Keys

The localisation keys in this section are defined by default and covered by the
localisation files which come with biblatex. Note that these strings are only
available in citations, the bibliography and bibliography lists. All expressions should
be capitalized as they usually are when used in the middle of a sentence. biblatex
will capitalize them automatically at the beginning of a sentence. The only exceptions
to these rules are the three strings intended for use in headings.

4.9.2.1 Headings

The following strings are special because they are intended for use in headings and
made available globally via macros. For this reason, they should be capitalized for
use in headings and they must not include any local commands which are part of
biblatex’s author interface.

298

bibliography The term ‘bibliography’, also available as \bibname.

references The term ‘references’, also available as \refname.

shorthands The term ‘list of shorthands’ or ‘list of abbreviations’, also available as
\biblistname.

4.9.2.2 Roles, Expressed as Functions

The following keys refer to roles which are expressed as a function (‘editor’, ‘transla-
tor’) rather than as an action (‘edited by’, ‘translated by’).

editor The term ‘editor’, referring to the main editor. This is the most generic editorial role.

editors The plural form of editor.

compiler The term ‘compiler’, referring to an editor whose task is to compile a work.

compilers The plural form of compiler.

founder The term ‘founder’, referring to a founding editor.

founders The plural form of founder.

continuator An expression like ‘continuator’, ‘continuation’, or ‘continued’, referring to a past
editor who continued the work of the founding editor but was subsequently
replaced by the current editor.

continuators The plural form of continuator.

redactor The term ‘redactor’, referring to a secondary editor.

redactors The plural form of redactor.

reviser The term ‘reviser’, referring to a secondary editor.

revisers The plural form of reviser.

collaborator A term like ‘collaborator’, ‘collaboration’, ‘cooperator’, or ‘cooperation’, referring to
a secondary editor.

collaborators The plural form of collaborator.

translator The term ‘translator’.

translators The plural form of translator.

commentator The term ‘commentator’, referring to the author of a commentary to a work.

commentators The plural form of commentators.

annotator The term ‘annotator’, referring to the author of annotations to a work.

annotators The plural form of annotators.

organizer The term ‘organizer’, referring to the organizer of an event or work.

organizers The plural form of organizer.

4.9.2.3 Concatenated Editor Roles, Expressed as Functions

The following keys are similar in function to editor, translator, etc. They are
used to indicate additional roles of the editor, e. g., ‘editor and translator’, ‘editor and
foreword’.

editortr Used if editor/translator are identical.

editorstr The plural form of editortr.

299

editorco Used if editor/commentator are identical.

editorsco The plural form of editorco.

editoran Used if editor/annotator are identical.

editorsan The plural form of editoran.

editorin Used if editor/introduction are identical.

editorsin The plural form of editorin.

editorfo Used if editor/foreword are identical.

editorsfo The plural form of editorfo.

editoraf Used if editor/aftword are identical.

editorsaf The plural form of editoraf.

Keys for editor/translator/〈role〉 combinations:

editortrco Used if editor/translator/commentator are identical.

editorstrco The plural form of editortrco.

editortran Used if editor/translator/annotator are identical.

editorstran The plural form of editortran.

editortrin Used if editor/translator/introduction are identical.

editorstrin The plural form of editortrin.

editortrfo Used if editor/translator/foreword are identical.

editorstrfo The plural form of editortrfo.

editortraf Used if editor/translator/aftword are identical.

editorstraf The plural form of editortraf.

Keys for editor/commentator/〈role〉 combinations:

editorcoin Used if editor/commentator/introduction are identical.

editorscoin The plural form of editorcoin.

editorcofo Used if editor/commentator/foreword are identical.

editorscofo The plural form of editorcofo.

editorcoaf Used if editor/commentator/aftword are identical.

editorscoaf The plural form of editorcoaf.

Keys for editor/annotator/〈role〉 combinations:

editoranin Used if editor/annotator/introduction are identical.

editorsanin The plural form of editoranin.

editoranfo Used if editor/annotator/foreword are identical.

editorsanfo The plural form of editoranfo.

editoranaf Used if editor/annotator/aftword are identical.

editorsanaf The plural form of editoranaf.

Keys for editor/translator/commentator/〈role〉 combinations:

300

editortrcoin Used if editor/translator/commentator/introduction are identical.

editorstrcoin The plural form of editortrcoin.

editortrcofo Used if editor/translator/commentator/foreword are identical.

editorstrcofo The plural form of editortrcofo.

editortrcoaf Used if editor/translator/commentator/aftword are identical.

editorstrcoaf The plural form of editortrcoaf.

Keys for editor/annotator/commentator/〈role〉 combinations:

editortranin Used if editor/annotator/commentator/introduction are identical.

editorstranin The plural form of editortranin.

editortranfo Used if editor/annotator/commentator/foreword are identical.

editorstranfo The plural form of editortranfo.

editortranaf Used if editor/annotator/commentator/aftword are identical.

editorstranaf The plural form of editortranaf.

4.9.2.4 Concatenated Translator Roles, Expressed as Functions

The following keys are similar in function to translator. They are used to indicate
additional roles of the translator, e. g., ‘translator and commentator’, ‘translator and
introduction’.

translatorco Used if translator/commentator are identical.

translatorsco The plural form of translatorco.

translatoran Used if translator/annotator are identical.

translatorsan The plural form of translatoran.

translatorin Used if translator/introduction are identical.

translatorsin The plural form of translatorin.

translatorfo Used if translator/foreword are identical.

translatorsfo The plural form of translatorfo.

translatoraf Used if translator/aftword are identical.

translatorsaf The plural form of translatoraf.

Keys for translator/commentator/〈role〉 combinations:

translatorcoin Used if translator/commentator/introduction are identical.

translatorscoin The plural form of translatorcoin.

translatorcofo Used if translator/commentator/foreword are identical.

translatorscofo The plural form of translatorcofo.

translatorcoaf Used if translator/commentator/aftword are identical.

translatorscoaf The plural form of translatorcoaf.

Keys for translator/annotator/〈role〉 combinations:

translatoranin Used if translator/annotator/introduction are identical.

301

translatorsanin The plural form of translatoranin.

translatoranfo Used if translator/annotator/foreword are identical.

translatorsanfo The plural form of translatoranfo.

translatoranaf Used if translator/annotator/aftword are identical.

translatorsanaf The plural form of translatoranaf.

4.9.2.5 Roles, Expressed as Actions

The following keys refer to roles which are expressed as an action (‘edited by’,
‘translated by’) rather than as a function (‘editor’, ‘translator’).

byauthor The expression ‘[created] by 〈name〉’.
byeditor The expression ‘edited by 〈name〉’.

bycompiler The expression ‘compiled by 〈name〉’.
byfounder The expression ‘founded by 〈name〉’.

bycontinuator The expression ‘continued by 〈name〉’.
byredactor The expression ‘redacted by 〈name〉’.
byreviser The expression ‘revised by 〈name〉’.

byreviewer The expression ‘reviewed by 〈name〉’.
bycollaborator An expression like ‘in collaboration with 〈name〉’ or ‘in cooperation with 〈name〉’.
bytranslator The expression ‘translated by 〈name〉’ or ‘translated from 〈language〉 by 〈name〉’.

bycommentator The expression ‘commented by 〈name〉’.
byannotator The expression ‘annotated by 〈name〉’.
byorganizer The expression ‘[organized] by 〈name〉’.

4.9.2.6 Concatenated Editor Roles, Expressed as Actions

The following keys are similar in function to byeditor, bytranslator, etc.
They are used to indicate additional roles of the editor, e. g., ‘edited and translated
by’, ‘edited and furnished with an introduction by’, ‘edited, with a foreword, by’.

byeditortr Used if editor/translator are identical.

byeditorco Used if editor/commentator are identical.

byeditoran Used if editor/annotator are identical.

byeditorin Used if editor/introduction are identical.

byeditorfo Used if editor/foreword are identical.

byeditoraf Used if editor/aftword are identical.

Keys for editor/translator/〈role〉 combinations:

byeditortrco Used if editor/translator/commentator are identical.

byeditortran Used if editor/translator/annotator are identical.

byeditortrin Used if editor/translator/introduction are identical.

byeditortrfo Used if editor/translator/foreword are identical.

byeditortraf Used if editor/translator/aftword are identical.

302

Keys for editor/commentator/〈role〉 combinations:

byeditorcoin Used if editor/commentator/introduction are identical.

byeditorcofo Used if editor/commentator/foreword are identical.

byeditorcoaf Used if editor/commentator/aftword are identical.

Keys for editor/annotator/〈role〉 combinations:

byeditoranin Used if editor/annotator/introduction are identical.

byeditoranfo Used if editor/annotator/foreword are identical.

byeditoranaf Used if editor/annotator/aftword are identical.

Keys for editor/translator/commentator/〈role〉 combinations:

byeditortrcoin Used if editor/translator/commentator/introduction are identical.

byeditortrcofo Used if editor/translator/commentator/foreword are identical.

byeditortrcoaf Used if editor/translator/commentator/aftword are identical.

Keys for editor/translator/annotator/〈role〉 combinations:

byeditortranin Used if editor/annotator/commentator/introduction are identical.

byeditortranfo Used if editor/annotator/commentator/foreword are identical.

byeditortranaf Used if editor/annotator/commentator/aftword are identical.

4.9.2.7 Concatenated Translator Roles, Expressed as Actions

The following keys are similar in function to bytranslator. They are used
to indicate additional roles of the translator, e. g., ‘translated and commented by’,
‘translated and furnished with an introduction by’, ‘translated, with a foreword, by’.

bytranslatorco Used if translator/commentator are identical.

bytranslatoran Used if translator/annotator are identical.

bytranslatorin Used if translator/introduction are identical.

bytranslatorfo Used if translator/foreword are identical.

bytranslatoraf Used if translator/aftword are identical.

Keys for translator/commentator/〈role〉 combinations:

bytranslatorcoin Used if translator/commentator/introduction are identical.

bytranslatorcofo Used if translator/commentator/foreword are identical.

bytranslatorcoaf Used if translator/commentator/aftword are identical.

Keys for translator/annotator/〈role〉 combinations:

bytranslatoranin Used if translator/annotator/introduction are identical.

bytranslatoranfo Used if translator/annotator/foreword are identical.

bytranslatoranaf Used if translator/annotator/aftword are identical.

303

4.9.2.8 Roles, Expressed as Objects

Roles which are related to supplementary material may also be expressed as objects
(‘with a commentary by’) rather than as functions (‘commentator’) or as actions
(‘commented by’).

withcommentator The expression ‘with a commentary by 〈name〉’.
withannotator The expression ‘with annotations by 〈name〉’.

withintroduction The expression ‘with an introduction by 〈name〉’.
withforeword The expression ‘with a foreword by 〈name〉’.
withafterword The expression ‘with an afterword by 〈name〉’.

4.9.2.9 Supplementary Material

commentary The term ‘commentary’.

annotations The term ‘annotations’.

introduction The term ‘introduction’.

foreword The term ‘foreword’.

afterword The term ‘afterword’.

4.9.2.10 Publication Details

volume The term ‘volume’, referring to a book.

volumes The plural form of volume.

involumes The term ‘in’, as used in expressions like ‘in 〈number of volumes〉 volumes’.

jourvol The term ‘volume’, referring to a journal.

jourser The term ‘series’, referring to a journal.

book The term ‘book’, referring to a document division.

part The term ‘part’, referring to a part of a book or a periodical.

issue The term ‘issue’, referring to a periodical.

newseries The expression ‘new series’, referring to a journal.

oldseries The expression ‘old series’, referring to a journal.

edition The term ‘edition’.

in The term ‘in’, referring to the title of a work published as part of another one, e. g.,
‘〈title of article〉 in 〈title of journal〉’.

inseries The term ‘in’, as used in expressions like ‘volume 〈number〉 in 〈name of series〉’.
ofseries The term ‘of’, as used in expressions like ‘volume 〈number〉 of 〈name of series〉’.
number The term ‘number’, referring to an issue of a journal.

chapter The term ‘chapter’, referring to a chapter in a book.

version The term ‘version’, referring to a revision number.

reprint The term ‘reprint’.

reprintof The expression ‘reprint of 〈title〉’.
reprintas The expression ‘reprinted as 〈title〉’.

reprintfrom The expression ‘reprinted from 〈title〉’.

304

translationof The expression ‘translation of 〈title〉’.
translationas The expression ‘translated as 〈title〉’.

translationfrom The expression ‘translated from [the] 〈language〉’.
reviewof The expression ‘review of 〈title〉’.

origpubas The expression ‘originally published as 〈title〉’.
origpubin The expression ‘originally published in 〈year〉’.

astitle The term ‘as’, as used in expressions like ‘published by 〈publisher〉 as 〈title〉’.
bypublisher The term ‘by’, as used in expressions like ‘published by 〈publisher〉’.

4.9.2.11 Publication State

inpreparation The expression ‘in preparation’ (the manuscript is being prepared for publication).

submitted The expression ‘submitted’ (the manuscript has been submitted to a journal or
conference).

forthcoming The expression ‘forthcoming’ (the manuscript has been accepted by a press or
journal).

inpress The expression ‘in press’ (the manuscript is fully copyedited and out of the author’s
hands; it is in the final stages of the production process).

prepublished The expression ‘pre-published’ (the manuscript is published in a preliminary form or
location, such as online version in advance of print publication).

4.9.2.12 Pagination

page The term ‘page’.

pages The plural form of page.

column The term ‘column’, referring to a column on a page.

columns The plural form of column.

section The term ‘section’, referring to a document division (usually abbreviated as §).

sections The plural form of section (usually abbreviated as §§).

paragraph The term ‘paragraph’ (i. e., a block of text, not to be confused with section).

paragraphs The plural form of paragraph.

verse The term ‘verse’ as used when referring to a work which is cited by verse numbers.

verses The plural form of verse.

line The term ‘line’ as used when referring to a work which is cited by line numbers.

lines The plural form of line.

pagetotal The term ‘page’ as used in \mkpageprefix.

pagetotals The plural form of pagetotal.

columntotal The term ‘column’, referring to a column on a page, as used in \mkpageprefix.

columntotals The plural form of columntotal.

sectiontotal The term ‘section’, referring to a document division (usually abbreviated as §), as
used in \mkpageprefix.

sectiontotals The plural form of sectiontotal (usually abbreviated as §§).

305

paragraphtotal The term ‘paragraph’ (i. e., a block of text, not to be confused with section) as
used in \mkpageprefix.

paragraphtotals The plural form of paragraphtotal.

versetotal The term ‘verse’ as used when referring to a work which is cited by verse numbers
when used in \mkpageprefix.

versetotals The plural form of versetotal.

linetotal The term ‘line’ as used when referring to a work which is cited by line numbers
when used in \mkpageprefix.

linetotals The plural form of linetotal.

4.9.2.13 Types

The following keys are typically used in the type field of @thesis, @report,
@misc, and other entries:

bathesis An expression equivalent to the term ‘Bachelor’s thesis’.

mathesis An expression equivalent to the term ‘Master’s thesis’.

phdthesis The term ‘PhD thesis’, ‘PhD dissertation’, ‘doctoral thesis’, etc.

candthesis An expression equivalent to the term ‘Candidate thesis’. Used for ‘Candidate’
degrees that have no clear equivalent to the Master’s or doctoral level.

techreport The term ‘technical report’.

resreport The term ‘research report’.

software The term ‘computer software’.

datacd The term ‘data cd’ or ‘cd-rom’.

audiocd The term ‘audio cd’.

4.9.2.14 Miscellaneous

nodate The term to use in place of a date when there is no date for an entry e. g., ‘n.d.’

and The term ‘and’, as used in a list of authors or editors, for example.

andothers The expression ‘and others’ or ‘et alii’, used to mark the truncation of a name list.

andmore Like andothers but used to mark the truncation of a literal list.

4.9.2.15 Labels

The following strings are intended for use as labels, e. g., ‘Address: 〈url〉’ or ‘Abstract:
〈abstract〉’.

url The term ‘address’ in the sense of an internet address.

urlfrom An expression like ‘available from 〈url〉’ or ‘available at 〈url〉’.
urlseen An expression like ‘accessed on 〈date〉’, ‘retrieved on 〈date〉’, ‘visited on 〈date〉’,

referring to the access date of an online resource.

file The term ‘file’.

library The term ‘library’.

abstract The term ‘abstract’.

annotation The term ‘annotations’.

306

4.9.2.16 Citations

Traditional scholarly expressions used in citations:

idem The term equivalent to the Latin ‘idem’ (‘the same [person]’).

idemsf The feminine singular form of idem.

idemsm The masculine singular form of idem.

idemsn The neuter singular form of idem.

idempf The feminine plural form of idem.

idempm The masculine plural form of idem.

idempn The neuter plural form of idem.

idempp The plural form of idem suitable for a mixed gender list of names.

ibidem The term equivalent to the Latin ‘ibidem’ (‘in the same place’).

opcit The term equivalent to the Latin term ‘opere citato’ (‘[in] the work [already] cited’).

loccit The term equivalent to the Latin term ‘loco citato’ (‘[at] the place [already] cited’).

confer The term equivalent to the Latin ‘confer’ (‘compare’).

sequens The term equivalent to the Latin ‘sequens’ (‘[and] the following [page]’), as used to
indicate a range of two pages when only the starting page is provided (e. g., ‘25 sq.’
or ‘25 f.’ instead of ‘25–26’).

sequentes The term equivalent to the Latin ‘sequentes’ (‘[and] the following [pages]’), as used
to indicate an open-ended range of pages when only the starting page is provided
(e. g., ‘25 sqq.’ or ‘25 ff.’).

passim The term equivalent to the Latin ‘passim’ (‘throughout’, ‘here and there’,
‘scatteredly’).

Other expressions frequently used in citations:

see The term ‘see’.

seealso The expression ‘see also’.

seenote An expression like ‘see note 〈footnote〉’ or ‘as in 〈footnote〉’, used to refer to a
previous footnote in a citation.

backrefpage An expression like ‘see page 〈page〉’ or ‘cited on page 〈page〉’, used to introduce
back references in the bibliography.

backrefpages The plural form of backrefpage, e. g., ‘see pages 〈pages〉’ or ‘cited on pages
〈pages〉’.

quotedin An expression like ‘quoted in 〈citation〉’, used when quoting a passage which was
already a quotation in the cited work.

citedas An expression like ‘henceforth cited as 〈shorthand〉’, used to introduce a shorthand
in a citation.

thiscite The expression used in some verbose citation styles to differentiate between the
page range of the cited item (typically an article in a journal, collection, or
conference proceedings) and the page number the citation refers to. For example:
“Author, Title, in: Book, pp. 45–61, thiscite p. 52.”

307

4.9.2.17 Month Names

january The name ‘January’.

february The name ‘February’.

march The name ‘March’.

april The name ‘April’.

may The name ‘May’.

june The name ‘June’.

july The name ‘July’.

august The name ‘August’.

september The name ‘September’.

october The name ‘October’.

november The name ‘November’.

december The name ‘December’.

4.9.2.18 Language Names

langamerican The language ‘American’ or ‘American English’.

langbasque The language ‘Basque’.

langbrazilian The language ‘Brazilian’ or ‘Brazilian Portuguese’.

langbulgarian The language ‘Bulgarian’.

langcatalan The language ‘Catalan’.

langcroatian The language ‘Croatian’.

langczech The language ‘Czech’.

langdanish The language ‘Danish’.

langdutch The language ‘Dutch’.

langenglish The language ‘English’.

langestonian The language ‘Estonian’.

langfinnish The language ‘Finnish’.

langfrench The language ‘French’.

langgerman The language ‘German’.

langgreek The language ‘Greek’.

langhungarian The language ‘Hungarian’.

langitalian The language ‘Italian’.

langjapanese The language ‘Japanese’.

langlatin The language ‘Latin’.

langlatvian The language ‘Latvian’.

langlithuanian The language ‘Lithuanian’.

langmarathi The language ‘Marathi’.

langnorwegian The language ‘Norwegian’.

langpolish The language ‘Polish’.

308

langportuguese The language ‘Portuguese’.

langromanian The language ‘Romanian’.

langrussian The language ‘Russian’.

langserbian The language ‘Serbian’.

langslovak The language ‘Slovak’.

langslovene The language ‘Slovene’.

langspanish The language ‘Spanish’.

langswedish The language ‘Swedish’.

langturkish The language ‘Turkish’.

langukrainian The language ‘Ukrainian’.

The following strings are intended for use in phrases like ‘translated from [the]
English by 〈translator〉’:

fromamerican The expression ‘from [the] American’ or ‘from [the] American English’.

frombasque The expression ‘from [the] Basque’.

frombrazilian The expression ‘from [the] Brazilian’ or ‘from [the] Brazilian Portuguese’.

frombulgarian The expression ‘from [the] Bulgarian’.

fromcatalan The expression ‘from [the] Catalan’.

fromcroatian The expression ‘from [the] Croatian’.

fromczech The expression ‘from [the] Czech’.

fromdanish The expression ‘from [the] Danish’.

fromdutch The expression ‘from [the] Dutch’.

fromenglish The expression ‘from [the] English’.

fromestonian The expression ‘from [the] Estonian’.

fromfinnish The expression ‘from [the] Finnish’.

fromfrench The expression ‘from [the] French’.

fromgerman The expression ‘from [the] German’.

fromgreek The expression ‘from [the] Greek’.

fromhungarian The language ‘from [the] Hungarian’.

fromitalian The expression ‘from [the] Italian’.

fromjapanese The expression ‘from [the] Japanese’.

fromlatin The expression ‘from [the] Latin’.

fromlatvian The expression ‘from [the] Latvian’.

fromlithuanian The language ‘from [the] Lithuanian’.

frommarathi The expression ‘from [the] Marathi’.

fromnorwegian The expression ‘from [the] Norwegian’.

frompolish The expression ‘from [the] Polish’.

fromportuguese The expression ‘from [the] Portuguese’.

fromromanian The expression ‘from [the] Romanian’.

309

fromrussian The expression ‘from [the] Russian’.
fromserbian The expression ‘from [the] Serbian’.
fromslovak The expression ‘from [the] Slovak’.
fromslovene The expression ‘from [the] Slovene’.
fromspanish The expression ‘from [the] Spanish’.
fromswedish The expression ‘from [the] Swedish’.
fromturkish The expression ‘from [the] Turkish’.

fromukrainian The expression ‘from [the] Ukrainian’.

4.9.2.19 Country Names

Country names are localised by using the string country plus the iso-3166 country
code as the key. The short version of the translation should be the iso-3166 country
code. Note that only a small number of country names is defined by default, mainly
to illustrate this scheme. These keys are used in the location list of @patent
entries but they may be useful for other purposes as well.

countryde The name ‘Germany’, abbreviated as DE.
countryeu The name ‘European Union’, abbreviated as EU.
countryep Similar to countryeu but abbreviated as EP. This is intended for patent entries.
countryfr The name ‘France’, abbreviated as FR.
countryuk The name ‘United Kingdom’, abbreviated (according to iso-3166) as GB.
countryus The name ‘United States of America’, abbreviated as US.

4.9.2.20 Patents and Patent Requests

Strings related to patents are localised by using the term patent plus the iso-3166
country code as the key. Note that only a small number of patent keys is defined by
default, mainly to illustrate this scheme. These keys are used in the type field of
@patent entries.

patent The generic term ‘patent’.
patentde The expression ‘German patent’.
patenteu The expression ‘European patent’.
patentfr The expression ‘French patent’.
patentuk The expression ‘British patent’.
patentus The expression ‘U.S. patent’.

Patent requests are handled in a similar way, using the string patreq as the base
name of the key:

patreq The generic term ‘patent request’.
patreqde The expression ‘German patent request’.
patreqeu The expression ‘European patent request’.
patreqfr The expression ‘French patent request’.
patrequk The expression ‘British patent request’.
patrequs The expression ‘U.S. patent request’.

310

4.9.2.21 Dates and Times

Abbreviation strings for standard eras. Both secular and Christian variants are
supported.

commonera The era ‘CE’

beforecommonera The era ‘BCE’

annodomini The era ‘AD’

beforechrist The era ‘BC’

Abbreviation strings for ‘circa’ dates:

circa The string ‘circa’

Abbreviation strings for year divisions parsed from iso8601-2 Extended Format
dates:

spring The string ‘spring’

summer The string ‘summer’

autumn The string ‘autumn’

winter The string ‘winter’

springN The string ‘spring (Northern Hemisphere)’

summerN The string ‘summer (Northern Hemisphere)’

autumnN The string ‘autumn (Northern Hemisphere)’

winterN The string ‘winter (Northern Hemisphere)’

springS The string ‘spring (Southern Hemisphere)’

summerS The string ‘summer (Southern Hemisphere)’

autumnS The string ‘autumn (Southern Hemisphere)’

winterS The string ‘winter (Southern Hemisphere)’

Q1 The string ‘Quarter 1’

Q2 The string ‘Quarter 2’

Q3 The string ‘Quarter 3’

Q4 The string ‘Quarter 3’

QD1 The string ‘Quadrimester 1’

QD2 The string ‘Quadrimester 2’

QD3 The string ‘Quadrimester 3’

S1 The string ‘Semestral 1’

S2 The string ‘Semestral 2’

Abbreviation strings for AM/PM:

am The string ‘AM’

pm The string ‘PM’

311

4.10 Formatting Commands

This section corresponds to § 3.12 in the user part of this manual. Bibliography
and citation styles should incorporate the commands and facilities discussed in this
section in order to provide a certain degree of high-level configurability. Users should
not be forced to write new styles if all they want to do is modify the spacing in the
bibliography or the punctuation used in citations.

4.10.1 User-definable Commands and Hooks

This section corresponds to § 3.12.1 in the user part of the manual. The commands
and hooks discussed here are meant to be redefined by users, but bibliography and
citation styles may provide a default definition which is different from the package
default. These commands are defined in biblatex.def. Note that all commands
starting with \mk… take one mandatory argument.

\bibsetup Arbitrary code to be executed at the beginning of the bibliography, intended for
commands which affect the layout of the bibliography.

\bibfont Arbitrary code setting the font used in the bibliography. This is very similar to
\bibsetup but intended for switching fonts.

\citesetup Arbitrary code to be executed at the beginning of each citation command.

\newblockpunct The separator inserted between ‘blocks’ in the sense explained in § 4.7.1. The default
definition is controlled by the package option block (see § 3.1.2.1).

\newunitpunct The separator inserted between ‘units’ in the sense explained in § 4.7.1. This will
usually be a period or a comma plus an interword space. The default definition is a
period and a space.

\finentrypunct The punctuation printed at the very end of every bibliography entry, usually a
period. The default definition is a period.

\entrysetpunct The punctuation printed between bibliography subentries of an entry set. The
default definition is a semicolon and a space.

\bibnamedelima This delimiter controls the spacing between the elements which make up a name
part. It is inserted automatically by the backend after the first name element if
the element is less than three characters long and before the last element. The
default definition is \addhighpenspace, i. e., a space penalized by the value
of the highnamepenalty counter (§ 3.12.4). Please refer to § 3.15.4 for further
details.

\bibnamedelimb This delimiter controls the spacing between the elements which make up a name
part. It is inserted automatically by the backend between all name elements where
\bibnamedelima does not apply. The default definition is \addlowpenspace,
i. e., a space penalized by the value of the lownamepenalty counter (§ 3.12.4).
Please refer to § 3.15.4 for further details.

\bibnamedelimc This delimiter controls the spacing between name parts. The default name formats
use it between the name prefix and the family name if useprefix=true. The
default definition is \addhighpenspace, i. e., a space penalized by the value
of the highnamepenalty counter (§ 3.12.4). Please refer to § 3.15.4 for further
details.

312

\bibnamedelimd This delimiter controls the spacing between name parts. The default name formats
use it between all name parts where \bibnamedelimc does not apply. The de-
fault definition is \addlowpenspace, i. e., a space penalized by the value of the
lownamepenalty counter (§ 3.12.4). Please refer to § 3.15.4 for further details.

\bibnamedelimi This delimiter replaces \bibnamedelima/b after initials. Note that this only
applies to initials given as such in the bib file, not to the initials automatically
generated by biblatex which use their own set of delimiters.

\bibinitperiod The punctuation inserted automatically by the backend after all initials unless
\bibinithyphendelim applies. The default definition is a period (\adddot).
Please refer to § 3.15.4 for further details.

\bibinitdelim The spacing inserted automatically by the backend between multiple initials un-
less \bibinithyphendelim applies. The default definition is an unbreakable
interword space. Please refer to § 3.15.4 for further details.

\bibinithyphendelim The punctuation inserted automatically by the backend between the initials
of hyphenated name parts, replacing \bibinitperiod and \bibinitdelim.
The default definition is a period followed by an unbreakable hyphen. Please refer to
§ 3.15.4 for further details.

\bibindexnamedelima Replaces \bibnamedelima in the index.

\bibindexnamedelimb Replaces \bibnamedelimb in the index.

\bibindexnamedelimc Replaces \bibnamedelimc in the index.

\bibindexnamedelimd Replaces \bibnamedelimd in the index.

\bibindexnamedelimi Replaces \bibnamedelimi in the index.

\bibindexinitperiod Replaces \bibinitperiod in the index.

\bibindexinitdelim Replaces \bibinitdelim in the index.

\bibindexinithyphendelim Replaces \bibinithyphendelim in the index.

\revsdnamepunct The punctuation to be printed between the given and family name parts when a
name is reversed. The default is a comma. This command should be incorporated in
formatting directives for name lists. Please refer to § 3.15.4 for further details.

\bibnamedash The dash to be used as a replacement for recurrent authors or editors in the biblio-
graphy. The default is an ‘em’ or an ‘en’ dash, depending on the indentation of the
list of references.

\labelnamepunct A separator to be printed after the name used for alphabetizing in the bib- Deprecated
liography (author or editor, if the author field is undefined) instead of
\newunitpunct. The default is \newunitpunct, i. e., it is not handled dif-
ferently from regular unit punctuation but permits convenient reconfiguration.
This punctuation command is deprecated and has been superseded by the context-
sensitive \nametitledelim (see § 3.12.2). For backwards compatibility rea-
sons, however, \nametitledelim still defaults to \labelnamepunct in
the bib and biblist contexts. Style authors may want to consider replac-
ing \labelnampunct with \printdelim{nametitledelim} and users
may want to prefer modifying the context-sensitive nametitledelim with
\DeclareDelimFormat over redefining \labelnamepunct, e. g.,

313

\DeclareDelimFormat[bib]{nametitledelim}{%

\addcolon\space}

\subtitlepunct The separator to be printed between the fields title and subtitle,
booktitle and booksubtitle, as well as maintitle and mainsubtitle.
Use this separator instead of \newunitpunct at this location. The default is
\newunitpunct, i. e., it is not handled differently from regular unit punctuation
but permits convenient reconfiguration.

\intitlepunct The separator to be printed between the word “in” and the following title in entry
types such as @article, @inbook, @incollection, etc. Use this separator
instead of \newunitpunct at this location. The default definition is a colon plus
an interword space.

\bibpagespunct The separator to be printed before the pages field. Use this separator instead of
\newunitpunct at this location. The default is a comma plus an interword space.

\bibpagerefpunct The separator to be printed before the pageref field. Use this separator instead
of \newunitpunct at this location. The default is an interword space.

\bibeidpunct The separator printed before the eid field (similar to \bibpagespunct). The
default is a comma plus an interword space.

\multinamedelim The delimiter to be printed between multiple items in a name list like author or Context Sensitive
editor if there are more than two names in the list. If there are only two names in
the list, use the \finalnamedelim instead. This command should be incorporated
in all formatting directives for name lists. The default is a comma followed by an
interword space.

\finalnamedelim Use this command instead of \multinamedelim before the final name in a Context Sensitive
name list. The default is the localised term ‘and’, separated by interword spaces.

\revsdnamedelim The extra delimiter to be printed after the first name in a name list consisting of Context Sensitive
two names (in addition to \finalnamedelim) if the first name is reversed. This
command should be incorporated in all formatting directives for name lists.

\andothersdelim The delimiter to be printed before the localisation string ‘andothers’ if a name Context Sensitive
list like author or editor is truncated. This command should be incorporated in
all formatting directives for name lists. The default is an interword space.

\multilistdelim The delimiter to be printed betweenmultiple items in a literal list like publisher Context Sensitive
or location if there are more than two names in the list. If there are only two
items in the list, use the \finallistdelim instead. This command should be
incorporated in all formatting directives for literal lists. The default is a comma plus
an interword space.

\finallistdelim Use this command instead of \multilistdelim before the final item in a Context Sensitive
literal list. The default is the localised term ‘and’, separated by interword spaces.

\andmoredelim The delimiter to be printed before the localisation string ‘andmore’ if a literal list Context Sensitive
like publisher or location is truncated. This command should be incorporated
in all formatting directives for literal lists. The default is an interword space.

314

\multicitedelim The delimiter printed between citations if multiple entry keys are passed to
a single citation command. This command should be incorporated in the defini-
tion of all citation commands, for example in the 〈sepcode〉 argument passed to
\DeclareCiteCommand. See § 4.3.1 for details. The default is a semicolon plus
an interword space.

\multiciterangedelim The delimiter printed between two citations if they are compressed to a
range. The default is \bibrangedash.

\multicitesubentrydelim The delimiter printed between subentry citations of the same set. This
delimiter is only used in citation styles that reduce citations of the same set to a more
compact form (subentry of numeric-comp). The default is a comma.

\multicitesubentryrangedelim The delimiter printed between two citations of the same set if
they are compressed to a range. The default is \multiciterangedelim.

\supercitedelim Similar to \multinamedelim, but intended for the \supercite command
only. The default is a comma.

\superciterangedelim Analogue of \multiciterangedelim for \supercite. The default
is \bibrangedash.

\supercitesubentrydelim Analogue of \multicitesubentrydelim for \supercite.
The default is \supercitedelim.

\supercitesubentryrangedelim Analogue of \multicitesubentryrangedelim for
\supercite. The default is \superciterangedelim.

\compcitedelim Similar to \multicitedelim, but intended for citation styles that ‘compress’
multiple citations, i. e., print the author only once if subsequent citations share the
same author etc. The default definition is a comma plus an interword space.

\textcitedelim Similar to \multicitedelim, but intended for \textcite and related com-
mands (§ 3.9.2). The default is a comma plus an interword space. The standard styles
modify this provisional definition to ensure that the delimiter before the final citation
is the localised term ‘and’, separated by interword spaces.

\nametitledelim The delimiter to be printed between the author/editor and the title. This command Context Sensitive
should be incorporated in the definition of all citation commands of author-title
and some verbose citation styles and in the bibliography drivers—in author-year
bibliographies \nametitledelimmay be printed between the author/editor-year
block and the title. The default definition inside bibliographies (i. e., in the bib and
biblist contexts) is the now deprecated \labelnamepunct (for backwards
compatibility reasons), in textcite context it is a space and it is a comma plus an
interword space otherwise.

\nameyeardelim The delimiter to be printed between the author/editor and the year. This command Context Sensitive
should be incorporated in the definition of all citation commands of author-year
citation styles and in the bibliography drivers. The default definition is an interword
space. For backwards compatibility reasons there are separate definitions in the bib,
biblist, textcite and global context.

\namelabeldelim The delimiter printed between the name/title and the label. This command should Context Sensitive
be incorporated in the definition of all citation commands of alphabetic and numeric
citation styles. The default definition is an interword space.

315

\nonameyeardelim The delimiter printed between the substitute for the labelname when it does not Context Sensitive
exist (usually the label or title in standard styles) and the year citation styles and
the bibliography drivers. This command should be incorporated in the definition of
all citation commands of author-year citation styles and in the bibliography drivers.
The default definition is an interword space. For backwards compatibility reasons
there are separate definitions in the bib, biblist, textcite and global context.

\authortypedelim The delimiter printed between the author and the authortype. The default is Context Sensitive
a comma followed by a space.

\editortypedelim The delimiter printed between the editor and the editor or editortype Context Sensitive
string. The default is a comma followed by a space.

\translatortypedelim The delimiter printed between the translator and the translator string. Context Sensitive
The default is a comma followed by a space.

\labelalphaothers A string to be appended to the non-numeric portion of the labelalpha
field (i. e., the field holding the citation label used by alphabetic citation styles) if the
number of authors/editors exceeds the maxalphanames threshold or the author/
editor list was truncated in the bib file with the keyword ‘and others’. This
will typically be a single character such as a plus sign or an asterisk. The default is a
plus sign. This command may also be redefined to an empty string to disable this
feature. In any case, it must be redefined in the preamble.

\sortalphaothers Similar to \labelalphaothers but used in the sorting process. Setting
it to a different value is advisable if the latter contains formatting commands. If
\sortalphaothers is not redefined, it defaults to \labelalphaothers.

\volcitedelim The delimiter to be printed between the volume portion and the page/text portion of
\volcite and related commands (§ 3.9.6).

\prenotedelim The delimiter to be printed after the 〈prenote〉 argument of a citation command. The Context Sensitive
default is an interword space.

\postnotedelim The delimiter to be printed before the 〈postnote〉 argument of a citation command. Context Sensitive
The default is a comma plus an interword space.

\extpostnotedelim The delimiter printed between the citation and the parenthetical 〈postnote〉 Context Sensitive
argument of a citation command when the postnote occurs outside of the citation
parentheses. In the standard styles, this occurs when the citation uses the shorthand
field of the entry. The default is an interword space.

\multiprenotedelim The delimiter to be printed after the 〈multiprenote〉 argument of a citation Context Sensitive
command.

\multipostnotedelim The delimiter to be printed before the 〈multipostnote〉 argument of a citation Context Sensitive
command.

\mkbibname‘namepart’{〈text〉}Formatting hook for the name part ‘namepart’, to be used in all

formatting directives for name lists. The default datamodel defines the name parts
‘family’, ‘given’, ‘prefix’ and ‘suffix’ and therefore the following macros are automat-
ically defined:

\mkbibnamefamily

\mkbibnamegiven

316

\mkbibnameprefix

\mkbibnamesuffix

\mkbibcompletename‘formatorder’{〈text〉}Formatting hook for the complete name in format

order ‘formatorder’. The default styles use the name format orders ‘family’, ‘family-
given’ and ‘given-family’, therefore the following macros are automatically defined:

\mkbibcompletenamefamily

\mkbibcompletenamefamilygiven

\mkbibcompletenamegivenfamily

These formatting hooks should enclose the complete name in the biblio-
graphy macro \name:‘formatorder’. Initially all hooks expand to
\mkbibcompletename.

\mkbibcompletename{〈text〉}The initial value of all default formatting hooks

\mkbibcompletename‘formatorder’.

\datecircadelim When formatting dates with the global option datecirca enabled, the delimiter Context Sensitive
printed after any localised ‘circa’ term. Defaults to interword space.

\dateeradelim When formatting dates with the global option dateera set, the delimiter printed Context Sensitive
before the localisation era term. Defaults to interword space.

\dateuncertainprint Prints date uncertainty information when the global option
dateuncertain is enabled and the \ifdateuncertain test is true.
By default, prints the language specific \bibdateuncertain string (§ 3.12.3).

\enddateuncertainprint Prints date uncertainty information when the global option
dateuncertain is enabled and the \ifenddateuncertain test is true. By
default, prints the language specific \bibdateuncertain string (§ 3.12.3).

\datecircaprint Prints date circa information when the global option datecirca is enabled
and the \ifdatecirca test is true. By default, prints the ‘circa’ localised term
(§ 4.9.2.21) and the datecircadelim delimiter.

\enddatecircaprint Prints date circa information when the global option datecirca is enabled
and the \ifenddatecirca test is true. By default, prints the ‘circa’ localised term
(§ 4.9.2.21) and the datecircadelim delimiter.

\datecircaprintiso Prints iso8601-2 format date circa information when the global op-
tion datecirca is enabled and the \ifdatecirca test is true. Prints
\textasciitilde.

\enddatecircaprintiso Prints iso8601-2 format date circa information when the global op-
tion datecirca is enabled and the \ifenddatecirca test is true. Prints
\textasciitilde.

317

\dateeraprint yearfield Prints date era information when the global option dateera is set to
‘secular’ or ‘christian’. By default, prints the dateeradelim delimiter and the
appropriate localised era term (§ 4.9.2.21). If the dateeraauto option is set, then
the passed 〈yearfield〉 (which is the name of a year field such as ‘year’, ‘origyear’,
‘endeventyear’ etc.) is tested to see if its value is earlier than the dateeraauto
threshold and if so, then the BCE/CE localisation will be output too. The default
setting fordateeraauto is 0 and so only BCE/BC localisation strings are candidates
for output. Detects whether the start or end year era information is to be printed by
looking at the 〈yearfield〉 name passed to it.

\dateeraprintpre Prints date era information when the global option dateera is set to ‘astro-
nomical’. By default, prints bibdataeraprefix. Detects whether the start or
end year era information is to be printed by looking at the 〈yearfield〉 name passed
to it.

\relatedpunct The separator between the relatedtype bibliography localisation string and the
data from the first related entry.

\relateddelim The generic separator between the data of multiple related entries. The default
definition is an optional dot plus linebreak.

\relateddelim<relatedtype> The separator between the data of multiple related entries inside
related entries of type ‘relatedtype’. There is no default, if such a type-specific
delimiter does not exist, \relateddelim is used.

\begrelateddelim The generic separator before the block of related entries. The default definition
is \newunitpunct.

\begrelateddelim<relatedtype> The separator between the block of related entries of type
‘relatedtype’. There is no default, if such a type-specific delimiter does not exist,
\relateddelim is used.

4.10.2 Language-specific Commands

This section corresponds to § 3.12.3 in the user part of the manual. The commands
discussed here are usually handled by the localisation modules, but may also be
redefined by users on a per-language basis. Note that all commands starting with
\mk… take one or more mandatory arguments.

\bibrangedash The language specific dash to be used for ranges of numbers. Defaults to
\textendash.

\bibrangessep The language specific separator to be used between multiple ranges. Defaults to a
comma followed by a space.

\bibdatesep The language specific separator used between date components in terse date formats.
Defaults to \hyphen.

\bibdaterangesep The language specific separator to be used for date ranges. Defaults to
\textendash for all date formats apart from ymd which defaults to a \slash.
The date format option iso is hard-coded to \slash since this is a standards
compliant format.

\mkbibdatelong Takes the names of three field as arguments which correspond to three date com-
ponents (in the order year/month/day) and uses their values to print the date in the
language specific long date format.

318

\mkbibdateshort Similar to \mkbibdatelong but using the language specific short date format.

\mkbibtimezone Modifies a timezone string passed in as the only argument. By default this changes
‘Z’ to the value of \bibtimezone.

\bibdateuncertain The language specific marker to be used after uncertain dates when the global
option dateuncertain is enabled. Defaults to a space followed by a question
mark.

\bibdateeraprefix The language specific marker which is printed as a prefix to beginning BCE/BC
dates in a date range when the option dateera is set to ‘astronomical’. Defaults to
\textminus, if defined and \textendash otherwise.

\bibdateeraendprefix The language specific marker which is printed as a prefix to end BCE/BC
dates in a date range when the option dateera is set to ‘astronomical’. Defaults
to a thin space followed by \bibdateeraprefix when \bibdaterangesep
is set to a dash and to \bibdateeraprefix otherwise. This is a separate macro
so that you may add extra space before a negative date marker which, for example
follows a dash date range marker as this can look a little odd.

\bibtimesep The language specific marker which separates time components. Default to a colon.

\bibutctimezone The language specific string printed for the UTC timezone. Defaults to ‘Z’.

\bibtimezonesep The language specific marker which separates an optional time zone component
from a time. Empty by default.

\bibtzminsep The language specific marker which separates hour and minute component of offset
timezones. Defaults to a \bibtimesep.

\bibdatetimesep The language specific separator printed between date and time compo-
nents when printing time components along with date components (see the
<datetype>dateusetime option in § 3.1.2.1). Defaults to a space for
non-iso8601-2 output formats, and ’T’ for iso8601-2 output format.

\finalandcomma Prints the comma to be inserted before the final ‘and’ in an enumeration, if applicable
in the respective language.

\finalandsemicolon Prints the semicolon to be inserted before the final ‘and’ in an enumeration,
if applicable in the respective language.

\mkbibordinal{〈integer〉}

Takes an integer argument and prints it as an ordinal number.

\mkbibmascord{〈integer〉}

Similar to \mkbibordinal, but prints a masculine ordinal, if applicable in the
respective language.

\mkbibfemord{〈integer〉}

Similar to \mkbibordinal, but prints a feminine ordinal, if applicable in the
respective language.

\mkbibneutord{〈integer〉}

Similar to \mkbibordinal, but prints a neuter ordinal, if applicable in the respec-
tive language.

319

\mkbibordedition{〈integer〉}

Similar to \mkbibordinal, but intended for use with the term ‘edition’.

\mkbibordseries{〈integer〉}

Similar to \mkbibordinal, but intended for use with the term ‘series’.

4.10.3 User-definable Lengths and Counters

This section corresponds to § 3.12.4 in the user part of the manual. The length
registers and counters discussed here are meant to be altered by users. Bibliography
and citation styles should incorporate them where applicable and may also provide
a default setting which is different from the package default.

\bibhang The hanging indentation of the bibliography, if applicable. This length is initialized
to \parindent at load-time. If \parindent is zero length for some reason,
\bibhang will default to 1em.

\biblabelsep The horizontal space between entries and their corresponding labels. Bibliography
styles which use list environments and print a label should set \labelsep to
\biblabelsep in the definition of the respective environment. This length is
initialized to twice the value of \labelsep at load-time.

\bibitemsep The vertical space between the individual entries in the bibliography. Bibliography
styles using list environments should set \itemsep to \bibitemsep in the
definition of the respective environment. This length is initialized to \itemsep at
load-time.

\bibnamesep Vertical space to be inserted between two entries in the bibliography whenever
an entry starts with a name which is different from the initial name of the pre-
vious entry. The default value is zero. Setting this length to a positive value
greater than \bibitemsep will group the bibliography by author/editor name.
Note that \bibitemsep, \bibnamesep, and \bibinitsep obey the rules for
\addvspace, that is, when vertical space introduced by any of these commands
immediately follows on from space introduced by another of them, the resulting
total space is equal to the largest of them.

\bibinitsep Vertical space to be inserted between two entries in the bibliography whenever
an entry starts with a letter which is different from the initial letter of the pre-
vious entry. The default value is zero. Setting this length to a positive value
greater than \bibitemsep will group the bibliography alphabetically. Note
that \bibitemsep, \bibnamesep, and \bibinitsep obey the rules for
\addvspace, that is, when vertical space introduced by any of these commands
immediately follows on from space introduced by another of them, the resulting
total space is equal to the largest of them.

\bibparsep The vertical space between paragraphs within an entry in the bibliography. Biblio-
graphy styles using list environments should set \parsep to \bibparsep in
the definition of the respective environment. The default value is zero.

abbrvpenalty The penalty used by \addabbrvspace, \addabthinspace, and
\adddotspace, see § 4.7.4 for details. This counter is initialized to
\hyphenpenalty at load-time.

320

highnamepenalty Thepenalty used by\addhighpenspace and\addhpthinspace, see § 4.7.4
for details. The counter is initialized to \hyphenpenalty at load-time.

lownamepenalty The penalty used by \addlowpenspace and \addlpthinspace, see § 4.7.4
for details. The counter is initialized to half the \hyphenpenalty at load-time.

biburlbigbreakpenalty The biblatex version of url’s \UrlBigBreakPenalty. The de-
fault value is 100.

biburlbreakpenalty The biblatex version of url’s \UrlBreakPenalty. The default value
is 200.

biburlnumpenalty If this counter is set to a value greater than zero, biblatex will permit line-
breaks after numbers in all strings formatted with the \url command from the url
package. This will affect urls and dois in the bibliography. The breakpoints will be
penalized by the value of this counter. If urls and/or dois in the bibliography run
into the margin, try setting this counter to a value greater than zero but less than
10000 (you normally want to use a high value like 9000). Setting the counter to zero
disables this feature. This is the default setting.

biburlucpenalty Similar to biburlnumpenalty, except that it will add a breakpoint after all
uppercase letters.

biburllcpenalty Similar to biburlnumpenalty, except that it will add a breakpoint after all
lowercase letters.

\biburlbigskip The biblatex version of \Urlmuskip. This length holds the additional (stretch-
able) space inserted around breakable characters in the \url command from the
url package. The default value is 0mu plus 3mu.

\biburlnumskip The additional space inserted after numbers in strings formatted with the \url
command from the url package. This will affect urls and dois in the bibliography.
If urls and/or dois in the bibliography run into the margin, it may help to set this
length to add some small stretchable space, for example 0mu plus 1mu. The
default setting is 0mu. This value is only used if biburlnumpenalty is set to a
value different from zero.

\biburlucskip Similar to biburlnumskip, except that it will add space after all uppercase letters.

\biburllcskip Similar to biburlnumskip, except that it will add space after all uppercase letters.

4.10.4 Auxiliary Commands and Hooks

The auxiliary commands and facilities in this section serve a special purpose. Some
of them are used by biblatex to communicate with bibliography and citation
styles in some way or other.

\mkbibemph{〈text〉}

A generic command which prints its argument as emphasized text. This is a
simple wrapper around the standard \emph command. Apart from that, it uses
\setpunctfont from § 4.7.1 to adapt the font of the next punctuation mark fol-
lowing the text set in italics. If the punctfont package option is disabled, this
command behaves like \emph.

321

\mkbibitalic{〈text〉}

Similar in concept to\mkbibemph but prints italicized text. This is a simple wrapper
around the standard \textit command which incorporates \setpunctfont. If
the punctfont package option is disabled, this command behaves like \textit.

\mkbibbold{〈text〉}

Similar in concept to \mkbibemph but prints bold text. This is a simple wrapper
around the standard \textbf command which incorporates \setpunctfont. If
the punctfont package option is disabled, this command behaves like \textbf.

\mkbibquote{〈text〉}

A generic command which wraps its argument in quotation marks. If the csquotes
package is loaded, this command uses the language sensitive quotation marks pro-
vided by that package. \mkbibquote also supports ‘American-style’ punctuation,
see \DeclareQuotePunctuation in § 4.7.5 for details.

\mkbibparens{〈text〉}

A generic command which wraps its argument in parentheses. This command is
nestable. When nested, it will alternate between parentheses and brackets, depending
on the nesting level.

\mkbibbrackets{〈text〉}

A generic command which wraps its argument in square brackets. This command is
nestable. When nested, it will alternate between brackets and parentheses, depending
on the nesting level.

\bibopenparen〈text〉\bibcloseparen

Alternative syntax for \mkbibparens. This will also work across groups. Note
that \bibopenparen and \bibcloseparen must always be balanced.

\bibopenbracket〈text〉\bibclosebracket

Alternative syntax for \mkbibbrackets. This will also work across groups. Note
that \bibopenbracket and \bibclosebracket must always be balanced.

\mkbibfootnote{〈text〉}

A generic command which prints its argument as a footnote. This is a wrapper
around the standard LaTeX \footnote command which removes spurious white-
space preceding the footnote mark and prevents nested footnotes. By default,
\mkbibfootnote requests capitalization at the beginning of the note and au-
tomatically adds a period at the end. You may change this behavior by redefining
the \bibfootnotewrapper macro introduced below.

\mkbibfootnotetext{〈text〉}

Similar to \mkbibfootnote but uses the \footnotetext command.

322

\mkbibendnote{〈text〉}

Similar in concept to \mkbibfootnote except that it prints its argument as an
endnote. \mkbibendnote removes spurious whitespace preceding the endnote
mark and prevents nested notes. It supports the \endnote command provided
by the endnotes package as well as the \pagenote command provided by
the pagenote package and the memoir class. If both commands are available,
\endnote takes precedence. If no endnote support is available, \mkbibendnote
issues an error and falls back to \footnote. By default, \mkbibendnote re-
quests capitalization at the beginning of the note and automatically adds a period at
the end. You may change this behavior by redefining the \bibendnotewrapper
macro introduced below.

\mkbibendnotetext{〈text〉}

Similar to \mkbibendnote but uses the \endnotetext command. Please note
that as of this writing, neither the pagenote package nor the memoir class provide
a corresponding \pagenotetext command. In this case, \mkbibendnote will
issue an error and fall back to \footnotetext.

\bibfootnotewrapper{〈text〉}

An inner wrapper which encloses the 〈text〉 argument of \mkbibfootnote and
\mkbibfootnotetext. For example, \mkbibfootnote eventually boils down
to this:

\footnote{\bibfootnotewrapper{text}}

The wrapper ensures capitalization at the beginning of the note and adds a period at
the end. The default definition is:

\newcommand{\bibfootnotewrapper}[1]{\bibsentence #1

↪→ \addperiod}

If you don’t want capitalization at the beginning or a period at the end of the note, do
not modify \mkbibfootnote but redefine \bibfootnotewrapper instead.

\bibendnotewrapper{〈text〉}

Similar in concept to \bibfootnotewrapper but related to the
\mkbibendnote and \mkbibendnotetext commands.

\mkbibsuperscript{〈text〉}

A generic command which prints its argument as superscripted text. This is a
simple wrapper around the standard LaTeX \textsuperscript command which
removes spurious whitespace and allows hyphenation of the preceding word.

\mkbibmonth{〈integer〉}

This command takes an integer argument and prints it as a month name. Even
though the output of this command is language specific, its definition is not, hence it
is normally not redefined in localisation modules.

323

\mkbibyeardivision{〈string〉}
Deprecated

This command takes a year division localisation string and prints the version of
the string corresponding to the setting of the dateabbrev package option. Even
though the output of this command is language specific, its definition is not, hence it
is normally not redefined in localisation modules.

\mkbibseason{〈string〉}
Deprecated

This command takes a season localisation string and prints the version of the string
corresponding to the setting of the dateabbrev package option. Even though the
output of this command is language specific, its definition is not, hence it is normally
not redefined in localisation modules.

\mkyearzeros{〈integer〉}

This command strips leading zeros from a year or enforces them, depending on the
datezeros package option (§ 3.1.2.1). It is intended for use in the definition of
date formatting macros. If zeros are enforced, this command calls \forcezerosy
and thus expands its argument with \protected@edef.

\mkmonthzeros{〈integer〉}

This command strips leading zeros from a month or enforces them, depending on the
datezeros package option (§ 3.1.2.1). It is intended for use in the definition of date
formatting macros. If zeros are enforced, this command calls \forcezerosmdt
and thus expands its argument with \protected@edef.

\mkdayzeros{〈integer〉}

This command strips leading zeros from a day or enforces them, depending on the
datezeros package option (§ 3.1.2.1). It is intended for use in the definition of date
formatting macros. If zeros are enforced, this command calls \forcezerosmdt
and thus expands its argument with \protected@edef.

\mktimezeros{〈integer〉}

This command strips leading zeros from a number or preserves them, depend-
ing on the timezeros package option (§ 3.1.2.1). It is intended for use in the
definition of time formatting macros. If zeros are enforced, this command calls
\forcezerosmdt and thus expands its argument with \protected@edef.

\forcezerosy{〈integer〉}

This command adds zeros to a year (or any number supposed to be 4-digits). It
is intended for date formatting and ordinals. The argument is expanded with
\protected@edef before it is processed.

\forcezerosmdt{〈integer〉}

This command adds zeros to a month, day or time part (or any number supposed to
be 2-digits). It is intended for date/time formatting and ordinals. The argument is
expanded with \protected@edef before it is processed.

\stripzeros{〈integer〉}

This command strips leading zeros from a number. It is intended for date formatting
and ordinals.

324

<labelfield>width For every field marked as a ‘Label field’ in the data model, a formatting
directive is created as per shorthandwidth above. Since shorthand is so
marked in the default data model, this functionality is a superset of that described
for shorthandwidth.

labelnumberwidth Similar toshorthandwidth, but referring to thelabelnumber field and the
length register \labelnumberwidth. Numeric styles should adjust this directive
such that it corresponds to the format used in the bibliography.

labelalphawidth Similar to shorthandwidth, but referring to the labelalpha field and the
length register \labelalphawidth. Alphabetic styles should adjust this directive
such that it corresponds to the format used in the bibliography.

bibhyperref A special formatting directive for use with \printfield and \printtext. This
directive wraps its argument in a \bibhyperref command, see § 4.6.4 for details.

bibhyperlink A special formatting directive for use with \printfield and \printtext. It
wraps its argument in a \bibhyperlink command, see § 4.6.4 for details. The
〈name〉 argument passed to \bibhyperlink is the value of the entrykey field.

bibhypertarget A special formatting directive for use with \printfield and \printtext. It
wraps its argument in a \bibhypertarget command, see § 4.6.4 for details. The
〈name〉 argument passed to \bibhypertarget is the value of the entrykey
field.

volcitepages A special formatting directive which controls the format of the page/text portion in
the argument of citation commands like \volcite.

volcitevolume A special formatting directive which controls the format of the volume portion in
the argument of citation commands like \volcite.

date A special formatting directive which controls the format of \printdate (§ 4.4.1).
Note that the date format (long/short etc.) is controlled by the package option date
from § 3.1.2.1. This formatting directive only controls additional formatting such as
fonts etc.

labeldate As date but controls the format of \printlabeldate.

<datetype>date As date but controls the format of \print<datetype>date.

time A special formatting directive which controls the format of \printtime (§ 4.4.1).
Note that the time format (24h/12h etc.) is controlled by the package option time
from § 3.1.2.1. This formatting directive only controls additional formatting such as
fonts etc.

labeltime As time but controls the format of \printlabeltime.

<datetype>time As time but controls the format of \print<datetype>time.

4.10.5 Auxiliary Lengths, Counters, and Other Features

The length registers and counters discussed here are used by biblatex to pass
information to bibliography and citation styles. Think of them as read-only registers.
Note that all counters are LaTeX counters. Use \value{counter} to read out the
current value.

325

\<labelfield>width For every field marked as a ‘label’ field in the data model, a length regis-
ter is created as per shorthandwidth above. Since shorthand is so marked
in the default data model, this functionality is a superset of that described for
shorthandwidth.

\labelnumberwidth This length register indicates the width of the widest labelnumber. Numeric
bibliography styles should incorporate this length in the definition of the bibliography
environment.

\labelalphawidth This length register indicates the width of the widest labelalpha. Alphabetic
bibliography styles should incorporate this length in the definition of the bibliography
environment.

maxextraalpha This counter holds the highest number found in any extraalpha field.

maxextradate This counter holds the highest number found in any extradate field.

maxextraname This counter holds the highest number found in any extraname field.

maxextratitle This counter holds the highest number found in any extratitle field.

maxextratitleyear This counter holds the highest number found in any extratitleyear field.

refsection This counter indicates the current refsection environment. When queried in
a bibliography heading, the counter returns the value of the refsection option
passed to \printbibliography.

refsegment This counter indicates the current refsegment environment. When queried in a
bibliography heading, this counter returns the value of the refsegment option
passed to \printbibliography.

maxnames This counter holds the setting of the maxnames package option.

minnames This counter holds the setting of the minnames package option.

maxitems This counter holds the setting of the maxitems package option.

minitems This counter holds the setting of the minitems package option.

instcount This counter is incremented by biblatex for every citation as well as for every
entry in the bibliography and bibliography lists. The value of this counter uniquely
identifies a single instance of a reference in the document.

citetotal This counter, which is only available in the 〈loopcode〉 of a citation command defined
with \DeclareCiteCommand, holds the total number of valid entry keys passed
to the citation command.

citecount This counter, which is only available in the 〈loopcode〉 of a citation command defined
with \DeclareCiteCommand, holds the number of the entry key currently being
processed by the 〈loopcode〉.

multicitetotal This counter is similar to citetotal but only available in multicite commands.
It holds the total number of citations passed to the multicite command. Note that
each of these citations may consist of more than one entry key. This information is
provided by the citetotal counter.

326

multicitecount This counter is similar to citecount but only available in multicite commands.
It holds the number of the citation currently being processed. Note that this cita-
tion may consist of more than one entry key. This information is provided by the
citetotal and citecount counters.

listtotal This counter holds the total number of items in the current list. It is intended for
use in list formatting directives and does not hold a meaningful value when used
anywhere else. As an exception, it may also be used in the second optional argument
to \printnames and \printlist, see § 4.4.1 for details. For every list, there
is also a counter by the same name which holds the total number of items in the
corresponding list. For example, the author counter holds the total number of items
in the author list. This applies to both name lists and literal lists. These counters
are similar to listtotal except that they may also be used independently of list
formatting directives. For example, a bibliography style might check the editor
counter to decide Whether or not to print the term “editor” or rather its plural form
“editors” after the list of editors.

listcount This counter holds the number of the list item currently being processed. It is
intended for use in list formatting directives and does not hold a meaningful value
when used anywhere else.

liststart This counter holds the 〈start〉 argument passed to \printnames or \printlist.
It is intended for use in list formatting directives and does not hold a meaningful
value when used anywhere else.

liststop This counter holds the 〈stop〉 argument passed to \printnames or \printlist.
It is intended for use in list formatting directives and does not hold a meaningful
value when used anywhere else.

\currentlang Thename of the currently active language forbiblatex. Can be used anywhere and
defaults to the main document language. This is automatically switched inside entries
which define langid, given suitable settings of the autolang and language
options. Note that this does not track all document language changes, only the
current biblatex setting.

\currentfield Thename of the field currently being processed by \printfield. This information
is only available locally in field formatting directives.

\currentlist The name of the literal list currently being processed by \printlist. This infor-
mation is only available locally in list formatting directives.

\currentname The name of the name list currently being processed by \printnames. This
information is only available locally in name formatting directives.

\currentmsform Contains the multiscript form of the entry field. This information is only available
locally in name formatting directives. It is empty for non-multiscript fields.

\currentmslang Contains the multiscript BCPP47 language tag of the entry field. This information is
only available locally in name formatting directives. It is empty for non-multiscript
fields.

\currentmsforms An etoolbox list of all defined multiscript forms of the current entryfield. This
information is only available locally in name formatting directives. It is empty for
non-multiscript fields.

327

\currentmslangs An etoolbox list of all defined multiscript BCP47 language tags of the current
entryfield. This information is only available locally in name formatting directives.
It is empty for non-multiscript fields.

\fieldmsforms{〈entryfield〉}

As \currentmsforms but for entryfield 〈entryfield〉. It is intended for use in
formatting directives and does not hold meaningful data when used anywhere else.

\fieldmslangs{〈entryfield〉}

As \currentmslangs but for entryfield 〈entryfield〉. It is intended for use in
formatting directives and does not hold meaningful data when used anywhere else.

4.10.6 General Purpose Hooks

\AtBeginRefsection{〈code〉}

Appends the 〈code〉 to an internal hook executed at the beginning of every reference
section. The 〈code〉 is executed just after setting the reference section number. This
command may only be used in the preamble.

\AtNextRefsection{〈code〉}

Appends the 〈code〉 to an internal hook executed at the beginning of the next refer-
ence section. The 〈code〉 is executed just after setting the reference section number.

\AtBeginBibliography{〈code〉}

Appends the 〈code〉 to an internal hook executed at the beginning of the bibliography.
The 〈code〉 is executed at the beginning of the list of references, immediately after
the 〈begin code〉 of \defbibenvironment. This command may only be used in
the preamble.

\AtBeginShorthands{〈code〉}

Appends the 〈code〉 to an internal hook executed at the beginning of the list of short-
hands. The 〈code〉 is executed at the beginning of the list of shorthands, immediately
after the 〈begin code〉 of \defbibenvironment. This command may only be
used in the preamble.
This is just an alias for:

\AtBeginBiblist{shorthand}{code}

\AtBeginBiblist{〈biblistname〉}{〈code〉}

Appends the 〈code〉 to an internal hook executed at the beginning of the bibliography
list 〈biblistname〉. The 〈code〉 is executed at the beginning of the bibliography list,
immediately after the 〈begin code〉 of \defbibenvironment. This command
may only be used in the preamble.

\AtEveryBibitem{〈code〉}

Appends the 〈code〉 to an internal hook executed at the beginning of every item
in the bibliography. The 〈code〉 is executed immediately after the 〈item code〉 of
\defbibenvironment. The bibliographic data of the respective entry is available
at this point. This command may only be used in the preamble.

328

\AtEveryLositem{〈code〉}

Appends the 〈code〉 to an internal hook executed at the beginning of every item in
the list of shorthands. The 〈code〉 is executed immediately after the 〈item code〉 of
\defbibenvironment. The bibliographic data of the respective entry is available
at this point. This command may only be used in the preamble.

This is just an alias for:

\AtEveryBiblistitem{shorthand}{code}

\AtEveryBiblistitem{〈biblistname〉}{〈code〉}

Appends the 〈code〉 to an internal hook executed at the beginning of every item in the
bibliography list named 〈biblistname〉. The 〈code〉 is executed immediately after the
〈item code〉 of \defbibenvironment. The bibliographic data of the respective
entry is available at this point. This command may only be used in the preamble.

\AtNextBibliography{〈code〉}

Similar to \AtBeginBibliography but only affecting the next
\printbibliography. The internal hook is cleared after being executed
once. This command may be used in the document body.

\AtUsedriver{〈code〉}
\AtUsedriver*{〈code〉}

Appends the 〈code〉 to an internal hook executed when initializing \usedriver.
The starred variant of the command clears the initialisation hook, so the defaults
can be overwritten. This command may only be used in the preamble. The default
setting is:

\AtUsedriver{%

\delimcontext{bib}%

\let\finentry\blx@finentry@usedrv

\let\newblock\relax

\let\abx@macro@bibindex\@empty

\let\abx@macro@pageref\@empty}

\AtEveryCite{〈code〉}

Appends the 〈code〉 to an internal hook executed at the beginning of every citation
command. The 〈code〉 is executed immediately before the 〈precode〉 of the command
(see § 4.3.1). No bibliographic data is available at this point. This command may only
be used in the preamble.

\AtEveryCitekey{〈code〉}

Appends the 〈code〉 to an internal hook executed once for every entry key passed
to a citation command. The 〈code〉 is executed immediately before the 〈loopcode〉 of
the command (see § 4.3.1). The bibliographic data of the respective entry is available
at this point. This command may only be used in the preamble.

329

\AtEveryMultiCite{〈code〉}

Appends the 〈code〉 to an internal hook executed at the beginning of every multicite
command. The 〈code〉 is executed immediately before the multiprenote field
(§ 4.3.2) is printed. No bibliographic data is available at this point. This command
may only be used in the preamble.

\AtNextCite{〈code〉}

Similar to \AtEveryCite but only affecting the next citation command. The
internal hook is cleared after being executed once. This command may be used in
the document body.

\AtEachCitekey{〈code〉}

Similar to \AtEveryCitekey but only affecting the current citation command.
This command may be used in the document body. The 〈code〉 is appended to the
internal hook locally when located in a citation, as determined by \ifcitation.

\AtNextCitekey{〈code〉}

Similar to \AtEveryCitekey but only affecting the next entry key. The inter-
nal hook is cleared after being executed once. This command may be used in the
document body.

\AtNextMultiCite{〈code〉}

Similar to \AtEveryMultiCite but only affecting the next multicite command.
The internal hook is cleared after being executed once. This command may be used
in the document body.

\AtVolcite{〈code〉}
\AtVolcite*{〈code〉}

Appends the 〈code〉 to an internal hook executed when initializing \volcite. The
starred variant of the command clears the initialisation hook, so the defaults can be
overwritten. This command may only be used in the preamble. The default setting is:

\AtVolcite{%

\DeclareFieldAlias{postnote}{volcitenote}}

\AtDataInput[〈entrytype〉]{〈code〉}

Appends the 〈code〉 to an internal hook executed once for every entry as the bibli-
ographic data is imported from the bbl file. The 〈entrytype〉 is the entry type the
〈code〉 applies to. If it applies to all entry types, omit the optional argument. The
〈code〉 is executed immediately after the entry has been imported. This command
may only be used in the preamble. Note that 〈code〉 may be executed multiple times
for an entry. This occurs when the same entry is cited in different refsection
environments or the sorting option settings incorporate more than one sorting
template. The refsection counter holds the number of the respective reference
section while the data is imported.

\UseBibitemHook

Executes the internal hook corresponding to \AtEveryBibitem.

330

\UseUsedriverHook

Executes the internal hook corresponding to \AtUsedriver.

\UseEveryCiteHook

Executes the internal hook corresponding to \AtEveryCite.

\UseEveryCitekeyHook

Executes the internal hook corresponding to \AtEveryCitekey.

\UseEveryMultiCiteHook

Executes the internal hook corresponding to \AtMultiEveryCite.

\UseNextCiteHook

Executes and clears the internal hook corresponding to \AtNextCite.

\UseNextCitekeyHook

Executes and clears the internal hook corresponding to \AtNextCitekey.

\UseNextMultiCiteHook

Executes and clears the internal hook corresponding to \AtNextMultiCite.

\UseVolciteHook

Executes the internal hook corresponding to \AtVolcite.

\DeferNextCitekeyHook

Locally un-defines the internal hook specified by \AtNextCitekey. This essen-
tially defers the hook to the next entry key in the citation list, when executed in the
〈precode〉 argument of \DeclareCiteCommand (§ 4.3.1).

\AtEveryEntrykey{〈code〉}{〈success〉}{〈failure〉}

Appends 〈code〉 to an internal hook executed every time an entrykey is processed for
a citation command or \nocite. The 〈code〉 is passed one argument (#1), which
contains the entrykey. If the code can be appended to the hook 〈success〉 is executed,
otherwise 〈failure〉 is executed. Unlike \AtEveryCitekey the entry data of the
current entrykey is not available when 〈code〉 is processed, indeed it is not even
known whether or not there is any entry data at all.

4.10.7 File hooks

biblatex has rudimentary support for injecting arbitrary code before and after
a file is loaded via file hooks. For files that are loaded using biblatex’s file
interface—that includes all bibliography and citation styles—the following three
hooks are available

\blx@filehook@preload@<filename with extension>

If <filename with extension> is found, this hook is exected before it is
loaded.

331

\blx@filehook@postload@<filename with extension>

If <filename with extension> is found, this hook is exected after it is
loaded.

\blx@filehook@failure@<filename with extension>

This hook is executed if <filename with extension> can not be found.

biblatex generally only loads files once even if they were requested multiple
times, so the hooks will only be executed once. Naturally, the file hooks need to
be populated before the files are loaded, so the safest would be to populate them
before biblatex is loaded. It is advisable to only append code to avoid overwriting
previous hook contents. Since the name of the file hook include the dot and the
file extension they will usually have to be defined with a command like \csappto
from etoolbox.

The .lbx files are special and may have to be loaded several times in some
situations. Their file hooks are

\blx@lbxfilehook@once@preload@<filename with extension>

If <filename with extension> is found, this hook is exected before it is
loaded in a situation where the .lbx files are loaded only once.

\blx@lbxfilehook@once@postload@<filename with extension>

If <filename with extension> is found, this hook is exected after it is
loaded in a situation where the .lbx files are loaded only once.

\blx@lbxfilehook@once@failure@<filename with extension>

This hook is executed if <filename with extension> can not be found in a
situation where the .lbx files are loaded only once.

\blx@lbxfilehook@simple@preload@<filename with extension>

If <filename with extension> is found, this hook is exected before it is
loaded in a situation where the .lbx files may be loaded multiple times.

\blx@lbxfilehook@simple@postload@<filename with extension>

If <filename with extension> is found, this hook is exected after it is
loaded in a situation where the .lbx files may be loaded multiple times.

\blx@lbxfilehook@simple@failure@<filename with extension>

This hook is executed if <filename with extension> can not be found in a
situation where the .lbx files may be loaded multiple times.

The following code sets up beamer to print the bibliography labels instead of its
bibliography icons when numeric.bbx after is loaded

\csappto{blx@filehook@postload@numeric.bbx}{%

\mode<presentation>{%

\setbeamertemplate{bibliography item}{%

\insertbiblabel}}}

332

4.11 Hints and Caveats

This section provides some additional hints concerning the author interface of this
package. It also addresses common problems and potential misconceptions.

4.11.1 Entry Sets

Entry sets have already been introduced in § 3.14.5. This section discusses how to
process entry sets in a bibliography style. From the perspective of the driver, there is
no difference between static and dynamic entry sets. Both types are handled in the
same way. You will normally use the \entryset command from § 4.4.1 to loop
over all set members (in the order in which they are listed in the entryset field of
the @set entry, or in the order in which they were passed to \defbibentryset,
respectively) and append\finentry at the end. That’s it. The formatting is handled
by the drivers for the entry types of the individual set members:

\DeclareBibliographyDriver{set}{%

\entryset{}{}%

\finentry}

You may have noticed that the numeric styles which come with this package
support subdivided entry sets, i. e., the members of the set are marked with a letter
or some other marker such that citations may either refer to the entire set or to a
specific set member. The markers are generated as follows by the bibliography style:

\DeclareBibliographyDriver{set}{%

\entryset

{\printfield{entrysetcount}%

\setunit*{\addnbspace}}

{}%

\finentry}

The entrysetcount field holds an integer indicating the position of a set member
in the entry set. The conversion of this number to a letter or some other marker is
handled by the formatting directive of the entrysetcount field. All the driver
needs to do is print the field and add some white space (or start a new line). Printing
the markers in citations works in a similar way. Where a numeric style normally
says \printfield{labelnumber}, you simply append the entrysetcount
field:

\printfield{labelnumber}\printfield{entrysetcount}

Since this field is only defined when processing citations referring to a set member,
there is no need to add any additional tests.

Citing entry sets directly requires that a meaningful way of identifying sets is
available in the style. This is obvious for styles based on numeric or alphabetic labels
but not obvious (and rarely required) in styles which construct citations based on
textual names/titles/dates etc. The default provided styles which no not construct
citations based on labels (authoryear, authortitle, verbose etc.) therefore
do not support citing sets directly as there is no obvious default identifier to use in
such cases and such styles rarely, if ever, employ sets anyway. Custom styles may of
course choose to define and print a citation identifier for directly cited sets.

333

4.11.2 Electronic Publishing Information

The standard styles feature dedicated support for arXiv references. Support for other
resources is easily added. The standard styles handle the eprint field as follows:

\iffieldundef{eprinttype}

{\printfield{eprint}}

{\printfield[eprint:\strfield{eprinttype}]{eprint}}

If an eprinttype field is available, the above code tries to use the field format
eprint:〈eprinttype〉. If this format is undefined, \printfield automatically
falls back to the field format eprint. There are two predefined field formats, the
type-specific format eprint:arxiv and the fallback format eprint:

\DeclareFieldFormat{eprint}{...}

\DeclareFieldFormat{eprint:arxiv}{...}

In other words, adding support for additional resources is as easy as defining a field
format named eprint:〈resource〉 where 〈resource〉 is an identifier to be used in the
eprinttype field.

4.11.3 External Abstracts and Annotations

External abstracts and annotations have been discussed in § 3.14.8. This section
provides some more background for style authors. The standard styles use the
following macros (from biblatex.def) to handle abstracts and annotations:

\newbibmacro*{annotation}{%

\iffieldundef{annotation}

{\printfile[annotation]{

↪→ \bibannotationprefix\thefield{entrykey}.tex}}%

{\printfield{annotation}}}

\newcommand*{\bibannotationprefix}{bibannotation-}

\newbibmacro*{abstract}{%

\iffieldundef{abstract}

{\printfile[abstract]{\bibabstractprefix\thefield{

↪→ entrykey}.tex}}%

{\printfield{abstract}}}

\newcommand*{\bibabstractprefix}{bibabstract-}

If the abstract/annotation field is undefined, the above code tries to load
the abstracts/annotations from an external file. The \printfile commands also
incorporate file name prefixes which may be redefined by users. Note that you must
enable \printfile explicitly by setting the loadfiles package option from
§ 3.1.2.1. This feature is disabled by default for performance reasons.

4.11.4 Name Disambiguation

Theuniquename anduniquelist options introduced in § 3.1.2.3 support various
modes of operation. This section explains the differences between these modes by

334

way of example. The uniquename option disambiguates individual names in the
labelname list. The uniquelist option disambiguates the labelname list
if it has become ambiguous after maxnames/minnames truncation. You can use
either option stand-alone or combine both.

Name disambiguation works by taking a ‘base’ which is composed of one or more
nameparts and then determining what needs to be added, if anything, to this ‘base’ to
make the name unique in the current refsection. Name disambiguation is controlled
by the uniquename template declared with the following command:

\DeclareUniquenameTemplate[〈name〉]{〈specification〉}

Defines the uniquename template 〈name〉. The 〈name〉 is optional and defaults to
〈‘global’〉.
The 〈specification〉 is an ordered list of \namepart commands which define the
nameparts to use in determining the uniquename information.

\namepart[〈options〉]{〈namepart〉}

〈namepart〉 is one of the datamodel nameparts defined with the
\DeclareDatamodelConstant command (see § 4.2.3). The 〈options〉
are:

use=true, false default: false

Only use the 〈namepart〉 in constructing the uniquename information if there is a
corresponding option use‘namepart’ and that option is true.

base=true, false default: false

The 〈namepart〉 is part of the ‘base’ which is the main piece of namepart(s) informa-
tion which is being disambiguated by uniqueness information. For example, a family
name which may be disambiguated by further given names. ‘base’ 〈namepart〉s
must occur before any non-‘base’ 〈nameparts〉. There must be at least one ‘base’
〈namepart〉 and biber will report an error if this is not the case.

disambiguation=none, init, initorfull, full

The 〈namepart〉 will be disambiguated at most by information at the given value. If
this option is not present then the default is inferred from the uniquename package
option setting (see § 6). The ‘disambiguation’ option is ignored for 〈namepart〉s which
have the ‘base’ option set to ‘true’ since it is these nameparts which are being disam-
biguated by the value of the non-base 〈namepart〉s and therefore ‘disambiguation’
does not apply.

none Do not use the 〈namepart〉 to perform any name disambiguation

init Use only the initials of the 〈namepart〉 to perform name disambiguation

initorfull Use initials and if necessary the full 〈namepart〉 to perform name disam-
biguation

full Use only the full 〈namepart〉 to perform name disambiguation even if initials
would suffice

The default uniquename template is:

\DeclareUniquenameTemplate{

\namepart[use=true, base=true]{prefix}

\namepart[base=true]{family}

335

\namepart{given}

}

This means that the ‘base’ to be disambiguated consists of the ‘family’ namepart,
along with any prefix, if the useprefix option is true. The disambiguation is
performed by adding anything up to the full namepart of any non ‘base’ nameparts
in the specification, here just the ‘given’ namepart.

4.11.4.1 Individual Names (uniquename)

Let’s start off with some uniquename examples. Consider the following data:

John Doe 2008

Edward Doe 2008

John Smith 2008

Jane Smith 2008

Let’s assume we’re using an author-year style and set uniquename=false. In
this case, we would get the following citations:

Doe 2008a

Doe 2008b

Smith 2008a

Smith 2008b

Since the family names are ambiguous and all works have been published in the same
year, an extra letter is appended to the year to disambiguate the citations. Many style
guides, however, mandate that the extra letter be used to disambiguate works by the
same authors only, not works by different authors with the same family name. In
order to disambiguate the author’s family name, you are expected to add additional
parts of the name, either as initials or in full. This requirement is addressed by the
uniquename option. Here are the same citations with uniquename=init:

J. Doe 2008

E. Doe 2008

Smith 2008a

Smith 2008b

uniquename=init restricts name disambiguation to initials. Since ‘J. Smith’
would still be ambiguous, no additional name parts are added for the ‘Smiths’. With
uniquename=full, names are printed in full where required:

J. Doe 2008

E. Doe 2008

John Smith 2008

Jane Smith 2008

In order to illustrate the difference between uniquename = init/full and
allinit/allfull, we need to introduce the notion of a ‘visible’ name. In the fol-
lowing, ‘visible’ names are all names at a position before themaxnames/minnames/
uniquelist truncation point. For example, given this data:

336

William Jones/Edward Doe/Jane Smith

John Doe

John Smith

and maxnames=1, minnames=1, uniquename=init/full, we would get the
following names in citations:

Jones et al.

Doe

Smith

When disambiguating names, uniquename=init/full only consider the visible
names. Since all visible family names are distinct in this example, no further name
parts are added. Let’s compare that to the output of uniquename=allinit:

Jones et al.

J. Doe

Smith

allinit considers all names in all labelname lists, including those which are
hidden and replaced by ‘et al.’ as the list is truncated. In this example, ‘John Doe’ is
disambiguated from ‘Edward Doe’. Since the ambiguity of the two ‘Smiths’ can’t be
resolved by adding initials, no initials are added in this case. Now let’s compare that
to the output of uniquename=allfull which also disambiguates ‘John Smith’
from ‘Jane Smith’:

Jones et al.

J. Doe

John Smith

The options uniquename = mininit/minfull are similar to init/full

in that they only consider visible names, but they perform minimal disam-
biguation. That is, they will disambiguate individual names only if they occur
in identical lists of base nameparts (for the concept of ‘base’ nameparts, see
\DeclareUniquenameTemplate in § 4.11.4). Consider the following
data:

John Doe/William Jones

Edward Doe/William Jones

John Smith/William Edwards

Edward Smith/Allan Johnson

With uniquename=init/full, we would get:

J. Doe and Jones

E. Doe and Jones

J. Smith and Edwards

E. Smith and Johnson

With uniquename=mininit/minfull:

337

J. Doe and Jones

E. Doe and Jones

Smith and Edwards

Smith and Johnson

The ‘Smiths’ are not disambiguated because the visible name lists are not ambiguous
and the mininit/minfull options serve to disambiguate names occurring in
identical base namepart lists only. Another way of looking at this is that they globally
disambiguate base namepart lists. When it comes to ambiguous lists, note that a
truncated list is considered to be distinct from an untruncated one even if the visible
names are identical. For example, consider the following data:

John Doe/William Jones

Edward Doe

With maxnames=1, uniquename=init/full, we would get:

J. Doe et al.

E. Doe

With uniquename=mininit/minfull:

Doe et al.

Doe

Because the lists differ in the ‘et al.’, the names are not disambiguated.

4.11.4.2 Lists of Names (uniquelist)

Ambiguity is also an issue with name lists. If the labelname list is truncated by the
maxnames/minnames options, it may become ambiguous. This type of ambiguity
is addressed by the uniquelist option. Consider the following data:

Doe/Jones/Smith 2005

Smith/Johnson/Doe 2005

Smith/Doe/Edwards 2005

Smith/Doe/Jones 2005

Many author-year styles truncate long author/editor lists in citations. For example,
with maxnames=1 we would get:

Doe et al. 2005

Smith et al. 2005a

Smith et al. 2005b

Smith et al. 2005c

Since the authors are ambiguous after truncation, the extra letter is added to the
year to ensure unique citations. Here again, many style guides mandate that the
extra letter be used to disambiguate works by the same authors only. In order to
disambiguate author lists, you are usually required to add more names, exceeding
the maxnames/minnames truncation point. The uniquelist feature addresses
this requirement. With uniquelist=true, we would get:

338

Doe et al. 2005

Smith, Johnson et al. 2005

Smith, Doe and Edwards 2005

Smith, Doe and Jones 2005

The uniquelist option overrides maxnames/minnames on a per-entry basis.
Essentially, what happens is that the ‘et al.’ part of the citation is expanded to
the point of no ambiguity—but no further than that. uniquelist may also be
combined with uniquename. Consider the following data:

John Doe/Allan Johnson/William Jones 2009

John Doe/Edward Johnson/William Jones 2009

John Doe/Jane Smith/William Jones 2009

John Doe/John Smith/William Jones 2009

John Doe/John Edwards/William Jones 2009

John Doe/John Edwards/Jack Johnson 2009

With maxnames=1:

Doe et al. 2009a

Doe et al. 2009b

Doe et al. 2009c

Doe et al. 2009d

Doe et al. 2009e

Doe et al. 2009f

With maxnames=1, uniquename=full, uniquelist=true:

Doe, A. Johnson et al. 2009

Doe, E. Johnson et al. 2009

Doe, Jane Smith et al. 2009

Doe, John Smith et al. 2009

Doe, Edwards and Jones 2009

Doe, Edwards and Johnson 2009

With uniquelist=minyear, list disambiguation only happens if the visible list
is identical to another visible list with the same labelyear. This is useful for
author-year styles which only require that the citation as a whole be unique, but do
not guarantee unambiguous authorship information in citations. This mode is con-
ceptually related to uniquename=mininit/minfull. Consider this example:

Smith/Jones 2000

Smith/Johnson 2001

With maxnames=1 and uniquelist=true, we would get:

Smith and Jones 2000

Smith and Johnson 2001

With uniquelist=minyear:

339

Smith et al. 2000

Smith et al. 2001

With uniquelist=minyear, it is not clear that the authors are different for the
twoworks but the citations as a whole are still unambiguous since the year is different.
In contrast to that, uniquelist=true disambiguates the authorship even if this
information is not required to uniquely locate the works in the bibliography. Let’s
consider another example:

Vogel/Beast/Garble/Rook 2000

Vogel/Beast/Tremble/Bite 2000

Vogel/Beast/Acid/Squeeze 2001

With maxnames=3, minnames=1, uniquelist=true, we would get:

Vogel, Beast, Garble et al. 2000

Vogel, Beast, Tremble et al. 2000

Vogel, Beast, Acid et al. 2001

With uniquelist=minyear:

Vogel, Beast, Garble et al. 2000

Vogel, Beast, Tremble et al. 2000

Vogel et al. 2001

In the last citation, uniquelist = minyear does not override maxnames/
minnames as the citation does not need disambiguating from the other two because
the year is different.

4.11.5 Trackers in Floats and TOC/LOT/LOF

If a citation is given in a float (typically in the caption of a figure or table), scholarly
back references like ‘ibidem’ or back references based on the page tracker get am-
biguous because floats are objects which are (physically and logically) placed outside
the flow of text, hence the logic of such references applies poorly to them. To avoid
any such ambiguities, the citation and page trackers are temporarily disabled in all
floats unless explicitly requested with trackfloats. In addition to that, these
trackers plus the back reference tracker (backref) are temporarily disabled in the
table of contents, the list of figures, and the list of tables.

4.11.6 Mixing Programming Interfaces

Thebiblatex package provides twomain programming interfaces for style authors.
The \DeclareBibliographyDriver command, which defines a handler for an
entry type, is typically used in bbx files. \DeclareCiteCommand, which defines
a new citation command, is typically used in cbx files. However, in some cases it is
convenient to mix these two interfaces. For example, the \fullcite command
prints a verbose citation similar to the full bibliography entry. It is essentially defined
as follows:

340

\DeclareCiteCommand{\fullcite}

{...}

{\usedriver{...}{\thefield{entrytype}}}

{...}

{...}

As you can see, the core code which prints the citations simply executes the bib-
liography driver defined with \DeclareBibliographyDriver for the type of
the current entry. When writing a citation style for a verbose citation scheme, it is
often convenient to use the following structure:

\ProvidesFile{example.cbx}[2007/06/09 v1.0 biblatex

↪→ citation style]

\DeclareCiteCommand{\cite}

{...}

{\usedriver{...}{cite:\thefield{entrytype}}}

{...}

{...}

\DeclareBibliographyDriver{cite:article}{...}

\DeclareBibliographyDriver{cite:book}{...}

\DeclareBibliographyDriver{cite:inbook}{...}

...

Another case in which mixing interfaces is helpful are styles using cross-references
within the bibliography. For example, when printing an @incollection entry,
the data inherited from the @collection parent entry would be replaced by a
short pointer to the respective parent entry:

[1] Audrey Author: Title of article. In: [2], pp. 134–165.

[2] Edward Editor, ed.: Title of collection. Publisher: Location, 1995.

One way to implement such cross-references within the bibliography is to think of
them as citations which use the value of the xref or crossref field as the entry
key. Here is an example:

\ProvidesFile{example.bbx}[2007/06/09 v1.0 biblatex

↪→ bibliography style]

\DeclareCiteCommand{\bbx@xref}

{}

{...}% code for cross-references

{}

{}

\DeclareBibliographyDriver{incollection}{%

...

\iffieldundef{xref}

{...}% code if no cross-reference

341

{\bbx@xref{\thefield{xref}}}%

...

}

When defining \bbx@xref, the 〈precode〉, 〈postcode〉, and 〈sepcode〉 arguments of
\DeclareCiteCommand are left empty in the above example because they will
not be used anyway. The cross-reference is printed by the 〈loopcode〉 of \bbx@xref.
For further details on the xref field, refer to § 2.2.3 and to the hints in § 2.4.1. Also
see the \iffieldxref, \iflistxref, and \ifnamexref tests in § 4.6.2. The
above could also be implemented using the \entrydata command from § 4.4.1:

\ProvidesFile{example.bbx}[2007/06/09 v1.0 biblatex

↪→ bibliography style]

\DeclareBibliographyDriver{incollection}{%

...

\iffieldundef{xref}

{...}% code if no cross-reference

{\entrydata{\thefield{xref}}{%

% code for cross-references

...

}}%

...

}

4.11.7 Using the Punctuation Tracker

4.11.7.1 The Basics

There is one fundamental principle style authors should keep in mind when designing
a bibliography driver: block and unit punctuation is handled asynchronously. This is
best explained by way of example. Consider the following code snippet:

\printfield{title}%

\newunit

\printfield{edition}%

\newunit

\printfield{note}%

If there is no edition field, this piece of code will not print:

Title. . Note

but rather:

Title. Note

because the unit punctuation tracker works asynchronously. \newunit will not
print the unit punctuation immediately. It merely records a unit boundary and
puts \newunitpunct on the punctuation buffer. This buffer will be handled by

342

subsequent \printfield, \printlist, or similar commands but only if the
respective field or list is defined. Commands like \printfield will consider three
factors prior to inserting any block or unit punctuation:

• Has a new unit/block been requested at all?

= Is there any preceding \newunit or \newblock command?

• Did the preceding commands print anything?

= Is there any preceding \printfield or similar command?

= Did this command actually print anything?

• Are we about to print anything now?

= Is the field/list to be processed now defined?

Block and unit punctuation will only be inserted if all of these conditions apply. Let’s
reconsider the above example:

\printfield{title}%

\newunit

\printfield{edition}%

\newunit

\printfield{note}%

Here’s what happens if the edition field is undefined. The first \printfield
command prints the title and sets an internal ‘new text’ flag. The first \newunit sets
an internal ‘new unit’ flag. No punctuation has been printed at this point. The second
\printfield does nothing because the edition field is undefined. The next
\newunit command sets the internal flag ‘new unit’ again. Still no punctuation
has been printed. The third \printfield checks if the note field is defined.
If so, it looks at the ‘new text’ and ‘new unit’ flags. If both are set, it inserts the
punctuation buffer before printing the note. It then clears the ‘new unit’ flag and
sets the ‘new text’ flag again.

This may all sound more complicated than it is. In practice, it means that it is
possible to write large parts of a bibliography driver in a sequential way. The advan-
tage of this approach becomes obvious when trying to write the above code without
using the punctuation tracker. Such an attempt will lead to a rather convoluted set of
\iffieldundef tests required to check for all possible field combinations (note
that the code below handles three fields; a typical driver may need to cater for some
two dozen fields):

\iffieldundef{title}%

{\iffieldundef{edition}

{\printfield{note}}

{\printfield{edition}%

\iffieldundef{note}%

{}

{. \printfield{note}}}}

{\printfield{title}%

\iffieldundef{edition}

{}

343

{. \printfield{edition}}%

\iffieldundef{note}

{}

{. \printfield{note}}}%

4.11.7.2 Common Mistakes

It is a fairly common misconception to think of the unit punctuation as something
that is handled synchronously. This typically causes problems if the driver includes
any literal text. Consider this erroneous code snippet which will generate misplaced
unit punctuation:

\printfield{title}%

\newunit

(\printfield{series} \printfield{number})%

This code will yield the following result:

Title (. Series Number)

Here’s what happens. The first \printfield prints the title. Then \newunit
marks a unit boundary but does not print anything. The unit punctuation is printed
by the next \printfield command. That’s the asynchronous part mentioned
before. However, the opening parenthesis is printed immediately before the next
\printfield inserts the unit punctuation, leading to a misplaced period. When
inserting any literal text such as parentheses (including those printed by com-
mands such as \bibopenparen and \mkbibparens), always wrap the text
in a \printtext command. For the punctuation tracker to work as expected, it
needs to know about all literal text inserted by a driver. This is what \printtext
is all about. \printtext interfaces with the punctuation tracker and ensures that
the punctuation buffer is inserted before the literal text gets printed. It also sets
the internal ‘new text’ flag. Note there is in fact a third piece of literal text in this
example: the space after \printfield{series}. In the corrected example, we
will use the punctuation tracker to handle that space.

\printfield{title}%

\newunit

\printtext{(}%

\printfield{series}%

\setunit*{\addspace}%

\printfield{number}%

\printtext{)}%

While the above code will work as expected, the recommended way to handle
parentheses, quotes, and other things which enclose more than one field, is to define
a field format:

\DeclareFieldFormat{parens}{\mkbibparens{#1}}

344

Field formats may be used with both \printfield and \printtext, hence we
can use them to enclose several fields in a single pair of parentheses:

\printtext[parens]{%

\printfield{series}%

\setunit*{\addspace}%

\printfield{number}%

}%

We still need to handle cases in which there is no series information at all, so let’s
improve the code some more:

\iffieldundef{series}

{}

{\printtext[parens]{%

\printfield{series}%

\setunit*{\addspace}%

\printfield{number}}}%

One final hint: localisation strings are not literal text as far as the punctuation
tracker is concerned. Since \bibstring and similar commands interface with the
punctuation tracker, there is no need to wrap them in a \printtext command.

4.11.7.3 Advanced Usage

The punctuation tracker may also be used to handle more complex scenarios. For
example, suppose that we want the fields location, publisher, and year to
be rendered in one of the following formats, depending on the available data:

...text. Location: Publisher, Year. Text...

...text. Location: Publisher. Text...

...text. Location: Year. Text...

...text. Publisher, Year. Text...

...text. Location. Text...

...text. Publisher. Text...

...text. Year. Text...

This problem can be solved with a rather convoluted set of \iflistundef and
\iffieldundef tests which check for all possible field combinations:

\iflistundef{location}

{\iflistundef{publisher}

{\printfield{year}}

{\printlist{publisher}%

\iffieldundef{year}

{}

{, \printfield{year}}}}

{\printlist{location}%

\iflistundef{publisher}%

{\iffieldundef{year}

345

{}

{: \printfield{year}}}

{: \printlist{publisher}%

\iffieldundef{year}

{}

{, \printfield{year}}}}%

The above could be written in a somewhat more readable way by employing
\ifthenelse and the boolean operators discussed in § 4.6.3. The approach would
still be essentially the same. However, it may also be written sequentially:

\newunit

\printlist{location}%

\setunit*{\addcolon\space}%

\printlist{publisher}%

\setunit*{\addcomma\space}%

\printfield{year}%

\newunit

In practice, you will often use a combination of explicit tests and the implicit tests
performed by the punctuation tracker. For example, consider the following format
(note the punctuation after the location if there is no publisher):

...text. Location: Publisher, Year. Text...

...text. Location: Publisher. Text...

...text. Location, Year. Text...

...text. Publisher, Year. Text...

...text. Location. Text...

...text. Publisher. Text...

...text. Year. Text...

This can be handled by the following code:

\newunit

\printlist{location}%

\iflistundef{publisher}

{\setunit*{\addcomma\space}}

{\setunit*{\addcolon\space}}%

\printlist{publisher}%

\setunit*{\addcomma\space}%

\printfield{year}%

\newunit

Since the punctuation after the location is special if there is no publisher, we need
one \iflistundef test to catch this case. Everything else is handled by the
punctuation tracker.

4.11.8 Custom Localization Modules

Style guides may include provisions as to how strings like ‘edition’ should be abbre-
viated or they may mandate certain fixed expressions. For example, the mla style

346

guide requires authors to use the term ‘Works Cited’ rather than ‘Bibliography’ or
‘References’ in the heading of the bibliography. Localization commands such as
\DefineBibliographyStrings from § 3.10 may indeed be used in cbx and
bbx files to handle such cases. However, overloading style files with translations
is rather inconvenient. This is where \DeclareLanguageMapping from § 4.9.1
comes into play. This command maps an lbx file with alternative translations to
a babel/polyglossia language. For example, you could create a file named
french-humanities.lbx which provides French translations adapted for use
in the humanities and map it to the babel/polyglossia language french in
the preamble or in the configuration file:

\DeclareLanguageMapping{french}{french-humanities}

If the document language is set to french, french-humanities.lbx will
replace french.lbx. Coming back to the mla example mentioned above, an mla
style may come with an american-mla.lbx file to provide strings which comply
with the mla style guide. It would declare the following mapping in the cbx and/or
bbx file:

\DeclareLanguageMapping{american}{american-mla}

Use \DeclareLanguageMappingSuffix (see § 4.9.1) to define such a mapping
for all languages.

Since the alternative lbx file can inherit strings from the standard american.
lbx module, american-mla.lbx may be as short as this:

\ProvidesFile{american-mla.lbx}[2008/10/01 v1.0

↪→ biblatex localization]

\InheritBibliographyExtras{american}

\DeclareBibliographyStrings{%

inherit = {american},

bibliography = {{Works Cited}{Works Cited}},

references = {{Works Cited}{Works Cited}},

}

\endinput

Alternative lbx files must ensure that the localisation module is complete. They
should do so by inheriting data from the corresponding standard module. If the
languageamerican is mapped toamerican-mla.lbx, biblatexwill not load
american.lbx unless this module is requested explicitly. In the above example,
inheriting ‘strings’ and ‘extras’ will cause biblatex to load american.lbx

before applying the modifications in american-mla.lbx.
Note that \DeclareLanguageMapping is not intended to handle language

variants (e. g., American English vs. British English) or babel/polyglossia
language aliases (e. g., USenglish vs. american). For example,
babel/polyglossia offers the USenglish option which is similar to
american. Therefore, biblatex comes with an USenglish.lbx file which
simply inherits all data from american.lbx (which in turn gets the ‘strings’
from english.lbx). In other words, the mapping of language variants and
babel/polyglossia language aliases happens on the file level, the point

347

being that biblatex’s language support can be extended simply by adding
additional lbx files. There is no need for centralized mapping. If you need support
for, say, Portuguese (babel/polyglossia: portuges), you create a file named
portuges.lbx. If babel/polyglossia offered an alias named brasil, you
would create brasil.lbx and inherit the data from portuges.lbx. In contrast
to that, the point of \DeclareLanguageMapping is handling stylistic variants
like ‘humanities vs. natural sciences’ or ‘mla vs. apa’ etc. which will typically be
built on top of existing lbx files.

4.11.9 Grouping

In a citation or bibliography style, you may need to set flags or store certain values
for later use. In this case, it is crucial to understand the basic grouping structure
imposed by this package. As a rule of thumb, you are working in a large group
whenever author commands such as those discussed in § 4.6 are available because
the author interface of this package is only enabled locally. If any bibliographic data
is available, there is at least one additional group. Here are some general rules:

• The entire list of references printed by \printbibliography and similar
commands is processed in a group. Each entry in the list is processed in an
additional group which encloses the 〈item code〉 of \defbibenvironment
as well as all driver code.

• The entire bibliography list printed by \printbiblist is processed in a
group. Each entry in the list is processed in an additional group which encloses
the 〈item code〉 of \defbibenvironment as well as all driver code.

• All citation commands defined with \DeclareCiteCommand are processed
in a group holding the complete citation code consisting of the 〈precode〉,
〈sepcode〉, 〈loopcode〉, and 〈postcode〉 arguments. The 〈loopcode〉 is enclosed
in an additional group every time it is executed. If any 〈wrapper〉 code has
been specified, the entire unit consisting of the wrapper code and the citation
code is wrapped in an additional group.

• In addition to the grouping imposed by all backend commands defined with
\DeclareCiteCommand, all ‘autocite’ and ‘multicite’ definitions imply an
additional group.

• \printfile, \printtext, \printfield, \printlist, and
\printnames form groups. This implies that all formatting directives will
be processed within a group of their own.

• All lbx files are loaded and processed in a group. If an lbx file contains any
code which is not part of \DeclareBibliographyExtras, the defini-
tions must be global.

Note that using \aftergroup in citation and bibliography styles is unreliable
because the precise number of groups employed in a certain context may change in
future versions of this package. If the above list states that something is processed in
a group, this means that there is at least one group. There may also be several nested
ones.

348

4.11.10 Namespaces

In order to minimize the risk of name clashes, LaTeX packages typically prefix the
names of internal macros with a short string specific to the package. For example, if
the foobar package requires a macro for internal use, it would typically be called
\FB@macro or \foo@macro rather than \macro or \@macro. Here is a list of
the prefixes used or recommended by biblatex:

blx All macros with names like \blx@name are strictly reserved for internal use. This
also applies to counter names, length registers, boolean switches, and so on. These
macros may be altered in backwards-incompatible ways, they may be renamed or
even removed at any time without further notice. Such changes will not even be
mentioned in the revision history or the release notes. In short: never use any macros
with the string blx in their name in any styles.

abx Macros prefixed with abx are also internal macros but they are fairly stable. It is
always preferable to use the facilities provided by the official author interface, but
there may be cases in which using an abx macro is convenient.

bbx This is the recommended prefix for internal macros defined in bibliography styles.

cbx This is the recommended prefix for internal macros defined in citation styles.

lbx This is the recommended base prefix for internal macros defined in localisation
modules. The localisation module should add a second prefix to specify the language.
For example, an internal macro defined by the Spanish localisation module would be
named \lbx@es@macro.

Appendix

A Default Driver Source Mappings

These are the driver default source mappings.

A.1 bibtex

The bibtex driver is of course the most comprehensive and mature of the
biblatex/biber supported data formats. These source mapping defaults are
how the aliases from sections § 2.1.2 and § 2.2.5 are implemented.

\DeclareDriverSourcemap[datatype=bibtex]{

\map{

\step[typesource=conference, typetarget=

↪→ inproceedings]

\step[typesource=electronic, typetarget=online]

\step[typesource=www, typetarget=online]

}

\map{

\step[typesource=mastersthesis, typetarget=thesis,

↪→ final]

\step[fieldset=type, fieldvalue=mathesis

↪→]

}

349

\map{

\step[typesource=phdthesis, typetarget=thesis,

↪→ final]

\step[fieldset=type, fieldvalue=phdthesis]

}

\map{

\step[typesource=techreport, typetarget=report,

↪→ final]

\step[fieldset=type, fieldvalue=techreport]

}

\map{

\step[fieldsource=address, fieldtarget=

↪→ location]

\step[fieldsource=school, fieldtarget=

↪→ institution]

\step[fieldsource=annote, fieldtarget=

↪→ annotation]

\step[fieldsource=archiveprefix, fieldtarget=

↪→ eprinttype]

\step[fieldsource=journal, fieldtarget=

↪→ journaltitle]

\step[fieldsource=primaryclass, fieldtarget=

↪→ eprintclass]

\step[fieldsource=key, fieldtarget=

↪→ sortkey]

\step[fieldsource=pdf, fieldtarget=file]

}

}

B Default Inheritance Setup

The following table shows the biber cross-referencing rules defined by default.
Please refer to §§ 2.4.1 and 4.5.12 for explanation.

Types Fields

Source Target Source Target

* * ids

crossref

xref

entryset

entrysubtype

execute

label

options

presort

related

relatedoptions

relatedstring

relatedtype

shorthand

shorthandintro

sortkey

–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–

350

Types Fields

Source Target Source Target

mvbook, book inbook, bookinbook, suppbook author

author

author

bookauthor

mvbook book, inbook, bookinbook,
suppbook

title

subtitle

titleaddon

shorttitle

sorttitle

indextitle

indexsorttitle

maintitle

mainsubtitle

maintitleaddon

–
–
–
–

mvcollection,
mvreference

collection, reference,
incollection, inreference,
suppcollection

title

subtitle

titleaddon

shorttitle

sorttitle

indextitle

indexsorttitle

maintitle

mainsubtitle

maintitleaddon

–
–
–
–

mvproceedings proceedings, inproceedings title

subtitle

titleaddon

shorttitle

sorttitle

indextitle

indexsorttitle

maintitle

mainsubtitle

maintitleaddon

–
–
–
–

book inbook, bookinbook, suppbook title

subtitle

titleaddon

shorttitle

sorttitle

indextitle

indexsorttitle

booktitle

booksubtitle

booktitleaddon

–
–
–
–

collection,
reference

incollection, inreference,
suppcollection

title

subtitle

titleaddon

shorttitle

sorttitle

indextitle

indexsorttitle

booktitle

booksubtitle

booktitleaddon

–
–
–
–

proceedings inproceedings title

subtitle

titleaddon

shorttitle

sorttitle

indextitle

indexsorttitle

booktitle

booksubtitle

booktitleaddon

–
–
–
–

periodical article, suppperiodical title

subtitle

shorttitle

sorttitle

indextitle

indexsorttitle

journaltitle

journalsubtitle

–
–
–
–

* * * *

351

C Default Sorting Templates

C.1 Alphabetic Templates 1

The following table shows the standard alphabetic sorting templates defined by
default. Please refer to § 3.6 for explanation.

Option Template name

nty presort

↪→mm

→sortname

↪→author

↪→editor

↪→translator

↪→sorttitle

↪→title

→sorttitle

↪→title

→sortyear

↪→year

→volume

nyt presort

↪→mm

→sortname

↪→author

↪→editor

↪→translator

↪→sorttitle

↪→title

→sortyear

↪→year

→sorttitle

↪→title

→volume

nyvt presort

↪→mm

→sortname

↪→author

↪→editor

↪→translator

↪→sorttitle

↪→title

→sortyear

↪→year

→volume →sorttitle

↪→title

all presort

↪→mm

→sortkey

C.2 Alphabetic Templates 2

The following table shows the alphabetic sorting templates for alphabetic styles
defined by default. Please refer to § 3.6 for explanation.

Option Template name

anyt presort

↪→mm

→labelalpha→sortname

↪→author

↪→editor

↪→translator

↪→sorttitle

↪→title

→sortyear

↪→year

→sorttitle

↪→title

→volume

anyvt presort

↪→mm

→labelalpha→sortname

↪→author

↪→editor

↪→translator

↪→sorttitle

↪→title

→sortyear

↪→year

→volume →sorttitle

↪→title

all presort

↪→mm

→labelalpha→sortkey

C.3 Chronological Templates

The following table shows the chronological sorting templates defined by default.
Please refer to § 3.6 for explanation.

352

Option Template name

ynt presort

↪→mm

→sortyear

↪→year

↪→9999

→sortname

↪→author

↪→editor

↪→translator

↪→sorttitle

↪→title

→sorttitle

↪→title

ydnt presort

↪→mm

→sortyear (desc.)
↪→year (desc.)
↪→9999

→sortname

↪→author

↪→editor

↪→translator

↪→sorttitle

↪→title

→sorttitle

↪→title

all presort

↪→mm

→sortkey

D biblatexml

The biblatexml XML datasource format is designed to be an extensible and
modern data source format for biblatex users. There are limitations with BibTeX
format .bib files, in particular one might mention UTF-8 support and name formats.
biber goes some way to addressing the UTF-8 limitations by using a modified
version of the btparse C library but the rather archaic name parsing rules for
BibTeX are hard-coded and specific to simple Western names.
biblatexml is an XML format for bibliographic data. When biber either

reads or writes biblatexml format datasources, it automatically writes a Re-
laXNG XML schema for the datasources which is dynamically generated from the
active biblatex datamodel. There is no static schema for biblatexml data-
sources because the allowable fields etc. depend on the data model. The format of
biblatexml datasources is relatively self-explanatory—it is usually only necessary
to generate a biblatexml datasource from existing BibTeX format datasources
(using biber’s ‘tool’ mode) in order to understand the format. biber also al-
lows users to validate biblatexml datasources against the data model generated
schema.

Since the biblatexml format is XML and depends on the data model and the
data model is extensible by the user (see § 4.5.4), the biblatexml format can deal
with extensions that BibTeX format data sources cannot, e.g. new nameparts, options
at sub-entry scope. Since it is an XML format, it is relatively easy to transform it into
other XML formats or HTML using standard XML processing libraries and tools.

Here is an explanation of the format with examples. By convention, biblatexml
files have a .bltxml extension and kpsewhich understands this file extension.

D.1 Header

biblatexml files begin with the standard XML header:

<?xml version="1.0" encoding="UTF-8"?>

The schema model, type and schema type namespace are given in the following line:

<?xml-model href="biblatexml.rng"

type="application/xml"

353

schematypens="http://relaxng.org/ns/

↪→ structure/1.0"?>

When biber generates biblatexml data sources, it automatically adds this line
and points the schema model (href) attribute at the automatically generated RelaXNG
XML schema for ease of validation.

D.2 Body

The body of a biblatexml data source looks like:

<bltx:entries

xmlns:bltx="http://biblatex-biber.sourceforge.net/

↪→ biblatexml">

<bltx:entry id="" entrytype="">

</bltx:entry>

.

.

.

<bltx:entry id="" entrytype="">

</bltx:entry>

</bltx:entries>

The body is one or more entry elements inside the top-level entries element and
everything is in the bltx namespace. An entry has an id attribute corresponding to
a BibTeX entry key and a entrytype attribute corresponding to a BibTeX entrytype.
For example, the biblatexml

<?xml version="1.0" encoding="UTF-8"?>

<?xml-model href="biblatexml.rng"

type="application/xml"

schematypens="http://relaxng.org/ns/

↪→ structure/1.0"?>

<bltx:entries

xmlns:bltx="http://biblatex-biber.sourceforge.net/

↪→ biblatexml">

<bltx:entry id="key1" entrytype="book">

</bltx:entry>

</bltx:entries>

Corresponds to the BibTeX .bib

@book{key1,

}

In general, the XML elements in a biblatexml format datasource file have names
corresponding to the fields in the datamodel, just like BibTeX format datasources. So
for example, the BibTeX format source

354

@book{key1,

TITLE = {...},

ISSUE = {...},

NOTE = {...}

}

would be, in biblatexml

<bltx:entry id="key1" entrytype="book">

<bltx:title>...</bltx:title>

<bltx:issue>...</bltx:issue>

<bltx:note>...</bltx:note>

</bltx:entry>

The following exceptions to this simple mapping are to be noted

D.2.1 Key aliases

Citation key aliases are specified like this:

<bltx:ids>

<bltx:key>alias1</bltx:key>

<bltx:key>alias2</bltx:key>

</bltx:ids>

this corresponds to the BibTeX format

@book{key1,

IDS = {alias1,alias2}

}

D.2.2 Names

Name specifications in biblatexml are somewhat more complex in order to gen-
eralise the name handling abilities of biblatex. The user has to be more explicit
about the name parts and this allows a much great scope for the handling of different
types of names and name parts. A name in biblatexml format looks like this

<bltx:names type="author" morenames="1" useprefix="

↪→ true">

<bltx:name gender="sm">

<bltx:namepart type="given">

<bltx:namepart initial="J">John</bltx:namepart

↪→ >

<bltx:namepart initial="A">Arthur</

↪→ bltx:namepart>

</bltx:namepart>

<bltx:namepart type="family">Smith</

↪→ bltx:namepart>

<bltx:namepart type="prefix" initial="v">von</

↪→ bltx:namepart>

355

</bltx:name>

<bltx:name useprefix="false">

<bltx:namepart type="given">

<bltx:namepart>Raymond</bltx:namepart>

</bltx:namepart>

<bltx:namepart type="family">Brown</

↪→ bltx:namepart>

</bltx:name>

</bltx:names>

A name list field is contained in the names element with the mandatory type
attribute giving the name of the name list. Things to note:

• The optional morenames attribute performs the same task as the BibTeX
datasource format ‘and others’ string at the end of a name.

• Note that optional useprefix option can be specified at the level of a name
list or an individual name in the name list. This is impossible with BibTeX
datasources.

• Individual names may have an optional gender attribute which must be one
of those defined in the datamodel ‘gender’ constant list. This is currently
not used by standard styles but is available in biblatex name formats if
necessary.

• A name list is composed of one or more name elements.

• Each name is composed of name parts of a type defined by the data model
‘nameparts’ constant.

• Each name part may have an option initial attribute which makes ex-
plicit the initial of the name part. If this is not present, biber attempts to
automatically determine the initial from the name part.

• Name parts may have name parts so that compound names can be handled.

Ignoring thebiblatexml-only features, a corresponding BibTeX format datasource
would look like this:

AUTHOR = {von Smith, John Arthur and Brown, Raymond

↪→ and others}

D.2.3 Lists

Datasource list fields (see § 2.2.1) can be represented in two ways, depending on
whether there is more than one element in the list:

<bltx:publisher>London</bltx:publisher>

<bltx:location>

<bltx:item>London</bltx:item>

<bltx:item>Moscow</bltx:item>

</bltx:location>

356

D.2.4 Ranges

Datasource range fields (see § 2.2.1) are represented like this:

<bltx:pages>

<bltx:item>

<bltx:start>1</bltx:start>

<bltx:end>10</bltx:end>

</bltx:item>

<bltx:item>

<bltx:start>30</bltx:start>

<bltx:end>34</bltx:end>

</bltx:item>

</bltx:pages>

A range field is a list of ranges, each with its own item. A range item has a start
element and an optional end element, since ranges can be open-ended.

D.2.5 Dates

Datasource date fields (see § 2.2.1) can be represented in two ways, depending on
whether they constitute a date range:

<bltx:date>1985-04-02</bltx:date>

<bltx:date type="event">

<bltx:start>1990-05-16</bltx:start>

<bltx:end>1990-05-17</bltx:end>

</bltx:date>

The type attribute on a date element corresponds to a particular type of date defined
in the data model.

D.2.6 Related Entries

Related entries are specified as follows:

<bltx:related>

<bltx:item type="reprint"

ids="rel1,rel2"

string="Somestring"

options="skipbiblist"/>

</bltx:related>

This corresponds to the BibTeX format:

@book{key1,

RELATED = {rel2,rel2},

RELATEDTYPE = {reprint},

RELATEDSTRING = {Somestring},

RELATEDOPTIONS = {skipbiblist}

}

As per § 4.5.1, the string and options attributes are optional.

357

E Option Scope

The following table provides an overview of the scope of various options.
Per-entry, per-namelist and per-name options are set in the datasource, for example,

in a .bibfile. See the biber documentation for details but here are a few examples.
Per-entry:

@BOOK{key,

OPTIONS = {sortingnamekeytemplatename=template1},

}

Per-namelist and per-name options require either the biblatexml datasource
format or the extend BibTeX name format supported by biber (see the biber
documentation for details). Per-namelist:

@BOOK{key,

AUTHOR = {sortingnamekeytemplatename=template1 and

↪→ Arthur Smith and Bill Brown},

}

Per-name:

@BOOK{key,

AUTHOR = {sortingnamekeytemplatename=template1, family

↪→ =Smith, given=Arthur and Bill Brown},

}

Option Scope

Load-time Global Per-refcontext Per-type Per-entry Per-namelist Per-name

abbreviate • • – • • – –
alldates • • – – – – –
alldatesusetime • • – – – – –
alltimes • • – – – – –
arxiv • • – – – – –
autocite • • – – – – –
autopunct • • – – – – –
autolang • • – – – – –
autofieldlang • • – – – – –
autofieldlangstrings • • – – – – –
backend • – – – – – –
backref • • – – – – –
backrefsetstyle • • – – – – –
backrefstyle • • – – – – –
bibencoding • • – – – – –
bibstyle • – – – – – –
bibtexcaseprotection • • – • • – –
bibwarn • • – – – – –
block • • – – – – –
casechanger • – – – – – –
citecounter • • – – – – –
citereset • • – – – – –
citestyle • – – – – – –
citetracker • • – • • – –
clearlang • • – • • – –

358

Option Scope

Load-time Global Per-refcontext Per-type Per-entry Per-namelist Per-name

datamodel • – – – – – –
dataonly • • – • • – –
date • • – – – – –
labeldate • • – – – – –
<datetype>date • • – – – – –
dateabbrev • • – • • – –
datecirca • • – – – – –
dateera • • – – – – –
dateerauto • • – – – – –
dateuncertain • • – – – – –
datezeros • • – – – – –
defernumbers • • – – – – –
doi • • – • • – –
eprint • • – • • – –
<namepart>inits • • – • • • •

gregorianstart • • – – – – –
hyperref • • – – – – –
ibidtracker • • – • • – –
idemtracker • • – • • – –
indexing • • – • • – –
isbn • • – • • – –
julian • • – – – – –
labelalpha • • – • • – –
labelalphanametemplatename– – • – • • •

labelnamefield – – – – • – –
labelnumber • • – • • – –
labeltitle • • – • • – –
labeltitlefield – – – – • – –
labeltitleyear • • – • • – –
labeldateparts • • – • • – –
labeltime • • – – – – –
labeldateusetime • • – – – – –
labelprefix – – • – – – –
<datetype>time • • – – – – –
<datetype>dateusetime • • – – – – –
language • • – – – – –
loadfiles • • – – – – –
loccittracker • • – • • – –
maxalphanames • • – • • – –
maxbibnames • • – • • – –
maxcitenames • • – • • – –
maxsortnames • • – • • – –
maxitems • • – • • – –
maxnames • • – • • – –
maxparens • • – – – – –
mcite • – – – – – –
minalphanames • • – • • – –
minbibnames • • – • • – –
mincitenames • • – • • – –
minsortnames • • – • • – –
mincrossrefs • • – – – – –
minxrefs • • – – – – –
minitems • • – • • – –
minnames • • – • • – –
nametemplates – – • – • • •

natbib • – – – – – –
nohashothers • • – • • • –
nosortothers • • – • • • –
noinherit – – – – • – –
notetype • • – – – – –

359

Option Scope

Load-time Global Per-refcontext Per-type Per-entry Per-namelist Per-name

opcittracker • • – • • – –
openbib • • – – – – –
pagetracker • • – – – – –
parentracker • • – – – – –
punctfont • • – – – – –
refsection • • – – – – –
refsegment • • – – – – –
related • • – • • – –
safeinputenc • • – – – – –
seconds • • – – – – –
singletitle • • – • • – –
skipbib • • – • • – –
skipbiblist • • – • • – –
skiplab • • – • • – –
sortcase • • – – – – –
sortcites • • – – – – –
sorting • • – – – – –
sortingnamekeytemplatename– – • – • • •

sortlocale • • – – – – –
sortlos • • – – – – –
sortupper • • – – – – –
style • – – – – – –
terseinits • • – • • • •

texencoding • • – – – – –
timezeros • • – – – – –
timezones • • – – – – –
uniquelist • • – • • • –
uniquename • • – • • • •

uniquenametemplatename – – • – • • •

uniquetitle • • – • • – –
uniquebaretitle • • – • • – –
uniquework • • – • • – –
uniqueprimaryauthor • • – • • – –
url • • – • • – –
useprefix • • – • • • •

use<name> • • – • • – –

360

361

F Default BCP47 to babel/polyglossia language
identifiers

af afrikaans
af-za afrikaans
am ethiopia
am-et amharic
ar arabic
ar-001 arabic
ast asturian
ast-es asturian
bg bulgarian
bg-bg bulgarian
bn bengali
bn-bd bengali
bo tibetan
bo-cn tibetan
br breton
br-fr breton
ca catalan
ca-ad catalan
ca-es catalan
cop coptic
cs czech
cs-cz czech
cy welsh
cy-gb welsh
da danish
da-dk danish
de-1996 ngerman
de-at austrian
de-at-1996 naustrian
de-ch swissgerman
de-ch-1996 nswissgerman
de german
de-de german
de-de-1996 ngerman
dsb lowersorbian
dsb-de lowersorbian
dv divehi
dv-mv divehi
el greek
el-cy ibygreek
el-gr greek
en english
en-au australian
en-ca canadian
en-uk ukenglish
en-gb british
en-nz newzealand
en-us usenglish
en-us american
en-us english
eo esperanto
eo-001 esperanto
es spanish
es-es spanish
et estonian
et-ee estonian
eu basque
eu-es basque
fa farsi
fa-ir farsi
fi finnish
fi-fi finnish
fr french
fr-ca acadian
fr-ca canadien
fr-fr french
fur friulan
fur-it friulan
ga irish
ga-ie irish
gd scottish
gd-gb scottish
gl galician
gl-es galician
ha nko
ha-ng nko
he hebrew
he-il hebrew
hi hindi
hi-in hindi
hr croatian
hr-hr croatian
hsb uppersorbian
hsb-de uppersorbian
hu magyar
hu-hu magyar
hy armenian
hy-am armenian
ia interlingua
ia-fr interlingua
id indonesia
is icelandic
is-is icelandic
it italian
it-it italian
ja japanese
ja-jp japanese
kn kannada
kn-in kannada
lo lao
lo-la lao
lt lithuanian
lt-lt lithuanian
lv latvian
lv-lv latvian
ml malayalam
ml-in malayalam
mn mongolian
mn-cyrl mongolian
mr marathi
mr-in marathi
nb norsk
nb-no norsk
nl dutch
nl-nl dutch
nn nynorsk
nn-no nynorsk
oc occitan
oc-fr occitan
pl polish
pl-pl polish
pms piedmontese
pms-it piedmontese
pny pinyin
pt portuguese
pt-br brazilian
pt-pt portuguese
rm romansh
rm-ch romansh
ro romanian
ro-ro romanian
ru russian
ru-ru russian
ru-grek greek
ru-latn latin
sa sanskrit
sa-in sanskrit
se samin
se-no samin
sk slovak
sk-sk slovak
sl slovenian
sl-si slovenian
sq albanian
sq-al albanian
sr serbian
sr-cyrl serbian
sr-latn latin
sv swedish
sv-se swedish
syc syriac
ta tamil
ta-in tamil
te telugu
te-in telugu
th thai
th-th thai
tk turkmen
tk-tm turkmen
tr turkish
tr-tr turkish
uk ukrainian
uk-ua ukrainian
ur urdu
ur-in urdu
vi vietnamese
vi-vn vietnamese

362

G Revision History

This revision history is a list of changes relevant to users of this package. Changes
of a more technical nature which do not affect the user interface or the behavior of
the package are not included in the list. More technical details are to be found in the
CHANGES.md file. The numbers on the right indicate the relevant section of this
manual.

4.0 2022-

Multiscript support . 3.17

3.19 2022

3.19 2023-03-05

Added \AtNextRefsection . 4.10.6

Added \DeclareExtradateContext option 4.5.11

Modified warning for using bibtex backend

Enhanced extradate tracking to fallback on labeltitle when there is no
author

3.18b2022-07-12

Reenable \MakeUppercase/\MakeLowercase ‘patches’ based on
\CaseSwitch 3.18a2022-07-02

Disable \MakeUppercase/\MakeLowercase patches as emergency fix for
LaTeX 2022-06-01-PL4 compatibility. 3.182022-06-22

Added sorting option \intciteorderaut:ctm:srt

Added global option pluralothersuse:opt:pre:gen

Added \localrefcontextuse:bib:context

Added\visibility option to\DeclareSortingNamekeyTemplateaut:ctm:srt

Added \GenRefcontextDatause:bib:context

Added \AtBeginRefsectionaut:fmt:hok 3.172022-01-25

Changed behaviour of index-less granular XDATA referencesuse:use:xdat

Added \DeclareNonamestring aut:ctm:nonamestring

Added new \citecount sort option and associated default sorting
schemeaut:ctm:srt and use:opt:pre:gen

Added new sourcemap verbs matches and matchesiaut:ctm:map

Deprecated season fields and macros in favour of generalised year division-
saut:bbx:fld:dat

Added \textouterlangaut:str

Added \UndeclareDelimcontextAliasuse:fmt:csd

Added \DeclareBibstringSet, \DeclareBibstringSetFormat

etc.aut:str

Added Marathi localisation (�नरंजन)
Added Romanian localisation (Patrick Danilevici)

Added some support for calculating with non-us-ascii numeralsaut:aux:tst

363

Removed list support for 〈name〉 argument of
\DeclareDelimFormatuse:fmt:csd 3.162020-12-31

Added named refcontext support to \assignrefcontext*use:bib:context

Fixed infinite loop with volcitepages field format

Added Extended Name Format documentationuse:enf

Added label option to \printbibliographyuse:bib:bib

Deprecate \mainlang in favour of \textmainlangaut:str

Added Basque localisation (Ander Zarketa-Astigarraga) 3.15a2020-08-23

Fixed bug with long arguments in \DeclareFieldFormat and friends 3.152020-
08-16

Added starnocited option to sourcemapsaut:ctm:map

Added the glob option to \addbibresourceuse:bib:res

Added eid to more entry typesbib:typ:blx

Added \bibeidpunctuse:fmt:fmt

Added issuetitleaddon and journaltitleaddonbib:fld:dat

numeric-comp compresses subentry set references nowuse:opt:pre:bbx

Added subentrycomp to numeric-comp styleuse:opt:pre:bbx

Added \multiciterangedelim, \multicitesubentrydelim,
\multicitesubentryrangedelim, \superciterangedelim,
\supercitesubentrydelim, \supercitesubentryrangedelimuse:fmt:fmt

Implemented expl3 case changing functionsaut:aux:msc

Added casechanger optionuse:opt:ldt

Added bibtexcaseprotection optionuse:opt:pre:gen

Added \mautocite and \Mautociteuse:cit:mct

Added trackfloats and backreffloatsuse:opt:pre:gen

Added block option to \printbibliography and friendsuse:bib:bib

Added \NumsCheckSetup and \PagesCheckSetupaut:aux:msc

Added \AtEveryEntrykeyaut:fmt:hok

Added \ifdatesequal and \ifdaterangesequalaut:aux:tst

Clarified \ifuniqueprimaryauthor semanticsaut:aux:tst

Added \bibncpstring, \bibncplstring and \bibncpsstringaut:str

Added Lithuanian localisation (Valdemaras Klumbys)

Added Serbian localisation (Andrej Radović)

Added Turkish localisation (Abdulkerim Gok)

Added file hooksaut:fmt:hok:fil

Deprecated \ifkomabibtotoc and \ifkomabibtotocnumbereduse:cav:scr
3.142019-12-01

Added new mapping verbs for citation sourcesaut:ctm:map

Added documentation for new biber granular @xdata functionalityuse:use:xdat

Enhanced polyglossia support 3.13a2019-08-31

364

Bugfix release 3.132019-08-17

Added new @dataset entry typebib:typ:blx

Promoted @software to regular entry typebib:typ:blx

Added entrykey alias for entry keys in labelsaut:ctm:lab

Added appendstrict sourcemapping optionaut:ctm:map

Added nohashothers and nosortothersuse:opt:pre:int

Enhanced \addbibresource with globbinguse:bib:res

Added \DeclareBiblatexOptionaut:bbx:bbx

Expanded scope possibilities for several optionsapx:opt

Added \ifvolcite testaut:aux:tst

Added special fields volcitevolume and volcitepagesaut:cbx:fld

Added \AtVolcite hookaut:fmt:hok

Added \pnfmt use:cit:msc

Added\mkbibcompletename and\mkbibcompletename‘formatorder’use:fmt:fmt

Made \postnotedelim and friends context sensitiveuse:fmt:fmt

Added \multipostnotedelim and \multiprenotedelimuse:fmt:fmt

Added \thefirstlistitem and friendsaut:aux:dat

Added 〈itempostpro〉 argument to \mkcomprange, \mknormrange and
\mkfirstpageaut:aux:msc

Added \biburlbigskip and friendsuse:fmt:len

Added biburlbigbreakpenalty and biburlbreakpenalty and friend-
suse:fmt:len

Added \DeclarePrintbibliographyDefaultsuse:bib:bib

Added doi to @onlinebib:typ:blx
3.122018-10-30

Added literal and named annotation functionalityuse:annote

Added \ifnociteaut:aux:tst

Added case-insensitive versions of matching operatorsaut:ctm:map

Added langids optional argument to \DeclareSortTranslitaut:ctm:srt

Added noroman optionuse:opt:pre:int

Changed sortyear to an integer fieldbib:fld:spc

Added extranameaut:bbx:fld:lab

Added bibencoding option to \addbibresourceuse:bib:res

Changed type of number from integer to literal bib:fld:dat

Removed noerroretextools optionint:pre:inc

Added maxsortnames and minsortnamesuse:opt:pre:gen

Added \DeprecateFieldFormatWithReplacement and friendsaut:bib:fmt

Added list and name wrappersaut:bib:fmt

Added \ifdateyearsequalaut:aux:tst

365

Added ‘and higher’ sectioning values for citereset, refsection and
refsegment optionsuse:opt:pre:gen

Added Hungarian localisationuse:loc:hun

Added \DeclareCitePunctuationPositionaut:cbx:cbx
3.112018-02-20

Added entrynocite option to sourcemappingaut:ctm:map

Added driver and biblistfilter options to \printbiblistuse:bib:biblist

Added \mknormrangeaut:aux:msc

Added \ifdateannotationuse:annote

Extended \iffieldannotation and friendsuse:annote

Changed \DeclareSourcemap so that it can be used multiple timesaut:ctm:map

Added Latvian localisation (Rihards Skuja)

Added locallabelwidth optionuse:opt:pre:gen
3.102017-12-19

Changed edtf to isouse:opt:pre:gen

Added noerroretextools optionint:pre:inc
3.92017-11-21

Added \iffieldplusstringbibstringaut:aux:tst

Fixed \mkpagetotalaut:aux:msc
3.82017-11-04

Added hyperref=manual optionuse:opt:pre:gen

Added field extradatescopeaut:bbx:fld:lab

Added \DeclareExtradateaut:ctm:fld

Added \DeprecateFieldWithReplacement,
\DeprecateListWithReplacement and\DeprecateNameWithReplacementaut:bib:dat

Added \letbibmacroaut:aux:msc

Renamed extrayear to extradateaut:bbx:fld:lab

Added sortsets global optionuse:opt:pre:gen

Added \iflabelalphanametemplatename and
\uniquenametemplatenameaut:aux:tst

Renamed\ifsortingnamescheme to\ifsortingnamekeytemplatenameaut:aux:tst

Renamedsortingnamekeyscheme tosortingnamekeytemplateuse:bib:con-
text

Renamed \DeclareSortingNamekeyScheme to
\DeclareSortingNamekeyTemplateaut:ctm:srt

Renamed\DeclareSortingScheme to\DeclareSortingTemplateaut:ctm:srt

Changes to \DeclareUniquenameTemplate and
\DeclareLabelalphaNameTemplate scopesaut:cav:amb and aut:ctm:lab

Added newdisambiguation option to\DeclareUniquenameTemplateaut:cav:amb

Added new user-facing versions of some entry-querying commandsuse:eq

Changed origlanguage to a list in line with languagebib:fld:dat

366

Deprecated childentrykey and childentrytypeaut:bbx:fld:gen

Added bibnamehash and name list specific variantsaut:bbx:fld:gen

Added ALA-LC Russian romanisation transliteration supportaut:ctm:srt

Added urlrawaut:bbx:fld:gen

Added \AtUsedriveraut:fmt:hok

Added Bulgarian localisation (Kaloyan Ganev)

sortyear is now a literal, not an integerbib:fld:spc

Added \DeclareLanguageMappingSuffixaut:lng:cmd

Changed default for \DeclarePrefCharsaut:pct:cfg

Added \authortypedelim, \editortypedelim and
\translatortypedelimuse:fmt:fmt

Added \DeclareDelimAliasuse:fmt:csd

Added slovenian as alias for slovene due to Polyglossia name for the language-
bib:fld:spc

Added Ukrainian localisation (Sergiy M. Ponomarenko)
3.72016-12-08

Corrected default for \bibdateeraprefixaut:fmt:lng

Added \DeclareSortInclusionaut:ctm:srt

Added \relateddelim<relatedtype>use:fmt:fmt
3.62016-09-15

Corrected some documentation and fixed a bug with labeldate localisation strings.
3.52016-09-10

Added \ifuniquebaretitle testaut:aux:tst

Documented \labelnamesource and \labeltitlesourceaut:bbx:fld:gen

Added \bibdaterangesepuse:fmt:lng

Added refsection option to \DeclareSourcemapaut:ctm:map

Added suppress option to inheritance specificationsaut:ctm:ref

Added \ifuniqueworkaut:aux:tst

Changed \DeclareStyleSourcemap so that it can be used multiple time-
saut:ctm:map

Added \forcezerosy and \forcezerosmdtaut:fmt:ich

Changed \mkdatezeros to \mkyearzeros, \mkmonthszeros and
\mkdayzerosaut:fmt:ich

Added namehash and fullhash for all name list fieldsaut:bbx:fld:gen

Generalised giveninits option to all namepartsuse:opt:pre:int

Added inits option to \DeclareSortingNamekeySchemeaut:ctm:srt

Removed option sortgiveninits. Use the option inits to
\DeclareSortingNamekeyScheme instead

Added \DeclareLabelalphaNameTemplateaut:ctm:lab

Added full edtf Levels 0 and 1 compliance for parsing and printing timesbib:use:dat

367

Changed dates to be fully edtf Levels 0 and 1 compliant. Associated tests and
localisation stringsbib:use:dat

Added timezerosuse:opt:pre:gen

Added mktimezerosaut:fmt:ich

Changed iso8601 to edtfuse:opt:pre:gen

Added \DeclareUniquenameTemplateaut:cav:amb

Removed experimental RIS support

sortnamekeyscheme and useprefix can be now be set per-namelist and per-
name for BibTeX datasourcesaut:ctm:srt

Added \DeclareDelimcontextAliasuse:fmt:csd

Added Estonian localisation (Benson Muite)

Reference contexts may now be nameduse:bib:context

Added notfield step in Sourcemapsaut:ctm:map
3.42016-05-10

Added \ifcrossrefsource and \ifxrefsourceaut:aux:tst

Added data annotation featureuse:annote

Added package option minxrefsuse:opt:pre:gen

Added \ifuniqueprimaryauthor and associated global optionaut:aux:tst

Added \DeprecateField, \DeprecateList and
\DeprecateNameaut:bib:dat

Added \ifcaselangaut:aux:tst

Added \DeclareSortTranslitaut:ctm:srt

Added uniquetitle testaut:aux:tst

Added \namelabeldelimuse:fmt:fmt

New starred variants of the \assignrefcontext* macrosuse:bib:context

New context-sensitive delimiter interfaceuse:fmt:csd

Moved prefixnumbers option to \newrefcontext and renamed to
labelprefixuse:bib:context

Added \DeclareDatafieldSetaut:ctm:dsets
3.32016-03-01

New macros for auto-assignment of refcontextsuse:bib:context

Schema documentation for biblatexml apx:biblatexml

Sourcemapping documentation and examples for biblatexml aut:ctm:map

Changes for name formats to generalise available name partsaut:bib:fmt

useprefix can now be specified per-namelist and per-name in biblatexml

datasources

New sourcemapping options for creating new entries dynamically and looping over
map stepsaut:ctm:map

Added noalphaothers and enhanced name range selection in
\DeclareLabelalphaTemplateaut:ctm:lab

Added \DeclareDatamodelConstantaut:ctm:dm

368

Renamed firstinits to giveninits and sortfirstinits to
sortgiveninitsuse:opt:pre:int

Added \DeclareSortingNamekeySchemeaut:ctm:srt

Removed messy experimental endnote and zoterordf support for biber

Added \nonameyeardelimuse:fmt:fmt

Added \extpostnotedelimuse:fmt:fmt
3.22015-12-28

Addedpstrwidth andpcompound to\DeclareLabelalphaTemplateaut:ctm:lab

Added \AtEachCitekeyaut:fmt:hok
3.12015-09

Added \DeclareNolabelaut:ctm:lab

Added \DeclareNolabelwidthcountaut:ctm:lab
3.02015-04-20

Improved Danish (Jonas Nyrup) and Spanish (ludenticus) translations

labelname and labeltitle are now resolved by biblatex instead of biber
for more flexibility and future extensibility

New \entryclone sourcemap verb for cloning entries during sourcemappin-
gaut:ctm:map

New \pernottype negated per-type sourcemap verbaut:ctm:map

New range calculation command \frangelenaut:aux:msc

New bibliography context functionalityuse:bib:context

Name lists in the data model now automatically create internals for
\ifuse<name> tests and booleansuse:opt:bib:hyb and aut:aux:tst

2.9a2014-06-25

resetnumbers now allows passing a number to reset touse:bib:bib
2.92014-02-25

Generalised shorthands facilityuse:bib:biblist

Sorting locales can now be defined as part of a sorting schemeaut:ctm:srt

Added sortinithashaut:bbx:fld:gen

Added Slovene localisation (Tea Tušar and Bogdan Filipič)

Added \mkbibitalicaut:fmt:ich

Recommend begentry and finentry bibliography macrosaut:bbx:drv
2.8a2013-11-25

Split option language=auto into language=autocite and
language=autobibuse:opt:pre:gen

2.82013-10-21

New langidoptsbib:fld:spc

hyphenation field renamed to langidbib:fld:spc

polyglossia support

Renamed babel option to autolanguse:opt:pre:gen

Corrected Dutch localisation

Added datelabel=year optionuse:opt:pre:gen

369

Added datelabelsource fieldaut:bbx:fld:gen
2.7a2013-07-14

Bugfix - respect maxnames and uniquelist in \finalandsemicolon

Corrected French localisation
2.72013-07-07

Added field eventtitleaddon to default datamodel and stylesbib:fld:dat

Added \ifentryinbib, \iffirstcitekey and
\iflastcitekeyaut:aux:tst

Added postpunct special field, documented multiprenote and
multipostnote special fieldsaut:cbx:fld

Added \UseBibitemHook, \AtEveryMultiCite,
\AtNextMultiCite, \UseEveryCiteHook, \UseEveryCitekeyHook,
\UseEveryMultiCiteHook, \UseNextCiteHook,
\UseNextCitekeyHook, \UseNextMultiCiteHook,
\DeferNextCitekeyHookaut:fmt:hok

Fixed \textcite and related commands in the numeric and verbose style-
suse:cit:cbx

Added multicite variants of \volcite and related commandsuse:cit:spc

Added \finalandsemicolonuse:fmt:lng

Added citation delimiter \textcitedelim for \textcite and related com-
mands to stylesaut:fmt:fmt

Updated Russian localisation (Oleg Domanov)

Fixed Brazilian and Finnish localisation
2.62013-04-30

Added \printunitaut:pct:new

Added field clonesourcekeyaut:bbx:fld:gen

New options for \DeclareLabelalphaTemplateaut:ctm:lab

Added \DeclareLabeldate and retired \DeclareLabelyearaut:ctm:fld

Added nodate localisation stringaut:lng:key:msc

Added \rangelenaut:aux:msc

Added starred variants of \citeauthor and \Citeauthoruse:cit:txt

Restored original url format. Added urlfrom localisation keyaut:lng:key:lab

Added \AtNextBibliographyaut:fmt:hok

Fixed related entry processing to allow nested and cyclic related entries

Added Croatian localisation (Ivo Pletikosić)

Added Polish localisation (Anastasia Kandulina, Yuriy Chernyshov)

Fixed Catalan localisation

Added smart “of” for titles to Catalan and French localisation

Misc bug fixes
2.52013-01-10

Made url work as a localisation string, defaulting to previously hard-coded value
‘URL’.

370

Changed some biber option names to cohere with biber 1.5.

New sourcemap step for conditionally removing entire entriesaut:ctm:map

Updated Catalan localisation (Sebastià Vila-Marta)
2.42012-11-28

Added relatedoptions fieldaut:ctm:rel

Added \DeclareStyleSourcemapaut:ctm:map

Renamed\DeclareDefaultSourcemap to\DeclareDriverSourcemapaut:ctm:map

Documented \DeclareFieldInputHandler,
\DeclareListInputHandler and \DeclareNameInputHandler.

Added Czech localisation (Michal Hoftich)

Updated Catalan localisation (Sebastià Vila-Marta)
2.32012-11-01

Better detection of situations which require a biber or LATEX re-run

New append mode for \DeclareSourcemap so that fields can be com-
binedaut:ctm:map

Extended auxiliary indexing macros

Added support for plural localisation strings with relatedtypeaut:ctm:rel

Added \csfield and \usefieldaut:aux:dat

Added starred variant of \usebibmacroaut:aux:msc

Added \ifbibmacroundef, \iffieldformatundef,
\iflistformatundef and \ifnameformatundefaut:aux:msc

Added Catalan localisation (Sebastià Vila-Marta)

Misc bug fixes
2.22012-08-17

Misc bug fixes

Added \revsdnamepunctuse:fmt:fmt

Added \ifterseinitsaut:aux:tst
2.12012-08-01

Misc bug fixes

Updated Norwegian localisation (Håkon Malmedal)

Increased data model auto-loading possibilitiesaut:ctm:dm
2.02012-07-01

Misc bug fixes

Generalised singletitle test a littleaut:aux:tst

Added new special field extratitleyearaut:bbx:fld

Customisable data modelaut:ctm:dm

Added \DeclareDefaultSourcemapaut:ctm:map

Added labeltitle optionuse:opt:pre:int

Added new special field extratitleaut:bbx:fld

Made special field labeltitle customisableaut:bbx:fld

Removed field reprinttitleuse:rel

371

Added related entry featureuse:rel

Added \DeclareNoinitaut:ctm:noinit

Added \DeclareNosortaut:ctm:nosort

Added sorting option for \printbibliography and
\printshorthandsuse:bib:bib

Added ids field for citekey aliasingbib:fld

Added sortfirstinits optionuse:opt:pre:int

Added data stream modification featureaut:ctm:map

Added customisable labels featureaut:ctm:lab

Added \citeyear* and \citedate*use:cit:txt

372

	List of Tables
	Introduction
	About
	License
	Feedback
	Acknowledgements
	Prerequisites
	Requirements
	Recommended Packages
	Additional Useful Packages
	Compatible Classes and Packages
	Incompatible Packages
	Compatibility Matrix for biber

	Database Guide
	Entry Types
	Regular Types
	article
	book
	mvbook
	inbook
	bookinbook
	suppbook
	booklet
	collection
	mvcollection
	incollection
	suppcollection
	dataset
	manual
	misc
	online
	patent
	periodical
	suppperiodical
	proceedings
	mvproceedings
	inproceedings
	reference
	mvreference
	inreference
	report
	set
	software
	thesis
	unpublished
	xdata
	custom[a–f]

	Type Aliases
	conference
	electronic
	mastersthesis
	phdthesis
	techreport
	www

	Non-standard Types
	artwork
	audio
	bibnote
	commentary
	image
	jurisdiction
	legislation
	legal
	letter
	movie
	music
	performance
	review
	standard
	video

	Entry Fields
	Data Types
	Data Fields
	abstract
	addendum
	afterword
	annotation
	annotator
	author
	authortype
	bookauthor
	bookpagination
	booksubtitle
	booktitle
	booktitleaddon
	chapter
	commentator
	date
	doi
	edition
	editor
	editora
	editorb
	editorc
	editortype
	editoratype
	editorbtype
	editorctype
	eid
	entrysubtype
	eprint
	eprintclass
	eprinttype
	eventdate
	eventtitle
	eventtitleaddon
	file
	foreword
	holder
	howpublished
	indextitle
	institution
	introduction
	isan
	isbn
	ismn
	isrn
	issn
	issue
	issuesubtitle
	issuetitle
	issuetitleaddon
	iswc
	journalsubtitle
	journaltitle
	journaltitleaddon
	label
	language
	library
	location
	mainsubtitle
	maintitle
	maintitleaddon
	month
	nameaddon
	note
	number
	organization
	origdate
	origlanguage
	origlocation
	origpublisher
	origtitle
	pages
	pagetotal
	pagination
	part
	publisher
	pubstate
	reprinttitle
	series
	shortauthor
	shorteditor
	shorthand
	shorthandintro
	shortjournal
	shortseries
	shorttitle
	subtitle
	title
	titleaddon
	translator
	type
	url
	urldate
	venue
	version
	volume
	volumes
	year

	Special Fields
	crossref
	entryset
	execute
	gender
	langid
	langidopts
	ids
	indexsorttitle
	keywords
	options
	presort
	related
	relatedoptions
	relatedtype
	relatedstring
	sortkey
	sortname
	sortshorthand
	sorttitle
	sortyear
	xdata
	xref

	Custom Fields
	name[a–c]
	name[a–c]type
	list[a–f]
	user[a–f]
	verb[a–c]

	Field Aliases
	address
	annote
	archiveprefix
	journal
	key
	pdf
	primaryclass
	school

	Usage Notes
	The Entry Type @inbook
	Missing and Omissible Data
	Corporate Authors and Editors
	Literal Lists
	Titles
	Editorial Roles
	Publication and Journal Series
	Date and Time Specifications
	Year, Month and Date
	Months and Journal Issues
	Journal Numbers and Issues
	Pagination

	Hints and Caveats
	Cross-referencing
	The 'xref' field

	Sorting and Encoding Issues
	Specifying Encodings

	User Guide
	Package Options
	Load-time Options
	backend
	style
	bibstyle
	citestyle
	natbib
	mcite
	casechanger

	Preamble Options
	General
	msform
	mslang
	dynamiclabel
	sorting
	sortcase
	sortupper
	sortlocale
	sortcites
	sortsets
	pluralothers
	maxnames
	minnames
	maxbibnames
	minbibnames
	maxcitenames
	mincitenames
	maxsortnames
	minsortnames
	maxitems
	minitems
	autocite
	autopunct
	language
	clearlang
	autolang
	langhook
	autofieldlang
	autofieldlangstrings
	block
	locallabelwidth
	notetype
	hyperref
	backref
	backrefstyle
	backrefsetstyle
	backreffloats
	indexing
	loadfiles
	refsection
	refsegment
	citereset
	abbreviate
	date
	labeldate
	"datetype"date
	alldates
	julian
	gregorianstart
	datezeros
	timezeros
	timezones
	seconds
	dateabbrev
	datecirca
	dateuncertain
	dateera
	dateeraauto
	time
	labeltime
	"datetype"time
	alltimes
	dateusetime
	labeldateusetime
	"datetype"dateusetime
	alldatesusetime
	defernumbers
	punctfont
	arxiv
	texencoding
	bibencoding
	safeinputenc
	bibwarn
	mincrossrefs
	minxrefs
	bibtexcaseprotection

	Style-specific
	isbn
	url
	doi
	eprint
	related
	alphabetic/numeric
	subentry

	numeric-comp
	subentrycomp

	authortitle/authoryear
	dashed

	authoryear
	mergedate

	"ibid" styles
	ibidpage

	verbose
	citepages

	verbose-trad
	strict

	reading

	Internal
	pagetracker
	citecounter
	citetracker
	ibidtracker
	opcittracker
	loccittracker
	idemtracker
	trackfloats
	parentracker
	maxparens
	"namepart"inits
	terseinits
	labelalpha
	maxalphanames
	minalphanames
	labelnumber
	noroman
	labeltitle
	labeltitleyear
	labeldateparts
	singletitle
	uniquetitle
	uniquebaretitle
	uniquework
	uniqueprimaryauthor
	uniquename
	uniquelist
	nohashothers
	nosortothers

	Entry Options
	Preamble/Type/Entry Options
	useauthor
	useeditor
	usetranslator
	use"name"
	useprefix
	indexing
	skipbib
	skipbiblist
	skiplab
	dataonly

	Entry Only Options
	labelnamefield
	labeltitlefield

	Legacy Options
	openbib

	Global Customization
	Configuration File
	Setting Package Options
	\ExecuteBibliographyOptions

	Standard Styles
	Citation Styles
	Bibliography Styles

	Extended Name Format
	Related Entries
	Sorting Options
	Data Annotations
	\iffieldannotation
	\ifitemannotation
	\ifpartannotation
	\ifdateannotation
	\hasfieldannotation
	\hasitemannotation
	\haspartannotation
	\hasdateannotation
	Literal Annotations
	\getfieldannotation
	\getitemannotation
	\getpartannotation
	\getdateannotation

	Bibliography Commands
	Resources
	\addbibresource
	\addglobalbib
	\addsectionbib
	\bibliography

	The Bibliography
	\printbibliography
	\bibbysection
	\bibbysegment
	\bibbycategory
	\printbibheading
	\DeclarePrintbibliographyDefaults

	Bibliography Lists
	\printbiblist

	Bibliography Sections
	refsection
	\newrefsection

	Bibliography Segments
	refsegment
	\newrefsegment

	Bibliography Categories
	\DeclareBibliographyCategory
	\addtocategory

	Bibliography Headings and Environments
	\defbibenvironment
	\defbibheading

	Bibliography Notes
	\defbibnote

	Bibliography Filters and Checks
	\defbibfilter
	\defbibcheck

	Reference Contexts
	\DeclareRefcontext
	refcontext
	\newrefcontext
	\localrefcontext
	\assignrefcontextkeyws
	\assignrefcontextkeyws*
	\assignrefcontextcats
	\assignrefcontextcats*
	\assignrefcontextentries
	\assignrefcontextentries*
	\assignrefcontextentries
	\assignrefcontextentries*
	\GenRefcontextData

	Dynamic Entry Sets
	\defbibentryset

	Citation Commands
	Standard Commands
	\cite
	\Cite
	\parencite
	\Parencite
	\footcite
	\footcitetext

	Style-specific Commands
	\textcite
	\Textcite
	\smartcite
	\Smartcite
	\cite*
	\parencite*
	\supercite

	Qualified Citation Lists
	\cites
	\Cites
	\parencites
	\Parencites
	\footcites
	\footcitetexts
	\smartcites
	\Smartcites
	\textcites
	\Textcites
	\supercites

	Style-independent Commands
	\autocite
	\Autocite
	\autocites
	\Autocites

	Text Commands
	\citeauthor
	\Citeauthor
	\citetitle
	\citeyear
	\citedate
	\citeurl
	\parentext
	\brackettext

	Special Commands
	\nocite
	\fullcite
	\footfullcite
	\volcite
	\Volcite
	\volcites
	\Volcites
	\pvolcite
	\Pvolcite
	\pvolcites
	\Pvolcites
	\fvolcite
	\ftvolcite
	\fvolcites
	\Fvolcites
	\svolcite
	\Svolcite
	\svolcites
	\Svolcites
	\tvolcite
	\Tvolcite
	\tvolcites
	\Tvolcites
	\avolcite
	\Avolcite
	\avolcites
	\Avolcites
	\notecite
	\Notecite
	\pnotecite
	\Pnotecite
	\fnotecite

	Low-level Commands
	\citefield
	\citelist
	\citename

	Miscellaneous Commands
	\citereset
	\citereset*
	\mancite
	\pno
	\ppno
	\nopp
	\psq
	\psqq
	\pnfmt
	\RN
	\Rn

	natbib Compatibility Commands
	mcite-like Citation Commands

	Localization Commands
	\DefineBibliographyStrings
	\DefineBibliographyExtras
	\UndefineBibliographyExtras
	\DefineHyphenationExceptions
	\NewBibliographyString

	Entry Querying Commands
	\ifentryseen
	\ifentryinbib
	\ifentrycategory
	\ifentrykeyword

	Formatting Commands
	Generic Commands and Hooks
	\bibsetup
	\bibfont
	\citesetup
	\newblockpunct
	\newunitpunct
	\finentrypunct
	\entrysetpunct
	\bibnamedelima
	\bibnamedelimb
	\bibnamedelimc
	\bibnamedelimd
	\bibnamedelimi
	\bibinitperiod
	\bibinitdelim
	\bibinithyphendelim
	\bibindexnamedelima
	\bibindexnamedelimb
	\bibindexnamedelimc
	\bibindexnamedelimd
	\bibindexnamedelimi
	\bibindexinitperiod
	\bibindexinitdelim
	\bibindexinithyphendelim
	\revsdnamepunct
	\bibnamedash
	\labelnamepunct
	\subtitlepunct
	\intitlepunct
	\bibpagespunct
	\bibpagerefpunct
	\bibeidpunct
	\multinamedelim
	\finalnamedelim
	\revsdnamedelim
	\andothersdelim
	\multilistdelim
	\finallistdelim
	\andmoredelim
	\multicitedelim
	\multiciterangedelim
	\multicitesubentrydelim
	\multicitesubentryrangedelim
	\supercitedelim
	\superciterangedelim
	\supercitesubentrydelim
	\supercitesubentryrangedelim
	\compcitedelim
	\textcitedelim
	\nametitledelim
	\nameyeardelim
	\namelabeldelim
	\nonameyeardelim
	\authortypedelim
	\editortypedelim
	\translatortypedelim
	\labelalphaothers
	\sortalphaothers
	\volcitedelim
	\mkvolcitenote
	\prenotedelim
	\postnotedelim
	\extpostnotedelim
	\multiprenotedelim
	\multipostnotedelim
	\mkbibname"namepart"
	\mkbibcompletenamefamily
	\mkbibcompletenamefamilygiven
	\mkbibcompletenamegivenfamily
	\mkbibcompletename
	\datecircadelim
	\dateeradelim
	\dateuncertainprint
	\enddateuncertainprint
	\datecircaprint
	\enddatecircaprint
	\datecircaprintiso
	\enddatecircaprintiso
	\dateeraprint
	\dateeraprintpre
	\relatedpunct
	\relateddelim
	\relateddelim"relatedtype"
	\begrelateddelim
	\begrelateddelim"relatedtype"

	Context-sensitive Delimiters
	\DeclareDelimFormat
	\DeclareDelimAlias
	\printdelim
	\delimcontext
	\DeclareDelimcontextAlias
	\UndeclareDelimcontextAlias

	Language-specific Commands
	\bibrangedash
	\bibrangessep
	\bibdatesep
	\bibdaterangesep
	\mkbibdatelong
	\mkbibdateshort
	\mkbibtimezone
	\bibdateuncertain
	\bibdateeraprefix
	\bibdateeraendprefix
	\bibtimesep
	\bibutctimezone
	\bibtimezonesep
	\bibtzminsep
	\bibdatetimesep
	\finalandcomma
	\finalandsemicolon
	\mkbibordinal
	\mkbibmascord
	\mkbibfemord
	\mkbibneutord
	\mkbibordedition
	\mkbibordseries

	Lengths and Counters
	\bibhang
	\biblabelsep
	\bibitemsep
	\bibnamesep
	\bibinitsep
	\bibparsep
	abbrvpenalty
	highnamepenalty
	lownamepenalty
	biburlnumpenalty
	biburlucpenalty
	biburllcpenalty
	biburlbigbreakpenalty
	biburlbreakpenalty
	\biburlbigskip
	\biburlnumskip
	\biburlucskip
	\biburllcskip

	All-purpose Commands
	\bibellipsis
	\noligature
	\hyphenate
	\hyphen
	\nbhyphen
	\nohyphenation
	\textnohyphenation
	\mknumalph
	\mkbibacro
	\autocap

	Language notes
	American
	Bulgarian
	Greek
	Hungarian
	Latvian
	Lithuanian
	Marathi
	Romanian
	Russian
	Spanish
	smartand
	\forceE
	\forceY

	Turkish

	Usage Notes
	Overview
	Auxiliary Files
	Multiple Bibliographies
	Subdivided Bibliographies
	Entry Sets
	Static entry sets
	Dynamic entry sets

	Data Containers
	Electronic Publishing Information
	External Abstracts and Annotations

	Hints and Caveats
	Usage with KOMA-Script Classes
	\ifkomabibtotoc
	\ifkomabibtotocnumbered

	Usage with the Memoir Class
	\ifmemoirbibintoc

	Page Numbers in Citations
	Name Parts and Name Spacing
	Split Bibliographies and Citation Labels
	Active Characters in Bibliography Headings
	Grouping in Reference Sections and Segments

	Using the fallback BibTeX backend
	Multiscript Support
	\maplangtag

	Selection of Multiscript Alternates
	\DeclareMsselect

	Author Guide
	Overview
	Bibliography Styles
	Bibliography Style Files
	\RequireBibliographyStyle
	\InitializeBibliographyStyle
	\DeclareBibliographyDriver
	\DeclareBibliographyAlias
	\DeclareBibliographyOption
	\DeclareTypeOption
	\DeclareEntryOption
	\DeclareBiblatexOption

	Bibliography Environments
	Bibliography Drivers
	Special Fields
	Generic Fields
	"datetype"dateunspecified
	entrykey
	childentrykey
	labelnamesource
	labeltitlesource
	labeldatesource
	entrytype
	childentrytype
	entrysetcount
	hash
	namehash
	bibnamehash
	"namelist""msform""mslang"namehash
	"namelist""msform""mslang"bibnamehash
	fullhash
	"namelist""msform""mslang"fullhash
	pageref
	sortinit
	sortinithash
	clonesourcekey
	urlraw

	Fields for Use in Citation Labels
	labelalpha
	extraalpha
	labelname
	extraname
	labelnumber
	labelprefix
	labeltitle
	extratitle
	extratitleyear
	labelyear
	labelendyear
	labelmonth
	labelendmonth
	labelday
	labelendday
	extradate
	extradatescope

	Date Component Fields
	hour
	minute
	second
	timezone
	day
	month
	year
	yeardivision
	season
	endhour
	endminute
	endsecond
	endtimezone
	endday
	endmonth
	endyear
	endyeardivision
	endseason
	orighour
	origminute
	origsecond
	origtimezone
	origday
	origmonth
	origyear
	origyeardivision
	origseason
	origendhour
	origendminute
	origendsecond
	origendtimezone
	origendday
	origendmonth
	origendyear
	origendyeardivision
	origendseason
	eventhour
	eventminute
	eventsecond
	eventtimezone
	eventday
	eventmonth
	eventyear
	eventyeardivision
	eventseason
	eventendhour
	eventendminute
	eventendsecond
	eventendtimezone
	eventendday
	eventendmonth
	eventendyear
	eventendyeardivision
	eventendseason
	urlhour
	urlminute
	urlsecond
	timezone
	urlday
	urlmonth
	urlyear
	urlyeardivision
	urlseason
	urlendhour
	urlendminute
	urlendsecond
	urlendtimezone
	urlendday
	urlendmonth
	urlendyear
	urlendyeardivision
	urlendseason

	Citation Styles
	Citation Style Files
	\RequireCitationStyle
	\InitializeCitationStyle
	\OnManualCitation
	\DeclareCiteCommand
	\DeclareMultiCiteCommand
	\DeclareAutoCiteCommand
	\DeclareCitePunctuationPosition

	Special Fields
	prenote
	postnote
	multiprenote
	multipostnote
	volcitevolume
	volcitepages
	postpunct

	Data Interface
	Data Commands
	\DeprecateField
	\DeprecateList
	\DeprecateName
	\DeprecateFieldWithReplacement
	\DeprecateListWithReplacement
	\DeprecateNameWithReplacement
	\printfield
	\printlist
	\printnames
	\printtext
	\printfile
	\printdate
	\printdateextra
	\printlabeldate
	\printlabeldateextra
	\print"datetype"date
	\printtime
	\print"datetype"time
	\indexfield
	\indexlist
	\indexnames
	\entrydata
	\entryset
	\DeclareFieldInputHandler
	\DeclareListInputHandler
	\DeclareNameInputHandler

	Formatting Directives
	\DeclareFieldFormat
	\DeclareListFormat
	\DeclareNameFormat
	\DeclareListWrapperFormat
	\DeclareNameWrapperFormat
	\DeclareIndexFieldFormat
	\DeclareIndexListFormat
	\DeclareIndexNameFormat
	\DeclareFieldAlias
	\DeclareListAlias
	\DeclareNameAlias
	\DeclareListWrapperAlias
	\DeclareNameWrapperAlias
	\DeclareIndexFieldAlias
	\DeclareIndexListAlias
	\DeclareIndexNameAlias
	\DeprecateFieldFormatWithReplacement
	\DeprecateListFormatWithReplacement
	\DeprecateNameFormatWithReplacement
	\DeprecateListWrapperFormatWithReplacement
	\DeprecateNameWrapperFormatWithReplacement
	\DeprecateIndexFieldFormatWithReplacement
	\DeprecateIndexListFormatWithReplacement
	\DeprecateIndexNameFormatWithReplacement

	Customization
	Related Entries
	Datasource Sets
	\DeclareDatafieldSet
	\member

	Dynamic Modification of Data
	\DeclareSourcemap
	\maps
	\map
	\perdatasource
	\pertype
	\pernottype
	\step
	\DeclareStyleSourcemap
	\DeclareDriverSourcemap
	\regexp

	Data Model Specification
	\DeclareDatamodelConstant
	\DeclareDatamodelEntrytypes
	\DeclareDatamodelFields
	\DeclareDatamodelEntryfields
	\DeclareDatamodelMultiscriptEntryfields
	\DeclareDatamodelConstraints
	\constraint
	\constraintfieldsor
	\constraintfieldsxor
	\antecedent
	\consequent
	\constraintfield
	\ResetDatamodelEntrytypes
	\ResetDatamodelFields
	\ResetDatamodelEntryfields
	\ResetDatamodelMultiscriptEntryfields
	\ResetDatamodelConstraints

	Labels
	\DeclareLabelalphaTemplate
	\labelelement
	\field
	\literal
	\DeclareLabelalphaNameTemplate
	\namepart
	\DeclareNolabel
	\nolabel
	\DeclareNolabelwidthcount
	\nolabelwidthcount

	Sorting
	\DeclareSortingTemplate
	\sort
	\field
	\literal
	\citecount
	\citeorder
	\intciteorder
	\DeclareSortingNamekeyTemplate
	\visibility
	\keypart
	\literal
	\namepart
	\DeclareSortExclusion
	\DeclareSortInclusion
	\DeclarePresort
	\DeclareSortTranslit
	\translit

	Bibliography List Filters
	\DeclareBiblistFilter
	\filter
	\filteror

	Controlling Name Initials Generation
	\DeclareNoinit
	\noinit

	Fine Tuning Sorting
	\DeclareNosort
	\nosort

	Fine Tuning hashing and uniquename
	\DeclareNonamestring
	\nonamestring

	Special Fields
	\DeclareLabelname
	\field
	\DeclareLabeldate
	\DeclareExtradate
	\DeclareExtradateContext
	\DeclareLabeltitle
	\field

	Data Inheritance ('crossref')
	\DefaultInheritance
	\except
	\DeclareDataInheritance
	\inherit
	\noinherit
	\ResetDataInheritance

	Auxiliary Commands
	Data Commands
	\thefield
	\strfield
	\csfield
	\usefield
	\thelist
	\strlist
	\thefirstlistitem
	\strfirstlistitem
	\usefirstlistitem
	\thename
	\strname
	\savefield
	\savelist
	\savename
	\savefieldcs
	\savelistcs
	\savenamecs
	\restorefield
	\restorelist
	\restorename
	\clearfield
	\clearlist
	\clearname

	Stand-alone Tests
	\ifmsentryfield
	\if"datetype"julian
	\ifdatejulian
	\if"datetype"dateera
	\ifdateera
	\if"datetype"datecirca
	\ifdatecirca
	\if"datetype"dateuncertain
	\ifdateuncertain
	\ifenddateuncertain
	\if"datetype"dateunknown
	\ifdateunknown
	\ifenddateunknown
	\iflabeldateisdate
	\ifdatehasyearonlyprecision
	\ifdatehastime
	\ifdateshavedifferentprecision
	\ifdateyearsequal
	\ifdatesequal
	\ifdaterangesequal
	\ifcaselang
	\ifsortingnamekeytemplatename
	\ifuniquenametemplatename
	\iflabelalphanametemplatename
	\ifentryfieldundef
	\iffieldundef
	\iflistundef
	\ifnameundef
	\iffieldsequal
	\iflistsequal
	\ifnamesequal
	\iffieldequals
	\iflistequals
	\ifnameequals
	\iffieldequalcs
	\iflistequalcs
	\ifnameequalcs
	\iffieldequalstr
	\iffieldxref
	\iflistxref
	\ifnamexref
	\ifcurrentfield
	\ifcurrentlist
	\ifcurrentname
	\ifuseprefix
	\ifuseauthor
	\ifuseeditor
	\ifusetranslator
	\ifuse"name"
	\ifcrossrefsource
	\ifxrefsource
	\ifsingletitle
	\ifnocite
	\ifuniquetitle
	\ifuniquebaretitle
	\ifuniquework
	\ifuniqueprimaryauthor
	\ifandothers
	\ifmorenames
	\ifmoreitems
	\if"namepart"inits
	\ifterseinits
	\ifentrytype
	\ifkeyword
	\ifentrykeyword
	\ifcategory
	\ifentrycategory
	\ifciteseen
	\ifentryseen
	\ifentryinbib
	\iffirstcitekey
	\iflastcitekey
	\ifciteibid
	\ifciteidem
	\ifopcit
	\ifloccit
	\iffirstonpage
	\ifsamepage
	\ifinteger
	\hascomputableequivalent
	\ifiscomputable
	\getcomputableequivalent
	\ifnumeral
	\ifnumerals
	\ifpages
	\iffieldint
	\fieldhascomputableequivalent
	\iffieldiscomputable
	\iffieldnum
	\iffieldnums
	\iffieldpages
	\ifbibstring
	\ifbibxstring
	\iffieldbibstring
	\iffieldplusstringbibstring
	\ifdriver
	\ifcapital
	\ifcitation
	\ifvolcite
	\ifbibliography
	\ifnatbibmode
	\ifciteindex
	\ifbibindex
	\iffootnote
	citecounter
	maxcitecounter
	uniquename
	uniquelist
	\uniquepart
	\mslang
	parenlevel

	Tests with \ifboolexpr and \ifthenelse
	\ifboolexpr
	\ifthenelse

	Miscellaneous Commands
	\newbibmacro
	\renewbibmacro
	\providebibmacro
	\letbibmacro
	\usebibmacro
	\savecommand
	\restorecommand
	\savebibmacro
	\restorebibmacro
	\savefieldformat
	\restorefieldformat
	\savelistformat
	\restorelistformat
	\savenameformat
	\restorenameformat
	\savelistwrapperformat
	\restorelistwrapperformat
	\savenamewrapperformat
	\restorenamewrapperformat
	\ifbibmacroundef
	\iffieldformatundef
	\iflistformatundef
	\ifnameformatundef
	\iflistwrapperformatundef
	\ifnamewrapperformatundef
	\usedriver
	\bibhypertarget
	\bibhyperlink
	\bibhyperref
	\ifhyperref
	\docsvfield
	\forcsvfield
	\MakeCapital
	\MakeSentenceCase
	\mkpageprefix
	\mkpagetotal
	\mkcomprange
	\mknormrange
	\mkfirstpage
	\rangelen
	\DeclareNumChars
	\DeclareRangeChars
	\DeclareRangeCommands
	\DeclarePageCommands
	\NumCheckSetup
	\NumsCheckSetup
	\PagesCheckSetup
	\DeclareBabelToExplLanguageMapping
	\UndeclareBabelToExplLanguageMapping
	\DeclareCaseLangs
	\BibliographyWarning

	Punctuation
	Block and Unit Punctuation
	\newblock
	\newunit
	\finentry
	\setunit
	\printunit
	\setpunctfont
	\resetpunctfont

	Punctuation Tests
	\ifpunct
	\ifterm
	\ifpunctmark
	\ifprefchar

	Adding Punctuation
	\adddot
	\addcomma
	\addsemicolon
	\addcolon
	\addperiod
	\addexclam
	\addquestion
	\isdot
	\nopunct

	Adding Whitespace
	\unspace
	\addspace
	\addnbspace
	\addthinspace
	\addnbthinspace
	\addlowpenspace
	\addhighpenspace
	\addlpthinspace
	\addhpthinspace
	\addabbrvspace
	\addabthinspace
	\adddotspace
	\addslash

	Configuring Punctuation and Capitalization
	\DeclarePrefChars
	\DeclareAutoPunctuation
	\DeclareCapitalPunctuation
	\DeclarePunctuationPairs
	\DeclareQuotePunctuation
	\uspunctuation
	\stdpunctuation

	Correcting Punctuation Tracking
	\bibsentence
	\midsentence

	Localization Strings
	\bibstring
	\biblstring
	\bibsstring
	\bibncpstring
	\bibncplstring
	\bibncpsstring
	\bibcpstring
	\bibcplstring
	\bibcpsstring
	\bibucstring
	\bibuclstring
	\bibucsstring
	\biblcstring
	\biblclstring
	\biblcsstring
	\bibxstring
	\bibxlstring
	\bibxsstring
	\mainlang
	\textmainlang
	\texouterlang
	\DeclareBibstringSet
	\UndeclareBibstringSet
	\UndeclareBibstringSets
	\DeclareBibstringSetFormat
	\UneclareBibstringSetFormat

	Localization Modules
	Localization Commands
	\DeclareBibliographyStrings
	\InheritBibliographyStrings
	\DeclareBibliographyExtras
	\UndeclareBibliographyExtras
	\InheritBibliographyExtras
	\DeclareHyphenationExceptions
	\DeclareRedundantLanguages
	\DeclareLanguageMapping
	\DeclareLanguageMappingSuffix
	\NewBibliographyString

	Localization Keys
	Headings
	Roles, Expressed as Functions
	Concatenated Editor Roles, Expressed as Functions
	Concatenated Translator Roles, Expressed as Functions
	Roles, Expressed as Actions
	Concatenated Editor Roles, Expressed as Actions
	Concatenated Translator Roles, Expressed as Actions
	Roles, Expressed as Objects
	Supplementary Material
	Publication Details
	Publication State
	Pagination
	Types
	Miscellaneous
	Labels
	Citations
	Month Names
	Language Names
	Country Names
	Patents and Patent Requests
	Dates and Times

	Formatting Commands
	User-definable Commands and Hooks
	\bibsetup
	\bibfont
	\citesetup
	\newblockpunct
	\newunitpunct
	\finentrypunct
	\entrysetpunct
	\bibnamedelima
	\bibnamedelimb
	\bibnamedelimc
	\bibnamedelimd
	\bibnamedelimi
	\bibinitperiod
	\bibinitdelim
	\bibinithyphendelim
	\bibindexnamedelima
	\bibindexnamedelimb
	\bibindexnamedelimc
	\bibindexnamedelimd
	\bibindexnamedelimi
	\bibindexinitperiod
	\bibindexinitdelim
	\bibindexinithyphendelim
	\revsdnamepunct
	\bibnamedash
	\labelnamepunct
	\subtitlepunct
	\intitlepunct
	\bibpagespunct
	\bibpagerefpunct
	\bibeidpunct
	\multinamedelim
	\finalnamedelim
	\revsdnamedelim
	\andothersdelim
	\multilistdelim
	\finallistdelim
	\andmoredelim
	\multicitedelim
	\multiciterangedelim
	\multicitesubentrydelim
	\multicitesubentryrangedelim
	\supercitedelim
	\superciterangedelim
	\supercitesubentrydelim
	\supercitesubentryrangedelim
	\compcitedelim
	\textcitedelim
	\nametitledelim
	\nameyeardelim
	\namelabeldelim
	\nonameyeardelim
	\authortypedelim
	\editortypedelim
	\translatortypedelim
	\labelalphaothers
	\sortalphaothers
	\volcitedelim
	\prenotedelim
	\postnotedelim
	\extpostnotedelim
	\multiprenotedelim
	\multipostnotedelim
	\mkbibname"namepart"
	\mkbibcompletename"formatorder"
	\mkbibcompletename
	\datecircadelim
	\dateeradelim
	\dateuncertainprint
	\enddateuncertainprint
	\datecircaprint
	\enddatecircaprint
	\datecircaprintiso
	\enddatecircaprintiso
	\dateeraprint
	\dateeraprintpre
	\relatedpunct
	\relateddelim
	\relateddelim"relatedtype"
	\begrelateddelim
	\begrelateddelim"relatedtype"

	Language-specific Commands
	\bibrangedash
	\bibrangessep
	\bibdatesep
	\bibdaterangesep
	\mkbibdatelong
	\mkbibdateshort
	\mkbibtimezone
	\bibdateuncertain
	\bibdateeraprefix
	\bibdateeraendprefix
	\bibtimesep
	\bibutctimezone
	\bibtimezonesep
	\bibtzminsep
	\bibdatetimesep
	\finalandcomma
	\finalandsemicolon
	\mkbibordinal
	\mkbibmascord
	\mkbibfemord
	\mkbibneutord
	\mkbibordedition
	\mkbibordseries

	User-definable Lengths and Counters
	\bibhang
	\biblabelsep
	\bibitemsep
	\bibnamesep
	\bibinitsep
	\bibparsep
	abbrvpenalty
	highnamepenalty
	lownamepenalty
	biburlbigbreakpenalty
	biburlbreakpenalty
	biburlnumpenalty
	biburlucpenalty
	biburllcpenalty
	\biburlbigskip
	\biburlnumskip
	\biburlucskip
	\biburllcskip

	Auxiliary Commands and Hooks
	\mkbibemph
	\mkbibitalic
	\mkbibbold
	\mkbibquote
	\mkbibparens
	\mkbibbrackets
	\bibopenparen
	\bibopenbracket
	\mkbibfootnote
	\mkbibfootnotetext
	\mkbibendnote
	\mkbibendnotetext
	\bibfootnotewrapper
	\bibendnotewrapper
	\mkbibsuperscript
	\mkbibmonth
	\mkbibyeardivision
	\mkbibseason
	\mkyearzeros
	\mkmonthzeros
	\mkdayzeros
	\mktimezeros
	\forcezerosy
	\forcezerosmdt
	\stripzeros
	"labelfield"width
	labelnumberwidth
	labelalphawidth
	bibhyperref
	bibhyperlink
	bibhypertarget
	volcitepages
	volcitevolume
	date
	labeldate
	"datetype"date
	time
	labeltime
	"datetype"time

	Auxiliary Lengths, Counters, and Other Features
	\"labelfield"width
	\labelnumberwidth
	\labelalphawidth
	maxextraalpha
	maxextradate
	maxextraname
	maxextratitle
	maxextratitleyear
	refsection
	refsegment
	maxnames
	minnames
	maxitems
	minitems
	instcount
	citetotal
	citecount
	multicitetotal
	multicitecount
	listtotal
	listcount
	liststart
	liststop
	\currentlang
	\currentfield
	\currentlist
	\currentname
	\currentmsform
	\currentmslang
	\currentmsforms
	\currentmslangs
	\fieldmsforms
	\fieldmslangs

	General Purpose Hooks
	\AtBeginRefsection
	\AtNextRefsection
	\AtBeginBibliography
	\AtBeginShorthands
	\AtBeginBiblist
	\AtEveryBibitem
	\AtEveryLositem
	\AtEveryBiblistitem
	\AtNextBibliography
	\AtUsedriver
	\AtEveryCite
	\AtEveryCitekey
	\AtEveryMultiCite
	\AtNextCite
	\AtEachCitekey
	\AtNextCitekey
	\AtNextMultiCite
	\AtVolcite
	\AtDataInput
	\UseBibitemHook
	\UseUsedriverHook
	\UseEveryCiteHook
	\UseEveryCitekeyHook
	\UseEveryMultiCiteHook
	\UseNextCiteHook
	\UseNextCitekeyHook
	\UseNextMultiCiteHook
	\UseVolciteHook
	\DeferNextCitekeyHook
	\AtEveryEntrykey

	File hooks
	\blx@filehook@preload@"filename with extension"
	\blx@filehook@postload@"filename with extension"
	\blx@filehook@failure@"filename with extension"
	\blx@lbxfilehook@once@preload@"filename with extension"
	\blx@lbxfilehook@once@postload@"filename with extension"
	\blx@lbxfilehook@once@failure@"filename with extension"
	\blx@lbxfilehook@simple@preload@"filename with extension"
	\blx@lbxfilehook@simple@postload@"filename with extension"
	\blx@lbxfilehook@simple@failure@"filename with extension"

	Hints and Caveats
	Entry Sets
	Electronic Publishing Information
	External Abstracts and Annotations
	Name Disambiguation
	\DeclareUniquenameTemplate
	\namepart
	Individual Names ('uniquename')
	Lists of Names ('uniquelist')

	Trackers in Floats and TOC/LOT/LOF
	Mixing Programming Interfaces
	Using the Punctuation Tracker
	The Basics
	Common Mistakes
	Advanced Usage

	Custom Localization Modules
	Grouping
	Namespaces

	Appendix
	Default Driver Source Mappings
	'bibtex'

	Default Inheritance Setup
	Default Sorting Templates
	Alphabetic 1
	Alphabetic 2
	Chronological

	biblatexml
	Header
	Body
	Key aliases
	Names
	Lists
	Ranges
	Dates
	Related Entries

	Option Scope
	Default BCP47 to babel/polyglossia language identifiers
	Revision History
	4.0 (2022-)
	3.19 (2022)
	3.19 (2023-03-05)

