Partial Emulation of tree-dvips.sty in PSTricks (pst-node
module)
Avery D Andrews
Jan 2006

The PSTricks package pst-node is far more powerful than Emma Pease’s tree-
dvips, but the latter strikes me as being frequently more convenient for tasks
that arise in linguistics. So this is a partial emulation of tree-dvips built on the
pst-node module of PSTricks. Most of the original tree-dvips commands work
unaltered (\(a)nodecurve being the most important exception), although
some have been extended to take advantage of the facilities of PSTricks.

So in this emulation, some tree-dvips facilities are extended to support ad-
ditional possibilities afforded by pst-node (and its parent package PSTricks),
while others will require (modest) changes in the source text to run. And
there are a few completely new facilities which seem to me to be useful and
in the spirit of tree-dvips, and easy to provide with pst-node available as the
basis.

One of the advantages of pst-node is that many .dvi viewers understand
its Postscript specials, so that lines will tend to be drawn. However not
always quite correctly: in Yap, for example (the Postscript viewer that comes
with MiKTeX), lines aren’t drawn when they cross over nodes, resulting in
wrong-looking displays of arrows leading into f-structures, for example. And
some of the positioning commands don’t work either. So if things look wrong,
check the postscript output before attempting serious debugging of your line-
drawing code.

It might also be worth mentioning that the PSTricks error-messages aren’t
always very illuminating, and the tree-dvips emulation layer does nothing to
improve this situation.

The treatment is divided into basics, which can be used without serious
knowledge of PSTricks, and advanced. It assumes previous knowledge of
tree-dvips.

1 Basic Commands

1.1 \node(point)

The \node command looks just like it does in tree-dvips:



(1) \node{label}{stuff}

stuff can be anything, even a regular PSTricks node.
\nodepoint is slightly extended with an option for the final argument to
be an angle, in parentheses:

(2) \nodepoint{label}[horizontal displacement] [vertical displacement]
\nodepoint{label} [displacement] (angle}

where the displacements are dimensions, and the angle is a number, 0 by
default, so sole displacement is always horizontal to the right.

1.2 \treelinewidth

This is a dimension, setting the default width of the lines produced by the
node connection commands. Its default is .4pt, rather thinner than default
PSTricks lines. So if we want the thicken up the node connection lines a bit,
this will do the trick:

(3) \treelinewidth=.6pt

The linewidth graphics parameter in individual line-drawing commands
overrides this.

1.3 \(a)nodeconnect

\nodeconnect takes the same arguments as in tree-dvips, with a final optional
[ ] argument taking PSTricks graphics parameters:

(4) \nodeconnect [from loc]{from node}[to loc]{to nodel}[gr. params]

The locations are the usual edges and corners, t, tr, r, br, b, bl, 1, and t1,
with the obvious interpretations.
So here’s an example:

Some fairl
(5) Y

silly stuff explained

which is produced by this input:

(6) \node{a}{\begin{tabular}{c}Some fairly\\silly stuff\end{tabular}}\hskip 3e
\node{b}{explained}
\nodeconnect[r]a[l]b[linewidth=1pt, nodesepB=.5ex]



The final (new) [ ] argument allows many further properties of the line to
be set; for example we get this:

Some fairl
(7) y

silly stuff > SXplained

from this:

(8) \node{a}{\begin{tabular}{c}Some fairly\\silly stuff\end{tabular}}\hskip 3e
\node{b}{explained}
\nodeconnect[r]a[l]lb[linewidth=1pt, nodesepB=.5ex, arrows=->>]

For the full assortment of graphics parameters, see the PSTricks documen-
tation, but here are some that strike me as useful in the present context:

(9) a. nodesep=Xdim, nodesepA=Xdim, nodesepB=Xdim: the distance be-
tween the edge of the node and the endpoints of the connection line;
nodesep applies to beginning and the end, nodesepA only to the
beginning, and nodesepB only to the end.

b. arrows=ARR: the style of arrow head, stated iconically (value of -
gives no arrowhead)

c. linewidth=Xdim
d. dashed: (no value)

e. dash=Xdim Ydim: Xdim is the length of the blank portion, Ydim of
the dashes

f. dotted: (no value)

\anodeconnect takes all the same arguments as \nodeconnect, but draws
an arrowhead at the end of the connection. So from this:

(10) \node{a}{\begin{tabular}{c}Some fairly\\silly stuff\end{tabular}}\hskip 3e
\node{b}{explained}
\anodeconnect [r]a[l]lb[nodesepB=.5ex]

We get this:

(11) Some fairly
silly stuff

explained

You can or course specify an arrows parameter with anodeconnect, but if
you do, plain old nodeconnect would do the job as well.



1.4 \arrow(width|length)

These aren’t implemented, since the PSTricks scheme is so different. Use:
(12) \psset{arrowsize=Xdim Y, arrowlength=Z. arrowinset=W}

pst-tree-dvips-emu.sty sets defaults which look decent to me.

1.5 \(a)nodecurve

Not a full implementation, because the way in which PSTricks handles cur-
vature of links between nodes is quite different from the way in which tree-
dvips does (and, I'd say, is better). tree-dvips requires a final argument which
specifies the curvature in terms of a dimension, with no sensible default,
while PSTricks uses a number that does have a sensible default. The current
\anodecurve command simply doesn’t read this final argument, so it will be
dumped into the text, so that an the input:

(13) \node{a}{the dog}\hskip 5Sem\node{b}{barked}
\nodecurve [tr]a[tl]b{2ex}

produces this wrong result
N
(14) the dog barked 2ex

What we have instead to specify curvature is an optional argument in paren-
theses, containing one or two numbers, the bigger the number, the bigger the
‘pull” of the curve away from its beginning or final endpoint. So to get this:

(15) the dog barked
we write this:

(16) \node{a}{the dog}\hskip 5em\node{b}{barked}
\nodecurve[tr]alt1l]b(1.3)

And this:

(17) \node{a}{the dog}\hskip 5Sem\node{b}{barked}
\nodecurve[tr]al[tl]b(2, .4)



yields this:

(18) the dog barked

And finally we get all the usual graphics parameterss in square brackets at
the end. Of these, there are two that are specifically important for curves,
angleA and angleB. These specify the angle at which the line goes from its
source and two its target node. If nothing is specified, this is determined
by the position just as in tree-dvips. So we can ‘flatten’ the curve above by
writing for example:

—
(19) the dog barked

An angle of 0 degrees points to the right edge of the page.

1.6 \(a)barnodeconnect

As in tree-dvips.sty, except with final graphics parameters. So we get this:

(20) connect some words with a barnodeconnect command

from this:

(21) \node{a}{connect} some words with a
\node{b}{\tt barnodeconnect} command
\barnodeconnect {a}{b}

A useful set of options is offset (A|B), which shifts the connection points to
the left or right, so that:

(22) \node{a}{connect} some words with the
\node{b}{barnodeconnect} command
\barnodeconnect [2ex] {a}{b} [offsetB=3em]

produces:

(23) connect some words with the b‘arnodeconnect command

And if we want an arrow at the end, we can use \abarnodeconnect,
which takes all the same options.




1.7 \nodetriangle

\nodetriangle{a}{b}[gr. params] draws a triangle with apex at bottom
of a, and base the top side of b (for ‘triangles of laziness’) in syntax trees).

1.8 \node{circlel|oval|box}

Circle and oval require dimensions to be specified, but since I have hopes of
eventually overcoming this limitations, the specifications are in parentheses
even though they’re obligatory. For the circle there is one dimension, the
radius, for the oval, two: (height,width). Here’s some sample input:

(24) \makespace{2em}\node{a}{A}
\nodecircle{a}(lem) [linewidth=1pt, linestyle=dotted]\\[4ex]
\makespace{2em}\node{a}{A}
\nodeoval{a}(2em, 1lem)\\[4ex]

These commands differ from the PSTricks ovalnode, etc, in that they don’t
create nodes (ovalnodes containing text are bigger than a plain node con-
taining the same text), but just draw lines around a pre-existing node.

The \nodebox{node} box works as in tree-dvips, drawing the box at a
distance of \nodemargin around its content. Put as usual, there’s an optional
square-bracketted graphics parameter argument, which can be used to specify
the corner-rounding framearc parameter:

(25) a.

b. \node{a}{Some Stuff$\/$}
\nodebox{a} [framearc=. 3]

2 More advanced

These commands depend on a bit more of a knowledge of PSTricks than the
previous ones.

2.1 \putpoint, \putstuff

\putpoint one puts a PSTricks point node at a position relative to a tree-
dvips node center or corner. The usage is:



(26) \putpoint{new node name}{distance}(angle) [corner]{old node name}

Where distance can be either a single dimension (distance), or a pair of
dimensions {horizontal, verticall}, in which case the angle is ignored.
For examples, see the file treetest. txp, where it is used in conjunction with
\psccurve to put loops around contiguous sets of phrase-structure nodes.

\putstuff takes the same arguments, except that the first one is any
regular text or I{TEX code, rather than a label for a point node.

2.2 <command>(options) arguments to \nodeconnect

In addition to the regular arguments, \nodeconnect can take an initial ar-
gument in angle-brackets, to specify the actual node connection command to
be used, followed by graphics parameters in parentheses. This makes it easy
to define variants of the node connection commands, such as \coilconnect
below:

(27) a. \def\coilconnect{\nodeconnect<\nccoil>(coilwidth=1ex,coilarmA=1lex,
coilarmB=2ex, arrows=->)}
\node{a}{source}\hskip 5em\node{b}{target}
\coilconnect[r]a[l]lb

b. source~swrwmmr—~target

Only \pc. .. commands will work here, their \nc. .. commands will produce
enigmatic errors, such as ! Argument of \nodeloc has an extra }.

2.3 \nodeloc

This command delivers locations of nodes, taking the corner/edge as the first,
argument, the node name as the second. These locations can only be used
when \SpecialCoor is active, and must be enclosed in parentheses to work.
For examples, look at some of the definitions in pst-tree-dvips-emu.sty.



