
Linguistics Trees Preprocessor

Avery Andrews

v. 3.0 (pst-nodes based)
March, 2006

Consider the tree shown in (1) drawn from Newmeyer (1986) following
GKPS:

(1) S

NP

that book

S/NP

NP

I

VP/NP

V

want

VP/NP

to VP/NP

V

ask

NP

Mary

VP/NP

to VP/NP

V

tell

NP

Tom

VP/NP

to VP/NP

V

read

NP/NP

e

This would require some drama to do by hand, but the LingTrees package
provided here makes it reasonably easy.

The package consists of a preprocessor that converts an indented list tree
format into LATEX input (plain TEX doesn’t seem to work), and some macro
files which lay out the trees and draw the lines. There are currently two
possibilities for the line-drawing, one a partial emulation and extension of
Emma Pease’s tree-dvips based on the powerful graphics package PSTricks
(the default), and the the other the original tree-dvips, in case there is a
problem with using PSTricks. Some of the more advanced features won’t
work with tree-dvips; these are noted as they come up below.

1

This package is probably most suited for irregularly-branching trees with
wide node-labels, as found in LFG or HPSG. Some other packages worth
looking at are pst-jtree (John Frampton), qtree (Jeffrey Siskind and Alexis
Dimitriadis), xytree (Koaunghi Un), and for unusual situtations, the pst-

tree module of PSTricks (which is oriented towards tree-like structures in
mathematics, rather than linguistics, and can do wierd things such as change
the direction of the branching in the middle of the tree).

1 Setup

The current version of the preprocessor is a Python script trees.py.1 For
Windows (98 thru XP), there is a free-standing executable with installer that
doesn’t require Python to be installed that can be downloaded from http://

arts.anu.edu.au/linguistics/People/AveryAndrews/Software/latex.
Most Linux distros and later versions of MacOS will have an adequate version
of Python included (the preprocessor works for at least Python 1.5.2 thru
Python 2.4.2). Otherwise, Python will have to be installed. Instructions for
installing and running trees.py under various OS’s can be found in the file
00_readme.txt.

At the above URL there are also links to the ‘TreeRunner’ GUI for run-
ning the preprocessor and other LATEX components, which I find to be a
useful alternative to setting up a make file for small projects.

The macro files are lingtrees.sty, pst-tree-dvips-emu.sty and trees-without-

pstricks.sty; they will have to be put whereever you put custom TEX/LATEX
files (c:\localtexmf\tex\latex for MikTeX). You’ll also need the PSTricks
package (including the pst-nodes module), and tree-dvips if you’re planning to
use that, both available on CTAN and included in many TEX/LATEX distribu-
tions. If you have to install either of these yourself, note that they include files
with the extension .pro defining special commands for PostScript; these must
be put somewhere where the dvips program can see them (localtexmf/dvips
in MiKTeX).

1The original was written in C; a slightly modified version of the source can be found
on Chris Manning’s (La)TeX web-page http://nlp.stanford.edu/∼manning/tex/.

2

2 Basic Usage

The document needs to load the lingtrees.sty style file, with a line like this
before the \begin{document}:

(2) \usepackage{lingtrees}

This will load up the PSTricks-based implementation, to use the old tree-

dvips-based one instead, use lingtrees-without-pstricks instead.
In the document, a tree begins with .[, ends with .], and has each node

represented by a line of text, where nesting is indicated by increasing depth
of embedding, so that sisters must be indented equally, i.e.:

(3) .[

S

NP

John

VP

V

bit

NP

Fido

.]

Blank lines are not allowed, and error messages will be triggered by various
kinds of discrepancies, although there are plenty of ways of getting the wrong
output without producing an error message, so the results need to be checked
carefully.

After running the preprocessor, you run LATEX. Many current .dvi view-
ers can then show the lines, at least in simple cases, but:

(4) a. some drawn lines get wrongly obliterated by other material

b. some things aren’t positioned correctly

So if you really want to be sure that you’re seeing how it’s going to be, you’ll
need to run dvips and look at it with a postscript viewer. The TreeRunner
GUI can launch these automatically.

The result of the above tree is:

3

(5) S

NP

John

VP

V

bit

NP

Fido

A complete file of this example can be found in examples/simple.txp.

3 Work Methods

The method used above is to have your source document be say paper.txp,
and run the preprocessor every time you change the text. I personally don’t
tend to do things this way, since I find it alarming to have anything over-
writing big files with the extension .tex. So an alternative method is to put
all of the trees in a file of their own, with a name ending in trees.tex, and
then use the preprocessor’s .> directive to send the output of the next tree
to the filename coming after the .> (on the same line). So that if for ex-
ample the preprocessor encounters the line .> trees/firsttree.tex, then
the following tree gets written to the file trees/firsttree.tex (and the
material in between the .>-line and the start of the tree, but nothing after
the tree). Then you use a \input trees/firsttree.tex statement in your
document to include the tree (I find it tidy to put them in a subfolder). This
works nicely if you’re the sort of person who rarely gets around to setting up
makefiles for writing projects (since you only have to run the preprocessor
when you change a tree, which is really not that often, in practice). The
technique is also useful for keeping trees synchronized between a paper and
a handout or presentation. To send more than the next tree to a specific
file, use .>> [filename]; output will then go to file name until either the
next .>> directive, or a .<< directive, which reverts the output to the default
output file.

These possibilites are illustrated in examples/outputfiles trees.txp,
which makes the trees for examples/outputfiles.tex. Using .> after .>>
will produce an error message. Summing up the preprocessor directives, they
are:

4

(6) .[: begin a tree
.] : end a tree
.- : continuation line (see below)
.> file : write next tree to file

.>> file : write following material until .<< to file

.<< : stop writing to file

4 Line-drawing Options

Line-drawing options are separated from the node label and each other by
a vertical bar (‘|’). There are currently five basic ones which will work with
either the PSTricks or tree-dvips as the line-drawer, the last three mutually
exclusive:2

(7) a. tag TAG, where TAG is any alphabetic string, sets TAG as the tag
of the node, for later use by custom line-drawing commands.

b. tri connects the node to its mother with a ‘triangle of laziness’.

c. none causes the line to the mother to be omitted

d. dash causes the line to the mother to be dashes

e. dot causes the line to the mother to be dotted its mother

Here’s a sample illustrating some of the options:

2And due to Chris Manning.

5

(8) a. .[

S

NP

the puppy|tri|tag a

VP

V|dot

barked|tag b

.]

\abarnodeconnect ab

b. S

NP

the puppy

VP

V

barked

Some more advanced possibilities will be illustrated later.

5 Node-Building Options

There are various options for controlling the spacing and style of nodes.

5.1 Spacing

Sometimes the default spacing produces not-so-good results. For example the
vanilla input (b) below produces the too-wide-and-spread-out result (a):

(9) a. S

NP

the annoying child

VP

V

V

ran

Prt

away

PP

from the crazed puppy

6

b. .[

S

NP

the annoying child|tri

VP

V

V

ran

Prt

away

PP

from the crazed puppy|tri

.]

We can make it look better by increasing the vertical mother-daughter spac-
ing by setting the \daughterskip dimension, and decreasing the horizontal
spacing between sisters with the \sisterskip dimension:

(10) a. S

NP

the annoying child

VP

V

V

ran

Prt

away

PP

from the crazed puppy

b. \daughterskip=3ex

\sisterskip=1em

.[

S

NP

the annoying child|tri

VP

.

.

.

.]

7

This is a bit better, but the triangles are still too flat, and there’s a bit too
much space between the subject NP node and the top V. These problems can
be addressed with the \daughtergap command, placed somewhere in a node
to set the vertical spacing to its daughters, and the \sistergap command,
placed somewhere in a node to set the spacing between it and its preceeding

daughter:

(11) a. S

NP

the annoying child

VP

V

V

ran

Prt

away

PP

from the crazed puppy

b. \daughterskip=3ex

\sisterskip=1em

.[

S

NP\daughtergap{4ex}

the annoying child|tri

VP\sistergap{0em}

V

V

ran

Prt

away

PP\daughtergap{5ex}

from the crazed puppy|tri

.]

5.2 Nodes without Labels

Sometimes we want at least some nonterminal nodes to lack labels. Such
trees look rather bad unless the lines all make constant angles, which can be
effected with the \treeslantratio{rise/run} command:

8

(12) a.

the dog

freaked out at
the cat

b. \treeslantratio{4/10}

.[

{}

{}

the

dog

{}\sistergap{-1em}

{}

freaked

out

{}

at

{}

the

cat

.]

This works by seizing control of the vertical spacing, so that \daughterskip
ceases to have any effect.

Some trees look also look better with the length of the lines kept mostly
uniform, which can be achieved by setting the \nodewidth dimension, which
causes all nodes to be treated as having the value of that dimension as their
width:

(13) a.

John
thinks

that
Suzie

wants
to

kill him

9

b. \nodewidth=6em

\treeslantratio{7/20}

\sisterskip=1em

.[

{}

John

{}

thinks

{}

that

{}

Suzie

{}

wants

{}

to

{}

kill

him

.]

To my eye, the final branch looks a bit too wide; we can fix this by using the
dtwidths preprocessor command to set a different width for the daughters of
some of the nodes near the bottom. It takes a bit of fiddling to make things
look nice:

(14) a.

John
thinks

that
Suzie

wants
to

kill him

b. \nodewidth=5em

\treeslantratio{7/20}

.[

{}

John

{}

10

thinks

{}

that

{}

Suzie

{}|dtwidths 4.5em

wants

{}|dtwidths 3.5em

to

{}|dtwidths 3em

kill

him

.]

Fixed width nodes can easily result in labels overlapping each other; one way
to deal with this is to emulate the pst-jtree \longer command by putting in
a right-branch with a nolabel node and no line:

(15) a.

the
cheese

that
Fred

ate t

is rotten

11

b. \hspace{4em}

\nodewidth=5em

\treeslantratio{7/20}

.[

{}

{}

{}

the

{}

cheese

{}

that

{}

Fred

{}

ate

t

{}|none

{}

is

rotten

.]

5.3 Stacking

For writing LFG papers, there is a facility for ‘stacking’ labels and annota-
tions, by separating the things to be stacked with the ‘/’ symbol. So for an
annotated tree we can write:

(16) .[

S

(\uparrow SUBJ)=\downarrow/NP

$\uparrow=\downarrow$/N

(\uparrow PRED)=‘Fido’/Fido

$\uparrow=\downarrow$/VP

$\uparrow=\downarrow$/V

(\uparrow TENSE)=PAST/(\uparrow PRED)=‘Bark(SUBJ)’/barked

.]

12

which produces:

(17) S

(↑ SUBJ)=↓
NP

↑=↓
N

(↑ PRED)=‘Fido’
Fido

↑=↓
VP

↑=↓
V

(↑ TENSE)=PAST
(↑ PRED)=‘Bark(SUBJ)’

barked

To include / in the text, enclose it in braces.

5.4 Node Styles

The default is that the bottom line of a terminal nodes is set in italics, other
things in roman. If you want the terminals to be, say slanted rather than
italics, you can do this by redefining \tstyle as follows: \def\tstyle{\sl}.
Similarly using \rm if you want them to be set in roman. The nonterminal
style can be changed with the same kind of redefinition of \ntstyle.

A more profound effect on nodes (which didn’t used to work right) can
be achieved by redefining the \nodeannotation#1{} command, which is
wrapped around each line in a stack (the same for terminal and nonterminal).
The default definition is:

(18) \gdef\nodeannotation#1{#1}

But if you want to set each line of each node in math mode, without having to
write in lots of $’s, you can do it by redefining \nodeannotation as follows:

(19) \def\nodeannotation#1{$#1$}

For a more likely use, which can involve a new preprocessor feature as
well, suppose you want to set trees whose nodes are avms, as produced by
Christopher Manning’s avm.sty file. If all of the nodes are going to be avms,
we can spare ourselves the annoyance of typing out lots of \begin{avm} and
\end{avm} commands by redefining \nodeannotation:

(20) \def\nodeannotation#1{\begin{avm}#1\end{avm}}

13

The one-node-per line convention of trees.py is irksome for something like
a complex avm, so there’s a new ‘continuation line’ directive; if a line in a
tree begins with .-, then it’s interpreted as a continuation of the one before
it:

So using all this, example (12) from page 121 of Wechsler and Zlatić
(2003) The Many Faces of Agreement (CSLI Publications) can be set like
this:

(21) a. \def\nodeannotation#1{\begin{avm}#1\end{avm}}

\def\tstyle{\rm}

.[

NP\[HEAD & \@1\]\daughtergap{4ex}

\@2AP

ovih/these.GEN.PL

N$’$\[HEAD & \@1\]

N\[HEAD & \@1\\

.- SPR & \<\@2\>\\

.- COMPS& \<\@3\>\]

pet/five

\@3NP\daughtergap{3ex}

studenata/students.GEN.PL|tri

.]

b. NP
[

HEAD 1

]

2AP

ovih
these.GEN.PL

N′

[

HEAD 1

]

N













HEAD 1

SPR
〈

2

〉

COMPS
〈

3

〉













pet

five

3NP

studenata
students.GEN.PL

Note that the stacking facility proved useful for HPSG as well as LFG, and
that the fact that all nodes were set as avm’s doesn’t matter, since avm.sty

doesn’t do anything until it encounters one of its commands.

14

6 PSTricks-based techniques

The use of PSTricks enables a substantial assortment of further possibilities.
lingtrees.sty uses the pst-nodes module of PSTricks via a partial emulation
of tree-dvips, provided by pst-tree-dvips-emu.sty, which has its own included
documentation pst-tree-dvips-emu.doc.pdf. In combination with lingtrees, you
can combine techniques from the emulator (somewhat more convenient for
certain linguistics tasks) and PSTricks itself (much more powerful).

6.1 More Line-Drawing Options

The easiest is dotted, which gives PSTricks-style round dots instead of very
short dashes:

(22) a. .[

S

NP

the dog|tri|dotted

VP

V|dotted

barked

.]

b. S

NP

the dog

VP

V

barked

Dots seem to be almost invisible with the usual lingtrees line thickness, so
they’re set a bit thicker with the dimension treedotwidth, which is set to
0.6pt in lingtrees.sty.

Any \psset-able property of the connecting line can be set with the style
option: what comes after ‘style’ must be an OK argument of \psset. For
example:

15

(23) a. S

NP

the dog

VP

V

barked

b. .[

S

NP

the dog

VP\daughtergap{4ex}

V|dash|style dash=3pt 3pt, arrows=->

barked

.]

The after option is followed by any well-formed string of LATEX text,
which appears in the output after the node connection command. This is
especially useful for using the PSTricks label-positioning commands, which
appear after the command drawing the lines they are to attach labels to.
Here’s an example where we use these to attach Greek letter labels to some
of the lines:

(24) a. S

NP

σ

the dog

VP

π

V
α

barked
λ

b. .[

S

NP|after \lput{U}(.2){\rput(-1.2em,.3ex){σ}}

the dog|tri

VP|after \lput{U}(.2){\rput(1.2em,.3ex){π}}

V|after \lput{U}{\rput(.8em,0ex){α}}

barked|after \lput{U}(.3){\rput(.8em,0ex){λ}}

.]

16

It is a bit tricky to get the positions right, but I think that it’s easier to
position them relative to the lines than to the nodes.

My .dvi viewer (Yap) doesn’t get the positions of things placed by lput

right, so check the results in postscript if things look wrong.
The none and after options together can be used to entirely replace

the line-drawing command that the preprocessor normally produces, but a
slightly more convenient option is connect, whose following material is put
in place of the usual line-drawing command (\nodeconnect), in front of
the mother and daughter arguments. So with a connect option such as
\nodeconnect<\pccoil>, (see pst-tree-dvips-emu.doc.pdf), you could replace
a normal line with a coil.

A final preprocessor option is &|width&,followed by a dimension, which
sets the width of a particular node, rather than its daughters.

6.2 Together with PSTricks

A major reason for using PSTricks as the basis is to be able to combine the
powerful facilities of the latter with the convenience of the tree-formatter and
the tree-dvips commands it uses. For example, one can produce something
like this, where PSTricks allows loops to be drawn around sets of nodes, and
labels to be attached to arrows:

17

(25)

S

NP

Det

the

N

dog

VP

V

chased

NP

Det

the

N

cat



































SUBJ









PRED ‘Dog’

NUM SG

CASE NOM









TENSE PAST

OBJ









PRED ‘Cat’

NUM SG

CASE ACC











































φ

φ

φ

This was produced as follow. First, the tree, with labels placed on many of
the nodes (also some preliminary stuff to help the diagram fit into the space
on the page):

(26) \makebox[0ex]{}\\[5ex]

\hspace*{-1.8em}

\sisterskip=1.3em

.[

S|tag s

NP|tag su

Det|tag sud

the

N|tag sun

dog

VP|tag vp

V|tag v

chased

NP\sistergap{2.5em}|tag ob

Det|tag obd

the

N|tag obn

cat

.]

18

And then some commands to place points at positions relative to the corners
of the nodes, and run closed curves through those points. These begin with
the PSTricks SpecialCoor command, which allows a wide range of ‘Special
Coordinate’ specifications to be used, such as, here, the name of a node in
parentheses as the specification of a point location:

(27) {\SpecialCoor

% loop around subject

\putpoint{sutop}{1ex}(90)[t]{su}

\putpoint{sunrt}{1ex}(-40)[r]{sun}

\putpoint{sudlt}{1ex}(220)[l]{sud}

\psccurve(sutop)(sunrt)(sudlt)

% loop around S, VP V

\putpoint{stop}{2ex}(120)[t]{s}

\putpoint{vl}{1ex}(220)[l]{v}

\putpoint{vpr}{1ex}(-40)[br]{vp}

\putpoint{vprb}{1ex}(40)[tr]{vp}

\psccurve(stop)(vl)(vpr)(vprb)

% loop around object

\putpoint{obtop}{1ex}(90)[t]{ob}

\putpoint{obnrt}{1ex}(-40)[r]{obn}

\putpoint{obdlt}{1ex}(220)[l]{obd}

\psccurve(obtop)(obnrt)(obdlt)

The difference between \putpoint and the PSTricks command \uput is that
\putpoint defines the ‘corners’ (tl, tr, br, bl) and ‘edges’ (t, r, b, l of the
point, which are all the same location, but allows the pst-tree-dvips-emu.sty
commands \(a)nodeconnect and \(a)nodecurve to work, and sets the de-
fault direction of incoming arrows for the latter in accord with the standard
conventions of tree-dvips.

So next we produce the f-structure, done with Chris Manning’s avm.sty

package. In avm.sty, the \!{lab}{stuff} command is an abbreviation inside
avm’s for \node{lab}{stuff}, and it works when the nodes are implemented
by pst-tree-dvips-emu.sty as well as original tree-dvips.sty:

(28) \hskip 2em

\begin{avm}

\!{f}{\[SUBJ & \!{subj}{\[PRED & ‘Dog’\\

NUM & SG\\

19

CASE & NOM\]}\\

TENSE & PAST\\

OBJ & \!{obj}{\[PRED & ‘Cat’\\

NUM & SG\\

CASE & ACC\]} \]}

\end{avm}

And so all that remains is to draw the arrows from the loops to the f-
structures (representing the c-structure- f-structure correspondence). One
could use the the PSTricks \pccurve command for this, but \anodecurve

is more convenient, although sometimes we want to override the default an-
gles for the corners and the edges. After each connection comes a \mput*

command to label the arrow.

(29) % properties of phi arrows

\treelinewidth=1pt

\psset{linestyle=dotted}

% arrow to whole f-structure

\anodecurve[tr]{vprb}[l]f

\mput*{ϕ} %label for this

% arrow to the SUBJq

\anodecurve[t]{sutop}[tl]{subj}[angleA=60,angleB=145]

\mput*{ϕ}

\anodecurve[br]{obnrt}[bl]{obj}(.9)[angleA=-60]

\mput*{ϕ}

}

I wish I could say it was easy to produce diagrams like this with this method,
but that would be an untruth. However it is possible, and isn’t ridiculously
hard.

7 Availability

This package may be found at http://arts.anu.edu.au/linguistics/

people/AveryAndrews/Software/LaTeX. I plan to submit it to CTAN fairly
soon.

20

