The youngtab package*

Volker Borchers’
Stefan Gieseke
Universitat Bremen

1999/05/19

Abstract

This package provides two macros for typesetting Young-Tableaux with
TEX or ITEX. We use 2 macros, the first for empty boxes (\yng), and the
second for labelled boxes (\young). The syntax of the macros is simple to
avoid spelling-mistakes.

Contents
1 Introduction 1
2 Using the youngtab package 2
2.1 Empty boxes: \yng o oo 3
2.2 Labelled boxes: \young 4
2.2.1 Skew Young-Tableaux with \young 5
2.3 The youngtab package and TEX 5
24 Todo e 6
3 The Macros 6
Index 11

1 Introduction

The Young-Tableau-formalism is a strong algrebraic tool in group theory. Of
course we will deal here only with the problems of typesetting Young-Tableaux.
They are mathematical objects, so they usually occur in mathematical environ-

ments. On the surface Young-Tableaux consist of boxes like this: D — or option-

ally labelled (usually with letters): ¢/

There is already one INTEX-package for typesetting Young-Tableaux, the
young.sty by Jorg Knappen (based on young.tex by P. E. S. Wormer). It pro-
vides a Young-environment with a syntax similar to the tabular-environment.

An Example for the usage of Young:

*This file has version number v1.1;, dated 1999/05/19.
Temail: boercher@physik.uni-bremen.de

Options
vcentermath
noautoscale

stdtext

enableskew
New feature

1998,/05,05

vcentermath

\begin{Young}
a&&\cr
&\cr
\cr

\end{Young}

This way of implementing Young-Tableaux has one big advantage: It can deal
with an indefinite number of rows and columns (of course this is needed!). A second
argument for using a tabular-like environment might be it’s simple encoding.

Nevertheless we wanted a simpler user-interface, for the use of & and \cr is
usually a very good source of typing mistakes (e.g. you have to type three &’s to
get four boxes in one row). In addition the TEX-code for mathematical relations
with more than two or three Young-Tableaux becomes unreadable.

The cure would be of course a macro with a compact, intuitive syntax. But
there is the above mentioned problem: TgEX is not made to handle an indefinite
number of arguments. For Young-Tableaux composed of empty boxes we would
like to have a macro with one argument for each row (counting the number of boxes
per row) for example this way: \thisdoesnotwork{5}{3}{1}.... For Young-
Tableaux composed of labelled boxes the problem is even worse since we have one
letter per box!

So we had to hide the fact of having an indefinite number of arguments from
TEX. The macros in this package have — as TEX sees it — only one argument;
this is parsed for the necessary information by the macros themselves. Whereas,
for the user, the number of rows and number of boxes per row are plain to see.

2 Using the youngtab package

Invoke the youngtab package by requesting it in the preamble:!

\usepackagel[...]{youngtab}

The package has four options (increasing). The first option, vcentermath,

turns on the vertical centering of the tableaux in math mode. The second option,
noautoscale, turns off the automatic scaling of the boxes according to the actual
font. The third one, stdtext, switches to text mode in the inside of labelled boxes.
Choosing one of this options does not mean that you have, for example, to stick
to noautoscale till the end of your days. You may change this settings as often
as you like.
The fourth option, enableskew enables typesetting of skew Young-Tableaux
(tableaux that are not left-aligned). This option is different from the other in
the way that there is no command to enable this feature after the package is
loaded.

Young-Tableaux usually have more than one row, so the vertical alignment
is a problem. You can turn on vertical centering (only) in mathmode either by
choosing the option vcentermath with \usepackage or later with the command
\Yvcentermath(num). Say \Yvcentermathl if you want vertical centering and
\YvcentermathO to switch it off. Without vcentering the tableaux are standing
on the baseline.

LOf course this does not work if you use the youngtab-package with TEX instead of IATEX.
For compatibility-questions see section 2.3

\Yautoscale

\Yboxdim

\Ylinethick

\Yinterspace

\yng

math or text?

sizing

Since the boxes are quadratic (if you do not want want this, complain!), there
is only one dimension to determine: the length and height of the boxes. Usually
the macros determine this for themselves,? but you can change this behavior by
calling the macro \Yautoscale(num). Call it with an argument of 1 if you want
autoscaling after this, or with the argument 0 if you want to adjust the box
dimensions yourself.

If you switch off autoscaling and want to change the box dimensions, you have
to call the macro \Yboxdim(dim) with a usual TgX—dimension. The argument
has to be appended to the macro: \Yboxdim13pt. This dimension is the total
height and width of the boxes — including the lines. (For small linethicknesses this
makes of course only a small difference.) Note that the use of \Yboxdim implies
noautoscale! So to switch from autoscale to noautoscale one call to \Yboxdim
is sufficient.

There is only one more parameter which determines the appearance of the
Young-Tableau: the lines’ thickness. This is set by \Ylinethick(dim). (The
default is 0.3pt).

You may add space between a tableau and surrounding stuff by invoking the
macro \Yinterspace(skip). The advantage of using a skip is that this helps TEX to
avoid Over- or Underful \hboxes. The default value is Oex plus 0.3ex. (Better
take ex or em for the tableaux are scaleable.)

2.1 Empty boxes: \yng

The most used variant of Young-Tableaux are those consisting of empty boxes.

For the tableau L1 you have to type \yng(2,1). If you want it to appear

smaller, change the fontsize: {\tiny\yng(2,1)} gives Hj; but remember, this
only works if autoscale is turned on (default). (If you are in noautoscale-mode,
restore autoscaling with \Yautoscalel.)

Some notes on the usage of \yng and \young in math or text mode: You can
generate Young-Tableaux in both modes, but differences arise from vertical center-
ing. This only works in math mode (if you have chosen it with \Yvcentermathl)
or usepackage option vcentermath.

The difference is to be seen here: E@ 0= EP@ ..., which has been generated
by

{\tiny\Yvcentermathl $\yng(1,1)\oplus\yng(1)=$
\yng(2,1)}\oplus \dots

Here the tableau in math are centered with respect to the axis of the formula
while the one in text mode isn’t. Note the dimensions of the tableau on the one
hand and the \oplus on the other: The dimensions of the Young-Tableaux are
determined by the actual text’s fontsize (while autoscaling!). Try to understand
what happens in the following example. — Do you understand the sizes of the
math symbols? (Compare to the example above and have look up the .log file.
Don’t let TEX fool you by messages about invalid \normalsize!)

2S0 that a Young-Tableau e.g. \young(ab) appears smaller in a footnote than in normal
text!

\young

{\tiny\begin{equation}
\Yvcentermathl
\yng(1,1)\oplus\yng(1)= \Yboxdim{12pt}
\yng(2,1) \normalsize\oplus\dots
\end{equation}}

Heo= lo... (1)

2.2 Labelled boxes: \young

While the sizing of the boxes and the behavior in math/text mode are exactly the
same as with \yng, we have of course a different syntax:

{\scriptsize\young(aa,b)} results in [b] . Each line of the tableau is repre-
sented by a row of single letters (exactly: “tokens”). The lines are separated by
commas.

As you see from the example above the letters a and b come out in math italics.
This does not depend on the Young-Tableau appearing in math or text surround.
The label within a tableau-box is math — no matter if the tableau is used in text or
math mode! But this is only the default setting. Use either the option stdtext to
the \usepackage command to switch to roman letters or use the macro \Ystdtext
with an argument of 1: \Ystdtextl. To switch to math again use \YstdtextO.

What to do if you don’t want to use single letters, but symbols or perhaps
some white boxes? There are no limits but it’s a bit complicated. The \young
algorithm for parsing his argument depends strongly on that every label of one
box,

1. consists of only one token. Assume first you had not said \Ystdtext1. To get
a single roman ‘a’ then you must not say \mbox{a}, because this makes four
tokens (1st is \mbox, 2nd is {, 3rd is a, 4th is }). The cure is simply making
one token out of \mbox{a} by saying \newcommand{\rmal}{\mbox{al}} and
everything is OK:> \young(\rma lright\bullet) = lall[r[ilg[h[t]e]
After \Ystdtextl it is an error to say \bullet, since the two math de-
limiters are single tokens. Do it as described above:
\newcommand{\ybullet}{\bullet}
and everything is OK: \young(\ybullet works) = le|wlo[r[k]s].

To use a symbol or special letter in both modes (\Ystdtext 0 or 1) put it
in a box (here with an extra tuning):
\renewcommand{\ybullet}{\raisel.5pt \hbox{\bullet}}

2. Some characters and macros are not allowed: commas (guess why) and
the other punctuation marks, spaces, the macro \space and also skips like
\, and \:.* If you want to have single empty boxes use (TEX primitive)
\hfil (For understanding this limitations see also \y@lastargtest and
\y@nelettertest in macro section).

3Note that the space after \rma belongs to the token itself.
4Write to us if you find more.

New feature
1998,/05,/05

enableskew

Compatibility

2.2.1 Skew Young-Tableaux with \young

As far as described above, the rows of a Young-Tableau are left-aligned. Since
some authors also assigned a meaning to “skew” tableaux, this package also sup-
ports such along with \young. If you want to typeset skew tableaux, you have
to enable this via the package option enableskew. The default behavior of this
package is to disable skew boxes in order to save TEX’s time, however, it’s save to
include this option even if you do not use it.

Here is an example: \young(abcd, :bc,::c): |a blc d‘
blc

o

As you see, the Option enableskew makes the colon a special character (only
inside the argument of \young). ® In fact all other than the leading colons in a
row will simply be ignored, while the first will move the row to the right.

fThisisa LIFTLE TEET of skew tableaux. 3

2.3 The youngtab package and TEX

Because we do not use PLAIN TEX, the compatibility of this package and TEX is not
sufficiently tested. However there are some changes necessary in youngtab.sty
(see file youngtab.tex, part of the distribution):

e The macros themselves only use two KTEX-commands, \vspace{({dim)}
and \hspace{(dim)}. One has to replace them with ‘\vskip (dim)’ resp.
“\hskip (dim) . (The braces also have to get removed) The IATEX-
counterparts may be better but no problems should arise from this replace-
ment (we found none).

e One has to remove all lines containing I#TEX 2¢-commands in the pream-
ble of the .sty file, e.g. comment out every line that contains the follow-
ing commands: \DeclareOption, \ProcessOptions, \NeedsTeXFormat and
\ProvidesPackage.

e Since TEX-input files must not contain a @, \catcode‘\@11\relax has
to be added to the begin of the .sty file to make @ a letter and
\catcode‘\@12\relax at the end right before the \endinput, to make it
other again afterwards.

e Skew: TEX knows nothing about style-options, we have to find a way to
enable skew Young-Tableaux. (enableskew is the only package option that
can not be accessed by a macro after loading the package since almost all
according actions will be done at loading time).

Therefore, we will check if a macro \enableskew is defined at loading time:
\expandafter\ifx\csname enableskew\endcsname\relax
\y@enable@skewfalse \else \y@enable@skewtrue\fi

(excerpt from youngtab.tex) Then this will enable printing of skew

tableaux: \def\enableskew{1} \input youngtab

51f you want a colon to appear as it is (do you??), you have to do the same trick as above
with an unpleasant extra: define a macro for the colon using the TEX-primitive \char like this:
\newcommand\mycolon\char58.

\Yautoscale
\ify@autoscale

\Yboxdim
\y@b0xdim
\y@boxdim

\Ylinethick
\y@linethick

\Yinterspace
\y@interspace

e The autoscaling doesn’t work as nice as with IXTEX since if you lower the
text’s fontsize (which determines the boxsize), you have to lower also the
math fontsize. Otherwise the letters in labelled boxes (math!) are too big
for the box.

2.4 To do

We have a wish list, things we think the package should be capable of:

e A vertical alignment, in the way that the topline of the Young-Tableaux and
the mathsymbols are on the same height (perhaps using \vtop?).

e The macros should take notice of math fontsize changes e.g. with \display-
style. (This puts a focus on the autoscale mechanism — see \y@setdim in
the macro section.)

If You have any problems, suggestions, critical remarks — or whatever according
this package write to Volker Borchers (email-adress see title).
LTI T T T I T T I T T I T T I T T I T T I T T T T I T I I T T I T T T T I T T I T T I T TI I ITTIITITITITITIT]

3 The Macros

1 (xpackage)

If autoscaling is active, the size of the boxes (\y@boxdim) is determined by the
package itselve. The default setting is to allow autoscale. \Yautoscale(num)
serves as the user interface.® We made an option to \usepackage out of that (see
below).

2 \newif\ify@autoscale \yQ@autoscaletrue \def\Yautoscale#1{\ifnum #1=0

3 \yQ@autoscalefalse\else\yQautoscaletrue\fi}

The parameters determining the size of the single boxes and the macro to set
them. \Yboxdim(dim) sets \y@boxdim (only used, when autoscaling is turned off)
and sets y@autoscale to false. \y@boxdim is the total size of the box (including
the delimiting lines) while \y@b@xdim (to be set in \y@setdim) is the height and
width of the inner of the box.

4 \newdimen\y@b@xdim

5 \newdimen\y@boxdim \y@boxdim=13pt

6 \def\Yboxdim#1{\y@autoscalefalse\y@boxdim=#1}

The line thickness and \Ylinethick(dim) as user interface to it.

7 \newdimen\y@linethick \y@linethick=.3pt
8 \def\Ylinethick#1{\y@linethick=#1}

To give the Young-Tableaux extra-space (before and after) \y@interspace can
be set to more than Opt by calling \Yinterspace. (See \yng and \young.) Note
that this is a skip and no dimemsion.

9 \newskip\y@interspace \y@interspace=0Oex plus 0.3ex
10 \def\Yinterspace#1{\y@interspace=#1}

61 know - it’s against the IATEX 2enaming conventions, but it is nicer. ..

\Yvcentermath
\ify@vcenter

\Ystdtext
\ify@stdtext

\ify@enable@skew

noautoscale
vcentermath
stdtext
enableskew

\y@evr

\y@emptybox

\y@abcbox
\y@mathabcbox

The switch to turn vertical centering in math on or off. The default is
\y@vcenterfalse. The second option to \usepackage.

11 \newif\ify@vcenter \y@vcenterfalse
12 \def\Yvcentermath#1{\ifnum #1=0 \y@vcenterfalse\else\y@vcentertrue\fi}

Normally the inside of the boxes (\young) is in math mode. This code allows to
switch to text mode.

13 \newif\ify@stdtext \y@stdtextfalse
14 \def\Ystdtext#1{\ifnum #1=0 \y@stdtextfalse\else\y@stdtexttrue\fi}

In contrast to the other this if may be set only via the package option enableskew.
15 \newif\ify@enable@skew \yQ@enable@skewfalse

Declaration and processing of the options for use with BTEX 2¢. (For TgX-users:
Comment the following 8 lines out).

16 \DeclareOption{noautoscale}{\y@autoscalefalse}

17 \DeclareOption{vcentermath}{\y@vcentertrue}

18 \DeclareOption{stdtext}{\y@vcentertrue}

19 \DeclareOption{enableskew}{\y@enable@skewtrue}

20 \DeclareOption*{\PackageWarning{youngtab}{%

21 Unknown option ‘\CurrentOption’ (Known:\MessageBreak

22 ‘vcentermath’, ‘noautoscale’, ‘stdtext’, ‘enableskew’.)}}

23 \ProcessOptions\relax

A single vertical line to build the boxes. The reason for the depht of the line
should be clear. (The values for the depth maybe something you want to tune)

24 \def\y@vr{\vrule height0.8\y@b@xdim width\y@linethick depth 0.2\y@b@xdim}

This macro does less than its name pretend: It only makes one vertical line followed
by a empty box (width: \y@boxdim — 2\y@linethick).
25 \def\yQemptybox{\y@vr\hbox to \y@b@xdim{\hfil}}

If enableskew is not choosen (the package options have been parsed now), a
\y@abcbox or a \y@mathabcbox is the simple analogue to \y@emptybox but it has
a text-font letter centered in it.

For \y@mathabcbox the inside is math. We rather want an easier access to math
italics and symbols than to normal text; so we usually use \y@mathabcbox instead
of \y@abcbox.

Skew Young-Tableaux can only be used with \young. Then a colon is used to
shift the row to the right — instead of “inserting a box without border” — so the
colon boxes must be ignored.

26 \ify@enable@skew

27 \def\yQabcbox#1{\if :#1\else

28 \y@vr\hbox to \yOb@xdim{\hfil#1\hfil}\fi}

29 \def\y@mathabcbox#1{\if :#1\else

30 \y@vr\hbox to \yOb@xdim{\hfil$#1$\hfil}\fi}

31 \else

32 \def\y@abcbox#1{\y@vr\hbox to \y@bOxdim{\hfil#1\hfil}}

33 \def\y@mathabcbox#1{\y@vr\hbox to \y@bOxdim{\hfil$#1$\hfil}}
34 \fi

\y@setdim

\y@counter

\y@lastargtest

\y@emptyboxes

\y@nelineemptyboxes

This macro is called at the beginning of the macros \yng and \young. If autoscale
is deactivated the box height and width is \y@boxdim - 2\y@linethick. If not we
save a box for temporary usage, use the height of it to find a good size of the box,
fill the boxregister with a empty box, and clear the box again by using it.

That’s not elegant but I didn’t know better. .. How can I determine the height
of the font in an other way? (I tried it with the TEX-measure ex — but this did
not seem to work in any case.) Or — if I have to use setbox — which boxregister
should T use? Is the \ifvoid test obsolete? (First I used \box0 — till I found me
competing with AMS-TEX for this box.)
35 \def\y@setdim{%
36 \ify@autoscale,
37 \ifvoidi\else\typeout{Package youngtab: boxl not free! Expect an
38 error!}\fi%
39 \setbox1=\hbox{A}\y@b@xdim=1.6\ht1 \setboxl=\hbox{}\box1/
40 \else\y@b@xdim=\y@boxdim \advance\y@b@xdim by -2\y@linethick
41 \fi}

A counter for loops.

42 \newcount\y@counter

This macro is a hack to get TEX to accept a indefinite number of arguments (here:
the number of lines separated by commas). It does nothing with its arguments
but to see if the second is a space, and, if it is to set \y@islastargtrue.”
43 \newif\ify@islastarg
44 \def\yO@lastargtest#1,#2 {\if\space #2 \y@islastargtrue
45 \else\y@islastargfalse\fi}
How does it work? An Example:

\y@lastargtest, first,second
Here #1 is first and #2 is second. The \if construction tests if the (expanded)
first token of #2 and \space (here: s) are equal. — They are not. In the next
example the condition is true:

\y@lastargtest first,
Here #1 is again first but \y@lastargtest catches the blank after the comma to
be #2. The \if condition now is true and \y@islastargtrue is set. Remember:
the blank is essentiall

This macro draws #1 (this is a number) empty boxes (\y@emptybox) — without a
top or bottom line:
:\y@emptyboxes3: is:| | |
46 \def\y@emptyboxes#1{\y@counter=#1\loop\ifnum\y@counter>0
47 \advance\y@counter by -1 \y@emptybox\repeat}

This calls \y@emptyboxes and adds the top and bottom lines (I think this is faster
than draw single, complete boxes) and a right closing vertical line. Because of the
\vspace command the top line of the eventually following next box-row will be
drawn over the bottom line of this box-row.

48 \def\y@nelineemptyboxes#1{%

49 \vbox{%

50 \hrule height\y@linethick

"The islastarg conditions are also used if the end of one line of labelled boxes is reached.

\yng

\yQungempty

\y@nelettertest

51 \hbox{\y@emptyboxes{#1}\yQvr}
52 \hrule height\y@linethick}\vspace{-\y@linethick}}

The user-macro for empty Young-Tableaux. As mentioned above it has only one
argument, enclosed in brackets. It first calls \y@setdim to determine the size
of the boxes and opens a \vcenter if in math mode and vcentermath is set.
Otherwise only a (then obsolet) { is opened. \y@lastargtest determines if the
tableau should have only one line, setting \y@islastargtrue or -false. If there
is only one line, \yng does the whole job in calling \y@nelineemptyboxes once.
Otherwise it calls \y@ungempty to do the real thing. Note the spacing before and
after the tableau using \hspace.

53 \def\yng (#1) {%

54 \y@setdim}

55 \hspace{\y@interspacel}

56 \ifmmode\ify@vcenter\vcenter\fi\fi{J

57 \y@lastargtest#1,

58 \vbox{\offinterlineskip

59 \ify@islastarg

60 \y@nelineemptyboxes{#1}
61 \else

62 \y@ungempty (#1)

63 \fi}}\hspace{\y@interspacel}}

It is called with \yO@ungempty (#1) from \yng. Now the parsing of the arguments
starts! As we know from \y@lastargtest in \yng, there really are two arguments
left. Explicitely: Let the the initial command (given by the user) be \yng(3,2,1);
then \yng calls \y@ungempty (3,2,1). But \y@ungempty sees two arguments: #1
is 3 and #2 is 2,1! (Note the importance of the brackets). \y@ungempty then
processes the first argument immediately, calling \y@nelineemptyboxes. (The
braces protect numbers with more than one digit.)

The next step is to check if #2 is the last line. If it is, it calls \y@nelineempty-
boxes again. Otherwise it calls recursively itselve, till all lines are processed.
64 \def\yGungempty (#1,#2){%
65 \y@nelineemptyboxes{#1}
66 \y@lastargtest#2,
67 \ify@islastarg
68 \y@nelineemptyboxes{#2}

69 \else
70 \y@ungempty (#2)
71 \fi}

The first macro especially for labelled boxes, that is, for \young. Like \y@lastarg-
test it is used for handling a indefinite number of arguments. (As mentioned be-
fore Young-Tableaux with labelled boxes have problem double.) \y@nelettertest
determines if the last box of the line has been reached.

Again we will examine it’s working method by examples:

\y@nelettertest ab.
The period after the argument ab (and in the definition of \y@nelettertest) is
merely a mark for the end of the arguments. (Otherwise TEX would complain
about missing arguments.) Here a is #1 and #2 is b — the \if-condition is false
and so \y@islastargfalse is set. Now a little miracle:

\y@abcboxes

\ify@enable@skew
\y@full@b@xdim
\y@m@veright@cnt

\y@get@m@veright@cnt

\y@setdim

\y@m@veright@ifskew

\y@nelettertest a.
In the opposite to the case of \y@lastargtest it’s not understandable for me,
why #2 now is a space — but it is! (Do you know the reason why?) The rest is
known from \y@lastargtest.

72 \def\y@nelettertest#1#2. {\if\space #2 \yQ@islastargtrue
73 \else\yQ@islastargfalse\fi}

Again we use a period to mark the end of arguments. Compare to \y@emptyboxes
— Now it is more strenuous! The \y@nelettertest macro makes sure that
\y@abcboxes is called with at least two boxes to process. If there are only two
boxes \y@abcboxes calls \y@abcbox two times, otherwise it calls itselve recursively
again. (The argument-splitting works as in \y@ungempty.)

74 \def\y@abcboxes#1#2.{},

75 \ify@stdtext\yQ@abcbox#1\else\y@mathabcbox#1\fi%

76 \y@nelettertest #2.

There must be a space or (equivalently) a carriage return after this line!

77 \ify@islastarg\unskip

78 \ify@stdtext\y@abcbox{#2}\else\yCmathabcbox{#2}\fi/

79 \else\y@abcboxes#2.\fi}

The \unskip is needed for the case that #2 is only one token. Then a space
appears between two boxes. (I do not understand really what happens — see
\y@nelettertest.) The \unskip resolves this problem.

Most of the skew boxes stuff can be found here along the definition of \y@ne-
lineabcboxes. We need a further dimension, for the effective lenght of one box
in a row, \y@full@b@xdim = \y@b@xdim + 1\y@linethick and one counter for
the number of boxes to be left out on the left side of the tableau (determined by
the number of colons at the beginning of a row), \y@m@veright@cnt.

80 \ify@enable@skew

81 \newdimen\y@full@b@xdim

82 \newcount\y@m@veright@cnt

To find out the number of leading colons in a row we have the macro \y@get@-
m@veright@cnt. Here we use exactly the same trick as in \y@nelettertest.

83 \def\y@get@m@veright@cnt#1#2.{/,
84 \if :#1 \advance\y@m@veright@cnt by 1\y@get@m@veright@cnt#2.\fi}

Since we now have another dimension that depends on \y@b@xdim, the dimension
of the boxes, we have to extend \y@setdim to calculate \y@full@b@xdim too.
(The dummy \y@setdim@ is used to avoid a recursion.)

85 \let\y@setdim@=\y@setdim

86 \def\y@setdim{’

87 \y@setdim@ \y@full@b@xdim=\y@b@xdim

88 \advance\y@full@b@xdim by 1\y@linethick}

Now we put it all into the following macro that computes the offset and moves
the tableau to the right if necessary. If skew Young-Tableaux are not enabled,
\y@m@veright@ifskew will be a null-command (but catches the argument).

89 \def\y@m@veright@ifskew#1{

90 \y@m@veright@cnt=0 \y@get@m@veright@cnt#1.

91 \moveright \y@m@veright@cnt\y@full@bO@xdim}

10

\y@nelineabcboxes

\young

\y@ungabc

92 \else
93 \def\y@mOveright@ifskew#1{}
94 \fi

This is the counterpart of \y@nelineemptyboxes. The difference is the treat-
ment of the case of a row of only one box — Then only \y@abcbox is called
and not \y@abcboxes. If this row must be moved to the right, this is done by
\y@m@verightQifskew.

95 \def\y@nelineabcboxes#1{}

96 \y@nelettertest #1.

97 \ify@islastarg

98 \y@m@veright@ifskew{#1}

99 \vbox{

100 \hrule height\y@linethicky

101 \hbox{\ify@stdtext\yQabcbox#1\else\y@mathabcbox#1\fi\yQvr}
102 \hrule height\y@linethick}\vspace{-\y@linethick}
103 \else

104 \y@m@veright@ifskew{#1}

105 \vbox{

106 \hrule height\y@linethicky

107 \hbox{\y@abcboxes #1.\y@vr}}

108 \hrule height\y@linethick}\vspace{-\y@linethick}
109 \fi}

The user-macro for labelled Young-Tableaux. It has one argument as \yng, en-
closed in brackets. Everything is identical as in the emptybox case (sizing, vcen-
tering, treatment of multiple rows, ...).

110 \def\young (#1) {%

111 \y@setdim}

112 \hspace{\y@interspacel},

113 \y@lastargtest#l,

114 \ifmmode\ify@vcenter\vcenter\fi\fi{/

115 \vbox{\offinterlineskip

116 \ify@islastarg\y@nelineabcboxes{#1}/

117 \else\yQ@ungabc (#1)7%

118 \fi}}\hspace{\y@interspacel}}

Again nothing new — see \y@ungempty

119 \def\y@ungabc (#1,#2){/

120 \y@nelineabcboxes{#1}}

121 \yO@lastargtest#2,

122 \ify@islastarg\y@nelineabcboxes{#2}%
123 \else\y@ungabc (#2)%

124 \fi}

125 (/package)

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

C
\Compatibility 5 11

E
\enableskew 2, 5, 16
I
\if . 27,29, 44, 72, 84
\ifyQ@autoscale ... 2, 36

\ify@enable@skew
15, 26, 80
\ify@islastarg 43, 59

67, 77, 97, 116, 122

\ify@stdtext
13,75, 78, 101

\ify@vcenter 11, 56, 114
L

\let 85
M

\math or text? 3

\moveright 91
N

\noautoscale 2, 16
(0]

\Options 2
S

\sizing 3

\stdtext 2,16

A%

\vcentermath 2, 16
Y

\y@abcbox 26, 75, 78, 101

\y@abcboxes 74, 107

\yQautoscalefalse

........ 3,6, 16
\y@autoscaletrue 2,3
\y@b@xdim

4, 24, 25, 28, 30,

32, 33, 39, 40, 87
\y@boxdim 4, 40
\y@counter 42,46, 47
\y@emptybox 25, 47
\y@emptyboxes . 46, 51

\y@enable@skewfalse 15
\y@enable@skewtrue . 19
\y@full@b@xdim

80, 87, 88, 91
\y@get@m@veright@cnt
83, 90

\y@interspace
9, 55, 63, 112, 118
\y@islastargfalse 45, 73

\y@islastargtrue 44, 72
\y@lastargtest

43, 57, 66, 113, 121
\y@linethick . 7, 24,

40, 50, 52, 88,
100, 102, 106, 108

12

\y@m@veright@cnt

80, 84, 90, 91
\y@m@veright@ifskew
89, 98, 104

\y@mathabcbox
26, 75, 78, 101
\y@nelettertest
72, 76, 96
\y@nelineabcboxes
95, 116, 120, 122
\y@nelineemptyboxes
48, 60, 65, 68
35, 54, 85, 111
\y@setdim@ 85, 87
\y@stdtextfalse . 13, 14
\y@stdtexttrue 14
\y@ungabc 117, 119
\y@ungempty 62, 64
\y@vcenterfalse . 11, 12
\y@vcentertrue 12, 17, 18
\y@vr . 24,25, 28, 30,
32, 33, 51, 101, 107
2,3

\y@setdim

\Yautoscale
\Yboxdim
\Yinterspace
\Ylinethick

\yng
\young
\Ystdtext
\Yvcentermath

