Test for Aho Alfred

Exercise

The diagonal of a rectangle is 212 in and a side of this rectangle is 180 in. What is the length of the other side of the rectangle?

Answer to the test for Aho Alfred

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$212^2 = 180^2 + {\rm side}2^2$$

and then

side2 = $\sqrt{212^2 - 180^2} = 112$.

Test for Babbage Charles

Exercise

The diagonal of a rectangle is 353 in and a side of this rectangle is 225 in. What is the length of the other side of the rectangle?

Answer to the test for Babbage Charles

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$353^2 = 225^2 + \text{side}2^2$$

and then

side2 = $\sqrt{353^2 - 225^2} = 272$.

Test for Chaitin Gregory

Exercise

Find the length of the diagonal of a rectangle that is 111 in by 680 in.

Answer to the test for Chaitin Gregory

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$diag^2 = 111^2 + 680^2$$

and then

diag = $\sqrt{111^2 + 680^2} = 689.$

Test for Dijkstra Edsger

Exercise

The diagonal of a rectangle is 325 in and a side of this rectangle is 253 in. What is the length of the other side of the rectangle?

Answer to the test for Dijkstra Edsger

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$325^2 = 253^2 + \text{side}2^2$$

and then

side2 = $\sqrt{325^2 - 253^2} = 204$.

Test for Eckert John Preper

Exercise

Find the length of the diagonal of a rectangle that is 189 in by 340 in.

Answer to the test for Eckert John Preper

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$diag^2 = 189^2 + 340^2$$

and then

diag = $\sqrt{189^2 + 340^2} = 389.$

Test for Floyd Robert

Exercise

Find the length of the diagonal of a rectangle that is 240 in by 238 in.

Answer to the test for Floyd Robert

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$diag^2 = 240^2 + 238^2$$

and then

diag = $\sqrt{240^2 + 238^2} = 338.$

Test for Gödel Kurt

Exercise

The diagonal of a rectangle is 260 in and a side of this rectangle is 132 in. What is the length of the other side of the rectangle?

Answer to the test for Gödel Kurt

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$260^2 = 132^2 + {\rm side}2^2$$

and then

side2 = $\sqrt{260^2 - 132^2} = 224$.

Test for Huffman David

Exercise

Find the length of the diagonal of a rectangle that is 320 in by 462 in.

Answer to the test for Huffman David

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$diag^2 = 320^2 + 462^2$$

and then

diag = $\sqrt{320^2 + 462^2} = 562$.

Test for Ichbiah Jean

Exercise

The diagonal of a rectangle is 569 in and a side of this rectangle is 231 in. What is the length of the other side of the rectangle?

Answer to the test for Ichbiah Jean

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$569^2 = 231^2 + {\rm side}2^2$$

and then

side2 = $\sqrt{569^2 - 231^2} = 520.$

Test for Joshi Aravind

Exercise

Find the length of the diagonal of a rectangle that is 207 in by 224 in.

Answer to the test for Joshi Aravind

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$diag^2 = 207^2 + 224^2$$

and then

diag = $\sqrt{207^2 + 224^2} = 305.$

Test for Knuth Donald

Exercise

Find the length of the diagonal of a rectangle that is 119 in by 120 in.

Answer to the test for Knuth Donald

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$diag^2 = 119^2 + 120^2$$

and then

diag = $\sqrt{119^2 + 120^2} = 169$.

Test for Lovelace Ada

Exercise

The diagonal of a rectangle is 245 in and a side of this rectangle is 147 in. What is the length of the other side of the rectangle?

Answer to the test for Lovelace Ada

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$245^2 = 147^2 + \text{side}2^2$$

and then

side2 = $\sqrt{245^2 - 147^2} = 196.$

Test for Moore Gordon

Exercise

The diagonal of a rectangle is 505 in and a side of this rectangle is 377 in. What is the length of the other side of the rectangle?

Answer to the test for Moore Gordon

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$505^2 = 377^2 + {\rm side}2^2$$

and then

side2 =
$$\sqrt{505^2 - 377^2} = 336$$
.

Test for Neumann (Von) John

Exercise

The diagonal of a rectangle is 305 in and a side of this rectangle is 273 in. What is the length of the other side of the rectangle?

Answer to the test for Neumann (Von) John

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$305^2 = 273^2 + \text{side}2^2$$

and then

side2 =
$$\sqrt{305^2 - 273^2} = 136$$
.

~

Test for Ouserhout John

Exercise

Find the length of the diagonal of a rectangle that is 240 in by 418 in.

Answer to the test for Ouserhout John

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$diag^2 = 240^2 + 418^2$$

and then

diag = $\sqrt{240^2 + 418^2} = 482$.

Test for Pascal Blaise

Exercise

The diagonal of a rectangle is 425 in and a side of this rectangle is 375 in. What is the length of the other side of the rectangle?

Answer to the test for Pascal Blaise

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$425^2 = 375^2 + \text{side}2^2$$

and then

side2 = $\sqrt{425^2 - 375^2} = 200.$

Test for Ritchie Dennis

Exercise

Find the length of the diagonal of a rectangle that is 185 in by 672 in.

Answer to the test for Ritchie Dennis

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$diag^2 = 185^2 + 672^2$$

and then

diag =
$$\sqrt{185^2 + 672^2} = 697$$
.

Test for Shannon Claude

Exercise

Find the length of the diagonal of a rectangle that is 224 in by 360 in.

Answer to the test for Shannon Claude

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$diag^2 = 224^2 + 360^2$$

and then

diag = $\sqrt{224^2 + 360^2} = 424$.
Test for Thompson Ken

Exercise

The diagonal of a rectangle is 458 in and a side of this rectangle is 120 in. What is the length of the other side of the rectangle?

Answer to the test for Thompson Ken

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$458^2 = 120^2 + \text{side}2^2$$

and then

side2 = $\sqrt{458^2 - 120^2} = 442$.

Test for Ullman Jeffrey

Exercise

Find the length of the diagonal of a rectangle that is 153 in by 104 in.

Answer to the test for Ullman Jeffrey

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$diag^2 = 153^2 + 104^2$$

and then

diag = $\sqrt{153^2 + 104^2} = 185.$

Test for Vixie Paul

Exercise

Find the length of the diagonal of a rectangle that is 175 in by 600 in.

Answer to the test for Vixie Paul

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$diag^2 = 175^2 + 600^2$$

and then

diag = $\sqrt{175^2 + 600^2} = 625$.

Test for Wall Larry

Exercise

Find the length of the diagonal of a rectangle that is 112 in by 384 in.

Answer to the test for Wall Larry

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$diag^2 = 112^2 + 384^2$$

and then

diag = $\sqrt{112^2 + 384^2} = 400.$

Test for Yao Adrew Chi-Chih

Exercise

Find the length of the diagonal of a rectangle that is 105 in by 608 in.

Answer to the test for Yao Adrew Chi-Chih

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$diag^2 = 105^2 + 608^2$$

and then

diag = $\sqrt{105^2 + 608^2} = 617$.

Test for Zuse Konrad

Exercise

Find the length of the diagonal of a rectangle that is 319 in by 360 in.

Answer to the test for Zuse Konrad

Exercise

Use Pythagorean theorem. We have:

$$\operatorname{diag}^2 = \operatorname{side1}^2 + \operatorname{side2}^2.$$

Here:

$$diag^2 = 319^2 + 360^2$$

and then

diag = $\sqrt{319^2 + 360^2} = 481$.