eXPKVIBUNDLE

Jonathan P. Spratte®

2024-12-26

Abstract

The expikviBUNDLE provides at its core a fully expandable (key)=(value) parser, that
is safe for active commas and equals signs, reliable to only strip one set of braces
after spaces are stripped, and blazingly fast, as of writing this only keyval is faster.

This parser gets augmented by a family of packages. expivics allows to easily define
expandable macros using a (key)=(value) interface, making the expandable parser
available to the masses. expkvIDEr provides a (key)=(value) interface to define com-
mon (key)-types. With expiviopT you can parse package and class options. expivirop
enables you to design your own prefix oriented parsers for interface definitions.

Contents

Introduction

Terminology e
Category Codes e
Bugs. . . . e

expkvIBUNDLE for the Impatient

1

expkv
1.1 General Parsing Rules oo,
1.1.1 Expansion Control
1.2 Settingup Keys
1.3 Handle Unknown Keys
1.4 Helpers in Actions e
1.5 Parsing Keysin Sets
1.6 Generic Key Parsing o o
1.7 Other Useful Macros
1.8 Other Macros. e
1.9 Exampleso e
1.9.1 Standard Use-Case
1.9.2 An Expandable (key)=(value) Macro Using \ekvsneak

documentation.

AW e

(S

*jspratte@yahoo.de; Special thanks to ¥ (Niranjan) for valuable suggestions and additions to this

https://gitlab.com/islandoftex/texmf/expkv-bundle
https://gitlab.com/islandoftex/texmf/expkv-bundle
https://gitlab.com/islandoftex/texmf/expkv-bundle

2 expkvics

2.1 Defining Macros and Primary Keys
2.1.1 Primary Keyso

2.1.2 Split
2.1.3 Hash

2.2 Secondary Keys
2.2.1 Prefizes e e e
222 Typeso
2.3 Changing the Initial Values
2.4 Handling Unknown Keys
2.5 Flags . . . o L e
2.6 Further Examples L o
2.7 Freedom for Keys!
2.8 Useless Macros o o vt i e
3 €XPKVIDEF
3.1 Macros e e
3.2 Prefixes
321 Prefizes
3.22 Types e
3.3 Another Example
4 eXPKVIOPT
4.1 Macroso L e e e
4.1.1 Option Processors e
4.1.2 Other Macros o i i i e
4.2 Examples e
5 expkvIPOP
5.1 Parsing Rules
5.2 Defining Parsers
5.3 Changing Default Behaviours
54 Markerso
5.5 Helpersin Actions L
5.6 Using Parsers o L e e
5.7 The Boring Macros e

5.8 Examples
6 Comparisons

List of Examples

Index

Introduction

This bundle consists of different packages the base being expiv. Most of these packages
are available for plain TgX, TEX 2¢, and ConTgXt. For stylistic reasons the package
names are printed as expkvi(PkG), but the files are named expkv-(pkg) (CTAN-rules
don’t allow | in names), so in order to load expgvics in KTEX 2¢ you should use

\usepackage{expkv-cs}

Each section describing a package of this bundle has next to its heading the formats
in which they work printed flush right. If more than a single format is supported by a
package the functionality is defined by the plain TgX variant and the other variants only
load the generic code in a way suitable for the format.

Terminology

This documentation uses a few terms which always mean specific things:

(key)=(value) pair is one element in a comma separated list which contains at least
one equals sign not contained in any braces, and the first such equals sign is the
separator between the (key) (with an optional (expansion) prefix) and the (value).

(key) means the entire left-hand side of a (key)=(value) pair with an optional
(expansion) prefix stripped, or if =(value) is omitted the complete list element,
again with an (expansion) prefix stripped.

(key)-name synonymous to (key).

Val-(key) describes a (key) in a (key)=(value) pair.

NoVal-(key) describes a (key) for which =(value) was or should be omitted.
(value) is the right-hand side of a (key)=(value) pair.

(key)=(value) list is a comma separated list containing (key)=(value) pairs and NoVal-
(key)s (each possibly with an (expansion) prefix).

{(key)=(value),...} an argument that should get a (key)=(value) list.

(expansion) prefix an optional prefix in front of (key) to specify (expansion)-rules
(see subsubsection 1.1.1), that prefix consists of the (expansion)-rules followed by
a colon immediately followed by a space.

(expansion) a list of tokens specifying expansion steps for (key) and (value).
(expansion)-rule a single expansion step in the (expansion)-rules.
(expansion)-rules synonymous to (expansion).

exp:NOTATION the notation of (expansion)-rules in form of the (expansion) prefix.
key-code the code that is executed for a given (key).

key-macro the internal macro that stores the key-code.

Though not really terminology but more typographic representation I want to
highlight a distinction between two different types of code listings in this documentation.
I use the following looks to show a code example and its results:

\newcommand*\foo{This is an example.}
\foo This is an example.

And this is how a syntax summary or a syntax example looks like (this is more abstract
than an example and contains short meta-descriptions of inputs):

\function{(syntax)}

Inside such syntax summaries the following rules usually apply (and (arg) would be the
meta description here):

{(arg)} a mandatory argument is shown in braces

(arg) a mandatory argument that should be a single token is shown without additional
parentheses/braces/brackets

[{arg)] an optional argument is shown in brackets (and should be input with brackets)
(*) an optional star is shown like this

If other types of arguments are displayed the documentation will explain what they
mean in this particular place.

Category Codes

Supporting different category codes of a single character code makes the programmer’s
life harder in TgX, but there are valid reasons to make some active, or letter. Because
of this the packages in this bundle support different category codes for specific syntax
relevant characters (unless otherwise documented). This doesn’t mean that expiv changes
any category codes, only that parsing is correct if they are changed later (the codes listed
assume standard category codes of plain TgX and IXTEX 2¢ apply while expkv is loaded).
The supported tokens are:

= =, and 13
» s12and 4
: (for the exp:NOTATION) 44, 145, and 4,

* (for starred macros) *;, *,, *g, *_, *g, *;;, *¥;,, and *,5

[(for \ekvoptarg) only [,,

] (for \ekvoptarg)only 1,,

Bugs

Just like keyval, expkv is bug free. But if you find bugshidden features' you can tell
me about them either via mail (see the first page) or directly on GitLab if you have an
account there: https://gitlab.com/islandoftex/texmf/expkv-bundle

1Thanks, David!

https://gitlab.com/islandoftex/texmf/expkv-bundle

expkviBUNDLE for the Impatient

This section gives a very brief and non-exhaustive overview over the contents of the
expkvIBUNDLE. For more information (and more functionality) you’ll have to read the
sections of the packages you're interested in.

eXPKVIBUNDLE supports expansion control in (key)=(value) lists. The corresponding
syntax and features are documented in subsubsection 1.1.1.

The following user interface macros (and more) are available in the different pack-
ages of the bundle:

Defining keys

e \ekvdefinekeys{(set)}{(key)=(value), ...} defines the keys in the (key)=
(value) list, many common key types are available (subsection 3.1 and for the
types subsubsection 3.2.2).

* \ekvdef{(set)}{(key)}{(code)} defines the behaviour of a Val-(key) (subsec-
tion 1.2).

e \ekvdefNoVal{(set)}{(key)}{{code)} defines the behaviour of a NoVal-(key)
(subsection 1.2).

Parsing (key)=(value) lists
* \ekvset{(set)}{(key)=(value), ...} setsdefined keys (subsection 1.5).

* \ekvparse{(k-code)}H(kv-code)}H(key)=(value), ...} parsesthe(key)=(value)
list and runs (k-code) or (kv-code) on the elements (subsection 1.6).

Defining expandable (key)=(value) macros

* \ekvcSplit(cs){(key)=(value), ...}{(code)} defines a fully expandable macro
with the keys in the (key)=(value) list, values are accessed by #1 to #9 (subsubsec-
tion 2.1.2).

* \ekvcHash(cs){(key)=(value), ...}{(code)} defines a fully expandable macro
with the keys in the (key)=(value) list, values are accessed using \ekvcValue
{(key)}{#1} (subsubsection 2.1.3).

* \ekvcSecondaryKeys(cs){(key)=(value), ...} defines additional keys of prede-
fined types for a (cs) defined with \ekvcSplit or \ekvcHash (subsection 2.2 and
for the types subsubsection 2.2.2).

Parsing options (subsection 4.1)

* \ekvoProcessOptions{(set)} processes the global options, and the options given
to the current and all future calls of the package.

* \ekvoProcessGlobalOptions{(set)} processes the global options.

* \ekvoProcessLocalOptions{(set)} processes the local options of a package or
class.

* \ekvoProcessFutureOptions{(set)} processes the options of future calls of the
package.

https://gitlab.com/islandoftex/texmf/expkv-bundle
https://gitlab.com/islandoftex/texmf/expkv-bundle
https://gitlab.com/islandoftex/texmf/expkv-bundle

\input{expkv} % plain
1 ekaV \usepackage{expkv} 7/ LaTeX

\usemodule [expkv] 7, ConTeXt

This package supports two different front ends to parse a (key)=(value) list. The first
(\ekvset) is similar to keyval’s \setkeys, it parses the list and executes defined actions
based on the encountered (key)s. The second (\ekvparse) is more versatile, it only splits
the list into (key)s and (value)s and then runs user-provided code on the result.

The first is described in subsections 1.2 to 1.5, the latter is described in subsec-
tion 1.6.

Unlike the other packages in the bundle, if you load expiv as a BTgX 2, package
there is a single option available:

\usepackage [all]{expkv}

Loads all the packages of expivIBUNDLE.

1.1 General Parsing Rules

expkv parses a (key)=(value) list by first splitting the elements on commas (active or
other), then looking for an equals sign (active or other). If there is one the (key)=(value)
pair will be split at the first. From both (key) and (value) (if there was a (value)) one
set of outer spaces is stripped, and afterwards one set of outer braces (meaning braces
which are around the complete remainder after space stripping if there are any).

So the syntax looks something like the following pseudo-input:

u{{key)=u{(value)},

with the displayed spaces and braces being optional and removed if found. Note that if
you want either (key) or (value) to include a comma the braces become mandatory, the
same is true if (key) should contain an equals sign.

1.1.1 Expansion Control

expkv provides a mechanism to specify expansions of a (key) and/or (value). For those
familiar with pgfkeys this is similar to its .expand once or .expanded handlers. This
concept will be called exp:NoTATION or (expansion) throughout this documentation.

The syntax for this notation is a leading list of (expansion)-rules followed by a
colon that is immediately followed by a space. Also the (expansion)-rules must not
contain any spaces outside of braces, and the remainder on the right hand side of the
colon must not be blank, else it is not considered an exp:NoTaTION but just a weirdly
formed (key)-name.

The entire syntax of a (key)=(value) pair is

u{{expansion): {(key)} }=u{{value)},

Note that the (expansion) prefix is right delimited by :, so the space after the colon
is only optional in the sense that the entire (expansion) prefix is optional. Else all
displayed spaces and braces are optional, the inner set of spaces and braces around (key)
only being optional if the optional (expansion) prefix ({(expansion):) was present. If
that part was present the list of (expansion)-rules will be executed, which might change
the contents of both (key) and (value). For \ekvparse this is always true, however in
\ekvset it is only parsed for the exp:NoTaTION if there is no (key) matching the given
input (so this notation doesn’t impose a restriction on key names, though (key)-names

https://gitlab.com/islandoftex/texmf/expkv-bundle
https://gitlab.com/islandoftex/texmf/expkv-bundle

o |

actually containing what would otherwise be an (expansion) prefix should be pretty
rare in practice).

All packages in expkvIBUNDLE support this notation (most of them internally use
\ekvset or \ekvparse). Please note however that while expgviort fully supports them,
reinsertion via the \r (expansion)-rule might affect the unused global options list if
used in the class options.

An (expansion)-rule consists of a single token. In a Val-(key) they work on the
(value) (but you can use the \key rule to also affect the (key) there) while in a NoVal-
(key) they work on the (key). The following rules are available (those familiar with
expl3 will notice that the first six are identical to its argument types):

Expands the first token once.

Expands the entire (value) inside of \expanded.

Builds a \csname from the contents.

Expands the contents until a space or an unexpandable token is found (the space would
be removed).

The (value) should be a single token, either defined as a parameterless macro or as a
register (via \newcount etc.). This expands to the value of the register or the macro’s
replacement text. If the token in (value) has the \meaning of \relax an error is thrown
and the result is empty.

This is a combination of ¢ and V, meaning the (value) is turned into a single control
sequence via \csname, and then expanded to its value. The control sequence will only be
built if it’s defined.

Example: Say we want to hand the contents of a macro as the value to our key, but the
actual macro name depends on user input. For this we have two options which behave
slightly different. One is to use v the other is to combine the co (expansion)-rules. The
following demonstrates both (I modified the way errors are thrown to instead output
them in red for this; you’ll learn about \ekvparse in a few pages, for now just stick with
me):

\newcommand\mypair[2]{Arg: ‘\detokenize{#2}’. }%
\newcommand\myvalue{Value}%
\ekvparse\@firstofone\mypair
{
co: key = myvalue, v: key = myvalue, \par
,co: key = myValue, v: key myValue, \par

}

Arg: ‘Value’. Arg: ‘Value'.
Arg: \myValue ’. ! expkv Error: Erroneous variable ‘\myValue’ usedArg: .

https://gitlab.com/islandoftex/texmf/expkv-bundle

s 1 1o o |

1o

The difference is that in co the variable is implicitly initialised as \relax by c if it doesn’t
exist and then doesn’t expand in o. On the other hand v will check whether the variable
would exist and throw an error if it doesn’t (and will not set it to \relax by blindly using
\csname).

Strips one set of outer spaces and outer braces.

Adds one set of outer braces.

p{{contents)}

Places {(contents) before the (value).

P{(contents)}

Places {(contents) after the (value).

Gobbles the first token or balanced group on the left (leads to a low-level TgX-error if the
(value) is empty).

In a Val-(key) reinserts the contents of (value) after all the {expansion)-rules were
executed (the (key)-name needs to be empty). In a NoVal-(key) the contents of (key) are
reinserted after all the (expansion)-rules were executed (the (value) needs to be empty,
which is an easy to fulfil rule as there was no (value)). Normal (key)=(value) parsing
is aborted afterwards for the current (key)=(value) list element.

Example: Say we want to store a list of common settings in a macro, then we want to
parse a few keys, insert the contents of the macro, and parse a few more keys. The
following does exactly that (\ekvset is analogue to \setkeys of the keyval package if
you're familiar with it, else you’ll learn about \ekvset a few pages down the road so be
patient):

\newcommand*\mykeylist{color=red,height=5cm}

\ekvset{mypkg}{key=value, o\r: \mykeylist, other key=other value}

You could also use the following with the same outcome, but this looks more complicated
so the other form should be preferred:

\ekvset{mypkg}{key=value, o\r: {}=\mykeylist, other key=other value}

\key{(expansion)}

This is the only supported way to change the contents of (key) for a Val-(key) in the
exp:NoTATION. All the rules in (expansion) are applied to (key) instead of (value).

This is the same as if you used V\r. So it expects a single token, retrieves its value, and
reinserts this as additional (key)=(value) input.

This is the same as if you used v\r. So it builds a \csname if that is defined, retrieves its
value, and reinserts this as additional (key)=(value) input.

Example: Now that we also know the R and r rule, the example above can be input even
simpler:

\ekvdef

\ekvdefNoVal

\ekvlet

\ekvset{mypkg}{key=value, R: \mykeylist, other key=other value}
or

\ekvset{mypkg}{key=value, r: mykeylist, other key=other value}

1.2 Setting up Keys

expkv provides a rather simple approach to setting up keys, similar to keyval. If you're
looking for a more sophisticated interface similar to those of l3keys or pgfkeys take a
look at expkviDEF described in section 3 or for a simple interface that defines expandable
macros at expivics described in section 2.

Keys in expkv (as in many other (key)=(value) implementations) belong to a set, so
that different sets can contain keys of the same name. Unlike many other implementa-
tions expyv doesn’t provide means to set a default value, instead we have keys that take
a value (we call those Val-(key)) and keys that don’t (which are called NoVal-(key) by
expkv), but both can share the same name on the user level, the only difference for the
user is whether =(value) was used or not.

The following macros are available to define new keys. Those macros contain-
ing “def” in their name can be prefixed by anything allowed to prefix \def (but don’t
use \outer, keys defined with it won’t ever be usable). And prefixes allowed for
\let can prefix those macros with “let” in their name, accordingly. Neither (set)
nor (key) are allowed to be empty for new keys. (set) will be used as is inside of
\csname ...\endcsname and (key) will get \detokenized. Also (set) should not con-
tain an explicit \par token.

\ekvdef{(set)}{(key)}{(code)}

Defines a Val-(key) in a (set) to expand to (code). In {code) you can use #1 to refer to
the given (value).

Example: Define text in foo to store the (value) inside \foo@text:

\protected\long\ekvdef{foo}{text}{\def\foo@text{#1}}

\ekvdefNoVal{(set)}{(key)}{({code)}
Defines a NoVal-(key) in (set) to expand to {code).

Example: Define bool in foo to set \iffoo@bool to true:

\protected\ekvdefNoVal{foo}{bool}{\foo@booltrue}

\ekvlet{(set)}{(key)}{cs)

Let the Val-(key) in (set) to {cs). There are no checks on {cs) enforced, but the code
should expect the (value) as a single braced argument directly following it.

Example: Let cmd in foo do the same as \foo@cmd:

\ekvlet{foo}{cmd}\foo@cmd

\ekvletNoVal

\ekvletkv

\ekvletkvNoVal

\ekvdefunknown

\ekvdefunknownNoVal

\ekvletNoVal {(set)} {(key)} (cs)

Let the NoVal-(key) in (set) to (cs). Again no checks on (cs) are done. It shouldn’t
expect any provided argument.

Example: See above.

\ekvletkv{(set)}{(key)H(set2)}{(key2)}

Copies the definition such that Val-(key) in (set) behaves like (key2) of (set2). It is
not checked whether that second key exists!

Example: Let B in bar do the same as A in foo:

\ekvletkv{bar}{B}{foo}{A}

\ekvletkvNoVal{(set)}{(key)}{(set2)}{(key2)}

And this lets the NoVal-(key) in (set) to the definition of the NoVal-(key2) in (set2).
Again, it is not checked whether the second key exists.

Example: See above.

1.3 Handle Unknown Keys

By default expiv throws an error message if it encounters an undefined (key). You can
change this behaviour with the macros listed here. Just like in the section above, prefixes
for \def are allowed if the macro has def in its name, and \let prefixes are allowed if
the macro is named something with let.

\ekvdefunknown{(set)}{(code)}

Execute (code) if an undefined Val-(key) is encountered while parsing in (set). You
can refer to the given (value) with #1, the unknown (key)’s name with #2 (will be
\detokenized), and to the (key)’s name without \detokenize applied with #3 in (code)
(this order is chosen for performance reasons).

\ekvdefunknown and \ekvredirectunknown are mutually exclusive, you can’t use
both.

Example: Also search bar for undefined keys of set foo (and use the not yet \detokenized
(key)’s name in case the undefined key handler of bar needs that):
\long\ekvdefunknown{foo}{\ekvset{bar}{{#3}={#13}}}

This example differs from using \ekvredirectunknown{foo}{bar} (see below) in that
also the unknown-key handler of the bar set will be triggered, error messages for unde-
fined keys will look different, and this is slower than using \ekvredirectunknown.

\ekvdefunknownNoVal{(set)}{{code)}

With this you can let expgv execute (code) if an unknown NoVal-(key) was encoun-
tered. You can refer to the given (key) with #1 (will be \detokenized), and to the not
\detokenized (key)’s name with #2.

\ekvdefunknownNoVal and \ekvredirectunknownNoVal are mutually exclusive,
you can’t use both.

Example: Adding to the above also handling of NoVal-(key)s in foo:

10

\ekvredirectunknown

\ekvredirectunknownNoVal

\ekvletunknown

\ekvletunknownNoVal

\ekvdefunknownNoVal{foo}{\ekvset{bar}{{#2}}}

\ekvredirectunknown{(set)}{(set-1ist)}

This is a short cut to set up a special \ekvdefunknown-rule for (set) that will check
each set in the comma separated (set-1ist) for an unknown Val-(key). The result-
ing unknown-key handler will always be \long and not \protected. The first set in
(set-1list) has highest priority, once the Val-(key) is found in one of the sets the remain-
der of the list is discarded. If (key) isn’t found in any of the sets an error will be thrown
eventually. Note that the error message looks different than a normal key-not-found
error, in particular no unwanted-value message can be thrown (it will not be checked if a
NoVal-(key) of the same name does exist), and the error message will contain all sets.

\ekvdefunknown and \ekvredirectunknown are mutually exclusive, you can’t use
both.

Example: For every undefined Val-(key) in foo also search the sets bar and baz:

\ekvredirectunknown{fool}{bar, baz}

\ekvredirectunknownNoVal{(set)}{(set-1ist)}

This behaves just like \ekvredirectunknown, it does the same but for NoVal-(key)s.
Again no prefixes are supported (the result will neither be \long nor \protected). Note
that the error messages will not check whether a missing-value error should be thrown.

\ekvdefunknownNoVal and \ekvredirectunknownNoVal are mutually exclusive,
you can’t use both.

Example: See above.

\ekvletunknown{(set)}{cs)

This lets the handler for unknown Val-(key)s to (cs). (cs) should expect three argu-
ments, the first will be the (value) the second the \detokenized (key)-name, the third
the unprocessed (key)-name. No conditions on (cs) are enforced.

Example: Let the set foo do the same as the macro \foo@unknown whenever an unknown
Val-(key) is encountered:

\ekvletunknown{foo}\foo@unknown

\ekvletunknownNoVal{(set)}(cs)

This does the same as \ekvletunknown but for NoVal-(key)s. The (cs) should expect
two arguments, namely the \detokenized (key) and the unprocessed (key).

Example: Let the set foo ignore unknown NoVal-(key)s by gobbling the (key)-name:
\ekvletunknownNoVal{foo}\@gobbletwo

11

\ekvifdefined
\ekvifdefinedNoVal

\ekvifdefinedset

\ekvsneak
\ekvsneakPre

\ekvbreak
\ekvbreakPreSneak
\ekvbreakPostSneak

\ekvmorekv

1.4 Helpersin Actions

\ekvifdefined{(set)}{(key)} (true)}{(false)}
\ekvifdefinedNoVal{(set)}{(key)}{(true)}{(false)}

These two macros test whether there is a (key) in (set). It is false if either a hash table
entry doesn’t exist for that key or its meaning is \relax.

Example: Check whether the key special is already defined in set foo, if it isn’t input a
file that contains more key definitions:

\ekvifdefined{foo}{special}{}{\input{foo.morekeys.tex}}

\ekvifdefinedset{(set)}{(true)}{(false)}

This macro tests whether (set) is defined (which it is if at least one key was defined for
it). If it is (true) will be run, else (false).

Example: Check whether the set VeRyUnLiKeLy is already defined, if so throw an error,
else do nothing:

\ekvifdefinedset{VeRyUnLiKeLy}
{\errmessage{VeRyUnLiKelLy already defined}}{}

\ekvsneak{(after)}

Puts (after) after the effects of \ekvset (without cancelling the current \ekvset call).
The first variant will put (after) after any other tokens which might have been sneaked
before, while \ekvsneakPre will put (after) before other smuggled stuff. After \ekvset
has parsed the entire (key)=(value) list everything that has been \ekvsneaked will be
left in the input stream.

Example: Define a key secret in the set foo that will sneak out \foo@secretly@sneaked:
\ekvdefNoVal{foo}{secret}{\ekvsneak{\foo@secretly@sneaked}}

A more elaborate usage example is shown in subsubsection 1.9.2.

\ekvbreak{(after)}

Gobbles the remainder of the current \ekvset call and its argument list and inserts
(after). So this can be used to break out of \ekvset. The first variant will also
gobble anything that has been sneaked out using \ekvsneak or \ekvsneakPre, while
\ekvbreakPreSneak will put (after) before anything that has been smuggled and
\ekvbreakPostSneak will put (after) after the stuff that has been sneaked out.

Example: Define a key abort that will stop key parsing inside the set foo and execute
\foo@aborted, or if it got a value \foo@aborted@with:

\ekvdefNoVal{foo}{abort}{\ekvbreak{\foo@aborted}}
\ekvdef{foo}{abort}{\ekvbreak{\foo@aborted@with{#13}}}

\ekvmorekv{(key)=(value), ...}

Adds the contents of the (key)=(value) list to the list processed by the current call of
\ekvset.

12

\ekvchangeset

\ekvset

\ekvsetSneaked

\ekvsetdef

Example: Define a NoVal-(key) style that sets the keys border, width, and height as a
shortcut:

\ekvdefNoVal{foo}{style}{\ekvmorekv{border, width=2cm, height=1.5ex}}

\ekvchangeset{(new-set)}

Replaces the current (set) with (new-set), so for the rest of the current \ekvset call
that call behaves as if it was called with \ekvset{(new-set)}. It is comparable to using
(key)/ .cd in pgfkeys.

Example: Define a key cd in set foo that will change to another set as specified in the
(value). If the set is undefined it’ll stop the parsing and throw an error as defined in the
macro \foo@cd@error:

\ekvdef{foo}{cd}
{\ekvifdefinedset{#1}{\ekvchangeset{#1}}{\ekvbreak{\foo@cd@error}}}

1.5 Parsing Keys in Sets

\ekvset{(set)}{(key)=(value), ...}

This macro parses the (key)=(value) list and checks for defined (key)s that are in (set).
Unlike the generic \ekvparse this macro uses \detokenize on the (key) before checking
whether it is a defined key.

\ekvset is nestable, and fully expandable. But it is not alignment safe. As a result
(key) names and (value)s that contain an & must be wrapped in braces if \ekvset is
used inside an alignment (like IXTEX 2¢’s tabular environment) or alternatively you have
to create a wrapper that ensurs an alignment safe context.

Example: Parse key=arg, key in set foo:

\ekvset{foo}{key=arg, key}

\ekvsetSneaked{(set)}{(sneak)}{(key)=(value), ...}
This behaves like \ekvset in which \ekvsneak was immediately called.

Example: Parse key=arg, key in the set foo with \afterwards sneaked out:

\ekvsetSneaked{foo}{\afterwards}{key=arg, key}

\ekvsetdef(cs){(set)}

Defines the macro (cs) to be a shortcut for \ekvset{(set)}. You can use any TgX-prefix

allowed to prefix \def for \ekvsetdef (so \long, \protected, or \global — don’t use

\outer). The resulting macro is faster than but else equivalent to the idiomatic definition:
\def(cs)#1{\ekvset{(set)}{#1}}

Example: Define the macro \foosetup to parse keys in the set foo and use it to parse

key=arg, key:

\ekvsetdef\foosetup{foo}
\foosetup{key=arg, key}

13

\ekvsetSneakeddef

\ekvsetdefSneaked

\ekvcompile

\ekvsetSneakeddef(cs){(set)}

Just like \ekvsetdef this defines a shorthand macro {cs), but this will make it a short-

hand for \ekvsetSneaked, meaning (cs) will take two arguments (first the \ekvsneak

argument, then the (key)=(value) list). Hence the result is a faster version of:
\long\def(cs)#1#2{\ekvsetSneaked{(set)}H{#1}{#2}}

Example: Define the macro \foothings to parse keys in the set foo and accept a sneaked
argument, then use it to parse key=arg, key and sneak \afterwards:

\ekvsetSneakeddef\foothings{foo}
\foothings{\afterwards}{key=arg, key}

\ekvsetdefSneaked(cs){(set)}{(sneaked)}

This macro behaves like \ekvsetSneakeddef, but with a fixed (sneaked) argument. So
the resulting macro is faster than but else equivalent to
\long\def(cs)#1{\ekvsetSneaked{(set)}{(sneaked)}{#1}}

Example: Define the macro \barthing to parse keys in the set bar and always execute
\afterwards afterwards, then use it to parse key=arg, key:

\ekvsetdefSneaked\barthing{bar}{\afterwards}
\barthing{key=arg, key}

\ekvcompile(*){cs)(parameters){(set)}{(key)=(value), ...}

This macro defines (cs) to be a fast way to set the given (key)=(value) list in (set). The
meaning of the keys is frozen if you don’t give the optional * (if the star is present the
stored content will be the key-macros and later redefinitions of keys will affect them,
otherwise the key-macros are expanded once, hence the key-code is stored). This does sup-
port the unknown key handlers set up with \ekvdefunknown and \ekvdefunknownNoVal
and also the redirection of unknown keys (the latter will not be expanded exhaustively
though, so the key-search is done on every later call of (cs)). Any prefix allowed for \def
might prefix \ekvcompile. The list is not entirely fixed, as you might use (parameters)
in a (value) (this is not a single token but a parameter text as you'd use it with \def).
They can not be part of a (key)-name (the names are indeed fixed). If you need a #in a
(value) you’ll need to double it just as you’d do in \def. Internally \ekvcompile uses
\ekvparse and no \ekvset variant, because of this the exp:NoTaTION is handled slightly
differently; in case you're using a (key)-name that starts with something that looks like
exp:NotaTION you'll have to explicitly add an empty (expansion) prefix.

Example: Define the macro \foo to set some keys in the set foo. Since one key has a
strange name we need to add an empty (expansion) prefix. Also we’'d like \foo to take
one parameter which is part of the (value) of bar (since the list is parsed now and not
when \foo is used we don’t need to put braces around that value, even if at use time #1
contains commas):

\ekvcompile\foo#1{foo}

{
bar = #lbaz
,: part-of-key: name = strange
,NoVal

}

14

\ekvparse

After this using \foo{VAL} will be the same as but faster than
\ekvset{foo}{bar={VALbaz},part-of-key: name=strange,NoVal}

1.6 Generic Key Parsing

\ekvparse{{codel)}{{code2)}{(key)=(value), ...}

This macro parses the (key)=(value) list and provides NoVal-(key)s to (codel) as a
single argument and Val-(key)s with their corresponding (value) as two arguments to
(code2).

\ekvparse is fully expandable and alignment safe, meaning that you don’t have
to take any extra precautions if it is used inside an alignment context (like KTEX 2¢’s
tabular environment) and any (key) or (value) can contain an &. \ekvparse expands in
exactly two steps, the result is provided inside \unexpanded (so doesn’t expand further
in an \edef or \expanded context).

\ekvbreak, \ekvsneak, \ekvmorekv, etc. don’t work in \ekvparse. \ekvparse does
not throw an error if multiple unprotected equals signs are found (it just splits at the
first), and doesn’t throw an error if a (key) is empty. If something looks like exp:NoTATION
(has a colon followed but not preceded by a space and with non-blank material following
it) it’ll be parsed as such (which might throw errors due to undefined (expansion)-rules
if that wasn’t the intended input). If you for some reason need to input a (key)-name
that would match that pattern you’ll need to precede it by :, (an empty (expansion)
prefix).

Example:

\ekvparse{\handlekey{S}}{\handlekeyval {S}}{foo = bar, key, baz={zzz}}
would be equivalent to
\handlekeyval{S}{foo}{bar}\handlekey{S}{key}\handlekeyval{S}{baz}{zzz}

and afterwards \handlekey and \handlekeyval would have to further handle the keys.
No such macros are contained in expiv, but I hope you get the idea. Because it expands
in two steps and doesn’t expand any further both

\expandafter\parse\expanded{\ekvparse\k\kv{foo = bar, key, baz={zzz}}}
and

\expandafter\expandafter\expandafter
\parse\ekvparse\k\kv{foo={bar}, key, baz = zzz}

expand to

\parse\kv{foo}{bar}\k{key}\kv{baz}{zzz}

15

\ekvoptarg

\ekvoptargTF

1.7 Other Useful Macros

\ekvoptarg{(next)}{(default)}

This macro will expandably check for a following optional argument in brackets ([]).
After the optional argument there has to be a mandatory one (or else this might have un-
wanted side effects). The code in (next) should expect two arguments (or more), namely
the processed optional argument and the mandatory one that followed it. If there was an
optional argument the result will be (next){(optional)}(mandatory) (so the optional
argument will be wrapped in braces, the mandatory argument will be untouched). If
there was no optional argument the result will be (next){(default)}{{mandatory)} (so
the default will be used and the mandatory argument will be wrapped in braces after it
was read once - if it was already wrapped it is effectively unchanged).

\ekvoptarg expands in exactly two steps, grabs all the arguments only at the second
expansion step, and is alignment safe. It has its limitations however. It can’t tell the
difference between [and {[}, so it doesn’t work if the mandatory argument is a single
bracket. Also if the optional argument should contain a nested closing bracket it has to
be nested in braces like so: [{arg[ulment}] (or else the result would be arg[u with a
trailing ment]).

Example: Say we have a macro that should take an optional argument defaulting to 1, we
could program it like this:

\newcommand\ foo{\ekvoptarg\@foo{1}} Mandatory: 5

\newcommand\@foo[2] {Mandatory: #2\par Optional: #1} Optional: 1
\foo{5}\par Mandatory: 5
\foo[4]{5}\par Optional: 4

\ekvoptargTF{(true)}{(false)}

This macro is similar to \ekvoptarg but will result in (true){(optional)}{mandatory)
or (false){(mandatory)} instead of placing a default value.

\ekvoptargTF expands in exactly two steps, grabs all the arguments only at the
second expansion step, and is alignment safe. It has the same limitations as \ekvoptarg.

Example: Say we have a macro that should behave differently depending on whether
there was an optional argument or not. This could be done with:

\newcommand\ foo{\ekvoptargTF\foo@a\foo@b}
\newcommand\ foo@a[2] {Mandatory: #2\par Optional: #1} Mandatory: 5
\newcommand\ foo@b[1] {Mandatory: #1\par No optional.}| Nooptional.
\foo{5}\par Man.datory: 5
\foo[4]{5}\par Optional: 4

16

\ekvcsvloop

\ekverr

\ekvcsvloop{(code)}{(csv-1ist)}

This loops over the comma separated items in (csv-1ist) and, after stripping spaces
from either end of (item) and removing at most one set of outer braces, leaves
\unexpanded{({code){(item)}} for each list item in the input stream. Blank elements
are ignored (if you need a blank element it should be given as {,}). It supports both
active commas and commas of category other. \ekvcsvloop is not alignment safe, but
you could make it so by nesting it in \expanded (since the braces around the argument
of \expanded will hide alignment characters from TgX’s parsing).

Example: The following splits a comma separated list and prints it in a typewriter font
with parentheses around each element:

\newcommandx\myprocessor[1]{\texttt{(#1)}}
\ekvcsvloop\myprocessor{abc,def, ghi}\par (abc) (def) (ghi)
\ekvcsvloop\myprocessor{1l,,2,,3,,4}\par (1) (3) 4@

\ekverr{(package)}{(message)}

This macro will throw an error fully expandably.” The error length is limited to a total
length of 69 characters, and since ten characters will be added for the formatting (!, and
uError:) that leaves us with a total length of (package) plus (message) of 59 characters.
If the message gets longer TgX will only display the first 69 characters and append \ETC.
to the end.

Neither (package) nor (message) expand any further. Also (package) must not
contain an explicit \par token or the token \thanks@jfbu. No such restriction applies to
(message).

If “~Jis set up as the \newlinechar (which is the case in IXTEX 2¢ but not in plain TgX
by default) you can use that to introduce line breaks in your error message. However
that doesn’t change the message length limit.

After your own error message some further text will be placed. The formatting of
that text will look good if "~ J is the \newlinechar, else not so much. That text will read:

| Paragraph ended before \<an-expandable-macro>
completed due to above exception. If the error
summary is not comprehensible see the package
documentation.

I will try to recover now. If you’re in inter-
active mode hit <return> at the ? prompt and I
continue hoping recovery was complete.

Any clean up has to be done by you, \ekverr will expand to nothing after throwing the
error message.

In ConTgXt this macro works differently. While still being fully expandable, it
doesn’t have the character count limitation and doesn’t impose restrictions on (package).
It will not display the additional text and adding line breaks is not possible.

Example: Say we set up a macro that takes as mandatory argument a simple equation
which must not be empty and if it’s not empty it displays it and calculates the result:

2The used mechanism was to the best of my knowledge first implemented by Jean-Francois Burnol.

17

\newcommandx\mycalc[1]
{%
\'the\numexpr
\if\relax\detokenize{#1}\relax
\ekverr{my}{Empty equation not allowed, leaving -2147483647}%
-2147483647%
\else
#1%
\fi
\relax
}

Using \mycalc{} wrong.
If that code gets executed the following will be the terminal output

Runaway argument?
! my Error: Empty equation not allowed, leaving -2147483647
! Paragraph ended before \<an-expandable-macro>
completed due to above exception. If the error
summary is not comprehensible see the package
documentation.
I will try to recover now. If you’re in inter-
active mode hit <return> at the 7 prompt and I
continue hoping recovery was complete.
<to be read again>

\par
1.17 Using \mycalc{}

wrong.
?

and the output would contain | Using -2147483647 wrong |if we continued the TgX run at

the prompt.

1.8 Other Macros

\ekvDate These two macros store expgv’s date and version.
\ekvVersion
\ekv@name \ekv@name{(set)}{(key)}

\ekv@name@set \ekv@name@set{(set)}
\ekv@name@key \ekv@name@key{(key)}

The names of the macros storing the code of Val-(key)s are built with these macros.
The name is built from two blocks, one that is formatting the (set) name, and on for
formatting the (key) name. To get the actual name the argument to \ekv@name@key
must be \detokenized. Both blocks are put together (with the necessary \detokenize)
by \ekv@name. For NoVal-(key)s an additional N gets appended, so their name is
\ekv@name{(set)}{(key)}N.

You can use these macros to implement additional functionality or access key-macros
outside of expiv, but don’t change them! expyv relies on their exact definitions internally.

18

Example: Execute the key-macro of the NoVal-(key) named bar in set foo:

\csname\ ekv@name{foo}{bar}N\endcsname

1.9 Examples

1.9.1 Standard Use-Case

Example: Because I keep forgetting the correct order of XTEX 2¢’s \rule command I want
to create a (key)=(value) interface to it. For this I define the keys ht to specify the rule’s
height, wd to specify its width, and to give a displacement I use two keys (because who
can remember whether the rule is moved upwards or downwards?).

First the internals storing the values are initialised

\makeatletter
\newcommandx\myrule@ht{lex}
\newcommand*\myrule@wd{0.lem}
\newcommandx\myrule@raise{\z@}

then the keys are defined. We could use \dimen registers instead of defining macros, but
macros have the advantage that the font dependent dimensions are evaluated at use time.

\protected\ekvdef{myrule}{ht}{\def\myrule@ht{#1}}
\protected\ekvdef{myrule}{wd}{\def\myrule@wd{#1}}
\protected\ekvdef{myrule}{raise}{\def\myrule@raise{#1}}
\protected\ekvdef{myrule}{lower}{\def\myrule@raise{-#1}}

We also want a way to change the initial values without outputting a rule (since there are
unexpandable keys involved it’s a good idea to define this \protected)

\protected\ekvsetdef\myruleset{myrule}
and we need an actual frontend that does the job:

\newcommandx\myrule[1][]
{%
\begingroup
\myruleset{#1}%
\rule[\myrule@raise] {\myrule@wd}{\myrule@Ght}%
\endgroup
}
\makeatother

Now we can use it:

a\myrule\par

a\myrule[ht=2ex, lower=.5ex]\par e

\myruleset{wd=5cm} 4

a\myru]_e e |

19

1.9.2 An Expandable (key)=(value) Macro Using \ekvsneak

Example: Let’s set up an expandable macro that uses a (key)=(value) interface. The
problems we’ll face for this are:

1. ignoring duplicate keys
2. default values for keys which weren’t used
3. providing the values as the correct argument to a macro (ordered)

First we need to decide which (key)=(value) parsing macro we want to do this with,
\ekvset or \ekvparse. For this example we also want to show the usage of \ekvsneak,
hence we’ll choose \ekvset. And we’ll have to use \ekvset such that it builds a parsable
list for our macro internals. To gain back control after \ekvset is done we have to put
an internal of our macro at the start of that list, so we use an internal key that uses
\ekvsneakPre after any user input.

To ignore duplicates will be easy if the value of the key used last will be put first
in the list, so we’ll use \ekvsneakPre for the real values as well. If for some reason we
wanted a key for which the first usage was the binding one we’d use \ekvsneak for that
one.

Providing default values can be done in different ways. We’ll use a simple approach
in which we’ll just put the outcome of our keys if they were used with default values
before our end marker.

Ordering the keys can be done simply by searching for a specific token for each
argument (that token acts as a flag), so our sneaked out values will include these specific
tokens acting as markers.

Now we got an answer to each of our initial problems. Everything that’s left is
deciding what our macro should actually do. For this example we’ll define a macro that
calculates the sine of a number rounded to a specified precision. The macro should also
understand input in radian and degree, and we could also decide to evaluate a different
function. For the real hard part of this (expandably calculating trigonometric functions)
we’ll use xfp.

First we set up our keys according to our earlier considerations and set up the user
facing macro \sine. The end marker of the parsing list will be a \sine@stop token
(which we don’t need to define) and we put our default values right before it. The
user macro \sine uses \ekvoptargTF to check for the optional argument short cutting
a bit if no optional argument was found. If you'd so prefer you could use ltcmd’s
\NewExpandableDocumentCommand to expandably get an optional argument as well.

\RequirePackage{xfp}

\makeatletter

\ekvdef{sine}{f}{\ekvsneakPre{\f{#1}}}

\ekvdef{sine}{round}{\ekvsneakPre{\rnd{#1}}}

\ekvdefNoVal{sine}{degree}{\ekvsneakPre{\deg{d}}}

\ekvdefNoVal{sine}{radian}{\ekvsneakPre{\deg{}}}

\ekvdefNoVal{sine}{internal}{\ekvsneakPre{\sine@rnd}}

\newcommandx\sine{\ekvoptargTF\sine@args{\sine@final{sin}{d}{3}}}

\newcommandx*\sine@args[2]
{\ekvset{sine}{#1,internal}\rnd{3}\deg{d}\f{sin}\sine@stop{#2}}

20

Now we need to define some internal macros to extract the value of each key’s last
usage (remember that this will be the argument after the first matching flag). For that we
use one delimited macro per key.

\def\sine@rnd#1\rnd#2#3\sine@stop{\sine@deg#1#3\sine@stop{#2}}
\def\sine@deg#1\deg#2#3\sine@stop{\sine@f#1#3\sine@stop{#2}}
\def\sine@f#1\f#2#3\sine@stop{\sine@final {#2}}

After the macros \sine@rnd, \sine@deg, and \sine@f the macro \sine@final will see
\sine@f inal{(f)}{(degree/radian)}{(round)}{(num)}. Now \sine@final has to ex-
pandably deal with those arguments such that the \fpeval macro of xfp gets the correct
input. Luckily this part is pretty easy after the build up we’ve done until now. In \fpeval
the trigonometric functions have names such as sin or cos, and the degree taking alter-
natives just have an appended d (so sind or cosd). So putting (f) and (degree/radian)
together will form the correct names.

\newcommandx\sine@final [4]{\fpeval{round (#1#2 (#4),#3)}}
\makeatother

Let’s give our macro a test:

\sine{60}\par
\sine[round=10]{60}\par 0.8660254038
\sine[f=cos,radian]{pi}\par o
\edef\myval{\sine[f=tan]{1}}\texttt{\meaning\myval} macro:->0.017

0.866

Please note that setting this up a lot more user friendly is easily possible by utilizing
expkvics (see section 2).

21

\input{expkv-cs} 7 plain
2 eXPkVICS \usepackage{expkv-cs} J LaTeX

\usemodule [expkv-cs] 7 ConTeXt

expkvics aids in creating fully expandable macros that take a (key)=(value) argument. It
implements somewhat efficient solutions to expandable (key)=(value) parsing without
the user having to worry too much about the details.

The package supports two main approaches for this. The first is splitting the keys
up into individual arguments, the second preparses the (key)=(value) list into a single
argument in which accessing the value of individual keys is fast. The behaviour of the
second type is similar to a hash table, so we call that variant Hash, the first type is called
Split. Both these variants support a number of so called primary keys (a primary key
matches an argument, roughly speaking).

In addition to these methods there is a structured way to define additional keys
which might build upon the primary keys but not directly relate to an argument. These
keys are called secondary keys. Primary and secondary keys belong to a specific macro
(the macro name serves as the set).

A word of advice you should consider: Macros defined with expivics are simple to
create, and there might be good use cases for them (for instance since they don’t work by
assignments but only by argument forwarding logic they have no issues with implicit or
explicit groups whatsoever). But they don’t scale as well as established (key)=(value)
interfaces (think of the idiomatic key definitions with keyval, or |3keys, or expkv with or
without expgviper), and they are slower than idiomatic key definitions in packages with
fast (key)=(value) parsing.

2.1 Defining Macros and Primary Keys

All macros defined with expyvics have to be previously undefined (or have the \meaning
of \relax). There is no way to automatically undefine keys once they are set up - so to
make sure there are no conflicts only new definitions are allowed. The set name (as used
by \ekvset) will be \string\(macro).

2.1.1 Primary Keys

The notion of primary keys needs a bit of explanation, or better, the input syntax for the
argument (primary keys) in the following explanations. The (primary keys)argument
should be a (key)=(value) list in which each (key) will be one primary key and (value)
the initial value of said (key) (and that value is mandatory, even if you leave it blank that’s
fine, but you have to explicitly state it). By default all keys are defined short, but you can
define \long keys by prefixing (key) with long (e.g., long name=Jonathan P. Spratte
to define a \long key called name). Due to some internal implementations it’s worth
noting that \long keys are a microscopic grain faster. The (cs) will only be defined
\long if at least one of the keys was \long. For obvious reasons there is no interface in
place to define something as \protected.

To allow keys to start with the word long even if you don’t want them to be \long
you can also prefix them with short. The first found prefix of the two will stop the
parsing for prefixes and what remains becomes the (key).

These rules culminate in the following:

\ekvcSplit\foo
{

long short = abc\par

22

https://gitlab.com/islandoftex/texmf/expkv-bundle

\ekvcSplit

,short long = def

}
{#1#2}

will define a macro \foo that knows two primary keys, short which is defined \long (so
will accept explicit \par tokens inside its value at use time), and long which doesn’t ac-
cept explicit \par tokens (leading to a low level TgX error). The description of \ekvcSplit
follows shortly.

There is one exception to the rule that each (key) in (primary keys) needs to get a
value: If you include a key named . . . without a value this will be a primary key in which
every unknown key will be collected — and (cs) will be defined \long. The unknown
keys will be stored in a way that most (key)=(value) parsers will parse them correctly
(but this is no general guarantee, for instance pgfkeys can accidentally strip multiple sets
of braces at the wrong moment). See some examples in subsection 2.4.

At the moment expivics doesn’t require any internal keys, but I can’t foresee whether
this will be the case in the future as well, as it might turn out that some features I deem
useful can’t be implemented without such internal keys. Because of this, please don’t use
key names starting with EKVC| as that should be the private name space.

2.1.2 Split

The split variants will provide the key values as separate arguments. This limits the
number of keys for which this is truly useful.

\ekvcSplit{cs){(primary keys)}{(definition)}

This defines (cs) to be a macro taking one mandatory argument which should contain
a (key)=(value) list. The (primary keys) will be defined for this macro (see subsub-
section 2.1.1). The (definition) is the code that will be executed. You can access the
(value) of a (key) by using a macro parameter from #1 to #9. The order of the macro
parameters will be the order provided in the (primary keys) list (so #1 is the (value)
of the (key) defined first). With \ekvcSplit you can define macros using at most nine
primary keys.

Example: The following defines a macro \foo that takes the keys a and b and outputs
their values in a textual form:

\ekvcSplit\foo{a=a,b=b}{a is #1l.\par b is #2.\par} aisa.
\foo{} b .iS b.
\foo{b=e} aisa.

bise.

23

\ekvcSplitAndForward

\ekvcSplitAndUse

\ekvcHash

\ekvcSplitAndForward(cs){(after)}{(primary keys)}

This defines (cs) to be a macro taking one mandatory argument which should contain
a (key)=(value) list. You can use as many primary keys as you want with this. The
primary keys will be forwarded to (after) as braced arguments (as many as necessary
for your primary keys). The order of the braced arguments will be the order of your
primary key definitions. In (after) you can use just a single control sequence, or some
arbitrary stuff which will be left in the input stream before your braced values (with one
set of braces stripped from (after)), so both of the following would be fine:

\ekvcSplitAndForward\foo\foo@aux{keyA = A, keyB = B}
\ekvcSplitAndForward\foo{\foo@aux{more args}}{keyA = A, keyB = B}

In the first case \foo@aux should take at least two arguments (keyA and keyB), in the
second case at least three (more args, keyA, and keyB).

\ekvcSplitAndUse(cs){(primary keys)}

This will roughly do the same as \ekvcSplitAndForward, but instead of specifying what
will be used after splitting the keys, (cs) will use what follows the (key)=(value) list.
So its syntax will be

(cs){(key)=(value), ...} (after)}

and the code in after should expect at least as many arguments as the number of keys
defined for {cs).

2.1.3 Hash

The hash variants will provide the key values as a single argument in which you can access
specific values using a special macro. The implementation might be more convenient and
scale better, but it is slower (for a rudimentary macro with a single key benchmarking
was almost 1.7 times slower, the root of which being the key access with \ekvcValue,
not the parsing, and for a key access using \ekvcValueFast it was still about 1.2 times
slower). Still to be future proof, considering the hash variants is a good idea, and to get
best performance but less maintainable code you can resort to the split approach.

\ekvcHash{cs){(primary keys)}{(definition)}

This defines (cs) to be a macro taking one mandatory argument which should contain a
(key)=(value) list. You can use as many primary keys as you want. The primary keys
will be forwarded as a single argument containing every key to the underlying macro.
The underlying macro is defined as (definition}), in which you can access the (value)
of a (key) by using \ekvcValue{(key)}{#1} (or similar).

Example: This defines an equivalent macro to the \foo defined with \ekvcSplit earlier:

\ekvcHash\foo{a=a,b=b}{a is \ekvcValue{a}{#1}.\par

b is \ekvcValue{b}{#1}.\par} f) 112 all)-,
\foo{} ais a.
\foo{b=e} i,

24

\ekvcHashAndForward

\ekvcHashAndUse

\ekvcValue

\ekvcValueFast

\ekvcValueSplit

\ekvcHashAndForward(cs){{(after)}{(primary keys)}

This defines (cs) to be a macro taking one mandatory argument which should contain a
(key)=(value) list. You can use as many primary keys as you want. The primary keys
will be forwarded as a single argument containing every key to (after). You can use
a single macro for (after) or use some arbitrary stuff, which will be left in the input
stream before the hashed (key)=(value) list with one set of braces stripped. In the macro
called in (after) you can access the (value) of a (key) by using \ekvcValue{(key)}{#1}
(or whichever argument the hashed (key)=(value) list will be in).

Example: This defines a macro \foo processing two keys, and passing the result to
\foobar:

\ekvcHashAndForward\ foo\foobar{a=a,b=b}
\newcommandx+\foobar[1]{a is \ekvcValue{a}{#1}.\par aisa.
b is \ekvcValue{b}{#1}.\par} bisb.
\foo{} a I.S a.
\foo{b=e} bise.

\ekvcHashAndUse(cs){(primary keys)}

This will roughly do the same as \ekvcHashAndForward, but instead of specifying what
will be used after hashing the keys during the definition, (cs) will use what follows the
(key)=(value) list. So its syntax will be

(cs){(key)=(value), ...} {(after)}

\ekvcValue{(key)}{(key list)}

This is a safe way to access your keys in a hash variant. (key) is the key which’s
(value) you want to use out of the (key list). (key list) should be the key list
argument forwarded to your underlying macro by \ekvcHash, \ekvcHashAndForward, or
\ekvcHashAndUse. It will be tested whether the hash function to access that (key) exists,
the (key) argument is not empty, and that the (key Iist) really contains a (value) of
that (key). This macro needs exactly two steps of expansion and if used inside of an
\edef or \expanded context will protect the (value) from further expanding.

\ekvcValueFast{(key)}{(key list)}

This behaves similar to \ekvcValue, but without any safefy tests. As a result this is about
1.4 times faster but will throw low level TEX errors eventually if the hash function isn’t
defined or the (key) isn’t part of the (key list) (e.g., because it was defined as a key for
another macro — all macros share the same hash function per (key) name). Note that
this will not only throw low level errors but result in undefined behaviour as well! This
macro needs exactly three steps of expansion in the no-error case.

\ekvcValueSplit{(key)}{(key list)}{(next)}

If you need a specific (key) from a (key 1ist) more than once, it'll be a good idea to
only extract it once and from then on keep it as a separate argument (or if you want to
forward this value to another macro). Hence the macro \ekvcValueSplit will extract
one specific (key)’s (value) from the list and forward it as an argument to (next), so the
result of this will be (next){(value)}. This is roughly as fast as \ekvcValue and runs
the same tests.

25

\ekvcValueSplitFast

\ekvcSecondaryKeys

Example: The following defines a macro \foo which will take three keys. Since the next
parsing step will need the value of one of the keys multiple times we split that key off
the list (in this example the next step doesn’t use the key multiple times for simplicity
though), and the entire list is forwarded as the second argument:

\ekvcHash\foo{a=a,b=b,c=c}

{\ekvcValueSplit{a}{#1}\foobar{#1}}
\newcommandx\foobar[2]{a is #1.\par aisa.
b is \ekvcValue{b}{#2}.\par bisb.
c is \ekvcValue{c}{#2}.\par} &
\foo{}
\ekvcValueSplitFast{(key)}{(key list)}{(next)}

This behaves just like \ekvcValueSplit, but it won't run the safety tests, hence it is faster
but more error prone, just like the relation between \ekvcValue and \ekvcValueFast.

2.2 Secondary Keys

To lift some limitations of each primary key matching one argument or hash entry, you
can define secondary keys. Those have to be defined for each macro individually but it
doesn’t matter whether that macro was set up as a split or hash variant.
Secondary keys can have a prefix (1long), and must have a type (like meta). Some types
might require some prefix while other types might forbid the usage of a specific prefix.
Please keep in mind that key names shouldn’t start with EKVC|.

\ekvcSecondaryKeys(cs){(key)=(value), ...}

This is the front facing macro to define secondary keys. For the macro (cs) define (key)
to have definition (value). The general syntax for (key) should be

(prefix) (name)
Where (prefix) is a space separated list of optional prefixes followed by one type. The
syntax of (value) is dependent on the used type.
2.2.1 Prefixes

Currently there is only one prefix available, which is

The following key will be defined \long.

2.2.2 Types

Compared to expivIiDEF you might notice that the types here are much fewer. Unfortu-
nately the expansion only concept doesn’t allow for great variety in the common key
types.

The syntax examples of the types will show which prefix will be automatically used
by printing those black (1ong), which will be available in grey (1ong), and which will be
disallowed in red (1ong). This will be put flush right next to the syntax line.

26

meta

nmeta

alias

default

enum

If a secondary key references another key it doesn’t matter whether that other key is
a primary or secondary key (unless explicitly stated otherwise).

meta (key) = {(key)=(value), ...} long

With a meta key you can set other keys. Whenever (key) is used the keys in the (key)=
(value) list will be set to the values given there. You can use the (value) given to (key)
by using #1 in the (key)=(value) list.

nmeta (key) = {(key)=(value), ...} long

An nmeta key is like a meta key, but it doesn’t take a value at use time, so the (key)=
(value) list is static.

alias (key) = {(key))} long

This assigns the definition of (key,) to (key). As a result (key) is an alias for (key,)
behaving just the same. Both the Val-(key) and the NoVal-(key) will be copied if they
are defined when alias is used. Of course, (key,) has to be defined as at least one of
NoVal-(key) or Val-(key).

default (key) = {(default)} long

If (key) is defined as a Val-(key) you can define a NoVal-(key) version with this. The
NoVal-(key) will behave as if (key) was given (default) as its (value). Note that this
doesn’t change the initial values of primary keys set at definition time (see \ekvcChange
in subsection 2.3 for this). If (key) isn’t yet defined this results in an error.

enum (key) = {(key;)}{(value), ...} long

This defines (key) to only accept the values given in the list of the second argument of
its definition. It forwards the position of (value) in that list to (key,) (zero-based) as a
string of digits (so as 0, 1, ...). The (key,) has to already be defined by the time an enum
key is set up. Each (value) in the list (and at use time) is \detokenized, so no expansion
takes place here.

If you use enum twice on the same (key) the new values will again start at zero (so it
is possible to define multiple values with the same outcome), however since you can’t
skip values you’ll have to use the same as in the first call for values with just a single
variant (or use the choice fype as an enum is just a specialised choice and the two use
the same internal structure). There is no interface to delete existing values.

Example: First a small example that might give you an idea of what the description above
could mean:
\ekvcSplit\foo{k-internal=-1}{#1}
\ekvcSecondaryKeys\foo

{enum k = {k-internal}{a,b,c}} =lene
\foo{}\foo{k=a}\foo{k=b}\foo{k=c}

Example: We can define a choice setup that might do different things based on the choice
encountered, and the numeric value is easy to parse using \ifcase:

27

\ekvcSplit\foo{k-internal=-1}
{%
\ifcase#1
is\or
This\or
easy%
\else This is easy.
.%
\fi
}
\ekvcSecondaryKeys\foo
{enum k = {k-internal}{a,b,c}}
\foo{k=b} \foo{k=a} \foo{k=c}\foo{}

choice choice (key) = {(key,)}{(key)=(value), ...} long

This is pretty similar to an enum, but unlike with enum the forwarded (value) will not
be numeric, instead the (value) as given during the definition time will be forwarded
(inside the (key)=(value) list argument if you omit (value) the same as the (key) will
be used). While the user input has to match in a \detokenized form, the (value) might
still expand further during your macro’s expansion.

Example: We could use this to filter out the possible vertical placements of a IXTEX 2¢
tabular:

\ekvcSplit\foo{v-internal=c,a=t,b=c,c=b}

{%
\begin{tabular}[#1]{@{} c @{:} c @{}}
a & #2\\ a:t
b & #3\\ a:t a:t b:c
c & #4\\ b:c a:t b:c c:b
\end{tabular}% c:bb:c c:b
} c:b
\ekvcSecondaryKeys\foo

{choice v = {v-internal}{t,c,b}}
\foo{} \foo{v=t} \foo{v=c} \foo{v=b}

Example: We could also set up a Boolean key with a choice key by forwarding
\@firstoftwo or \@secondoftwo:

\makeatletter

\ekvcSplit\foo{bool-internal=\@secondoftwo}
{bool was #1{true}{false}.\par}

\ekvcSecondaryKeys\foo

{ bool was false.
choice bool = {bool-internal} bool was true.
{true=\@firstoftwo, false=\@secondoftwo} bool was false.

bool was true.

,nmeta bool = {bool-internal=\@firstoftwo}
}
\foo{}\foo{bool}\foo{bool=false}\foo{bool=true}
\makeatother

28

aggregate

e-aggregate

flag-bool

aggregate (key) = {(primary)}{(definition)} long

While other key types replace the current value of the associated primary key, with
aggregate you can create keys that append or prepend (or whatever you like) the new
value to the current one. Your definition of an aggregate key must be exactly two TgX
arguments, where (primary) should be the name of a primary key, and (definition) the
way you want to store the current and the new value. Inside (definition) you can use #1
for the current, and #2 for the new value. The (definition) will not expand any further
during the entire parsing for aggregate, whereas in e-aggregate everything that ends
up in (definition) (so whatever you provide including the values in #1 and #2) will be
fully expanded (using the \expanded primitive), so use \noexpand and \unexpanded to
protect what shouldn’t be expanded. The resulting (key) will inherit being either short
or long from the (primary) key.

Example: The following defines an internal key (k-internal), which is used to build a
comma separated list from each call of the user facing key (k):

\ekvcSplit\foo
{k-internal=0,color=red}
{\textcolor{#2}{#1}}
\ekvcSecondaryKeys\foo &
0,1,2,3,4

{aggregate k = {k-internall}{#1,#2}}
\foo{}\par
\foo{k=1,k=2,k=3,k=4}

Example: But also more strange stuff could end there, like macros or using the same value
multiple times:

\ekvcSecondaryKeys\foo
{aggregate k = {k-internal}{\old{#1}\new{#2\old{#1}}}}

flag-bool (key) = (cs) long

This is a secondary type that doesn’t involve any of the primary or other secondary keys.
This defines (key) to take a value, which should be either true or false, and set the flag
called (cs) accordingly as a boolean. If (cs) isn’t defined yet it will be initialised as a flag.
Note that the flag will not be set to a specific state automatically so a flag set in one macro
might affect every other macro in the current scope. Please also read subsection 2.5.

Example: Provide a key bold to turn the output of our macro bold if the associated flag is
true.

\ekvcSplit\foo{a=a,b=b}

{%
\ekvcFlagIf\fooFlag aisaandbisb
{\textbf{a is #1 and b is #2}\par} aisaandbisb
{a is #1 and b is #2\par}% aisaandbisb
} aisaand bisb
\ekvcSecondaryKeys\foo{flag-bool bold = \fooFlag} aisaandbisb

\foo{}\foo{bold=true}\foo{}\foo{bold=false}\foo{}

29

flag-true
flag-false

flag-raise

\ekvcChange

flag-true (key) = (cs) long

This is similar to flag-bool, but the (key) will be a NoVal-(key) and if used will set
the flag to either true or false. If (cs) isn’t defined yet it will be initialised as a flag.
Note that the flag will not be set to a specific state automatically. Please also read
subsection 2.5.

flag-raise (key) = (cs) long

This defines (key) to be a NoVal-(key) that will raise the flag called (cs) on usage. If
(cs) isn’t defined yet it will be initialised as a flag. Note that the flag will not be set to a
specific state automatically. Please also read subsection 2.5.

2.3 Changing the Initial Values

\ekvcChange(cs){(key)=(value), ...}

This processes the (key)=(value) list for the macro (cs) to set new defaults for it
(meaning the initial values used if you don’t provide anything at use time, not those
specified with the default type). (cs) should be defined with expyvics (but it doesn’t
matter if it’s a split or hash variant). Inside the (key)=(value) list both primary and
secondary keys can be used. If (cs) was defined \long earlier it will still be \1long, every
other TgX prefix will be stripped (but expivics doesn’t support them anywhere else so
that should be fine). The resulting new defaults will be stored inside the (cs) locally
(just as the original initial values were). If there was an unknown key forwarding added
to (cs) (see subsection 2.4) any unknown key will be stored inside the list of unknown
keys as well. \ekvcChange is not expandable!

Example: With \ekvcChange we can now do the following:

\ekvcSplit\foo{a=a,b=b}{a is #1.\par b is #2.\par}

\begingroup
\ekvcChange\foo{b=B} aisa.
\foo{} b is B.
\ekvcSecondaryKeys\foo{meta c={a={#1},b={#1}}} aisc.
\ekvcChange\foo{c=c} b}SQ
\foo{} aI.S a.
\endgroup big b
\foo{}

Example: As a result with this the typical setup macro could be implemented:

\ekvcHashAndUse\ fooKV{keyA=a,keyB=b}
\def\fooA#1{\fooKV{#1}\fooAinternal}
\def\fooB#1{\fooKV{#1}\fooBinternal}
\protected\def\foosetup{\ekvcChange\fookV}

Of course the usage is limited to a single macro \fooKV, hence this might not be as
powerful as similar macros used with other (key)=(value) interfaces. But at least a few
similar macros could be grouped using the same key parsing macro internally like \fooA
and \fooB do in this example.

30

2.4 Handling Unknown Keys

If your macro should handle unknown keys without directly throwing an error you can
use the special . .. marker in the (primary keys) list. Since those keys will be processed
once by expkv they will be forwarded normalised: The (key) and the (value) will be
forwarded with one set of surrounding spaces and braces, so a (key)=(value) pair will
result in {(key)} = {(val)}, and a NoVal-(key) is forwarded as {(key)} (this way
most other (key)=(value) implementations should parse the correct input).

The exact behaviour differs slightly between the two variants (as all primary keys
do). The behaviour inside the split variants will be similar to normal primary keys, the
n-th argument (corresponding to the position of . .. inside the primary keys list) will
contain any unknown key encountered while parsing the argument. And inside the split
variant you can use a primary key named ... at the same time (since only the position
in the list determines the argument, not the name).

Example: The following will forward any unknown key to \includegraphics to control
the appearance while processing its own keys:

\newcommand=x\foo{\ekvoptarg\fooKV{}}
\ekvcSplitAndForward\fooKV\fooOUT

{
a=a
,b=b
,...={} aisaandbisc.
}
\newcommand\ fooOUT[5]

{% N
a is #1 and b is #3.\par ... is a stupid key name, but
\includegraphics[{#2}]{#5}\par works.
\texttt{...} is #4.\par

}

\foo[width=.5\1inewidth, b=c,
...={a stupid key name, but works}]
{example-image-duck}

Inside the hash variants the unknown keys list will be put inside the hash named . ..
(we have to use some name, and this one seems reasonable). As a consequence a primary
key named . .. would clash with the unknown key handler. If you still used such a key
it would remove any unknown key stored there until that point and replace the list with
its value.

Example: The following is more or less equivalent to the above example, but with the
hash variant, and it will not contain the primary ... key. We have to make sure that
\includegraphics sees the (key)=(value) list, so need to expand \ekvcValue{...}{#1}
before \includegraphics parses it.

31

\ekvcFlagNew

\ekvcFlagHeight

\ekvcFlagRaise

\ekvcFlagSetTrue
\ekvcFlagSetFalse

\newcommand=x\foo{\ekvoptarg\fooKvV{}}
\ekvcHashAndForward\ fooKV\fooOUT

fa=a, b=b } aisaandbis c
\newcommand\ fooOUT[2]
{%
a is \ekvcValue{a}{#1} and)

b is \ekvcValue{b}{#1}.\par o
\ekvcValueSplit{...}{#1}{\includegraphics[}1%
{#2}\par
}
\foo[width=\1linewidth, b=c]
{example-image-duck-portrait}

2.5 Flags

The idea of flags is taken from expl3. They provide a way to store numerical information
expandably, however only incrementing and accessing works expandably, decrementing
is unexpandable. A flag has a height, which is a numerical value, and which can be raised
by 1. Flags come at a high computational cost (accessing them is slow and they require
more memory than normal TgX data types like registers, both issues getting linearly
worse with the height), so don’t use them if not necessary.

The state of flags is always changed locally to the current group, but not to the
current macro, so if you’re using one of the types involving flags bear in mind that they
can affect other macros using the same flags at the current scope!

expkvics provides some macros to access, alter, and use flags. Flags of expyvics don’t
share a name space with the flags of expl3.

\ekvcFlagNew(flag)

This initialises the macro (f1ag) as a new flag. It isn’t checked whether the macro (flag)
is currently undefined. A (flag) will expand to the flag’s current height with a trailing
space (so you can use it directly with \ifnum for example and it will terminate the
number scanning on its own).

All other macros dealing with flags take as a parameter a macro defined as a (flag)
with \ekvcFlagNew.

\ekvcFlagHeight(flag)

This expands to the current height of (f1ag) in a single step of expansion (without a
trailing space).

\ekvcFlagRaise(flag)
This expandably raises the height of (f1ag) by 1.

\ekvcFlagSetTrue(flag)

By interpreting an even value as false and an odd value as true we can use a flag as
a boolean. This expandably sets (flag) to true or false, respectively, by raising it if
necessary.

32

\ekvcFlagIf

\ekvcFlagIfRaised

\ekvcFlagReset
\ekvcFlagResetGlobal

\ekvcFlagGetHeight

\ekvcFlagGetHeights

\ekvcFlagIf(flag){(true)}{(false)}

This interprets a (flag) as a boolean and expands to either (true) or (false).

\ekvcFlagIfRaised(flag){(true)}{(false)}

This tests whether the (f1ag) is raised, meaning it has a height greater than zero, and if
so expands to (true) else to (false).

\ekvcFlagReset(flag)

This resets a flag (so restores its height to o). This operation is not expandable and done
locally for \ekvcFlagReset and globally for \ekvcFlagResetGlobal. If you really intend
to use flags you can reset them every now and then to keep the performance hit low.

\ekvcFlagGetHeight(flag){(next)}

This retrieves the current height of the (f1ag) and provides it as a braced argument to
(next), leaving (next){(height)} in the input stream.

\ekvcFlagGetHeights{(flag-list)}{(next)}

This retrieves the current height of each (flag) in the (flag-list) and provides them
as a single argument to (next). Inside that argument each height is enclosed in a
set of braces individually. The (flag-list) is just a single argument containing the
(flag)s. So a usage like \ekvcFlagGetHeights{\myflagA\myflagB}{\stuff} will ex-
pand to \stuff{{(height-A)}{(height-B)}}.

2.6 Further Examples

Example: Using \NewExpandableDocumentCommand or expkv’s \ekvoptarg or \ekvoptargTF
and forwarding arguments one can easily define (key)=(value) macros with actual op-
tional and mandatory arguments as well. A small nonsense example:

\makeatletter
\newcommand*\nonsense{\ekvoptarg\nonsense@a{}}
\ekvcHashAndForward\nonsense@a\nonsense@b

{

keyA = A,

keyB = B,

keyC = c,

keyD = d,
}

\newcommandx\nonsense@b[2]

{%

\begin{tabular}{111|}
key & A & \ekvcValue{keyA}{#1} \\
& B & \ekvcValue{keyB}{#1} \\
& C & \ekvcValue{keyC}{#1} \\
& D & \ekvcValue{keyD}{#1} \\
\multicolumn{2}{1}{mandatory} & #2 \\
\end{tabular}%

33

}
\makeatother

\nonsense{} % do nonsense
\nonsense[keyA=hihi] {haha}
\nonsense[keyA=hihi, keyB=A]{hehe}

\nonsense [keyC=huhu, keyA=hihi, keyB=A]{haha}

resulting in

key A A | key A hihi key A hihi key A hihi
B B B B B A B A
C c C c C c C huhu
D d D d D d D d
mandatory mandatory haha | mandatory hehe | mandatory haha

Example: In subsubsection 1.9.2 I presented an expandable macro to calculate the sine
of some user input with a few keys, and there I hinted to expkvics, so here’s the same
function implemented with \ekvcSplitAndForward. There is a small difference here, we
need to use an internal key to store whether degrees or radians will be used, but we don’t
need to use an internal key to collect the values of our individual keys in the correct
order.

\makeatletter

\newcommand\sine{\ekvoptarg\sine@kv{}}
\ekvcSplitAndForward\sine@kv\sine@do

{
f = sin
,internal = d
,round =3
}
\ekvcSecondaryKeys\sine@kv 0.866
{ 0.8660254038
nmeta degree = internal=d =1
,nmeta radian = internal={} macro:->0.017
}
\newcommandx\sine@do[4] {\fpeval{round (#1#2 (#4),#3)}}
\makeatother
\sine{60}\par

\sine[round=10] {60} \par
\sine[f=cos,radian]{pi}\par
\edef\myval{\sine[f=tan]{1}}\texttt{\meaning\myval}

2.7 Freedom for Keys!

If this had been the TpXbook this subsection would have had a double bend sign. Not
because it is overly complicated, but because it shows things which could break expivics’s
expandability and its alignment safety. This is for experienced users wanting to get the
most flexibility and knowing what they are doing.

In case you're wondering, it is possible to define other keys than the primaries and
the secondary key types listed in subsection 2.2 for a macro defined with expyvics by
using the low-level interface of expiv or even the interface provided by expiviper. The

34

\ekvcPass

process

set name used for expyivics’s keys is the macro name, including the leading backslash,
or more precisely the result of \string(cs) is used. This can be exploited to define
additional keys with arbitrary code. Consider the following bad example:

\ekvcSplit\foo{a=A,b=B}{a is #1.\par b is #2.\par}
\protected\ekvdef{\string\foo}{c}{\def\fooC{#1}}

This would define a key named c that will store its (value) inside a macro. The issue
with this is that this can’t be done expandably. As a result, the macro \foo isn’t always
expandable any more (not that bad if this was never required; killjoy if it was) and as
soon as the key c is used it is also no longer alignment safe3 (might be bad depending on
the usage).

So why do I show you this? Because we could as well do something useful like
creating a key that pre-parses the input and after that passes the parsed value on.
This parsing would have to be completely expandable though (and we could perhaps
also implement this using the e-aggregate type). For the pass-on part we can use the
following function:

\ekvcPass(cs){(key)}H(value)}

This passes (value) on to (key) for the expkvics-macro (cs). It should be used inside the
key parsing of a macro defined with expgvics, else this most likely results in a low level
TgX error. You can’t forward anything to the special unknown key handler ... as that is
no defined key.

Example: With this we could for example split the value of a key at a hyphen and pass
the parts to different keys:

\ekvcSplit\foo{a=A,b=B}{a is #1.\par b is #2.\par}

\ekvdef{\string\foo}{c}{\fooSplit#1\par} ais A
\def\fooSplit#1-#2\par bis B.

{\ekvcPass\foo{a}{#1}\ekvcPass\foo{b}{#2}} afs @
\foo{} b is 2.
\foo{c=1-2}

Additionally, there is a more general version of the aggregate secondary key type,
namely the process key type:

process (key) = {(primary)}{(definition)} long

This will grab the current value of a (primary) key as #1 (without changing the current
value) and the new value as #2 and leave all the processing to (definition). You should
use \ekvcPass to forward the values afterwards. Unlike aggregate you can specify
whether the (key) should be long or not, this isn’t inherited from the (primary) key.
Keep in mind that you could easily break things here if your code does not work by
expansion.

Example: We could define a key that only accepts values greater than the current value
with this:

3This means that the (key)=(value) list can’t contain alignment markers that are not inside an additional
set of braces if used inside a TEX alignment

35

\ekvcDate
\ekvcVersion

\ekvcSplit\foo{internal=5}{a is #1.\par}
\ekvcSecondaryKeys\foo

{
process a={internal} ais s.
{\ifnum#1<#2 \ekvcPass\foo{internal}{#2}\fi} ais 5.
} aisog.
\foo{a=1}
\foo{a=5}
\foo{a=9}

Example: The same is possible with an e-aggregate key as well though:

\ekvcSplit\foo{internal=5}{a is #1.\par}
\ekvcSecondaryKeys\foo
{

e-aggregate a={internal}
{\ifnum#1<#2 \unexpanded{#2}\else\unexpanded{#1}\fi}

2.8 Useless Macros

These macros are most likely of little to no interest to users.

These two macros store the version and date of the package/generic code.

36

\input{expkv-def} J plain
3 eXPkV|DEF \usepackage{expkv-def} 7 LaTeX

\usemodule [expkv-def] J ConTeXt

Since the trend for the last couple of years goes to defining keys for a (key)=(value)
interface using a (key)=(value) interface, I thought that maybe providing such an
interface for expiv will make it more attractive for actual use. But at the same time I
didn’t want to broaden expgv’s initial scope. So here is expiviDEF, go define (key)=(value)
interfaces with (key)=(value) interfaces.

Unlike many of the other established (key)=(value) interfaces to define keys,
expkvIDEF works using prefixes instead of suffixes (e.g., . t1_set:N of I3keys) or directory
like handlers (e.g., /.store in of pgfkeys). This was decided as a personal preference,
more over in TgX parsing for the first spaces is way easier than parsing for the last one, so
this should also turn out to be faster. expkviDEr’s prefixes are sorted into two categories:
prefixes, which are equivalent to TgX’s prefixes like \1long and of which a (key) can have
multiple, and types defining the basic behaviour of the (key) and of which a (key) must
have one. For a description of the available prefixes take a look at subsubsection 3.2.1,
the types are described in subsubsection 3.2.2.

3.1 Macros

The number of user-facing macros is quite manageable:

\ekvdefinekeys \ekvdefinekeys{(set)}{(key)=(value), ...}
In (set), define (key) to have definition (value). The general syntax for (key) should be

(prefix) (name)

where (prefix) is a space separated list of optional prefixes followed by one type. The
syntax of (value) is dependent on the used type.

\ekvdDate These two macros store the version and date of the package.
\ekvdVersion

3.2 Prefixes

As already said, prefixes are separated into two groups, prefixes and types. Not every
prefix is allowed for all types.

3.2.1 Prefixes

nev The following (key) must be new (so previously undefined). An error is thrown if
it is already defined and the new definition is ignored. new only asserts that there
are no conflicts between NoVal-(key)s and other NoVal-(key)s or Val-(key)s and other
Val-(key)s.
Example: You can test the following (lines throwing an error are marked by a comment,
error messages are printed in red for this example):

37

https://gitlab.com/islandoftex/texmf/expkv-bundle

also

protected
protect

long

\ekvdefinekeys{new-example}

{
new code key = \domystuffwitharg{#1}
,new noval KEY = \domystuffwithoutarg
,new bool key = \mybool % Error!
,new bool KEY = \mybool % Error!
,new meta key = {KEY} % Error!
,new nmeta KEY = {key} % Error!

}

expkv-def Error: The key for ‘new bool key’ is already defined
expkv-def Error: The key for ‘new bool KEY’ is already defined
expkv-def Error: The key for ‘new meta key’ is already defined

expkv-def Error: The key for ‘new nmeta KEY’ is already defined

The following key type will be added to an existing (key)’s definition. You can’t add a
type taking an argument at use time to an existing (key) which doesn’t take an argument
and vice versa. Also you'll get an error if you try to add an action which isn’t allowed
to be either \long or \protected to a (key) which already is \long or \protected (the
opposite order would be suboptimal as well, but can’t be really captured with the current
code).

A (key) already defined as \long or \protected will stay that way, but you can add
\long or \protected to a (key) which isn’t by using also.

Example: Suppose you want to create a boolean (key), but additionally to setting a
boolean value you want to execute some more code as well. For this you can use the
following;:

\ekvdefinekeys{also-example}
{
bool key = \ifmybool
,also code key \domystuff{#1}
}

If you use also on a choice, bool, invbool, or boolpair (key) it is tried to deter-
mine if the key already is of one of those types. If this test is true the declared choices
will be added to the possible choices but the key’s definition will not be changed other
than that. If that wouldn’t have been done, the callbacks of the different choices could
get called multiple times.

The following (key) will be defined \protected. Note that types which can’t be defined
expandable will always use \protected. This only affects the key at use time not the
(key) definition.

The following (key) will be defined \long (so can take an explicit \par token in its
(value)). Please note that this only changes the (key) at use time. long being present or
not doesn’t limit you to use \par inside of the (key)’s definition (if the type allows this).

38

code
ecode

noval
enoval

default

odefault
fdefault
edefault

3.2.2 Types

Since the prefixes apply to some of the types automatically but sometimes one might be
disallowed we need some way to highlight this behaviour. In the following an enforced
prefix will be printed black (protected), allowed prefixes will be grey (protected), and
disallowed prefixes will be red (protected). This will be put flush-right in the syntax
showing line.

code (key) = {(definition)} new also protected long

Define (key) to be a Val-(key) expanding to (definition). You can use #1 inside
(definition) to access the (key)’s (value). The ecode variant will fully expand
(definition) inside an \edef.

Example: The following defines the key foo, that’ll count the number of tokens passed
to it (we’ll borrow a function from expl3 for this). It'll accept explicit \par tokens. Also
it’'ll flip the TgX-if \iffoo to true. The result of the counting will be stored in a count
register. (Don’t get confused, all the next examples are part of this \ekvdefinekeys call,
so there is no closing brace here.)

\ExplSyntaxOn
\cs_new_eq:NN \exampleCount \tl_count_tokens:n
\ExplSyntaxOQff
\newcount\examplefoocount
\newif\iffoo
\ekvdefinekeys{example}
{
protected long code foo =
\footrue
\examplefoocount=\exampleCount{#1}\relax

noval (key) = {(definition)} new also protected long

The noval type defines (key) as a NoVal-(key) expanding to (definition). enoval fully
expands (definition) inside an \edef.

Example: The following defines the NoVal-(key) foo to toggle the TgX-if \iffoo to false
and set \examplecount to 0. It'll be \protected and mustn’t override any existing key.

,nhew protected noval foo = \foofalse\examplefoocount=0\relax

default (key) = {(definition)} new also protected long

This serves to place a default (value) for a Val-(key). Afterwards if you use (key) as a
NoVal-(key) it will be the same as if (key) got passed (definition) as its (value). The
odefault variant will expand the key-macro once, so will be slightly quicker, but not
change if you redefine the Val-(key) afterwards. The fdefault version will expand the
key-code until a non-expandable token or a space is found, a space would be gobbled.*
The edefault on the other hand fully expands the key-code with (definition) as its
argument in \expanded. The prefix new means that there should be no NoVal-(key) of
that name yet.

4For those familiar with TgX-coding: This uses a \romannumeral-expansion

39

initial
oinitial
finitial

einitial

bool

gbool
boolTF

gboolTF

invbool
ginvbool
invboolTF

ginvboolTF

Example: We later decide that the above behaviour isn’'t what we need any more and
instead redefine the NoVal-(key) foo to pass some default value to the Val-(key) foo.

,default foo = {Some creative default text}

initial (key) = {(value)} new also protected long
initial (key)
With initial you can set an initial (value) for an already defined (key). It’l] just call the
(key) and pass it (value). The einitial variant will expand (value) using \expanded
prior to passing it to the (key) and the oinitial variant will expand the first token in
(value) once. finitial will expand (value) until a non-expandable token or a space is
found, a space would be gobbled.>

If you don’t provide a (value) (and no equals sign) the NoVal-(key) of the same
name is called once (or, if you specified a default for a Val-(key) that would be used).

Example: We want to get a defined initial behaviour for our foo. So we count o tokens.

,initial foo = {}

bool (key) = (cs) new also protected long

The (cs) should be a single control sequence, such as \iffoo. This will define (key) to
be a boolean key, which only takes the values true or false and will throw an error for
other values. If the (key) is used as a NoVal-(key) it'll have the same effect as if you use
true. bool and gbool will behave like TgX-ifs, so either be \iftrue or \iffalse. The
(cs) in the boolTF and gboolTF variants will take two arguments and if true the first
will be used else the second, so they are always either \@firstoftwo or \@secondoftwo.
The variants with a leading g will set the (cs) globally, the other locally. If (cs) is not
yet defined it’ll be initialised as the false version. Note that the initialisation is not
done with \newif, so you will not be able to do \footrue outside of the (key)=(value)
interface, but you could use \newif yourself. Even if the (key) will not be \protected
the commands which execute the true or false choice will be, so the usage should be
safe in an expansion context (e.g., you can use edefault (key) = false without an issue
to change the default behaviour to execute the false choice). Internally a bool is the
same as a choice type which is set up to handle true and false as choices. new will
assert that neither the Val-(key) nor the NoVal-(key) are already defined.

Example: Also we want to have a direct way to set our \iffoo, now that the NoVal-(key)
doesn’t toggle it any longer.

,bool dofoo = \iffoo

invbool (key) = (cs) new also protected long

These are inverse boolean keys, they behave like bool and friends but set the opposite
meaning to the macro (cs) in each case. So if key=true is used invbool will set (cs) to
\iffalse and vice versa.

Example: And since traditional interfaces lacked (key)=(value) support for packages,
often a negated boolean key was used as well.

5Again using \romannumeral

40

boolpair
gboolpair
boolpairTF
gboolpairTF

store

estore
gstore
xstore

data

edata
gdata
xdata

dataT

edataT
gdataT
xdataT

,invbool nofoo = \iffoo

boolpair (key) = (csi){(csy) new also protected long

The boolpair type behaves like both bool and invbool, the (cs;) will be set to the
meaning according to the rules of bool, and (cs,) will be set to the opposite.

store (key) = (cs) new also protected long

The (cs) should be a single control sequence, such as \foo. This will define a Val-
(key) to store (value) inside of the control sequence. If (cs) isn’t yet defined it will
be initialised as empty. The variants behave similarly to their \def, \edef, \gdef, and
\xdef counterparts, but will allow you to store macro parameters inside them without
needing to double them. So estore foo = \foo, initial foo = #1 will not result in
a low level TgX error.

Example: Not only do we want to count the tokens handed to foo, but we want to also
store them inside of a macro (and we don’t need to specify long here, since foo is already
\long from our code definition above).

,also store foo = \examplefoostore

data (key) = (cs) new also protected long

The (cs) should be a single control sequence, such as \foo. This will define a Val-(key)
to store (value) inside of the control sequence. But unlike the store type the macro (cs)
will be a switch at the same time, it’ll take two arguments and if (key) was used expands
to the first argument followed by (value) in braces, if (key) was not used (cs) will
expand to the second argument (so behave like \@secondoftwo). The idea is that with
this type you can define a key which should be typeset formatted. The edata and xdata
variants will fully expand (value), the gdata and xdata variants will store (value)
inside (cs) globally. Just like with store you can use macro parameters without having
to double them. The prefixes only affect the key-macro, (cs) will always be expandable
and \long.

Example: Next we start to define other keys, now that our foo is pretty much exhausted.
The following defines a key bar to be a data key.

,data bar = \examplebar

dataT (key) = (cs) new also protected long

Just like data, but instead of (cs) grabbing two arguments it’ll only grab one, so by
default it’ll behave like \@gobble, and if (value) was given to (key) the (cs) will behave
like \@firstofone appended by {(value)}.

Example: Another key we want to use is baz.

,dataT baz = \examplebaz

41

int

eint
gint
xint

dimen

edimen
gdimen
xdimen

skip

eskip
gskip
xskip

toks
gtoks
apptoks
gapptoks
pretoks
gpretoks

box
gbox

meta

nmeta

int (key) = (cs) new also protected long

The (cs) should be a single control sequence, such as \foo. An int key will be a Val-
(key) setting a TgX count register. If (cs) isn’t defined yet, \newcount will be used to
initialise it. The eint and xint variants will use \numexpr to allow basic computations
in their (value). The gint and xint variants set the register globally.

dimen (key) = (cs) new also protected long

The (cs) should be a single control sequence, such as \foo. This is just like int but uses
a dimen register, \newdimen, and \dimexpr instead.

skip (key) = (cs) new also protected long

The (cs) should be a single control sequence, such as \foo. This is just like int but uses
a skip register, \newskip, and \glueexpr instead.

Example: Exemplary for the different register keys, the following defines distance so
that we can store some distance.

,eskip distance = \exampledistance

toks (key) = (cs) new also protected long

The (cs) should be a single control sequence, such as \foo. Store (value) inside of
a toks-register. The g variants use \global, the app variants append (value) to the
contents of that register, the pre variants will prepend (value). If (cs) is not yet defined
it will be initialised with \newtoks.

box (key) = (cs) new also protected long

The (cs) should be a single control sequence, such as \foo. Typesets (value) into a \hbox
and stores the result in a box register. The boxes are colour safe. expkvIDEF currently
doesn’t provide a vbox type.

meta (key) = {(key)=(value), ...} new also protected long

This key type can set other keys, you can access the (value) given to the created Val-
(key) inside the (key)=(value) list using #1. This works by injecting the (key)=(value)
list into the currently parsed list, so behaves just as if the (key)=(value) list was directly
used instead of (key).

Example: And we want to set a full set of keys with just this single one called all.

,meta all =
{distance=5pt,baz=cheese cake,bar=cocktail bar,foo={#1}}

nmeta (key) = {(key)=(value), ...} new also protected long

This type sets other keys, but unlike meta this defines a NoVal-(key), so the (key)=
(value) list is static.

Example: and if all is set without a value we want to do something about it as well.

42

smeta

snmeta

alias

choice

,hmeta all =
{distance=10pt,baz=nothing,bar=Waikiki bar, foo}

smeta (key) = {(set)}{(key)=(value), ...} new also protected long

Yet another meta variant. smeta will define a Val-(key), you can access the given
(value) in the provided (key)=(value) list using #1. Unlike meta this will process
that (key)=(value) list inside of (set) using a nested \ekvset call, so this is equal to
\ekvset{(set)}{(key)=(value), ...}. Asaresult you can’t use \ekvsneak using keys
or similar macros in the way you normally could.

snmeta (key) = {(set)}{(key)=(value), ...} new also protected long

And the last meta variant. snmeta combines smeta and nmeta, so parses the (key)=
(value) list inside of (set) and defines a NoVal-(key) with a static list.

alias (key) = (keyp) new also protected long

Copy the definition of (key,) to (key). (key) will inherit being long or protected from
(key,) as well. If a Val-(key) named (key,) exists its definition is copied, and if an
accordingly named NoVal-(key) exists its definition is copied to the new name as well.
At least one of the two keys must exist or else this throws an error. If (key,) is later
redefined the definition of (key) will stay the same.

set (key) = {(set)} new also protected long
set (key)

This will define a NoVal-(key) that will change the current set to (set). If you give
no value to this definition (omit = {{set)}) the set name will be the same as (key) so
set (key) is equivalent to set (key) = {(key)}. Note that just like in expiv it’ll not
be checked whether (set) is defined and you’ll get a low-level TgX error if you use an
undefined (set).

choice (key) = {(value)=(definitiomn), ...} new also protected long

choice defines a Val-(key) that will only accept a limited set of values. You should
define each possible (value) inside of the (value)=(definition) list. If a defined
(value) is passed to (key) the (definition) will be left in the input stream. You can
make individual values protected inside the (value)=(definition) list by using that
prefix. To also allow choices that shouldn’t be \protected but which start with the word
protected you can also use unprotected as a special prefix. By default a choice key and
all its choices are expandable, an undefined (value) will throw an error in an expandable
way. You can add additional choices after the (key) was created by using choice again
for the same (key), redefining choices is possible the same way, but there is no interface
to remove certain choices. To change the behaviour of unknown choices see also the
unknown-choice type.

Example: We give the users a few choices.

,choice choose =

{
protected lemonade = \def\exampledrink{something sour}
,protected water = \def\exampledrink{something boring}

}

43

choice-store

choice-enum

choice-store (key) = (cs){(value)=(definition), ...} new also protected long

The (cs) should be a single control sequence, such as \foo. This is a special type
of the choice type that’ll store the given choice inside the macro (cs). Since storing
inside a macro can’t be done expandably every choice-code is \protected, and you
might define the choice-store key itself as \protected as well if you want. Inside
the (value)=(definition) list the =(definition) part is optional, if you omit it the
(value) will be stored as given during define-time inside of {cs) (during use-time the
(value) needs to be matched \detokenized), and if you specify =(definition) that
(definition) will be stored inside of (cs) instead. If (cs) doesn’t yet exist it’s initialised
as empty.

Example: The following keys keyl and key2 are equivalent at use time (this doesn’t
continue the \ekvdefinekeys-call for the set example above):

\newcommandx\mya{}% initialise \mya
\ekvdefinekeys{choice-store-example}

{
choice keyl =
{
protected a = \def\mya{a}
,protected b = \def\mya{b}
,protected c = \def\mya{c}
,protected d = \def\mya{F00}
}
,choice-store key2 = \myb{a,b,c,d=F00}
}

Example: (this continues the \ekvdefinekeys-call for the set example from above) After
the above drinks we define a few more choices which are directly stored.

,choice-store choose = \exampledrink{beer,wine}

One might notice that the entire setup of the choose key could’ve been done using only
choice-store.

choice-enum (key) = (cs){(value), ...} new also protected long

The (cs) should be a single control sequence, such as \foo. This is similar to
choice-store, the differences are: (cs) should be a count register or is initialised as
such using \newcount; instead of the (value) itself being stored its position in the list
of choices is stored (zero-based). It is not possible to specify a (definition) to store
something else than the numerical position inside the list.

Example: The following keys key1 and key2 are equivalent at use time (another example
not using the example set of above’s \ekvdefinekeys):

\newcount\myc
\ekvdefinekeys{choice-enum-example}
{
choice keyl =
{
protected a={\myc=0 }
,protected b={\myc=1 }
,protected c={\myc=2 }

44

unknown-choice

choice-aliases

unknown, ,code

}
,choice-enum key2 = \myd{a,b,c}
}

unknown-choice (key) = {(definition)} new also protected long

By default an unknown (value) passed to a choice or bool type (and all their variants)
will throw an error. However, with this prefix you can define an alternative action which
should be executed if (key) received an unknown choice. In (definition) you can refer
to the given invalid choice with #1.

Example: If a drink was chosen with choose that’s not defined we don’t want to throw an
error, but store something else instead.

,protected unknown-choice choose =
\def\exampledrink{something unavailable}
}% closing brace for \ekvdefinekeys

choice-aliases (key) = {(new)=(old), ...} new also protected long

Copy the definition of the choice (0ld) of (key) to a (new) choice for the same (key).
The (key) must be an existing choice key. Inside the (new)=(o1d) list all elements must
get a value. If used the new-prefix will apply to each individual (new) choice name (so
if any already exists it’ll throw an error, and the current element will be ignored). The
(new) choice will inherit being protected from the (o1d) one. The (01d) choice must be
defined obviously.

This works for a choice or bool type as well as all their variants. If something
redefines some of the choices later on the aliases will keep the original definition.

Example: With the following we create a key that accepts some choices, and since our
keyboard is only designed to handle a finite number of keystrokes we also allow for
shorter names of those choices. (This is not part of the ongoing example using the
example set above.)

\ekvdefinekeys{choice-alias-example}

{
choice-store key = { long-name, short-name }
,choice-aliases key = { 1n = long-name, sn = short-name }
}
unknown code = {(definition)} new also protected long

By default expiv throws errors when it encounters unknown keys in a set. With the
unknown type you can define handlers that deal with undefined keys, instead of a (key)
name you have to specify a subtype for this, here the subtype is code.

With unknown code the (definition) is used for unknown keys which were pro-
vided a value (so corresponds to \ekvdefunknown), you can access the unknown (key)
name with #1 (\detokenized), the given (value) with #2, and the unprocessed (key)
name with #3 (in case you want to further expand it).°

6There is some trickery involved to get this more intuitive argument order without any performance hit if
you compare this to \ekvdefunknown directly

45

unknown, noval

unknown, redirect-code

unknown, redirect-noval

unknown, redirect

unknown noval = {(definition)} new also protected long

This is like unknown code but uses (definition) for unknown keys to which no value
was passed (so corresponds to \ekvdefunknownNoVal). You can access the \detokenized
(key) name with #1 and the unprocessed one with #2.

unknown redirect-code = {(set-list)} new also protected long

This uses a predefined action for unknown code. Instead of throwing an error, it is tried
to find the (key) in each (set) in the comma separated (set-1ist). The first found
match will be used and the remaining options from the list discarded. If the (key) isn’t
found in any (set) an expandable error will be thrown eventually. Internally expkv’s
\ekvredirectunknown will be used.

unknown redirect-noval = {(set-list)} new also protected long

This behaves just like unknown redirect-code but will set up means to forward keys
for unknown noval. Internally expiv’s \ekvredirectunknownNoVal will be used.

unknown redirect = {(set-list)} new also protected long

This is a short cut to apply both, unknown redirect-code and unknown redirect-noval,
as a result you might get doubled error messages, one from each.

Time to use all those keys defined in the different examples as part of the example
set!

\newcommand\defexample[1][]
{%
\begingroup % keep the values set local to this call
\ekvset{example}{#13}%
After walking \the\exampledistance\space we finally reached
\examplebar{\emph}{no particular place}.
There I ordered
\iffoo
a drink called \examplefoostore\space (that has
\the\examplefoocount\space tokens in it)%
\else
nothing of particular interest%
\fi
\examplebaz{ and ate \emph}.
Then a friend of mine also chose \exampledrink.
\par
\endgroup
}
\defexample[nofoo]
\defexample[all, choose=1lemonade]
\defexample
[all=wheat beer,bar=Biergarten,baz=pretzel,choose=champagne]

Which results in three paragraphs of text:

46

After walking o.opt we finally reached no particular place. There I ordered nothing of
particular interest. Then a friend of mine also chose .

After walking 10.opt we finally reached Waikiki bar. There I ordered a drink called Some
creative default text (that has 26 tokens in it) and ate nothing. Then a friend of mine also
chose something sour.

After walking 5.opt we finally reached Biergarten. There I ordered a drink called wheat
beer (that has 10 tokens in it) and ate pretzel. Then a friend of mine also chose something
unavailable.

3.3 Another Example

This picks up the standard use case from subsubsection 1.9.1, but defines the keys using
\ekvdefinekeys.

\makeatletter
\ekvdefinekeys{myrule}
{
store ht = \myrule@ht
,initial ht = lex
,store wd = \myrule@wd
,initial wd = 0.lem
,store raise = \myrule@raise
,initial raise = \z@
,meta lower = {raise={-#1}}
}
\ekvsetdef\myruleset{myrule} &
\newcommand = \myrule[1][] g
% am
\begingroup
\myruleset{#13}%
\rule[\myrule@raise] {\myrule@wd}{\myrule@ht}%
\endgroup
}
\makeatother
a\myrule\par

a\myrule[ht=2ex, lower=.5ex]\par
\myruleset{wd=5pt}
a\myrule

47

\ekvoProcessOptions

4 eXPkV|OPT \usepackage{expkv-opt} 7 LaTeX

expkviopT allows to parse KTEX 2¢ class and package options as (key)=(value) lists using
sets of expkv.

With the 2021-05-01 release of IXTEX 2 there were some very interesting changes to
the package and class options code. It is now possible to use braces inside the options,
and we can access options without them being preprocessed. As a result, some but not all
restrictions were lifted from the possible option usage. What will still fail is things that
aren’t save from an \edef expansion (luckily, the exp:NoTaTION can be used to get around
that as well). One feature of expgviort that doesn’t work any more is the possibility to
parse the unused option list, because that one doesn’t contain the full information any
more. expkviopT will fall back to vo.1 if the kernel is older than 2021-05-01.

Another very interesting change in IXTgX 2, was the addition of ltkeys and its
\ProcessKeyOptions with the possibility to parse future options with it instead of
getting the dreaded Option clash error. The idea is brilliant and changes made in the
2022-10-22 version allow us to provide the same feature without having to hack any
kernel internals, so starting with kernel version 2022-11-01 expkviorT supports this as
well.

expiviopT shouldn’t place any restrictions on the keys, historic shortcomings of the
kernel cannot be helped though, so the supported things vary with the kernel version
(see above). The one thing that expyviopt doesn’t support, which expyv alone would, is
active commas or equals signs. But there is no good reason why any of the two should be
active in the preamble.

You can use ETEX 2¢’s rollback support, so to load vo.1 explicitly use:

\usepackage{expkv-opt}[=v0.1]

which will load the last version of expkviorT that doesn’t use the raw option lists (this
shouldn’t be done by a package author, but only by a user on a single-document basis if
there are some incompatibilities, which is unlikely).

4.1 Macros
4.1.1 Option Processors

expkviopT’s behaviour if it encounters a defined or an undefined (key) depends on which
list is being parsed and whether the current file is a class or not. Of course in every case a
defined (key)’s callback will be invoked but an additional action might be executed. For
this reason the rule set of every macro will be given below the short description which
list it will parse.

During each of the processing macros the current list element (not processed in any
way) is stored within the macro \CurrentOption.

\ekvoProcessOptions{(set)}

This runs \ekvoProcessGlobalOptions, then \ekvoProcessLocalOptions, and finally
\ekvoProcessFutureOptions. If you're using \ekvoUseUnknownHandlers it’ll affect all
three option processors. Else the respective default unknown-rules are used.

48

https://gitlab.com/islandoftex/texmf/expkv-bundle

\ekvoProcessLocalOptions

\ekvoProcessGlobalOptions

\ekvoProcessFutureOptions

\ekvoProcessOptionsList

\ekvoProcessLocalOptions{(set)}
This parses the options which are directly passed to the current class or package for an
expkv (set).

Class: defined remove the option from the list of unused global options if the local
option list matches the option list of the main class and the unused global
options list is not empty; else nothing

undefined add the key to the list of unused global options (if the local option list
matches the option list of the main class)
Package: defined nothing

undefined throw an error

\ekvoProcessGlobalOptions{(set)}

In IXTEX 2¢ the options given to \documentclass are global options. This macro processes
the global options for an expiv (set).

Class: defined remove the option from the list of unused global options

undefined nothing

Package: defined remove the option from the list of unused global options

undefined nothing

\ekvoProcessFutureOptions{(set)}

This parses the option list of every future call of the package with \usepackage or similar
with an expyv (set), circumventing the Option clash error that'd be thrown by IATEX 2.
It is only available for kernel versions starting with 2022-11-01. It is mutually exclusive
with IATEX 2¢’s \ProcessKeyOptions (which ever comes last defines how future options
are parsed).

Class: defined nothing

undefined throw an error

Package: defined nothing

undefined throw an error

\ekvoProcessOptionsList(list){(set)}

Process the (key)=(value) list stored in the macro (1ist).

Class: defined nothing
undefined nothing

Package: defined nothing
undefined nothing

49

\ekvoUseUnknownHandlers

\ekvoVersion
\ekvoDate

4.1.2 Other Macros

\ekvoUseUnknownHandlers(csi }(csp) or
\ekvoUseUnknownHandlersx*
With this macro you can change the action expyviopT executes if it encounters an un-
defined (key) for the next (and only the next) list processing macro. The macro {cs;)
will be called if an undefined NoVal-(key) is encountered and get one argument being
the (key) (without being \detokenized). Analogous the macro (cs;) will be called if
an undefined Val-(key) was parsed and get two arguments, the first being the (key)
(without being \detokenized) and the second the (value).

If you use the starred variant, it’ll not take further arguments. In this case the un-
defined handlers defined via \ekvdefunknown and \ekvdefunknownNoVal in the parsing
set get used, and if those aren’t available they’ll simply do nothing.

These two macros store the version and date of the package.

4.2 Examples

Example: Let’s say we want to create a package that changes the way footnotes are
displayed in IXTEX. For this it will essentially just redefine \thefootnote and we’ll call
this package ex-footnote. First we report back which package we are:

\ProvidesPackage{ex-footnote}[2020-02-02 vl change footnotes]
Next we’ll need to provide the options we want the package to have.

\RequirePackage{color}

\RequirePackage{expkv-opt}% also loads expkv
\ekvdef{ex-footnote}{color}{\def\exfn@color{#1}}
\ekvdef{ex-footnote}{format}{\def\exfn@format{#1}}

We can provide initial values just by defining the two macros storing the value.

\newcommand=\exfn@color{}
\newcommandx*\exfn@format{arabic}

Next we need to process the options given to the package. The package should only
obey options directly passed to it, so we’re using \ekvoProcessLocalOptions and
\ekvoProcessFutureOptions:

\ekvoProcessLocalOptions {ex-footnote}
\ekvoProcessFutureOptions{ex-footnote}

Now everything that’s still missing is actually changing the way footnotes appear:

\renewcommandx+\thefootnote
{%
\ifx\exfn@color\@empty
\csname\exfn@format\endcsname{footnote}%
\else
\textcolor{\exfn@color}{\csname\exfn@format\endcsname{footnote}}%
\fi
}

50

So the complete code of the package would look like this:
\ProvidesPackage{ex-footnote}[2020-02-02 v1 change footnotes]

\RequirePackage{color}
\RequirePackage{expkv-opt}% also loads expkv

\ekvdef{ex-footnote}{color}{\def\exfn@color{#1}}
\ekvdef{ex-footnote}{format}{\def\exfn@format{#1}}
\newcommand*\exfn@color{}
\newcommand=\exfn@format{arabic}

\ekvoProcessLocalOptions {ex-footnote}
\ekvoProcessFutureOptions{ex-footnote}

\renewcommandx+\thefootnote
{%
\ifx\exfn@color\@empty
\csname\exfn@format\endcsname{footnote}%
\else
\textcolor{\exfn@color}{\csname\exfn@format\endcsname{footnote}}%
\fi
}

And it could be used with one (or thanks to \ekvoProcessFutureOptions all) of the
following lines:

\usepackage{ex-footnote}
\usepackage[format=fnsymbol] {ex-footnote}
\usepackage[color=green] {ex-footnote}
\usepackage[color=red, format=roman] {ex-footnote}

Example: This document was compiled with the global options [exfoo=value, exbar,
exfoo=\empty] in use. If we define the following keys

\ekvdef{optexample}{exfoo}

{Global option \texttt{exfoo} got \texttt{\detokenize{#1}}.\par}
\ekvdefNoVal{optexample}{exbar}

{Global option \texttt{exbar} set.\par}

we can use those options to control the result of the following:

Global option exfoo got value.
\ekvoProcessGlobalOptions{optexample} Global option exbar set.

Global option exfoo got \empty .

Please note that under normal conditions \ekvoProcessGlobalOptions is only useable
in the preamble; this example is only for academic purposes, you’ll not be able to
reproduce this with the exact code shown above.

51

\input{expkv-pop} % plain
5 eXPkV| POP \usepackage{expkv-pop} LaTeX

\usemodule [expkv-pop] 7 ConTeXt

The expiviror is mainly written to lay the basis for expivics’s and expiviper’s key-defining
front ends. Historically the two packages shared pretty similar code. To unify this and
reduce the overall code amount some auxiliary package was originally planned, but then
I realised that with little to no overhead (apart from documentation) this can also be
provided to users. Well, and then I thought, why not make the whole thing expandable
as well. And here we are.

So what’s the idea? This package provides a prefix oriented parser? with two kinds
of prefixes. The first is called a prefix, of which an item can have arbitrary many, the
second a type, of which every item has only one. To distinguish the concept of an optional
prefix from the generic term “prefix” I'll use this formatting whenever the special kind of
prefix is meant.

Another peculiarity of expivipor compared to the other packages in expKvIBUNDLE is
that it doesn’t separate NoVal-(key)s from Val-(key)s as strictly. Instead a NoVal-marker
is used as the value. If this is not what you want you can use \ekvpValueAlwaysRequired
(see there).

5.1 Parsing Rules

A parser is processing only the (key) of a (key)=(value) pair. The (key) is split at spaces
(braces might be lost by this process!). Each split off piece is checked whether it’s a
defined prefix. If it’s a type parsing of the (key) stops and the remainder is considered a
(name). If it’s a prefix it’'ll be recorded and parsing goes on. If it’s neither parsing is also
stopped (and the last parsed space delimited part is put back — braces might’ve been lost
at this step). If a no-type rule has been defined (\ekvpDefNoType) that one is executed
else an error is thrown.

The prefix or type has to match after being \detokenized, whereas the (name) will
be unchanged (except for stripping off the prefixes). If only a (key) is given (so no
=(value) used) the same is done, and instead of (value) a no-value marker is used (if
that accidentally ends up in the input stream this looks like this: -NoValue-; this is the
same as the marker used by expl3 for those familiar with it).

A prefix has two parts to it, a (pre) and a (post) code, whereas a type only results
in a type-action (or the no-type action if that’s defined and no type found). The parsing
result can also be seen in Figure 1.

Please note that expivirop’s parsers are fully expandable as long as your prefixes
and types are. Additionally expivipor doesn’t provide means to define parsers, prefixes,
or types \protected. As a result, make sure you’ll always call \ekvpParse inside of a
\protected macro if you need anything that’s unexpandable or else your code might not
do what you intended since some states may not be updated when expandable code tries

7Naming packages is hard, especially when the name should fit a particular naming scheme. Big thanks
to samcarter for helping me: https://topanswers.xyz/tex?q=1985. The author apologises that there is no
expkv-pnk, expkv-rok, expkv-jaz or any other music themed name in expivIBUNDLE.

pre, type-action post,

pre; pre; post, post;

Figure 1: Structure of a single (key)=(value) pair’s parsing result with n prefixes

52

https://gitlab.com/islandoftex/texmf/expkv-bundle
https://gitlab.com/islandoftex/texmf/expkv-bundle
https://topanswers.xyz/tex?q=1985
https://gitlab.com/islandoftex/texmf/expkv-bundle

\ekvpNewParser

\ekvpDefType

\ekvpDefPrefix

\ekvpDefAutoPrefix

\ekvpDefPrefixStore

\ekvpDefPrefixLet

\ekvpLet

to access them. The macro \ekvpProtect can help to overcome this issue, but it’s more
of a last resort than a clean solution.

5.2 Defining Parsers

\ekvpNewParser{(parser)}

Defines a new parser called (parser). Every parser has to be defined this way. Throws
an error if the parser is already defined.

\ekvpDefType{(parser)}{(type)}{(code)}

Defines a type that is called (type) for the parser (parser). If the type is parsed the
(code) will be used as a type-action. Inside of (code) you can use #1 to refer to the (name)
(the remainder of the (key) after stripping off all the prefixes), #2 to use the unaltered
(key), and #3 to access the (value) which was given to your (key).

\ekvpDefPrefix{(parser)}{(prefix)}{(pre)}{(post)}

Defines a prefix that is called (prefix) for the parser (parser). If the prefix is encountered
the code in (pre) will be put before the type-action and the code in (post) will be put
behind it. If multiple prefixes are used the (pre) of the first will be put first and the
(post) of the first will be put last. Inside of (pre) and (post) #1 is replaced with the
found type, #2 the (name), and #3 the unaltered (key). If no valid type was found and the
no-type rule defined with \ekvpDefNoType is executed the argument #1 will be empty.

\ekvpDefAutoPrefix{(parser)}{(pre)}{(post)}

You can also define a prefix-like rule that is executed on each element automatically.
So the (pre) and (post) code of this will be inserted for every valid element of the
(key)=(value) list. Just like for \ekvpDefPrefix you can access the type with #1, the
(name) with #2, and the unaltered (key) with #3.

\ekvpDefPrefixStore{(parser)}{(prefix)}(cs){(pre)H(post)}

This is a shortcut to define a prefix named (prefix) for (parser) that’ll store (pre) inside
of (cs) (which should be a single control sequence) before the type-action and afterwards
store (post) in it. Both definitions (in (pre) and in (post)) are put inside \ekvpProtect.

\ekvpDefPrefixLet{(parser)}{(prefix)}(cs){pre)(post)

This is similar to \ekvpDefPrefixStore, but instead of storing in the (cs) it’ll be let to
the single tokens specified by (pre) and (post). If either (pre) or (post) contains more
than a single token the remainder is put after the \1let statement. Both assignments (in
(pre) and in (post)) are put inside \ekvpProtect.

\ekvpLet{(parser)}{(type)}{(name;)} [{parser;)]{(name;)}

Copies the definition of a prefix or type. The (type) should be one of prefix, or type.
The prefix or type (name;) for (parser;) will be let equal to the prefix or type (name,) of
(parser;). If you omit the optional (parser,) it will default to (parsery).

53

\ekvpValueAlwaysRequired

\ekvpDefNoValue

\ekvpUseNoValueMarker

\ekvpDefNoValuePrefix

\ekvpDefNoType

\ekvpEOP

\ekvpGobbleP

\ekvpEQT

\ekvpGobbleT

5.3 Changing Default Behaviours

\ekvpValueAlwaysRequired{(parser)}

By default a special no-value marker will be provided for (value) if no value was given
to a key. If this is used instead an error will be thrown that a value is required.

\ekvpDefNoValue{(parser)}{{code)}

This is a third alternative to the default behaviour and \ekvpValueAlwaysRequired.
With this macro you can stop normal parsing if no value was specified and instead run
(code). Inside of {code) the unprocessed NoVal-(key) is available as #1. No further
processing of this (key)=(value) list element takes place.

\ekvpUseNoValueMarker{(parser)}{(marker)}

This macro changes the no-value marker from the package default to (marker). Note
that macros like \ekvpAssertValue don’t work with markers different from the default
one.

\ekvpDefNoValuePrefix{(parser)}{(pre)}(post)}

It is also possible to handle NoVal-(key)s as if this was some special prefix. So if a NoVal-
(key) is encountered you’ll have (pre) and (post) put before and behind the type-action
(as the outermost prefix). The no-value marker will be forwarded as (value). If you
want to change a parser’s marker and use this you have to use \ekvpUseNoValueMarker
before calling \ekvpDefNoValuePrefix, and you must not use \ekvpDefNoValue or
\ekvpValueAlwaysRequired before using \ekvpDefNoValuePrefix (both result in unde-
fined behaviour).

\ekvpDefNoType{(parser)}{(code)}

This defines an action if no valid type was found, otherwise this behaves like
\ekvpDefType with the same arguments #1 ((name)), #2 (unaltered (key)), and #3
((value)) in (code). If this isn’t used for the (parser) instead an error will be thrown
whenever no type is found.

5.4 Markers

expkvipop will place three markers for each list element that was parsed and defines an
auxiliary to gobble up to that marker. After each marker an additional group is placed
containing the current list element (excluding the (value)). The gobblers gobble that
group as well. Those markers are:

Is placed after all the prefixes’ (pre) code, directly before the type-action.

Is placed after the type-action, directly before the last prefix’s (post) code.

54

\ekvpEOA

\ekvpGobbleA

\ekvpIfNoVal

\ekvpAssertIf
\ekvpAssertIfNot

\ekvpAssertTF
\ekvpAssertTFNot

\ekvpAssertValue
\ekvpAssertNoValue

\ekvpAssertOneValue
\ekvpAssertTwoValues

\ekvpProtect

Is placed at the end of the complete result of the current element, so after all the prefixes’
(post) code.

5.5 Helpersin Actions

\ekvpIfNoVal{{arg)}{(true)}{(false)}

This will expand to (true) if the (arg) is the special no-value marker, otherwise (false)
is left in the input stream.

\ekvpAssertIf [(marker)] {(if)}{(message)}

This macro will run the TgX-if test specified by (if) (should expand to any TgX-style if,
e.g., \iftrue or \ifx(4)(B)). If the test is true everything’s fine, else an error message is
thrown using (message) followed by the current element and everything up to (marker)
is gobbled ((marker) can be any of EOT, which is the default, EOP, or EOA). The Not variant
will invert the logic, so if the TgX-style if is true this will throw the error.

\ekvpAssertTF [(marker)]{(if)}{(message)}

This is pretty similar to \ekvpAssertIf, but (if) should be a test that uses its first
argument if it’s true and its second otherwise (so an error is thrown if the second
argument is used, nothing happens otherwise). The Not variant is again inversed.

\ekvpAssertValue [(marker)]{(arg)}

Asserts that (arg) is not the no-value marker (\ekvpAssertValue) or is the no-value
marker (\ekvpAssertNoValue), otherwise throws an error and gobbles everything up to
(marker) (like \ekvpAssertIf).

\ekvpAssertOneValue [(marker)]{(arg)}

Asserts that (arg) contains exactly one or two values (which could both be either single
tokens or braced groups — spaces between the two values in the \ekvpAssertTwoValues
case are ignored), if the number of values doesn’t match an error is thrown and everything
up to (marker) gobbled.

\ekvpProtect{{code)}

This macro protects (code) from further expanding in every context a \protected macro
wouldn’t expand. It needs at least two steps of expansion. When a \protected macro
would expand this will remove the braces around (code) and TgX will process (code)
the same way it normally would. After the first step of expansion it’ll leave two macros,
and after each further full expansion these two macros stay there. Since expyviror offers
no method to define prefixes or types \protected you can instead use this macro. But if
your parser needs any assignments you should nest the \ekvpParse call in a \protected
macro anyway.

55

\ekvpParse

\ekvpDate
\ekvpVersion

5.6 Using Parsers

\ekvpParse{(parser)}{(key)=(value), ...}

Parses the (key)=(value) list as defined for (parser). This expands in exactly two
steps, and returns inside of \unexpanded, so doesn’t expand any further in an \edef or
\expanded. After the two steps it’ll directly leave the code as though every prefix’s (pre)
and (post) code and the fype-action were input directly along with the different markers.

5.7 The Boring Macros

Just for the sake of completeness.

Store the date and version, respectively.

5.8 Examples

Example: Let’s define a parser that is similar to expkviDer’s \ekvdefinekeys. First we
define a new parser named exdef:

\ekvpNewParser{exdef}

We’ll need to provide our prefixes, long and protected. The following initialises them
and defines their action.

\newcommand=\exLong{}

\newcommand*\exProtected{}
\ekvpDefPrefixLet{exdef}{long}\exLong\long\empty
\ekvpDefPrefixLet{exdef}{protected}\exProtected\protected\empty

Now we define a few types, I'll go with noval, store, and code for starters. We exploit
the fact that \ekvdef and \ekvdefNoVal will expand the first argument, so we can simply
store the set name in a macro.

\ekvpDefType{exdef}{code}
{%
\ekvpAssertValue{#3}%
\exProtected\exLong\ekvdef\exSetName{#1}{#3}%
}
\ekvpDefType{exdef}{noval}
{%
\ekvpAssertValue{#3}%
\ekvpAssertIfNot{\ifx\exLong\long}{‘long’ not accepted}%
\exProtected\ekvdefNoVal\exSetName{#1}{#3}%
}
\ekvpDefType{exdef}{store}
{%
\ekvpAssertOneValue{#3}%
\ifdefined#3\else
\let#3\empty

56

\fi
\protected\exLong\ekvdef\exSetName{#1}{\edef#3{\unexpanded{##1}3}3}%
}

Now we need a user facing macro that puts the pieces together (this uses \NewDocumentCommand
instead of \newcommand because the former defines macros \protected).

\NewDocumentCommand\exdefinekeys{m +m}
{\def\exSetName{#1}\ekvpParse{exdef}{#2}}

Now we got that sorted so we can use our little parser:

\newif\ifbar
\exdefinekeys{exampleset}
{
long store foo = \myfoo baz was called
,protected noval bar = \bartrue with \empty bar
,code baz = baz was called with \detokenize{#1} gashueso:Foo—
} ar

\ekvset{exampleset}{foo=Foobar,bar,baz=\empty}
\ifbar bar was true so: \myfoo\fi

Example: With this example we want to take a closer look at the expansion of \ekvpParse.
So please bear with me if this doesn’t make much sense otherwise. One of the issues
is that prefixes are a somewhat unordered concept, and only types must come last. We
could juggle with flags (an expandable data-storage, see subsection 2.5) to overcome this
somehow just to define some pseudo-syntax here, but I guess that’s not worth it. Anyhow,
here goes nothing.

First we need a parser

\ekvpNewParser{exexp}

and a prefix. We could define one that ensures the name starts of with a letter. We also
want each element to start a new line, which we do using an auto prefix.

\newcommand\ifletter{}
\long\def\ifletter#1#2\stop{\ifcat a\noexpand#1}
\ekvpDefPrefix{exexp}{letter}
{\ekvpAssertIf{\ifletter#2\stop}{not a letter}}
{ (really a letter)}
\ekvpDefAutoPrefix{exexp}{\noindent}{\par}

Finally we define a type and a NoType rule:

\ekvpDefType{exexp}{*}{$#1\cdot#3 = \the\numexpr#1x+#3\relax$}
\ekvpDefNoType{exexp}{the #3th letter is #1}

Now we want to see whether the thing is expandable:

\raggedright

\edef\foo{\ekvpParse{exexp}{letter e = 5, = 4 = \empty3}}
1st full expansion

\texttt{\meaning\foo}\par

\medskip

\edef\foo{\foo}

2nd full expansion

57

\texttt{\meaning\foo}\par
\medskip
\foo

1st full expansion macro:->\noindent \ekvpAssertIf {\ifletter e\stop }{not a

letter}\ekvpEOP {letter e}the 5th letter is e\ekvpEOT {letter e} (really a
letter)\par \ekvpEOA {letter e}\noindent \ekvpEOP {* 4}$4\cdot \empty 3 =

\the \numexpr 4*\empty 3\relax $\ekvpEOT {* 4}\par \ekvpEOA {x 4}

2nd full expansion macro:->\noindent the 5th letter is e (really a
letter)\par \noindent $4\cdot 3 = 12$\par

the 5th letter is e (really a letter)
4-3=12

58

6 Comparisons

This section makes some basic comparison between expigv and other (key)=(value)
packages. The comparisons are really concise, regarding speed, feature range (without
listing the features of each package, comparisons are done against the base expiv not
counting other packages in expiviBUNDLE that extend it, so “bigger feature set” might not
necessarily be true if everything is included), and bugs and misfeatures.

Comparisons of speed are done with a very simple test key and the help of the
[3benchmark package. The key and its usage should be equivalent to

\protected\ekvdef{test}{height}{\def\myheight{#1}}
\ekvsetdef\expkvtest{test}
\expkvtest{ height = 6 }

and only the usage of the key, not its definition, is benchmarked. For the impatient,
the essence of these comparisons regarding speed and buggy behaviour is contained in
Table 1.

As far as I know expgv is the only fully expandable (key)=(value) parser. I tried
to compare expkv to every (key)=(value) package listed on CTAN, however, one might
notice that some of those are missing from this list. That’s because I didn’t get the others
to work due to bugs, or because they just provide wrappers around other packages in
this list.

In this subsection is no benchmark of \ekvparse and \keyval_parse:NNn contained,
as most other packages don’t provide equivalent features to my knowledge. \ekvparse
is slightly faster than \ekvset, but keep in mind that it does less. The same is true for
\keyval_parse:NNn compared to \keys_set :nn of expl3 (where the difference is much
bigger). Comparing just the two, \ekvparse is a tad faster than \keyval_parse:NNn
because of two tests (for empty key names and only a single equal sign) which are
omitted.

keyval is the fastest (key)=(value) package there is and has a minimal feature set with
a slightly different way how it handles keys without values compared to expyv. That
might be considered a drawback, as it limits the versatility, but also as an advantage, as
it might reduce doubled code. Keep in mind that as soon as someone loads xkeyval the
performance of keyval gets replaced by xkeyval’s.

Also keyval has a bugfeature, which unfortunately can’t really be resolved without
breaking backwards compatibility for many documents, namely it strips braces from the
argument before stripping spaces if the outer most braces aren’t surrounded by spaces,
also it might strip more than one set of braces. Hence all of the following are equivalent
in their outcome, though the last two lines should result in something different than the
first two:

\setkeys{foo}{bar=baz}

\setkeys{foo}{bar= {baz}}

\setkeys{foo}{bar={ baz}} % should be ‘ baz’
\setkeys{foo}{bar={{baz}}} % should be ‘{baz}’

keyval doesn’t work with non-standard category codes of = and ,. Also if a (key)=
(value) pair contains multiple equals signs outside of braces everything post the first is
silently ignored so the following two inputs yield identical outputs:

\setkeys{foo}{bar=baz}
\setkeys{foo}{bar=baz=and more}

59

https://gitlab.com/islandoftex/texmf/expkv-bundle
https://ctan.org/topic/keyval

xkeyval is pretty slow (yet not the slowest), but it provides more functionality, e.g., it
has an interface to disable a list of keys, can search multiple sets simultaneously, and has
an intriguing mechanism it calls “Pointers” to save the value of particular keys for later
reuse. It contains the same bug as keyval as it has to be compatible with it by design (it
replaces keyval’s frontend), but also adds even more cases in which braces are stripped
that shouldn’t be stripped, worsening the situation.

xkeyval does work with non-standard category codes of = and ,, but the used
mechanism fails if the input contains a mix of different category codes for the same
character. Just like with keyval equals signs after the first and everything after those is
ignored.

ltxkeys is no longer compatible with the IATEX kernel starting with the release 2020-10-
o1. It is by far the slowest (key)=(value) package I've tested — which is funny, because it
aims to be “[...] faster [...] than these earlier packages [referring to keyval and xkeyval].”
It needs more time to parse zero keys than five of the packages in this comparison
need to parse 100 keys. Since it aims to have a bigger feature set than xkeyval, it most
definitely also has a bigger feature set than expgv. Also, it can’t parse \long input, so
as soon as your values contain a \par, it’ll throw errors. Furthermore, ltxkeys doesn’t
strip outer braces at all by design, which, imho, is a weird design choice. Some of the
more intriguing features (e.g., the \argpattern mechanism) didn’t work for me. In
addition ltxkeys loads catoptions which is known to introduce bugs (e.g., see https:
//tex.stackexchange.com/questions/461783). Because it is no longer compatible with
the kernel, I stop benchmarking it (so the numbers listed here and in Table 1 regarding
ltxkeys were last updated on 2020-10-05).

ltxkeys works with non-standard category codes, it also silently ignores any addi-
tional equals signs and the following tokens.

I3keys is at the slower end of the midfield yet not unusably slow, but has an, imho,
great interface to define keys. It strips all outer spaces, even if somehow multiple spaces
ended up on either end. It offers more features, but has pretty much been bound to expl3
code before. Nowadays the IATEX kernel has an interface with the macros \DeclareKeys,
\SetKeys, and \ProcessKeyOptions that provides access to l3keys from the IATEX 2,
layer as well as parsing package options with it. Because of the \ProcessKeyOptions
macro and its features the only two viable options to provide (key)=(value) options for
new projects in my opinion are the kernel’s methods and expyviopt as those are the only
two until now up to my knowledge that support parsing the raw options, and future
options.

[3keys handles active commas and equals signs fine. Multiple equals signs lead to
an error if additional equals signs aren’t nested inside of braces, so perfectly predictable
behaviour here.

pgfkeys is among the top 4 of speed if one uses \pgfgkeys over \pgfkeys, else
the initialisation parsing the family path takes roughly 43 ops and moves it two
spots down the list (so in Table 1 both p, and T, would be about 43 ops bigger if
\pgfkeys{(path)/.cd,(keys)} was used instead). It has an enormous feature set. It
stores keys in a way that reminds one of folders in a Unix system which allows interesting
features and has other syntactic sugars. It is another package that implements something
like the exp:NoTaTION With less different options though. To get the best performance
\pgfqkeys was used in the benchmark. It has the same or a very similar bug keyval has.

60

https://tex.stackexchange.com/questions/461783
https://tex.stackexchange.com/questions/461783

The brace bug (and also the category fragility) can be fixed by pgfkeyx, but this package
was last updated in 2012 and it slows down \pgfkeys by factor 8. Also pgfkeyx is no
longer compatible with versions of pgfkeys newer than 2020-05-25.

pgfkeys silently drops anything after the second unbraced equals sign in a (key)=
(value) pair.

kvsetkeys with kvdefinekeys is in the slower midfield, but it works even if commas
and equals have category codes different from 12 (just as some other packages in this
list). It has quadratic run-time unlike most other (key)=(value) implementations which
behave linear. The features of the keys are equal to those of keyval, the parser adds
handling of unknown keys.

kvsetkeys does include any additional equals sign in the value. But any active equals
sign is turned into one of category code 12 if it’s not nested in braces. Also spaces around
superfluous equals signs are stripped. So the following all result in the same:

\kvsetkeys{foo}{bar=baz=morebaz}

\kvsetkeys{foo}{bar=baz =morebaz}
\kvsetkeys{foo}{bar=baz= morebaz}
\kvsetkeys{foo}{bar=baz = morebaz}

options is in the midfield of speed. It is faster per individual key than pgfkeys but
has no shortcut like \pgfqgkeys. It has a much bigger feature set than expiv. Similar to
pgfkeys it uses a folder like structure, makes searching multiple paths easy, incorporates
package options and more. It also features a form of expansion control, predefined
expansion kinds are limited though one can define additional ones. Unfortunately it also
suffers from the premature unbracing bug keyval has.

options can’t handle non-standard category codes and will silently ignore superflu-
ous equals signs and following tokens.

simplekv is hard to compare because I don’t speak French (so I don’t understand the
documentation). There was an update released on 2020-04-27 which greatly improved
the package’s performance and added functionality so that it can be used more like most
of the other (key)=(value) packages. Speed wise it is pretty close to expkv. Regarding
unknown keys it got a very interesting behaviour. It doesn’t throw an error, but stores
the (value) in a new entry accessible with \useKV. Also if you omit (value) it stores
true for that (key).

simplekv can’t correctly handle non-standard category codes. It silently ignores any
unbraced equals sign beyond the first and any following tokens.

Yax is the second slowest package I've tested. It has a pretty strange syntax for the
TeX-world, imho, and again a direct equivalent is hard to define (don’t understand me
wrong, I don’t say I don’t like the syntax, quite the contrary, it’s just atypical). It has
the premature unbracing bug, too. YAX features some prefixes one can use to make an
assignment use \edef, \gdef or \xdef so has something that comes close to expansion
control. Also somehow loading YAX broke options for me. The tested definition was:

\usepackage{yax}
\defactiveparameter yax {\storevalue\myheight yax:height } % setup
\setparameterlist{yax}{ height = 6 } % benchmark

61

Table 1: Comparison of (key)=(value) packages. The packages are ordered from fastest
to slowest for one (key)=(value) pair. Benchmarking was done using l3benchmark and
the scripts in the Benchmarks folder of the original expiv’s git repository. The columns
p; are the polynomial coefficients of a linear fit to the run-time, py can be interpreted as
the overhead for initialisation and p; the cost per key. The T column is the actual mean
ops needed for an empty list argument, as the linear fit doesn’t match that point well in
general. The column “BB” lists whether the parsing is affected by some sort of brace bug,
“CF” stands for category code fragile and lists whether the parsing breaks with active
commas or equal signs.

Package P1 Po Ty BB CF Date

keyval 13.6 2.2 7.2 yes yes 2022-05-29
expkv 16.7 3.1 58 no no 2023-01-10
simplekv 19.9 2.9 151 no yes 2022-10-01
pgfkeys 24.5 2.2 10.3 yes yes 2021-05-15
options 23.3 16.2 204 yes yes 2015-03-01
kvsetkeys * * 40.4 no no 2022-10-05
l3keys 70.6 35.6 322 mno no 2022-12-17
xkeyval 2559 221.3 173.4 yes yes 2022-06-16
Yax 438.2 131.8 1148 yes yes 2010-01-22

ltxkeys 3400.1 4738.0 5368.0 no no 2012-11-17%

*For kvsetkeys the linear model used for the other packages is a poor fit, kvsetkeys
seems to have approximately quadratic run-time, the coefficients of the second degree
polynomial fit are p, = 7.6, p; =47.7, and py = 58.0. Of course the other packages might
not really have linear run-time, but at least from 1 to 20 keys the fits don’t seem too
bad. If one extrapolates the fits for 100 (key)=(value) pairs one finds that most of them
match pretty well, the exception being ltxkeys, which behaves quadratic as well with
P2 = 23.5, py = 2906.6, and py = 6547.5.

This seems important to state as YAX supports two different input syntaxes, the tested
one was the one closer to traditional (key)=(value) input.

YaxX won’t handle non-standard category codes correctly. Superfluous equals signs
end up in the value in an unaltered form (just like with expiv).

62

https://github.com/Skillmon/tex_expkv

List of Examples

expKv
The difference between co and v expansion
Parse the contents of a macro as additional (key)=(value) input
Parse the contents of a macro as additional (key)=(value) input (revisited)
Define a single Val-(key) oo v i
Define a single NoVal-(key) v v v i ittt
Copy a macro to define a Val-(key)
Copy a macro to define a NoVal-(key)
Copy an existing Val-(key) o o v it
Copy an existing NoVal-(key) o o v v v i v it it
Search undefined Val-(key)s in another (set).
Search undefined NoVal-(key)s in another (set)
Search an undefined Val-(key) in a list of other (set)s
Search an undefined NoVal-(key) in a list of other (set)s
Do the same as an already defined macro if an unknown Val-(key) is found . .
Silently ignore unknown NoVal-(key)s
Check if a Val-(key) is already defined
Check if a (set) is already defined
Execute code after \ekvset if a NoVal-(key) wasused
Stop parsing a (key)=(wvalue) list if a specific NoVal-(key) was used
Use one (key) to set multiple other keys
Change the current (set)
Set defined keys using \ekvset L.
Set defined keys and execute code afterwards using \ekvsetSneaked
Define a setup command for a defined (set) using \ekvsetdef
Define a setup command that will also require code to execute after all keys
were processed using \ekvsetSneakeddef
Define a setup command that will execute codes after all keys were processed
using \ekvsetdefSneaked
Compile a (key)=(value) list into a macro that will quickly set that list
Parse a (key)=(value) list and execute arbitrary code for each element using
Nekvparse
Expandably search for an optional argument with a default value
Expandably search for an optional argument and behave differently if it’s found
O MOT . . v v v v o e e e e e e e e e
Loop over a comma separated list and execute arbitrary code for each element
Expandably throw error messages using \ekverr
Directly call key code without parsing a (key)=(value) list
A (key)=(wvalue) based replacement for WNTEX 2’s \rule
An expandable (key)=(value) macro using \ekvsneak

expkvics
Simple macro with \ekveSplito L
Simple macro with \ekvcHash
Using \ekvcHashAndForward v v v i
Splitting of a key from a hash list using \ekvcValueSplit
Enumerating choices with the enum type

63

O O O \© o o\

10
10
10
11
11
11
11
12
12
12
12
13
13
13
13
13

14

14
14

15
16

A slightly more complicated usage of the enum type
Filtering possible values with the choice type
Setting up a Boolean key with the choice type
Building a list with the aggregate type
Building a convoluted list with the aggregate type
Using a Boolean flag with the flag-bool type
Changing the values for future calls using \ekvcChange
A typical setup macro for expgvics macros
Using unknown key handlers to wrap another (key)=(value) enabled macro .
Wrapping an existing macro, but with a hash variant
Defining an expandable (key)=(value) macro with an optional argument . . .
The \sine example revisited L oo
Forwarding pre-parsed keys to an expkvics key with \ekvcPass
Filtering out values with the process type
Filtering out values with the e-aggregate type

€XPKVIDEF

The effects of the new prefix oL
Overload a key type with another with the also prefix
Defining a Val-(key) with arbitrary effect with the code type
An arbitrary NoVal-(key) action with the noval type
Setting a default value for a Val-(key) with the default type
Specifying initial values with the initial type
Defining Boolean keys with the bool type
Inversing the logic of a Boolean with the invbool type
Also store the (value) of an existing (key) in a macro using the also prefix
and the store type
Define a key using the data type Lo oL
Define a key using the dataT type
Define keys that use TEX registers, here a skip with the eskip type
Define a Val-(key) as a shortcut to set multiple other keys with the meta type
Set multiple other keys from a NoVal-(key) with the nmeta type
Define a choice with arbitrary code using the choice type
Show the equivalent setup for a choice type to mimic a choice-store type . .
Store the user’s choices in a macro with the choice-store type
Show the equivalent setup for a choice type to mimic a choice-enum type
Handle unknown choices without throwing an error with the unknown-choice

TYPE o o o e e e e e e
Create shortcuts for choices using the choice-aliases type

eXPKVIOPT
A package using eXpRVIOPT oo
Parsing the global options L L oo
eXpKVIPOP

Defining a parser similar to eXpgvIDEF oL oL L
Visualising the expandability of \ekvpParse

64

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

A
all . 6
E
\ekvbreak 12,15
\ekvbreakPostSneak 12
\ekvbreakPreSneak 12
\ekvcChange 27, 30
\ekvcDate 36
\ekvcFlagGetHeight 33
\ekvcFlagGetHeights 33
\ekvcFlagHeight 32
\ekvcFlagIf 33
\ekvcFlagIfRaised 33
\ekvcFlagNew 32
\ekvcFlagRaise 32
\ekvcFlagReset 33
\ekvcFlagResetGlobal 33
\ekvcFlagSetFalse 32
\ekvcFlagSetTrue 32
\ekvchangeset 13
\ekvcHashuuuu... 24, 25
\ekvcHashAndForward 25
\ekvcHashAndUse 25
\ekveompile .. vvvvi i 14
\ekvcPass 35
\ekvcSecondaryKeys 26
\ekveSplit 23,24
\ekvcSplitAndForward 24
\ekvcSplitAndUse 24
\ekvVesSVIoop . ..o vv i 17
\ekvcValue 24-26
\ekvcValueFast 24-26
\ekvcValueSplit 25, 26
\ekvcValueSplitFast 26
\ekveVersionuuuunn.. 36
\ekvDate 18
\ekvdDate 37
\ekvdef 9
\ekvdefinekeys 37
\ekvdefNoVal 9
\ekvdefunknown 10, 11
\ekvdefunknownNoVal 10, 11
\ekvdVersion 37
\NeKVerr oo 17
\ekvifdefined 12
\ekvifdefinedNoVal 12
\ekvifdefinedset 12

\ekvlet, 9
\ekvletkv 10
\ekvletkvNoVal 10
\ekvletNoVal 10
\ekvletunknown 11
\ekvletunknownNoVal 11
\ekvmorekv 12,15
\ekvoDate 50
\ekvoProcessFutureOptions 49
\ekvoProcessGlobalOptions 49
\ekvoProcessLocalOptions 49
\ekvoProcessOptions 48
\ekvoProcessOptionsList 49
\ekvoptarg 16, 33
\ekvoptargTF 16, 33
\ekvoUseUnknownHandlers 50
\ekvoVersion 50
\ekvparse 13,15, 20
\ekvpAssertIf 55
\ekvpAssertIfNot 55
\ekvpAssertNoValue 55
\ekvpAssertOneValue 55
\ekvpAssertTF 55
\ekvpAssertTFNot 55
\ekvpAssertTwoValues 55
\ekvpAssertValue 54, 55
\ekvpDateiiiii. 56
\ekvpDefAutoPrefix 53
\ekvpDefNoType 52-54
\ekvpDefNoValue 54
\ekvpDefNoValuePrefix 54
\ekvpDefPrefix 53
\ekvpDefPrefixlet 53
\ekvpDefPrefixStore 53
\ekvpDefType 53, 54
NekvpEOA 55
NekVPEOPt 54
\ekvpEOT, 54
\ekvpGobbleA 55
\ekvpGobbleP 54
\ekvpGobbleT 54
\ekvpIfNoVal 55
\ekvplet 53
\ekvpNewParser 53
\ekvpParse 56
\ekvpProtect 55
\ekvpUseNoValueMarker 54
\ekvpValueAlwaysRequired 52, 54

\ekvpVersion 56

\ekvredirectunknown 10, 11
\ekvredirectunknownNoVal 10, 11
\ekvset . ..ot 12, 13, 20
\ekvsetdef 13, 14
\ekvsetdefSneaked 14
\ekvsetSneaked 13, 14
\ekvsetSneakeddef 14
\ekvsneak 12-15, 20
\ekvsneakPre 12, 20
\ekvVersionvouvuuven... 18
Expansion commands:
b 8
C e 7
€ 7
f 7
= 8
NKEY vt 8
O 7
P 8
P or 8
R 8
L 8
O 8
< 8
Voo 7
Ve e 7
expkv-cs prefix commands:
Iong .o vv 26
expkv-cs type commands:
aggregate 29
alias 27
choice 28
default 27
e-aggregate 29
GNUM . oottt et e 27
flag-bool 29
flag-false 30
flag-raise 30
flag-true 30
META .« vt vttt e 27
nmeta 27
PTOCESS & vt vt ittt 35
expkv-def prefix commands
also ... 38
long ... 38
DOW v ottt e e e e e e e 37
protect 38
protected 38
expkv-def type commands:
alias 43
apptoks oL 42
bool 40
boolpair 41

boolpairTF 41
boolTF, 40
box 42
choice 43
choice-aliases 45
choice-enum 44
choice-store 44
code 39
data 41
dataT 41
default 39
dimen 42
ecode 39
edata e 41
edataT 41
edefault 39
edimen 42
einitial 40
eint 42
enoval 39
eskip ... i oo 42
estore L. 41
fdefault 39
finitial 40
gapptoks 42
gbool 40
gboolpair 41
gboolpairTF 41
gboolTF 40
gbox 42
gdata o, 41
gdataT 41
gdimen, 42
gint 42
ginvbool 40
ginvboolTF, 40
gpretoks L, 42
gskip 42
gstore 41
gtoks ... 42
initial oo oL, 40
int 42
invbool 40
invboolTF 40
meta e 42
nmeta e 42
noval, 39
odefault 39
oinitial, 40
pretoks, 42
set ... 43
skip ... 42
smeta 43
smmeta 43

TOKS . .o e 42
unknownjcode, 45
unknown noval 46
unknown, redirect 46
unknown redirect-code 46
unknown redirect-noval 46
unknown-choice 45
xdata 41
xdataT, 41

xdimen o, 42
Xint 42
xskip ... 42
Xstore oo 41
T
TeX and IATEX 2 commands:
\ekv@name 18
\ekv@name@key 18
\ekv@name@set 18

	Contents
	Introduction
	Terminology
	Category Codes
	Bugs

	expkv-bundle for the Impatient
	1 expkv
	1.1 General Parsing Rules
	1.1.1 Expansion Control

	1.2 Setting up Keys
	1.3 Handle Unknown Keys
	1.4 Helpers in Actions
	1.5 Parsing Keys in Sets
	1.6 Generic Key Parsing
	1.7 Other Useful Macros
	1.8 Other Macros
	1.9 Examples
	1.9.1 Standard Use-Case
	1.9.2 An Expandable <key>=<value> Macro Using \ekvsneak

	2 expkv-cs
	2.1 Defining Macros and Primary Keys
	2.1.1 Primary Keys
	2.1.2 Split
	2.1.3 Hash

	2.2 Secondary Keys
	2.2.1 Prefixes
	2.2.2 Types

	2.3 Changing the Initial Values
	2.4 Handling Unknown Keys
	2.5 Flags
	2.6 Further Examples
	2.7 Freedom for Keys!
	2.8 Useless Macros

	3 expkv-def
	3.1 Macros
	3.2 Prefixes
	3.2.1 Prefixes
	3.2.2 Types

	3.3 Another Example

	4 expkv-opt
	4.1 Macros
	4.1.1 Option Processors
	4.1.2 Other Macros

	4.2 Examples

	5 expkv-pop
	5.1 Parsing Rules
	5.2 Defining Parsers
	5.3 Changing Default Behaviours
	5.4 Markers
	5.5 Helpers in Actions
	5.6 Using Parsers
	5.7 The Boring Macros
	5.8 Examples

	6 Comparisons
	List of Examples
	Index
	A
	E
	T

