
\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

grouping

1

Introduction

Contents

1 Introduction 1

2 Kinds of grouping 3

3 Hooks 5

4 Local versus global 6

5 Files 9

1 Introduction

This is a rather short explanation. I decided to write it after presenting the other topics

at the 2019 ConTEXt meeting where there was a question about grouping.

1.1 Pascal

In a language like Pascal, the language that TEX has been written in, or Modula, its

successor, there is no concept of grouping like in TEX. But we can find keywords that

suggests this:

for i := 1 to 10 do begin ... end

This language probably inspired some of the syntax of TEX and MetaPost. For instance

an assignment in MetaPost uses := too. However, the begin and end don't really group

but define a block of statements. You can have local variables in a procedure or function

but the block is just a way to pack a sequence of statements.

1.2 TEX

In TEX macros (or source code) the following can occur:

\begingroup

...

\endgroup

as well as:

\bgroup

...

\egroup

2

Introduction

Here we really group in the sense that assignments to variables inside a group are

forgotten afterwards. All assignments are local to the group unless they are explicitly

done global:

\scratchcounter=1

\def\foo{foo}

\begingroup

\scratchcounter=2

\global\globalscratchcounter=2

\gdef\foo{FOO}

\endgroup

Here \scratchcounter is still one after the group is left but its global counterpart is

now two. The \foo macro is also changed globally.

Although you can use both sets of commands to group, you cannot mix them, so this

will trigger an error:

\bgroup

\endgroup

The bottomline is: if you want a value to persist after the group, you need to explicitly

change its value globally. This makes a lot of sense in the perspective of TEX.

1.3 MetaPost

The MetaPost language also has a concept of grouping but in this case it's more like a

programming language.

begingroup ;

n := 123 ;

endgroup ;

In this case the value of n is 123 after the group is left, unless you do this (for numerics

there is actually no need to declare them):

begingroup ;

save n ; numeric n ; n := 123 ;

endgroup ;

Given the use of MetaPost (read: MetaFont) this makes a lot of sense: often you use

macros to simplify code and you do want variables to change. Grouping in this language

3

Kinds of grouping

serves other purposes, like hiding what is between these commands and let the last

expression become the result. In a vardef grouping is implicit.

So, in MetaPost all assignments are global, unless a variable is explicitly saved inside a

group.

1.4 Lua

In Lua all assignments are global unless a variable is defines local:

local x = 1

local y = 1

for i = 1, 10 do

local x = 2

y = 2

end

Here the value of x after the loop is still one but y is now two. As in LuaTEX we mix TEX,

MetaPost and Lua you can mix up these concepts. Another mixup is using :=, endfor,

fi in Lua after done some MetaPost coding or using end instead of endfor in MetaPost

which can make the library wait for more without triggering an error. Proper syntax

highlighting in an editor clearly helps.

1.5 C

The Lua language is a mix between Pascal (which is one reason why I like it) and C.

int x = 1 ;

int y = 1 ;

for (i=1; i<=10;i++) {

int x = 2 ;

y = 2 ;

}

The semicolon is also used in Pascal but there it is a separator and not a statement end,

while in MetaPost it does end a statement (expression).

2 Kinds of grouping

Explicit grouping is accomplished by the two grouping primitives:

4

Kinds of grouping

\begingroup

\sl render slanted here

\endgroup

However, often you will find this being used:

{\sl render slanted here}

This is not only more compact but also avoids the \endgroup gobbling following spaces

when used inline. The next code is equivalent but also suffers from the gobbling:

\bgroup

\sl render slanted here

\egroup

The \bgroup and \egroup commands are not primitives but aliases (made by \let) to

the left and right curly brace. These two characters have so called category codes that

signal that they can be used for grouping. The can be here suggest that there are other

purposes and indeed there are, for instance in:

\toks 0 = {abs}

\hbox {def}

In the case of a token list assignment the curly braces fence the assignment, so scanning

stops when a matching right brace is found. The following are all valid:

\toks 0 = {a{b}s}

\toks 0 = \bgroup a{b}s}

\toks 0 = {a{\bgroup b}s}

\toks 0 = {a{\egroup b}s}

\toks 0 = \bgroup a{\bgroup b}s}

\toks 0 = \bgroup a{\egroup b}s}

They have in common that the final fence has to be a right brace. That the first one can

be a an alias is due to the fact that the scanner searches for a brace equivalent when

it looks for the value. Because the equal is optional, there is some lookahead involved

which involves expansion and possibly push back while once scanning for the content

starts just tokens are collected, with a fast check for nested and final braces.

In the case of the box, all these specifications are valid:

\hbox {def}

\hbox \bgroup def\egroup

5

Hooks

\hbox \bgroup def}

\hbox \bgroup d{e\egroup f}

\hbox {def\egroup

This is because now the braces and equivalent act as grouping symbols so as long as

they match we're fine. There is a pitfall here: you cannot mix and match different

grouping, so the next issues an error:

\bgroup xxx\endgroup % error

\begingroup xxx\egroup % error

This can make it somewhat hard to write generic grouping macros without trickery that

is not always obvious to the user. Fortunately it can be hidden in macros like the helper

\groupedcommand. In LuaMetaTEX we have a clean way out of this dilemma:

\beginsimplegroup xxx\endsimplegroup

\beginsimplegroup xxx\endgroup

\beginsimplegroup xxx\egroup

When you start a group with \beginsimplegroup you can end it in the three ways shows

above. This means that the user (or calling macro) doesn't take into account what kind

of grouping was used to start with.

When we are in math mode things are different. First of all, grouping with \begin­

group and \endgroup in some cases works as expected, but because the math input

is converted in a list that gets processed later some settings can become persistent,

like changes in style or family. You can bet better use \beginmathgroup and \endmath­

group as they restore some properties. We also just mention the \frozen prefix that

can be used to freeze assignments to some math specific parameters inside a group.

3 Hooks

In addition to the original \aftergroup primitive we have some more hooks. They can

best be demonstrated with an example:

\begingroup \bf

%

\aftergroup A \aftergroup 1

\atendofgroup B \atendofgroup 1

%

\aftergrouped {A2}

\atendofgrouped {B2}

6

Local versus global

%

test

\endgroup

These collectors are accumulative. Watch how the bold is applied to what we inject

before the group ends.

test B1B2A1A2

4 Local versus global

When TEX enters a group and an assignment is made the current value is stored on the

save stack, and at the end of the group the original value is restored. In LuaMetaTEX

this mechanism is made a bit more efficient by avoiding redundant stack entries. This

is also why the next feature can give unexpected results when not used wisely.

Now consider the following example:

\newdimension\MyDimension

\starttabulate[||||]

\NC \MyDimension10pt \the\MyDimension

\NC \advance\MyDimension10pt \the\MyDimension

\NC \advance\MyDimension10pt \the\MyDimension \NC \NR

\NC \MyDimension10pt \the\MyDimension

\NC \advance\MyDimension10pt \the\MyDimension

\NC \advance\MyDimension10pt \the\MyDimension \NC \NR

\stoptabulate

10.0pt 10.0pt 10.0pt

10.0pt 10.0pt 10.0pt

The reason why we get the same values is that cells are a group and therefore the value

gets restored as we move on. We can use the \global prefix to get around this

\starttabulate[||||]

\NC \global \MyDimension10pt \the\MyDimension

\NC \global\advance\MyDimension10pt \the\MyDimension

\NC \global\advance\MyDimension10pt \the\MyDimension \NC \NR

\NC \global \MyDimension10pt \the\MyDimension

\NC \global\advance\MyDimension10pt \the\MyDimension

\NC \global\advance\MyDimension10pt \the\MyDimension \NC \NR

7

Local versus global

\stoptabulate

10.0pt 20.0pt 30.0pt

10.0pt 20.0pt 30.0pt

Instead of using a global assignment and increment we can also use the following

\constrained\MyDimension\zeropoint

\starttabulate[||||]

\NC \retained \MyDimension10pt \the\MyDimension

\NC \retained\advance\MyDimension10pt \the\MyDimension

\NC \retained\advance\MyDimension10pt \the\MyDimension \NC \NR

\NC \retained \MyDimension10pt \the\MyDimension

\NC \retained\advance\MyDimension10pt \the\MyDimension

\NC \retained\advance\MyDimension10pt \the\MyDimension \NC \NR

\stoptabulate

10.0pt 20.0pt 30.0pt

10.0pt 20.0pt 30.0pt

So what is the difference with the global approach? Say we have these two buffers:

\startbuffer[one]

\global\MyDimension\zeropoint

\framed {

\framed {\global\advance\MyDimension10pt \the\MyDimension}

\framed {\global\advance\MyDimension10pt \the\MyDimension}

}

\framed {

\framed {\global\advance\MyDimension10pt \the\MyDimension}

\framed {\global\advance\MyDimension10pt \the\MyDimension}

}

\stopbuffer

\startbuffer[two]

\global\MyDimension\zeropoint

\framed {

\framed {\global\advance\MyDimension10pt \the\MyDimension}

\framed {\global\advance\MyDimension10pt \the\MyDimension}

\getbuffer[one]

}

\framed {

8

Local versus global

\framed {\global\advance\MyDimension10pt \the\MyDimension}

\framed {\global\advance\MyDimension10pt \the\MyDimension}

\getbuffer[one]

}

\stopbuffer

Typesetting the second buffer gives us:

10.0pt 20.0pt
10.0pt 20.0pt 30.0pt 40.0pt

50.0pt 60.0pt
10.0pt 20.0pt 30.0pt 40.0pt

When we want to have these entities independent and not use different variables, the

global settings bleeding from one into the other entity is messy. Therefore we can use

this:

\startbuffer[one]

\constrained\MyDimension\zeropoint

\framed {

\framed {\retained \MyDimension10pt \the\MyDimension}

\framed {\retained\advance\MyDimension10pt \the\MyDimension}

}

\framed {

\framed {\retained \MyDimension10pt \the\MyDimension}

\framed {\retained\advance\MyDimension10pt \the\MyDimension}

}

\stopbuffer

\startbuffer[two]

\constrained\MyDimension\zeropoint

\framed {

\framed {\retained\advance\MyDimension10pt \the\MyDimension}

\framed {\retained\advance\MyDimension10pt \the\MyDimension}

\getbuffer[one]

}

\framed {

\framed {\retained\advance\MyDimension10pt \the\MyDimension}

\framed {\retained\advance\MyDimension10pt \the\MyDimension}

\getbuffer[one]

}

9

Files

\stopbuffer

Now we get this:

10.0pt 20.0pt
10.0pt 20.0pt 10.0pt 20.0pt

30.0pt 40.0pt
10.0pt 20.0pt 10.0pt 20.0pt

The \constrained prefix makes sure that we have a stack entry, without being clever

with respect to the current value. Then the \retained prefix can do its work reliably

and avoid pushing the old value on the stack. Without the constrain it gets a bit unpre­

dictable because then it all depends on where further up the chain the value was put on

the stack. Of course one can argue that we should not have the “save stack redundant

entries optimization” but that's not going to be removed.

5 Files

Although it doesn't really fit in this chapter, here are some hooks into processing files:

Hello World!\atendoffiled {\writestatus{FILE}{ATEOF B #1}}\par

Hello World!\atendoffiled {\writestatus{FILE}{ATEOF A #1}}\par

Hello World!\atendoffiled reverse {\writestatus{FILE}{ATEOF C #1}}\par

Hello World!\begingroup\sl \atendoffiled {\endgroup}\par

Inside a file you can register tokens that will be expanded when the file ends. You can

also do that beforehand using a variant of the \input primitive:

\eofinput {\writestatus{FILE}{DONE}} {thatfile.tex}

This feature is mostly there for consistency with the hooks into groups and paragraphs

but also because \everyeof is kind of useless given that one never knows beforehand

if a file loads another file. The hooks mentioned above are bound to the current file.

5 Colofon

Author Hans Hagen

ConTEXt 2023.08.22 20:02

LuaMetaTEX 211.0

Support www.pragma-ade.com

contextgarden.net

