
A Simplified Introduction to LATEX

Harvey J. Greenberg1

University of Colorado at Denver

Mathematics Department
PO Box 173364

Denver, CO 80217-3364
hjgreenberg@gmail.com

November 29, 2010

1Minor updates, corrections and PDF version by Dan Luecking, luecking at

uark dot edu

i

Table of Contents

List of Figures iii

List of Tables vi

Preface viii

Acknowledgments ix

Sources of LATEX Software ix

1 Overview 1

2 Text 5

2.1 Fonts and Paragraphs . 6
2.2 Lists . 13
2.3 Making Tables . 16
2.4 Special Characters . 23
2.5 Tabbing . 25
2.6 Line, Page, and Word Breaks 26
2.7 Spacing . 27
Exercises . 28

3 Bibliography with BibTEX 30

3.1 Overview . 30
3.2 The bib File . 31

3.2.1 Main body . 31
3.2.2 Web citations . 36
3.2.3 Additional features . 37

3.3 Declaration and Citation . 40
Exercises . 41

4 Counters, Labels, and References 42

4.1 Basic Concepts . 42
4.2 Intrinsic Counters . 43
4.3 Figures and Tables . 44
4.4 Defining Your Own . 46
Exercises . 49

ii

5 Math Mode 50

5.1 Mathematical Symbols . 50
5.2 Fractions and Variable Size Functionality 52
5.3 Arrays and Equations . 57
5.4 Special Functions and Alphabets 64
5.5 Derivatives and Integrals . 66
5.6 Theorems and Definitions . 68
5.7 Refinements . 70
5.8 Grammar . 73
Exercises . 74

6 Graphics 79

6.1 Picture Environment . 79
6.2 PSTricks . 86
6.3 Importing pictures . 97
Exercises . 100

7 Making Special Parts 103

7.1 Cover Page . 103
7.2 Abstract . 105
7.3 Other Front Matter . 106
7.4 Back Matter . 108
7.5 Footnotes . 109
Exercises . 109

8 Taking Control 110

8.1 Your Own Abbreviations and Commands 110
8.2 Your Own Names, Titles and Numbers 111
8.3 Your Own Environments . 113
8.4 Your Own Margins and Spacing 113
8.5 Your Own Output Control . 118
8.6 Your Own Bibliography . 119

Closing Remarks 120

Appendix . 121
Some Tips . 128
References . 130

iii

List of Figures

1 The Structure of a LATEX Document. 1
2 Your First LATEX Source File 2
3 Command Sequence from Source to Postscript 4
4 An Introductory Document Source (Result in Figure 5) . . . 5
5 An Introductory Document Result (Source in Figure 4) . . . 6
6 Positioning Paragraphs Source (Result in Figure 7) 7
7 Positioning Paragraphs Result (Source in Figure 6) 7
8 Centering Source (Result in Figure 9) 8
9 Centering Result (Source in Figure 8) 8
10 Some Font Sizes Source (Result in Figure 11) 10
11 Some Font Sizes Result (Source in Figure 10) 10
12 Skipping Line Spaces Source (Result in Figure 13) 12
13 Skipping Line Spaces Result (Source in Figure 12) 12
14 Description List Environment 14
15 Itemize List Environment Source (Result in Figure 16) 15
16 Itemize List Environment Result (Source in Figure 15) 15
17 Enumerate List Environment Source (Result in Figure 18) . . 16
18 Enumerate List Environment Result (Source in Figure 17) . . 16
19 A 2× 3 Table . 17
20 A 2× 3 Table with Horizontal and Vertical Lines 17
21 A Table with Partially Spanning Horizontal and Vertical Lines 17
22 Nested Tables Source (Result in Figure 23) 18
23 Nested Tables Result (Source in Figure 22) 19
24 \parbox Source (Result in Figure 25) 21
25 \parbox Result (Source in Figure 24) 21
26 Multicolumn Source (Result in Figure 27) 22
27 Multicolumn Result (Source in Figure 26) 22
28 Obtaining Brackets in a Description List Environment 23
29 Tabbing Source (Result in Figure 30) 26
30 Tabbing Result (Source in Figure 29) 26
31 Adding bibtex to the Command Sequence 31
32 A Document to Print the Bibliographic Database 41
33 Framed Figure 34 Source . 46
34 Framed Figure with Caption at Bottom 46
35 Framed Figure with Caption at Top 46
36 Alternative enumerate Symbols Source (Result in Figure 37) . 48
37 Alternative enumerate Symbols Result (Source in Figure 36) . 48

iv

38 Variable Sizes Source (Result in Figure 39) 54
39 Variable Sizes Result (Source in Figure 38) 54
40 \displaystyle Source (Result in Figure 41) 54
41 \displaystyle Result (Source in Figure 40) 54
42 Examples to Compare Text and Display Modes 55
43 eqnarray Environment Source (Result in Figure 44) 59
44 eqnarray Environment Result (Source in Figure 43) 59
45 Matrix Equation Source (Result in Figure 46) 60
46 Matrix Equation Result (Source in Figure 45) 60
47 Nested Arrays Source (Result in Figure 48) 60
48 Nested Arrays Result (Source in Figure 47) 60
49 Horizontal Braces Source (Result in Figure 50) 62
50 Horizontal Braces Result (Source in Figure 49) 62
51 \flushleft in parbox Source (Result in Figure 52) 63
52 \flushleft in parbox Result (Source in Figure 51) 63
53 \raggedright in parbox Source (Result in Figure 54) 64
54 \raggedright in parbox Result (Source in Figure 53) 64
55 gather* Environment Source (Result in Figure 56) 71
56 gather* Environment Result (Source in Figure 55) 71
57 Commutative Diagram Source (Result in Figure 58) 73
58 Commutative Diagram Result (Source in Figure 57) 73
59 Vertical Diagram Source (Result in Figure 60) 80
60 Vertical Diagram Result (Source in Figure 59) 80
61 Variety of Objects in Picture Environment 80
62 Source for Figure 61 . 81
63 Line Parameters . 83
64 PSTricks Source for Connecting Nodes 91
65 Graph Source (Result in Figure 66) 91
66 Graph Result (Source in Figure 65) 91
67 Source Code for Drawing Histogram of Test Scores 93
68 Sequence of PSTricks Commands to Draw Histogram 96
69 Applying \includegraphics to Import an eps File 98
70 Specifying Dimensions in \includegraphics 98
71 Title Page Source (Result in Figure 72) 103
72 Title Page Result (Source in Figure 71) 103
73 Adding Addresses to Authors 104
74 Footnotes in the Cover Page Source (Result in Figure 75) . . 105
75 Footnotes in the Cover Page Result (Source in Figure 74) . . 105
76 Making an Abstract Source (Result in Figure 77) 106

v

77 Making an Abstract Result (Source in Figure 76) 106
78 Some Front Matter Specifications for This Document 107
79 Adding makeindex to the Command Sequence 108
80 Setting a Footnote Source (Result in Figure 81) 109
81 Setting a Footnote Result (Source in Figure 80) 109
82 Setting a Footnote Source (Result in Figure 83) 109
83 Setting a Footnote Result (Source in Figure 82) 109
84 Document Margins . 115
85 Varying \itemsep to control item spacing in a list 117
86 Array with Fixed Width Column Source (Result in Figure 87) 117
87 Array with Fixed Width Column Result (Source in Figure 86) 117
88 \ifthenelse Source (Results in Figure 89) 118
89 \ifthenelse Results (Source in Figure 88) 118
90 Most of the Preamble for this Book 121

vi

List of Tables

1 Intrinsic Font Styles . 9
2 Writing Special Characters 24
3 Some Accents for Letters . 24
4 The Tabbing Environment . 25
5 The \kill Tabbing Command 25
6 Figure and Table Location Options 45
7 Numerals to Print Counters 47
8 Default Settings for enumerate Counters 49
9 Some Mathematical Operations 50
10 Set Notation . 51
11 The \mathfont Commands 52
12 Variable Size Mathematical Operation Symbols 53
13 Some Symbols in Logic . 55
14 Order Relations . 56
15 Transpose of a Vector . 59
16 Some Common Mathematical Functions 65
17 Examples of Mathematical Functions 65
18 Notation Using mathbb Fonts from amssymb Package 66
19 Some Basic Drawing Commands in PSTricks 88
20 Boxes in PSTricks . 89
21 Parameters for \psaxes . 95
22 Intrinsic Name Parameters 112
23 Margin Parameters . 116
24 Spacing Parameters . 116
25 Conversions of Common Units of Measurement 121
26 Reference Tables . 122
27 Commands/Environments for Text Font Appearance 122
28 Commands/Environments for Controlling Text Position . . . 123
29 Text Accents and Special Symbols 123
30 Commands for Counters . 123
31 Commands/Environments to Organize Document 123
32 Commands to Control Document Style 124
33 Commands to Control Fonts in Math Mode 124
34 Accents in Math Mode . 124
35 Spacing Commands in Math Mode 124
36 Greek and Special Letters . 125
37 Frequently Used Mathematical Symbols 125

vii

38 Binary Operations . 125
39 Operators and Quantifiers . 125
40 Special Functions . 126
41 Relation Symbols . 126
42 Arrows . 126
43 Dots, Circles, Triangles and Lines 127
44 Variable Size Symbols . 127
45 Special Symbols in Both Text and Math Modes 127
46 Commands and Parameters in Picture Environment 128

viii

Preface

The majority of this book is about using LATEX2ε [2, 10], a descendant of
LATEX, designed by Leslie Lamport [9], based on TEX, originated by Donald
E. Knuth [8]. This is a typesetting program, not a word processor. You
enter some editor that saves plain text files. Then, you type text freely until
you need something special, such as italic font or a complex mathematical
expression, like

lim
ε→0+

∫ ai+ε

ai

√
1 + (x− µ)2 dx

Φ(ε)
.

It was the desire to have high quality, low cost publications in mathe-
matics and related disciplines that caused Knuth (pronounced Kah-nooth) to
invent TEX (pronounced Tek) in the late 1970’s. Originally believing that he
could write a program in less than a year that could typeset documents, he
actually ended up defining an entire branch of research in computer science.
It was 10 years later that he published his seminal book [8], but he published
articles along the way, and he permanently changed the way mathematical
documents are prepared. LATEX (pronounced Lah-tek or Lay-tek) is a col-
lection of macros built on top of TEX that “represents a balance between
functionality and ease of use” [9, p. xiii]. LATEX2ε is the current version,
developed by a team of volunteers: Johannes L. Braams, David P. Carlisle,
Alan Jeffrey, Frank Mittelbach, Chris Rowley, and Rainer Schöpf [2].

A comprehensive coverage of LATEX and the many enhancements to it is
given by the The LATEX Companion [5]. By contrast, this book is designed
to be a succinct introduction, omitting many of the things LATEX2ε can do.
My goal is to offer enough of an introduction that someone not acquainted
with LATEX (or with TEX) can write a term paper, thesis, or article, using
LATEX2ε to produce high quality results. Exercises are provided for guided
instruction, which should be just a few classes. For one who is well acquainted
with computers, particularly unix, the basics that are covered should take
less than 10 hours, and one could do all of the exercises. For one who is just
learning how to use a computer, it will take longer, especially getting used to
functioning at the command line. In any case, the finer points require more
study.

Happy LATEXing.
— Harvey J. Greenberg

Denver, Colorado

ix

Acknowledgments

The author thanks the many contributors in the comp.text.tex newsgroup,
particularly Donald Arseneau, Herman Bruyninckx, David Carlisle, Robin
Fairbairns, Jonathan Fine, Denis Girou, David Haller, Dan Luecking, Timo-
thy Murphy, Sebastian Rahtz, Axel Reichert, Thomas Ruedas, Bernd Schandl,
Anton Schwaighofer, Mårten Svantesson, and Matt Swift, who were very gen-
erous with taking time to answer so many questions on a regular basis. I also
received useful comments from people who read an earlier draft that I made
available on the web, notably William Briggs. I especially thank Kasper B.
Graversen whose in-depth review has made this version much better than my
original. One student, Andrea Dean, provided feedback that led to several
points of clarification. Last, but not least, I thank Allen G. Holder, who
taught me LATEX in the first place.

Sources of LATEX Software

The basic LATEX software system is available free of charge for unix systems,
and MiKTeX [13] is available free of charge for DOS systems. The best
source of these, and additional packages that extend the LATEX capabilities
(to which I refer in this book), is at the Comprehensive TeX Archive Network
(CTAN) [4], at three host sites (and many mirrors):

1. http://ctan.tug.org/ in Boston, MA, USA,

2. http://www.tex.ac.uk/ in Cambridge, UK, and

3. http://www.dante.de/ in Mainz, Germany (in German).

These all describe how to search and browse the FTP sites for software and
documents.

x

1

1 Overview

You will create a file, called the LATEX source, which is plain text. To keep
things simple, its suffix is .tex. For example, I refer to myfile.tex as a
plain text source file that you create. Figure 1 shows the structure of this
file, which I shall describe in greater detail throughout this book.

% This is myfile.tex

% notes to yourself can go here



 Anything following % is ignored

(used for comments).
\documentclass[options]{style}
optional specifications
— e.g., declaring use of packages

}
Preamble

(blank lines do not matter)

\begin{document}
...

\end{document}

}
Body

This is the document environment.

All that follows is ignored
(could be used for comments).

Figure 1: The Structure of a LATEX Document.

In the preamble, there are many options, depending upon the style; the
intrinsic document styles are: article, book, letter, report, and slides.
Most publishers have their own style, which they provide for you to download.
Among these are professional societies, notably the American Mathematical
Society (amsmath style) and the Society for Industrial and Applied Mathe-
matics (siam style).

The focus throughout this book is on the article style. Further, I shall
be using defaults for almost everything, concentrating on getting started
with using LATEX as quickly as possible. Later, some of the options, like
margin settings and other preamble specifications are covered, as well as
more advanced topics for customizing your document.

Are you ready to write your first LATEX document? Copy the source file
shown in Figure 2 and name it myfile.tex. Then, at the command line,
enter:

latex myfile

2 1 OVERVIEW

(In an MS Windows system, the command line is the DOS command line,
which you enter by running Start−→Programs−→MS-DOS Prompt, or by
Start−→Run and entering cmd or command into the window.)

\documentclass{article}

\begin{document}

Hello world.

\end{document}

Figure 2: Your First LATEX Source File

This is called compiling your source, which creates several output files.
The only one you need to be concerned with now is the dvi file, which the
latex program (called a “compiler”) names myfile.dvi. One of three things
will have occurred:

Case 1. You got messages, but they were not fatal errors.

Among the non-fatal messages you will generally see are warnings like:

Overfull \hbox ...

Overfull \vbox ...

Underfull \hbox ...

Underfull \vbox ...

Do not worry about these.

Case 2. You got a fatal error message.

You must find and correct it. This is called debugging your source.
Sometimes the error message tells you what went wrong, such as miss-
ing a brace (characters { and }, which you will come to know and love),
or some command was not recognized due to being misspelled. Many
times the message is not very informative, so you are advised to com-
pile often. That way you will know that what you did in the last few
minutes contains the error.

Case 3. You got no messages.

Something went wrong and you need to ask for help.

3

If all went well, the first thing to do is save a backup by copying your
source file to another subdirectory, or to a different name. In unix do this by
entering:

cp -p myfile.tex myfile-1.tex

(The -p is to keep the date and time of the source file.) Change -1 to
another qualifier each time (e.g., -2 . . .), so you have a collection of backups.
If you are running under DOS, use copy myfile.tex destination, where the
destination is either a: or some backup file name. (If you are familiar with
DOS, nothing more need be said; if not, you need to learn how to create,
edit, and save plain text files.)

Next you want to view the result. If you are in a unix environment, you
can view the result with the dvi viewer, xdvi. At the command line enter:

xdvi myfile

and it will come on your screen. (There is more to do if you are working
remotely, in which case you might ask someone for help.)

If you are using DOS, the viewer that comes with MiKTeX [13], a free
software system by Christian Schenk, is called YAP. At the DOS command
line you enter:

YAP myfile

You will see various options for viewing and printing.
Under unix, xdvi does not have a print option, so you first need to convert

the dvi file to postscript. This is done with the program, dvips. At the
command line enter:

dvips myfile -o

(The -o tells the system you want the output to go to a file, rather than
just print; your installation might already have file output as the default,
in which case the -o is not needed.) This will result in the creation of the
postscript file myfile.ps. You can print it by any number of ways, including
the unix command, lpr myfile.ps.

The same conversion program can be run under DOS (and comes with
MiKTeX), and you might want to obtain myfile.ps for a variety of reasons,
including posting it on the web. To view or print a postscript file under DOS,
you can run a program called ghostview. You will need to find out more
about viewing and printing postscript files that suit your particular needs.

4 1 OVERVIEW

Summarizing, you begin by entering a plain text editor. In unix this
could be pico, emacs, vi or vim. In DOS you can use EDIT at the command
line, or you can use Notepad, Wordpad or MS Word. If you use a word
processor, however, you must take absolutely no advantage of its formatting.
You should even put in hard return characters (i.e., press Enter at the end
of a line instead of letting the word processor do it for you), and never use

tabs. In MS Word, when saving the file, be sure to specify plain text, and
you must continue to specify the suffix as .tex (otherwise, it will use .doc

as its suffix). If you want to check that the file is really plain text, enter

EDIT myfile.tex

at the DOS command line and see how the file appears. (There are some free
text editors on the web; use your favorite search engine to find them.)

Once you have your source ready to compile, enter latex myfile, and if
all is well, enter your dvi viewer. Under unix or DOS use dvips to convert the
dvi file to a postscript (ps) file, which can be printed. These steps are given
in Figure 3. Execute these commands for the source file shown in Figure 2.
The result should be one line of output: Hello World. Congratulations!

myfile.tex myfile.dvi myfile.ps

create/edit view/print print/post
compile

with
latex

convert
with
dvips

Figure 3: Command Sequence from Source to Postscript

Now change your document to specify a font size of 12pt (default is 10pt)
by changing your first line to the following:

\documentclass[12pt]{article}

The “pt” (abbreviation for “point”) is one of the units of measurement, about
1
72

in; other units used in many parts of LATEX are in (inches), cm (centime-
ters), and em (like the letter m, which is a printer measure equal to the width
of M in the current font).

This book is designed for quick entry into using LATEX, but do not be
reluctant to read the last chapter. It tells you how to define your own com-
mands and how to separate them into an input file that simplifies changing

5

things, like notation. I also cannot elaborate just yet on “using packages,”
indicated in Figure 1, except to say that they are used to fulfill some func-
tion, and I shall introduce specific packages throughout this book. (One of
the strengths of LATEX is the community of people who provide packages for
everyone to use at no cost.) The orientation here is by function, beginning
with how to write text.

2 Text

We begin by illustrating the most common text formatting, much like you
would want in a word processor. (The power of LATEX will be evident when
we get to mathematical expressions, but even some text, especially tables,
will demonstrate the superior quality of the LATEX results.) First, consider
how to make sections and subsections in article style. Figure 4 is the source
that produces the result in Figure 5, showing how sections and subsections
are defined. Note the automatic numbering, and how extra spaces and blank
lines have no effect.

\documentclass[12pt]{article}

% We have defined the document to be an article using 12 point font.

% Blank lines mean nothing here, in the preamble.

\begin{document} % Begin document "environment".

\section{This is a Section}

\subsection{This is a subsection}

This is the body of the subsection.

I can move to a new line anytime, and I can put in lots

of blanks with no effect.

Skipping four lines is the same as skipping one line

--- it starts a new paragraph.

\subsection{Here is another subsection}

\section{Here is another section}

\end{document}

Figure 4: An Introductory Document Source (Result in Figure 5)

6 2 TEXT

1 This is a Section

1.1 This is a subsection

This is the body of the subsection. I can move to a new line
anytime, and I can put in lots of blanks with no effect.

Skipping four lines is the same as skipping one line — it starts
a new paragraph.

1.2 Here is another subsection

2 Here is another section

Figure 5: An Introductory Document Result (Source in Figure 4)

2.1 Fonts and Paragraphs

Figure 6 shows the source to produce different paragraph positions: centered,
flush left, flush right, and justified (the default). Note that these are envi-
ronments, a concept you need to understand about LATEX. The general form
of an environment uses the following syntax:

\begin{environment}
...

\end{environment}

2.1 Fonts and Paragraphs 7

\begin{center}

The text is centered because I have entered the center environment.

Text remains centered as long as we remain in this environment.

\end{center}

\begin{flushleft}

Now we are out of the centering environment, and have begun the

flushleft environment.

\end{flushleft}

\begin{flushright}

This is another paragraph, but in the flushright environment.

You will have occasion to use all four paragraph positions.

\end{flushright}

I am back to normal justification. The added space you see between

the above paragraphs is due to entering those environments.

Figure 6: Positioning Paragraphs Source (Result in Figure 7)

The text is centered because I have entered the center
environment. Text remains centered as long as we remain in

this environment.

Now we are out of the centering environment, and have begun
the flushleft environment.

This is another paragraph, but in the flushright environment.
You will have occasion to use all four paragraph positions.

I am back to normal justification. The added space you see
between the above paragraphs is due to entering those environ-
ments.

Figure 7: Positioning Paragraphs Result (Source in Figure 6)

Instead of the center environment, you can use the \centerline com-
mand; they differ in that the environment skips a line before and after the
paragraph, shown in Figures 8 and 9.

8 2 TEXT

This precedes center environment.

\begin{center} This line is centered. \end{center}

This continues after centering.

This precedes centerline.

\centerline{This line is centered.}

This continues after centering.

Figure 8: Centering Source (Result in Figure 9)

This precedes center environment.

This line is centered.

This continues after centering.

This precedes centerline.
This line is centered.

This continues after centering.

Figure 9: Centering Result (Source in Figure 8)

You can also suppress indentation of the first line of a paragraph with
the \noindent command. Here is an example:

\noindent This paragraph is not indented. produces:
This paragraph is not indented.

Table 1 lists the fonts that are intrinsic in a basic latex installation. (More
fonts are available in packages, usually free of charge.) In technical writing,
you will have particular use for the italic font, as it is used when introducing

2.1 Fonts and Paragraphs 9

a new term. For example,

A \textit{group} is defined on a set of elements \dots

⇒A group is defined on a set of elements . . .

(The ⇒ symbol can be read as “produces.”) Note the use of the \dots

command, which produces the ellipsis.

Table 1: Intrinsic Font Styles

What you write How it appears
This is \textbf{boldface}. ⇒ This is boldface.
This is \textit{italic}. ⇒ This is italic.
This is \textrm{roman}. ⇒ This is roman.
This is \textsc{small caps}. ⇒ This is small caps.
This is \textsf{sans serif}. ⇒ This is sans serif.
This is \textsl{slanted}. ⇒ This is slanted.
This is \texttt{typewriter}. ⇒ This is typewriter.

Some combinations of font styles can be produced. For example,

\textbf{\textit{bolditalic}} ⇒ bolditalic.

The argument of \textbf is \textit{bolditalic}. The general form is
\textfont{text}, where font is one of {bf, it, rm, sc, sf, sl, tt}, as
seen in Table 1.

Not all combinations are in the basic LATEX2ε installation. In particular,
you must put \usepackage[T1]{fontenc} in your preamble to obtain:

\textbf{\textsc{bold small caps}} ⇒ bold small caps.

Font size can also be varied at will. Figures 10 and 11 give the source and
result for common variations. Notice how the paragraph spacing changes
to accommodate the variation in font size. These size variations can be
combined with font styles, such as using {\Large\textbf{heading}} for
some heading.

10 2 TEXT

You can make the text {\large large} or {\Large larger} or

even {\LARGE larger still}. You can also make it {\huge huge}.

You might want to make something {\small small} or

{\footnotesize smaller} or even {\scriptsize smaller still}.

You can make it really {\tiny tiny}.

Figure 10: Some Font Sizes Source (Result in Figure 11)

You can make the text large or larger or even larger still.
You can also make it huge. You might want to make some-
thing small or smaller or even smaller still. You can make it really
tiny.

Figure 11: Some Font Sizes Result (Source in Figure 10)

The use of braces to enclose a font size specification is like an environment.
Optionally, we can explicitly use the environment syntax: \begin{size}
. . . \end{size}. For example, \begin{large} This is large.\end{large}

produces the same result as {\large This is large.}. The environment
syntax is useful when you want to keep the size for a large block of text,
and the braces format is useful for short phrases. (There is no intrinsic
environment for font styles.)

It is straightforward to underline text — just write \underline{text}.
We can also frame text just by writing \frame{text}. We can give frame
some room around the edges by using \fbox instead. (More on framing in
§6, p. 79.) To overline is as straightforward, but learning it must wait until
we enter math mode.

Now consider ways to indent a block of text. Here is an example using the
quote environment, which was generated by putting \begin{quote} before
the text and \end{quote} after it:

The construction of the real number system, notably by Dedekind
cuts, was motivated by the need to fix calculus, which ran into
trouble due to insufficient rigor in dealing with limits.

The quote environment is intended for short quotes, generally one short
paragraph (as above), or a sequence of one line quotes, separated by blank

2.1 Fonts and Paragraphs 11

lines. The quotation environment is used for long quotations, having more
than one paragraph (separated by blank lines). The indentation is the same
as the quote, except the first line of each new paragraph is indented. (Just
as in the regular text, this can be overridden by the \noindent command.)
Here is an example that was created by putting \begin{quotation} before
the text and \end{quotation} after it.

“Computers do not dream, any more than they play. We are
far from certain what dreams are good for, but we know what
they indicate: a great deal of information processing goes on far
beneath the surface of man’s purposive behavior, in ways and
for reasons that are only very indirectly reflected in his overt
activity.”

— Alan M. Turing

“There are reports that many executives make their decisions
by flipping a coin or by throwing darts, etc. It is also rumored
that some college professors prepare their grades on such a basis.
Sometimes it is important to make a completely ‘unbiased’ de-
cision; this ability is occasionally useful in computer algorithms,
for example in situations where a fixed decision made each time
would cause the algorithm to run more slowly.”

— Donald E. Knuth

The quotes are by two pioneers of algorithms, Alan M. Turing and Donald
E. Knuth. Their names appear on the right, after their quote, by skipping a
line and entering \hfill (which means horizontal fill), to make the line flush
right. Here are some other things to notice about this example:

• There are left and right quotation marks. I used ‘‘ ’’, not " ", to
create this more stylistic quotation punctuation.

• The dash that appears before each name is created by three minus
signs, ---. The more minus signs you use, the longer the dash. The
convention is that one dash is for hyphenation, two are for ranges,
such as page numbers, and three are for punctuation — i.e., use ---

preceding “i.e.”

• There is extra space between the two quotations. This was done with
the \bigskip command.

12 2 TEXT

Figures 12 and 13 illustrate three levels of skipping: small, medium and
big. Later, we shall look at a way to have a much finer range of vertical
spacing.

This is a first line. \bigskip

The space you see above is a big skip. \medskip

The space you see just above is a medium skip. \smallskip

The space you now see just above is a small skip.

This is just an ordinary line space.

Figure 12: Skipping Line Spaces Source (Result in Figure 13)

This is a first line.

The space you see above is a big skip.

The space you see just above is a medium skip.

The space you now see just above is a small skip.

This is just an ordinary line space.

Figure 13: Skipping Line Spaces Result (Source in Figure 12)

The verse environment indents oppositely: lines after the first. The follow-
ing was generated by putting \begin{verse} before the text and \end{verse}

after it:

Neglect of mathematics works injury to all knowledge, since he
who is ignorant of it cannot know the other sciences or the
things of this world. And what is worse, men who are thus
ignorant are unable to perceive their own ignorance and so do
not seek a remedy. — Roger Bacon

2.2 Lists 13

The italics were specified in the usual way, by enclosing Bacon’s verse
with \textit{. . . }. (Designed for poetry, each line is a stanza in the verse,
and if a stanza runs long, this form of indentation makes it clear.) Bacon’s
name appears flush right, again from the \hfill command, but this time it
is on the last line of the verse, rather than a new line. This is achieved by
not skipping a line after the verse:

\begin{verse}

\textit{Neglect of mathematics ...

} \hfill --- Roger Bacon

\end{verse}

2.2 Lists

There are three intrinsic list environments, distinguished by what appears
at the beginning of each item: number, bullet, or your description (perhaps
nothing). To illustrate, here is the use of a description list environment
to itemize steps involved in learning LATEX, whose source is indicated by
Figure 14.

Basic Document Preparation. Knowing how to setup the latex source
file, make paragraphs, vary fonts, and list items are enough to prepare
a basic document without mathematics or tables (like a resume).

Making Tables. LATEX provides a means to make tables with the tabular
environment, and its versatility puts it far ahead of word processors.

Bibliography. Knowing how to create a bibliography, in particular with
BibTEX.

Mathematics. This is a power of LATEX and one reason why it has become
standard in writing mathematical papers. I will show you how to do
virtually any mathematical expression in line with the text, or in math
display mode.

Graphics. This has progressed a great deal in the past few years thanks to
many people who have provided packages free of charge.

Other. There are a great many things to learn beyond the simple introduc-
tion when using LATEX to prepare a thesis, report or article.

14 2 TEXT

\begin{description}

\item [Basic Document Preparation.] Knowing how to setup ...

\item [Making Tables.] \LaTeX~ provides a means ...

\item [Bibliography.] Knowing how to create a bibliography ...

\item [Mathematics.] This is the power of \LaTeX~ and one ...

\item [Graphics.] This has progressed a great deal in the ...

\item [Other.] There are a great many things to learn ...

\end{description}

Figure 14: Description List Environment

Two new things appear in the example: the use of \LaTeX to produce
LATEX, and the use of ~ (called “tilde”) to enter a space. Without the
tilde, the result would be LATEXprovides, even with a space after \LaTeX in
the source. (The reason is that a space (or some delimiter) is needed after
\LaTeX (or any keyword) in order to distinguish it completely, and one might
want a punctuation mark, like a comma, following \LaTeX, which requires
no space.)

The text within the square brackets is an option. If present, as in this
example, it is printed in boldface. With no option, the description list is one
way to have text indented the opposite of a normal paragraph: the first line
is at the left and subsequent lines are indented. For example,

\begin{description}

\item \textsf{This is how one item in a description list

environment looks with no optional text at the beginning.}

\end{description}

produces the following result:

This is how one item in a description list environment looks with no optional
text at the beginning.

Unlike the verse environment, the first line goes almost to the left margin,
and the lines extend all the way to the right margin.

Next, Figures 15 and 16 illustrate the itemize list environment, which
prints bullets. Note the indentation of each item and the spacing between
items. You see the nesting of two itemize lists, but any type of list can be
nested within any other type.

2.2 Lists 15

\begin{itemize}

\item This is item 1 and our task has just begun. Blank lines

before an item have no effect.

\item This is item 2 and we shall limit to just this few.

A blank line within an item does create a new paragraph,

using the indentation of the itemize environment.

\begin{itemize}

\item A second (nested) itemized list changes the bullet

and indents another level.

\end{itemize}

\end{itemize}

Figure 15: Itemize List Environment Source (Result in Figure 16)

• This is item 1 and our task has just begun. Blank lines
before an item have no effect.

• This is item 2 and we shall limit to just this few.

A blank line within an item does create a new paragraph,
using the indentation of the itemize environment.

– A second (nested) itemized list changes the bullet and
indents another level.

Figure 16: Itemize List Environment Result (Source in Figure 15)

Finally, I describe the enumerate list environment, where the default
numbering is with Arabic numerals. With nested enumeration, the number-
ing changes at each level. Figures 17 and 18 illustrate with three levels of
nesting.

16 2 TEXT

\begin{enumerate}

\item This is item 1, and we are having fun.

\item This is item 2, and it’s time to number anew.

\begin{enumerate}

\item Back to item 1, but we are not yet done.

\item Two is new.

\begin{enumerate}

\item One again!

\item Two (b) or knot 2b?

\end{enumerate}

\end{enumerate}

\end{enumerate}

Figure 17: Enumerate List Environment Source (Result in Figure 18)

1. This is item 1, and we are having fun.

2. This is item 2, and it’s time to number anew.

(a) Back to item 1, but we are not yet done.

(b) Two is new.

i. One again!

ii. Two (b) or knot 2b?

Figure 18: Enumerate List Environment Result (Source in Figure 17)

2.3 Making Tables

A table is made with the tabular environment, which has the following syntax:

\begin{tabular}{column specs} options
first row spec \\

...
last row spec [\\ options]
\end{tabular}

As indicated, each row ends with two backslashes, \\. Each column spec-
ification can be left, center or right, abbreviated by just one character:
l, c or r, respectively. In the body of the table, each column is separated by

2.3 Making Tables 17

&. Figure 19 shows an example of a 2× 3 table.

How it appears What you write

left center right
1 2 3

\begin{tabular}{lcr}

left & center & right \\

1 & 2 & 3

\end{tabular}

Figure 19: A 2× 3 Table

We can draw a horizontal line before any new row by specifying \hline.
To draw a line after the last row, enter \\ \hline (the \\ is simply part
of the syntax and does not add an extra row to the table). The column
specifications can have | on either side to indicate a vertical line. Figure 20
illustrates a combined use of these options.

How it appears What you write

-110 -120.12 -130
210 220. 230

\begin{tabular}{|l|c|r|} \hline

-110 & 120 & -130 \\ \hline

210 & -220 & 230 \\ \hline

\end{tabular}

Figure 20: A 2× 3 Table with Horizontal and Vertical Lines

We could draw lines that span some rows and/or columns. The way to
vary vertical line drawing is with the column specifications: put | only where
you want a vertical line. The way to vary horizontal line drawing is by using
\cline{first col-last col} instead of \hline. This is illustrated in Figure 21.

How it appears What you write

Name Test 1 Test 2
Bob 67 72
Sue 72 67

\begin{tabular}{l|cc|}

Name & Test 1 & Test 2 \\ \cline{1-1}

Bob & 67 & 72 \\

Sue & 72 & 67 \\ \cline{2-3}

\end{tabular}

Figure 21: A Table with Partially Spanning Horizontal and Vertical Lines

We can have tables nested within tables. Figures 22 and 23 illustrate

18 2 TEXT

this, while showing more variation with lines and using various fonts. Here
are some things to note:

• The entire table uses sans serif font style. This is done by specifying
\textsf{ before entering the tabular environment (and closing with }

just after it).

• Within the tables, fonts are varied: Roman is in the Roman font, speci-
fied by \textrm{Roman}, Greek is in italic, specified by \textit{Greek},
and upper case is in small caps, specified by \textsc{upper case}.

• A new column specification is introduced: p{length}, where any unit
of measure can be used as the length of the spacing. In this example
.3 inches is specified. Note that this counts as a column, so you see &&

to separate the two tables, each being a column of the main table.

• The \underline command is used to underline Table 1, which is column
1 of the main table, whereas \cline{3-3} is used to underline all of
column 3 of the main table, headed by Table 2.

\textsf{

\begin{tabular}{lp{.3in}l} \\

\underline{Table 1} && Table 2 \\ \cline{3-3}

\\

\begin{tabular}{|lc|} \hline

Object & Symbols used \\ \hline

variable & lower case \textrm{Roman} \\

parameter & \textit{Greek} \\

constant & \textsc{upper case} \textrm{Roman} \\

\end{tabular}

&& % Begin Table 2

\begin{tabular}{|rcc|} \hline

* & 1 & 2 \\ \cline{2-2}

& 3 & 4 \\ \cline{1-1}\cline{3-3}

\end{tabular}

\end{tabular}

} % end sf

Figure 22: Nested Tables Source (Result in Figure 23)

2.3 Making Tables 19

Table 1 Table 2

Object Symbols used
variable lower case Roman
parameter Greek

constant upper case Roman

* 1 2
3 4

Figure 23: Nested Tables Result (Source in Figure 22)

There are times when we want to put a good bit of text into some columns
of a table. Suppose, for example, we write the following:

\begin{tabular}{|l|l|} \hline

This amount of text is too long to fit on one line of

the page. & This is column 2. \\ \hline

\end{tabular}

The result will be to run off the edge of the paper:

This amount of text is too long to fit on one line of the page. This is column 2.

One solution is to insert new rows and break up the text manually:

\begin{tabular}{|l|l|} \hline

This amount of text is too long to fit on one

& This is column 2. \\

line of the page. & \\ \hline

\end{tabular}

⇒ This amount of text is too long to fit on one This is column 2.
line of the page.

Instead, one can assign a fixed width to a column by specifying p{length}.
For example,

20 2 TEXT

\begin{tabular}{|p{2in}|l|} \hline

This amount of text is too long to fit on one line of the page.

& This is column 2. \\ \hline

\end{tabular}

⇒
This amount of text is too
long to fit on one line of the
page.

This is column 2.

Another solution is to use the \parbox command (short for “paragraph
box”). This has the form \parbox[option]{width}{text}, where the option
is the placement: t = top and b = bottom (default is center). Here are two
examples:

\begin{tabular}{|l|l|} \hline

\parbox{2in}{This amount of text is too long to fit on

one line of the page.} & This is column 2. \\ \hline

\end{tabular}

⇒
This amount of text is too
long to fit on one line of the
page.

This is column 2.

\begin{tabular}{|l|l|} \hline

\parbox[t]{2in}{This amount of text is too long to fit on

one line of the page.} & This is column 2. \\ \hline

\end{tabular}

⇒
This amount of text is too
long to fit on one line of the
page.

This is column 2.

They differ only in the placement of the paragraph box, the latter being at
the top to align it with column 2 in the manner shown.

When making a column or parbox small, the spacing can become un-
sightly due to being justified. This is overcome with the flushleft environment.
Figures 24 and 25 illustrate this, and note that it contains other commands
that can be in any paragraph.

2.3 Making Tables 21

\begin{center}

\begin{tabular}{ll}

\parbox[t]{3in}{\begin{flushleft}

This is column 1, and I might want to display something:

\medskip\centerline{\fbox{How sweet it is.}}\medskip

This is not the same as

\medskip\fbox{\centerline{How sweet it is.}}

\end{flushleft} }

& \parbox[t]{1in}{\begin{flushleft}\textsf{This is column 2,

which I have put in sans serif font.}

\end{flushleft} }

\end{tabular}

\end{center}

Figure 24: \parbox Source (Result in Figure 25)

This is column 1, and I might want to
display something:

How sweet it is.

This is not the same as

How sweet it is.

This is column
2, which I
have put in
sans serif font.

Figure 25: \parbox Result (Source in Figure 24)

Any measurement, such as the width of a paragraph box, can be deter-
mined by some length parameter, rather than a fixed constant. For example,
see exercise 9 at the end of this chapter and consider \parbox{.3\linewidth}...

If we want some heading to span several columns, this is done by the
command, \multicolumn{number}{col spec}{entry}. The first argument is
the number of columns to span (starting where \multicolumn is specified).
This must be in the range 1 to however many columns remain from the
current position. The second argument is any valid column specification,
such as l, c, r, with, or without, a vertical line specification, |, on either
side. Finally, the third argument is the text.

22 2 TEXT

The \multicolumn command can also serve to override some column
specification. Suppose, for example, we want the columns to be left justified,
but we want the headers to be centered. Figures 26 and 27 illustrate these
uses of \multicolumn. The first is used to center ‘Test number’ over columns
2 and 3. The line in the source begins with & to skip column 1, then the
\multicolumn specifies 2 columns, centered with vertical lines before and
after. The second use simply centers the ‘Student’ header. The last use of
\multicolumn centers ‘Taken in class’ over columns 2 and 3. Unlike the first
use, the vertical line at the end is missing because c was specified instead of
c|.

\begin{center}

\begin{tabular}{l|cc|c}

& \multicolumn{2}{|c|}{Test number} \\

\multicolumn{1}{c|}{Student} & 1 & 2 & Average \\ \hline

Bill & 67 & 72 & 70.5 \\

Charleetah & 72 & 67 & 70.5 \\ \hline

& \multicolumn{2}{c}{Taken in class} \\ \cline{2-3}

\end{tabular}

\end{center}

Figure 26: Multicolumn Source (Result in Figure 27)

Test number
Student 1 2 Average

Bill 67 72 70.5
Charleetah 72 67 70.5

Taken in class

Figure 27: Multicolumn Result (Source in Figure 26)

Tables that are too long to fit on one page could be broken manually,
but the longtable package enables automatic page breaks by the LATEX com-
piler. (You obtain the package from CTAN [4].) In the preamble, specify
\usepackage{longtable}. Then, instead of the tabular environment, spec-
ify the longtable environment, which has most of the same options.

2.4 Special Characters 23

2.4 Special Characters

We have already seen that some characters are special, in that they delimit
something. In particular, \ delimits every LATEX command, and % ends a
line, enabling comments. How do we print such characters? One way is with
the symbol, itself, like \%. Other times a keyword, like \textbackslash, is
needed. The Appendix contains complete tables of these special characters
(including those I do not cover explicitly in the chapters). Of particular
importance are the braces, written as \{ \} to obtain { }. (Recall that the
braces by themselves create a local environment, like {\large. . . }.)

When using a keyword to specify a special character, it appears with
whatever font is active. Table 2 (next page) illustrates this with commonly
used special characters. The brackets, [], are different because they can
be entered directly, except when they are used to delimit an option in the
syntax, in which case they can be obtained by enclosing them in braces.
One example is the description list environment, illustrated in Figure 28.
(Another is in the tabular environment (page 16), but I omitted a discussion
of position options that are specified by brackets.)

How it appears What you write

This is option for item.
\begin{description}

\item [This is option] for item.

\end{description}

[This is not option] for item.
\begin{description}

\item {[This is not option]} for item.

\end{description}

Figure 28: Obtaining Brackets in a Description List Environment

Another way to print the unprintable is with the verbatim environment
or the \verb command. Unlike all other commands, \verb does not use
braces to delimit its argument. It uses any other character to delimit a
string, which can contain any character except itself. For example, we can
write \verb@{}%$#\@ to generate the string {}%$#\ (delimited by @), which
is printed in typewriter font style. The verbatim environment uses the usual
syntax:

\begin{verbatim}
...

\end{verbatim}

24 2 TEXT

Table 2: Writing Special Characters

Character How you Other fonts

(Roman) write it italic large

{ } \{ \} { } { }

% $ # & _ \% \$ \# \& _ % $ # & _ % $ # & _

\ \textbackslash \ \
^ \textasciicircum ^ ^
~ \textasciitilde ~ ~
R© \textregistered R© R©
[] {[]} [] []

This is how the source code was created for the figures, like Figure 26 (p. 22).
Another class of special characters are letters with accents. Table 3 shows

some common examples; a complete table is in the Appendix. For example,
write Poincar\’{e} to have Poincaré and G\"{o}del to have Gödel. An
accent could be applied to any letter, even if it does not relate to some
language — for example, \"{b}\~{c}\^{d} ⇒ b̈c̃d̂.

LATEX has a basic library of accents and special characters for writing in
languages other than English, some of which are shown in Appendix Table 29
— e.g., ?‘⇒¿ and \aa⇒å. In some cases, these are not sufficient, particularly
if the entire document is to be in a non-English language. For that purpose
there are some packages, such as Babel [1] (also see [5, Chapter 9]).

Table 3: Some Accents for Letters

What you write What you see
\"{a} ⇒ ä
\‘{e} ⇒ è
\’{i} ⇒ í
\~{o} ⇒ õ
\^{u} ⇒ û

2.5 Tabbing 25

2.5 Tabbing

The tabbing environment provides an alternative to the tabular environment
by letting you set your own column tabs. Table 4 shows a simple case with
two basic tabbing commands, \= to define a tab setting, and \> to move
to a tab setting. In addition, \\ ends each row, but unlike the tabular
environment, the first sentence continues normally, without extra spaces, so
that the position of the tab is not equivalent to that of a table’s column.

Table 4: The Tabbing Environment

What you see What you write

Begin: set tab 1. . . set tab 2
skip to 1 then to 2

skip to 2

\begin{tabbing}

Begin: \=set tab 1\dots \=set tab 2\\

\>skip to 1 \>then to 2\\

\> \>skip to 2

\end{tabbing}

Sometimes we do not want to have the longest portion of text first, yet
it is needed to define the tab. Table 5 illustrates how this is solved with the
\kill command. In the first tabbing, the lines are in the order we want,
but the tab is set by the shorter string ‘1-3’, making ‘4-6-8’ extend past the
tab. The second tabbing puts the longer field first, in order to set the tab
correctly, then specifies \kill instead of \\ to suppress (or “kill”) the printing
of the line.

Table 5: The \kill Tabbing Command

What you see What you write

1-3 sting like a bee
4-6-8don’t be late

\begin{tabbing}

1-3 \= sting like a bee \\

4-6-8 \> don’t be late \\

\end{tabbing}

1-3 sting like a bee
4-6-8 don’t be late

\begin{tabbing}

4-6-8 \= don’t be late \kill

1-3 \> sting like a bee \\

4-6-8 \> don’t be late \\

\end{tabbing}

Figures 29 and 30 illustrate the tabbing environment with fixed field
widths. It first uses the \hspace* command for horizontal spacing, then it
uses the name of the last field to set what follows.

26 2 TEXT

\begin{tabbing}

\= \hspace*{.5in} \= \hspace*{2in} \= Last field: \= \kill

\> Field 1 (following tab 1)

\\ \> \> Field 2 on new line \> Last field

\\ \> \> \> Last field on new line

\end{tabbing}

Figure 29: Tabbing Source (Result in Figure 30)

Field 1 (following tab 1)
Field 2 on new line Last field

Last field on new line

Figure 30: Tabbing Result (Source in Figure 29)

2.6 Line, Page, and Word Breaks

You can cause a new line by entering \linebreak. When text is justified (the
default), this could result in an undesirable appearance, like the following:

\textsf{This example is \linebreak extreme.}

⇒This example is
extreme.

The \newline command forces a new line without justifying it.

\textsf{Here is the extreme \newline example.}

⇒Here is the extreme
example.

The \nolinebreak command works analogously, preventing a line break,
even if it means extending into the right margin. Also, it is better style to
keep certain ‘words’ together, such as ‘figure 1’ or ‘p. 10’. To prevent a line
break where you want a blank, use the space character ~. We would thus
write figure~1 or p.~10.

There are two commands to force a page break: \pagebreak and \newpage.
The \newpage command follows the analogy with \newline in forcing a page
break precisely at the point it is specified, rather than completing the line as
\pagebreak does. The \nopagebreak command disallows a page break im-
mediately following the next blank line. The \samepage command prevents

2.7 Spacing 27

a page break within its scope. Here is an example that keeps line 1 on the
same page as line 2.

{\samepage

line 1

\nopagebreak

line 2

}

Word breaks are hyphenations that LATEX does for you. Sometimes, how-
ever, you want to suppress hyphenation. This can be done by specifying
\usepackage{hyphenat} in the preamble. (You might have to download
the package from CTAN [4], and follow the simple installation instructions.)
Then, to suppress hyphenation, you specify the \nohyphens command. For
example, the first sentence of this paragraph has a hyphen; to suppress it,
enter:

\nohyphens{Word breaks are hyphenations that \LaTeX\ does for you.

Sometimes, however, you want to suppress hyphenation.}

Then, you obtain the following:

Word breaks are hyphenations that LATEX does for you. Sometimes,
however, you want to suppress hyphenation.

2.7 Spacing

We have already seen the use of ~ to insert one space and \hfill to put the
remaining text flush right. The most versatile method to insert horizontal
spaces is with \hspace and \hspace*. These have one argument: the
amount of space to be inserted. For example,

I insert .3~in \hspace{.3in} here. ⇒ I insert .3 in here.

The \hspace command has no effect at a line boundary, but the \hspace*

inserts the space no matter what. For example, the previous
sentence is written as:

The \verb|\hspace| command has no effect at a line boundary, but

the \verb|\hspace*| \hspace*{1in} inserts the space no matter what.

28 2 TEXT

That is why you see the 1 inch space at the beginning of the second line.
\hspace would not insert the 1 inch, but \hspace* does.

Two variations of \hfill are:

\dotfill .
\hrulefill

Analogously, vertical spacing is controlled by \vspace, \vspace* and
\vfill. The height of one line of normal text is in the keyword \baselineskip,
so vspace{\baselineskip} skips one line at the next new line. The vertical
space is not added if this goes to the top of a new page; that is what \vspace*
does. In particular, at the very beginning of your document, if you want to
make your own title page, you use \vspace*{2in} to put a 2 inch margin at
the top (\vspace would not insert the space).

The easiest way to control line spacing throughout your document is to
specify usepackage{setspace} in your preamble. This gives you three
commands:

\singlespacing \onehalfspacing \doublespacing

Right after you specify one of these, that spacing will commence.

Exercises. Submit a printed copy of both the LATEX source (tex file) and
the associated postscript result (ps file). Be sure your name is on each.

1. Write a paragraph in article [and letter] style with the following prop-
erties:

(a) Each font style in Table 1 is used as one letter in a word that has
more than one letter.

(b) Each font style in Table 1 is used for one complete word.

(c) Each font style in Table 1 is used for two consecutive complete
words.

2. Write two paragraphs in article [and letter] style with each of the fol-
lowing properties:

(a) Default indentation on both paragraphs.

(b) No paragraph is indented.

(c) Both paragraphs are indented.

(d) There is added space between paragraphs.

2.7 Spacing 29

3. Write a paragraph in article style and make a cover page with the
following properties (like the cover page of this document):

• All lines are centered.

• The title appears first in very large letters.

• Your name appears second in letters that are not as large as the
title, but larger than normal size, and it is preceded by extra space.

• Your e-mail address appears third.

• Your web address appears fourth.

• Course number and title appears next, with extra space preceding
it.

• Date appears last, with extra space preceding it.

4. Give an enumeration of at least three things you like about mathemat-
ics. Give the same list without numbers.

5. Produce the following table:

Colors
Primary Secondary
Red Green
Blue Orange
Yellow Purple

6. Produce the following table (including the accents and alignments).

Mathematician Birth Death
Gabrielle Emilie Le Tonnelier

de Breteuil Marquise
du Châtelet 1706 1749

Benjamin Banneker 1731 1806
Sophie Germain 1776 1831
Julius König 1849 1913
Rózsa Péter 1905 1977

7. Produce the following table.

30 3 BIBLIOGRAPHY WITH BIBTEX

Payoffs ($)
Player A Player B

1 2 3
4 5 6

1 2
3 4
5 6

8. How can you have an entire table whose columns are of fixed width?

9. Create a 3-column text such that each column is a paragraph of arbi-
trary length using about 1

3 of the page width each.

10. Use the tabbing environment to produce the following:

apples integral derivative
grapefruit sum difference

variables constants

11. Use the tabbing environment to produce what you see on page 33.

12. Produce the following:

rate of mass
accumulation
in the
compartment

=

net rate of mass
entering the
compartment by
convection

+
net rate of
mass entering
by diffusion.

3 Bibliography with BibTEX

3.1 Overview

It might seem strange to have this section so early, instead of with §7.4. That
is because I require students to produce an annotated bibliography early in
the semester, and I want them to use BibTEX. So here we are.

BibTEX [11] was developed by Oren Ptashnik and is available free of
charge. It reads a plain text file, called a bib file (plus one of the files
created by the latex compiler, about which you need not be concerned). The

3.2 The bib File 31

bib file contains the bibliographic database, which could extend beyond one
document. The bibtex program that you apply to your source creates another
file (which you need not examine), from which a second latex compilation
causes the bibliography to be created. The execution looks like this (same
under unix and DOS):

latex myfile

bibtex myfile

latex myfile

You might have to compile with latex more times, until you do not have
any “unresolved” bibliography citations. Once this is successful, you do not
have to bibtex myfile again until you change your bib file or add a citation.
This added loop is illustrated in Figure 31.

myfile.tex myfile.dvi myfile.ps

create/edit view/print print/post
compile

with
latex

convert
with
dvips

bibtex

Figure 31: Adding bibtex to the Command Sequence

3.2 The bib File

3.2.1 Main body

For purpose of this introduction, suppose your bibliography is in a file called
mybiblio.bib, but that name is arbitrary as long as it ends with .bib. We
begin with the most important part of your bib file, which are the entries
you want to include in its database. Each entry has the following form:

@type {label,
field = "value",

...
}

32 3 BIBLIOGRAPHY WITH BIBTEX

For example, Knuth’s book [8] would be entered as follows:

@article{tex,

author = "Donald E. Knuth",

title = "The {\TeX} Book",

publisher = "Addison-Wesley Publishing Company",

address = "Reading, MA",

year = "1989",

edition = "15th",

}

Most authors develop a style to labelling bibliographic entries. The use
of one keyword is somewhat simplistic and could cause problems with a
great number of entries because the labels must be unique. We cannot, for
example, have two entries with tex as their label. Here are two styles I have
seen, which you might consider:

Form Example
author.year knuth.89

author:first_keyword_in_title knuth:tex

With two authors, you can put both of their names; with more than 2,
you can add et al. (Linguistically, the use of the Latin et al. in formal writing
follows this rule.) In the first form, if there are two publications by the same
authors in the same year, some people add a, b, . . . after the year (no blank).
In the second form, if there are two publications by the same authors in the
same year, some people add another keyword. You must discover what style
works best for you.

Before listing each style (article is one style) and the fields they can or
must have (author is one field), here are a few things to note.

• The label is arbitrary, but do not use any LATEX special characters or
blanks. In the example, the label is specified as tex and it must be
followed by a comma. Also, labels are case-sensitive, so tex is not the
same as TeX.

• Each bib entry must have a unique label, so it can be cited without
ambiguity in the source file.

3.2 The bib File 33

• The order of the fields is arbitrary, and fields are separated by commas
(hence the comma after the terminal quote). The last field does not
require a comma at the end, but it will not hurt anything, and it gives
flexibility if you want to add a field or change the order.

• Fields do not have to be on separate lines, but it is more readable that
way.

• The field value can be anything recognized by LATEX, even mathemat-
ical symbols in math mode.

• There is a final } to close the entry — @type{ . . . }.

Remember to put each author’s name as first last or last, first. If you put
Knuth Donald, the compiler will think the first name is Knuth and the last
name is Donald.

Here is a list of standard entry types with their required fields. What are
“optional fields” in BibTEX are not necessarily optional as far as having a
complete bibliography citation. For example, the volume and page numbers
of an article are necessary to include even though they are optional to sat-
isfy BibTEX syntax. (What is “necessary” depends upon the standard one
applies, but most journals require the volume of the journal and the page
numbers for the cited article.) Fields that are neither required nor optional
are ignored, even if they are valid fields in other types of entries.

article refers to an article from a journal or magazine.
Required fields: author, title, journal, year.
Optional fields: volume, number, pages, month.

book refers to a book with an explicit publisher.
Required fields: author or editor, title, publisher, year.
Optional fields: volume or number, series, address, edition, month.

booklet refers to a bound, printed document, but without an explicit
publisher.

Required fields: author or key, title.
Optional fields: author, howpublished, address, month, year.

inbook is a part of a book, such as a chapter or just some range of pages.
Required fields: author or editor, title, chapter and/or pages,

publisher, year.
Optional fields: volume or number, series, type, address, edition,

month.
incollection is a part of a book having its own title.

34 3 BIBLIOGRAPHY WITH BIBTEX

Required fields: author, title, booktitle, publisher, year.
Optional fields: editor, volume or number, chapter series,

type, pages. address, edition, month.
inproceedings is an article in a conference proceedings.

Required fields: author, title, booktitle, year.
Optional fields: editor, volume or number, series, pages,

month, organization, publisher, address.
manual is some technical documentation.

Required fields: author or key (see note below). title.
Optional fields: author, organization, address, edition,

month, year.
mastersthesis is a Master’s thesis.

Required fields: author, title, school, year.
Optional fields: type, address, month.

misc is when nothing else fits.
Required fields: author or key (see note below).
Optional fields: author, title, month, howpublished, year.

phdthesis is a PhD thesis.
Required fields: author, title, school, year.
Optional fields: type, address, month.

proceedings

Required fields: title, year.
Optional fields: editor, volume or number, series, publisher,

organization, address, month.
techreport is a report published by some institution.

Required fields: author, title, institution, year.
Optional fields: type, number, address, month.

unpublished is a document with an author and title, but not formally
published, even as a technical report. (Some note of explanation is
required.)
Required fields: author, title, note.
Optional fields: month, year.

In addition to the optional fields listed, which vary by the type of entry,
the note field is always an option. This lets you enter a note that will appear
at the end of the citation. To have a comment that is not printed, enter an
unrecognized field, such as comment = "...", (this is ignored with no error
message given).

If a required field is missing when you compile, you will get an error
message. Possibly there will be some standard fixup, but it is best if you

3.2 The bib File 35

provide the missing field value. If a document has no author, you must
provide a key for sorting. For example, consider the following entry for
LATEX2ε [10], which has no person as an author. The bibliography will be
sorted with the key, LaTeX2e, used to order this entry relative to author
names. The key will not be printed.

@manual{usrguide,

key = "LaTeX2e",

title = "{\LaTeXe} for authors",

type = "World Wide Web site",

institution = "Comprehensive {\TeX} Archive",

address = "{CTAN\url{/macros/latex/doc/usrguide.ps}

(see~\cite{CTAN} for replacing CTAN)}",

year = "1995--99",

}

When there are multiple authors, we separate them with and (no com-
mas). For example, [5] in this document has the following BibTEX entry:

@Book{companion,

author = "Michel Goosens and Frank Mittelbach and

Alexander Samarin",

title = "The {\LaTeX} Companion",

publisher = "Addison-Wesley Publishing Company",

address = "Reading, MA",

year = "1994",

}

The use of the braces in {\LaTeX} is to tell the bibtex program to take
everything inside just as it is written (for the latex program to process).
Otherwise, the bibtex program might try to process it itself and produce an
unintended result. This applies to accents too. In ordinary LATEX, we write
G\"{o}del to produce Gödel, but this will not work in BibTEX. Instead,
we write G{\"{o}}del, or simply G{\"o}del.

The use of braces to force a particular result is necessary in other in-
stances, such as writing {F}ourier analysis to force the capital F; oth-
erwise, the bibtex program will produce ‘fourier analysis’ (the plain style
produces article titles in lower case, except the first letter of the first word).
Some authors, however, use this feature inappropriately by putting braces
around everything. That defeats one of the primary advantages of using
LATEX and BibTEX in the first place: we want to let the style files deter-
mine the final form, so we can switch styles and use the same source (tex
and bib files).

36 3 BIBLIOGRAPHY WITH BIBTEX

3.2.2 Web citations

When BibTEX was developed, the World Wide Web did not exist. Now it
is a major source of information. There is no universally accepted standard
for how to reference web documents, but here is one way.

If it is a book, use the book type and specify:

publisher = "World Wide Web",

address = "url ",

Here is an example:

@book{Strunk,

author = "William Strunk{, Jr.}",

title = "Elements of Style",

publisher = "World Wide Web",

address = "http://www.columbia.edu/acis/bartleby/strunk/",

year = "1999",

note = "This is the web version of the classic book by

Strunk and White~\cite{StrunkWhite}",

}

The reference \cite{StrunkWhite} presumes there is the entry for the
original publication. The use of the braces in the name is to be sure that
the author appears as intended: William Strunk, Jr. Otherwise, without the
braces, the comma would signal the bibtex program that ‘Jr.’ is the first
name of the author, and it would appear as ‘Jr. William Strunk’.

If the document is a technical report, use that style but include the url
as a note or in the address field. Eventually, you will run into some difficulty
with writing urls. For one thing, the url could contain special characters; in
particular, ~ is in many urls, and writing it will produce a space, not the
tilde. Also, a url could become very long, and with latex having no place to
break, you will see a line with lots of spaces (for justification), followed by
the url. An unsightly line with spaces could also appear after the url. These
difficulties are overcome by specifying:

address = "\url{http://www.columbia.edu/acis/bartleby/strunk/}",

The \url specification is not actually an intrinsic command in LATEX; it
is defined in a package. Its main use is to determine where the url can be
broken in order to put it on two lines, if needed. Another feature of the
url package is that \url prints special characters, like ~. To have the \url

command active in your document, put the following declaration into your

3.2 The bib File 37

preamble: \usepackage{url}. The default font it uses is tt, but you can
change this to another font with the specification:

\renewcommand\url{\begingroup\urlstyle{font}\Url}

For example, this book specifies the sans serif font:

\usepackage{url}

\renewcommand\url{\begingroup\urlstyle{sf}\Url}

There are occasions when we want to reference an entire web site. One
example is the LATEX2ε reference [2], given by:

@misc{latex2e,

author = "Johannes L. Braams and David P. Carlisle and

Alan Jeffrey and Frank Mittelbach and Chris Rowley

and Rainer Sch{\" o}pf",

title = "{\LaTeXe} and the {LaTeX}3 Project",

howpublished = "World Wide Web,

\url{http://www.latex-project/org/latex3.html}",

year = "1994",

}

We have seen several packages so far, and you shall learn more about
packages in §6, where I describe enhancements for having graphics in LATEX.
However, this is the first use of \renewcommand, about which I shall say more
when I describe ways to customize your document in §8.

3.2.3 Additional features

One element of good style is to be consistent in your terms, including abbre-
viations and names of publishers. One sometimes sees “Kluwer,” other times
“Kluwer Academic Publishers,” and still other times “Kluwer Pub.” To help
be consistent and to save some work in the long run when we write many
different documents and produce more bib files, we can define strings with
the entry:

@string{name = "string"}

Then, we can refer to the string anywhere in the value of a field by exclud-
ing the quotes. (That is why we needed the quotes before, when we wrote
literals.)

For example, suppose we define:

@string{kluwer = "Kluwer Academic Publishers"}

38 3 BIBLIOGRAPHY WITH BIBTEX

Then, we can enter:

publisher = kluwer,

to produce the publisher value = “Kluwer Academic Publishers.” Besides
consistency, an advantage is that if some name changes, we merely change
the one string value and recompile.

We can concatenate strings and/or literals with #. For example, suppose
we write

@string(mom = "My Mother")

@string(dad = "My Father")

author = mom,

title = mom # dad,

editor = dad,

Then, the three field values are equivalent to:

author = "My Mother",

title = "My MotherMy Father",

editor = "My Father",

Note the absence of a space between the string values in the title. To ensure
a space, use the space character, ~, as a literal:

title = mom # "~" # dad,

The same title as the above is obtained by any of the following:

title = "My Mother " # dad,

title = mom # " My Father",

Another useful feature of BibTEX is the crossref field for cross refer-
encing. For example, suppose we have the following entry (kluwer is a string;
the other values are literals):

@Proceedings{Byrnes:FAA-89,

editor = "J.S. Byrnes and Jennifer L. Byrnes",

title = "Recent Advances in {F}ourier Analysis and its

Applications: Proceedings of the {NATO}

{A}dvanced {S}tudy {I}nstitute",

publisher = kluwer,

year = 1990,

}

3.2 The bib File 39

Then, we can have the following entry:

@InProceedings{Artemiadis:FAA-89-311,

crossref = "Byrnes:FAA-89",

author = "N.K. Art{\’e}miadis",

title = "Results on the Absolutely Convergent Series

of Functions and of Distributions",

pages = "311--316",

}

If these were the only references, the result would appear as follows:

[1] N.K. Artémiadis. Results on the absolutely convergent series of functions
and of distributions. In Byrnes and Byrnes [2], pages 311–316.

[2] J.S. Byrnes and Jennifer L. Byrnes, editors. Recent Advances in Fourier
Analysis and its Applications: Proceedings of the NATO Advanced Study
Institute. Kluwer Academic Press, 1990.

BibTEX also recognizes a preamble in our bib files to enable us to define
some LATEX commands. The general form is

@Preamble{ string }

where string is any concatenation of literals and strings. Here is an ex-
ample [11] that is useful for guiding the sorting of references in a special
circumstance:

@Preamble{ "\newcommand{\noopsort}[1]{}" }

The \newcommand is something I shall describe more fully in §8. For now,
it is used to define a command, \noopsort, requiring one argument. Com-
mand \noopsort ignores the argument that it receives, producing nothing
(indicated by {}). Here is how this can be used.

Suppose there is a 2-volume work by the same authors, originally pub-
lished 1971, but a second edition of volume 1 is printed in 1973. The bib
entries would have the years in the opposite order than we want because
sorting is first by the authors, which are the same, then by year. To force
the first volume to sort before the second, we fool the bibtex program with
the following specifications:

Volume 1 Volume 2
year = "{\noopsort{a}}1973", year = "{\noopsort{b}}1971",

40 3 BIBLIOGRAPHY WITH BIBTEX

This fools the bibtex program into thinking the years are a1973 and b1971,
thus putting volume 1 first. The definition of \noopsort, however, does not
actually print the letters, so just the years appear.

3.3 Declaration and Citation

At the end of your source file (where you want the bibliography to appear),
before \end{document}, put the following commands (in either order):

\bibliography{mybiblio}

\bibliographystyle{plain}

The first declares the bibliography to be in the bib file, mybiblio.bib.
The second command defines the format style of the bibliography to be

plain, which comes with every installation of latex. There are other bibli-
ography format styles, including some provided by publishers. Here is a list
of the most basic ones (included in every installation):

plain is the most common because it formats entries according
to accepted standards. Entries are sorted by the alphabetical
order of author names, breaking ties with the year of publica-
tion, and they are labeled with numbers.

abbrv differs from plain by abbreviating names of journals, among
other things (to give a more compact bibliography).

alpha differs from plain by citing by labels, rather than numbers.
unsrt differs from plain by sorting entries by the order in which

they are cited, rather than by the author names.

We shall use only the plain style here, but know that many other styles have
been written and are available free of charge.

To cite particular references, the LATEX command is \cite{label [,. . .]},
where label is what we put in our bib file entry. For example, [8] is produced
by specifying \cite{tex}. You can put more than one citation, separated by
commas. For example, \cite{tex,latex} produces [8, 9] for this document.

You can insert some further citation information as an optional input
argument to the \cite command. For example, \cite[p.~46]{latex} pro-
duces [9, p. 46] in this document. (In the option, delimited by [], the ~ is
used to ensure that there is a space but no line break when giving the page
number as “p. 46” in the citation.)

3.3 Declaration and Citation 41

The rule is that only those bib entries that are cited appear in the final
document. The reason is that we can maintain one large bib file and write
many documents that use it. There are times when we want to be sure a
particular bib entry appears, but we do not want to cite it in the text. This
is done with the \nocite command. In particular, if we want to have every
entry in our bib file appear, we specify \nocite{*}. If we want only some
particular list of entries to appear, we use \nocite with their labels, such as
\nocite{tex} to be sure Knuth’s TEX book appears, even if it is not cited
explicitly. Figure 32 shows a complete source file for having all entries in
mybiblio.bib appear, and that is the entire document!

\documentclass[12pt]{article}

\begin{document}

\nocite{*}

\bibliographystyle{plain}

\bibliography{mybiblio}

\end{document}

Figure 32: A Document to Print the Bibliographic Database

We can specify more than one bib file, such as:

\bibliography{mybiblio,another}

The bibtex program will search them sequentially for any citation. If we have the
same label in both bib files, the entries must be identical; otherwise, we will get
a fatal error message, Repeated entry– telling us which label is repeated. If we
have the same entry with different labels, they will appear twice if both labels are
used (or if we used \nocite{*}).

Exercises. Submit a printed copy of the LATEX source (tex file), the BibTEX

data (bib file), and the associated postscript result (ps file). Be sure your name is
on each.

1. Produce a document with one paragraph that cites three bibliographic items,
one for each of the following types:

(a) An article in a journal.

(b) An entire book with at least three authors.

(c) A chapter in a book.

(d) A technical report.

42 4 COUNTERS, LABELS, AND REFERENCES

2. Produce a document that lists your entire database, which consists of at
least one entry for each of six different document types. Further, at least one
entry must have more than two authors.

3. Produce a document with one paragraph that cites three bibliographic items,
one for each of the following types:

(a) A technical report on the web.

(b) A book on the web.

(c) An entire web site.

4. Produce a document that has only a bibliography composed of the following
three entries (in the order shown).

[1] I.M. Rich, editor. Impossible Dreams, volume I. MacTaco, second edition,
1999.

[2] I.M. Rich, editor. Impossible Dreams, volume II. MacTaco, 1990.

[3] I.M. Smart, U.R. Tu, and V.F. Money. How to Square a Circle, chapter 1.
Volume II of Rich [2], 1990.

5. Produce an annotated bibliography of the following form (note the indenta-
tions on left and right margins):

[1] P.R. Halmos, Naive Set Theory, Van Nostrand, Princeton, NJ, 1960.

This is a good book, which I assign to my Ph.D. students.
The first 100 pages seem simple. The next 100 reveal lack of
understanding the first 100.

[2] G. Polya, How To Solve It, Princeton University Press, Princeton, NJ,
1945.

This is a seminal book that articulates the problem-solving —
i.e., theorem-proving — process. There are many editions, and
there are modern descendants, such as . . .

4 Counters, Labels, and References

4.1 Basic Concepts

A counter is a numerical value that refers to something that is being numbered,
such as pages, sections, figures, and equations. A label is the identification of

4.2 Intrinsic Counters 43

a particular value, and a reference is a citation to a label. The LATEX syntax
for labeling a counter is \label{label}, placed where the counter’s value is set,
where label is unique in the document. The LATEX syntax for referencing a label is
\ref{label}. For example, in this book I defined:

\section{Bibliography with \Bibtex} \label{sec:Bibliography}

Now I can refer to §3 by \S\ref{sec:Bibliography}. The choice of label is ar-
bitrary, except do not use LATEX special characters or blanks, just as the labels in
the bib file entries.

There are times when you just want to produce the counter value, without a
label. This is done by \thecounter. For example, \thepage produces the page
number. On the other hand, if you want to use the counter’s numerical value as
an argument in a command, specify \value{counter}.

In the next section I describe intrinsic counters and illustrate how to label and
reference them. Then, I shall introduce the figure and table environments, which
have intrinsic counters associated with them.

4.2 Intrinsic Counters

Anything to which LATEX assigns a number has a counter associated with it. Here
I illustrate some of those that are in all document styles. Counters that depend
upon the style, like a chapter in a book, can be labelled and referenced in the same
manner.

You are looking at page 43, which I was able to print by writing \thepage.
Similarly, you are reading subsection 4.2 of section 4, whose numbers I could write
by \thesubsection\ and \thesection, respectively.

To illustrate how I can reference other parts of this document, the following
labels were defined (when the subsection and subsubsection were first written):

\subsection{The bib File} \label{subsec:bibfile}

\subsubsection{Web citations} \label{subsubsec:webcite}

Then, I can refer to these as follows:

\S\ref{subsec:bibfile} ⇒ §3.2
\S\ref{subsubsec:webcite} ⇒ §3.2.2

I can also refer to their page numbers:

p.~\pageref{subsubsec:webcite} ⇒ p. 36
p.~\pageref{subsec:bibfile} ⇒ p. 31

44 4 COUNTERS, LABELS, AND REFERENCES

For any counter, \pageref{counter}, gives the page number where its label is
defined, just as \ref{counter} gives its value. (Recall from p. 26 that ~ is used to
have a space without a linebreak, which is an element of good style.)

Equation (6), page 67, was labelled \label{eqn:hessian}, so in this sentence
I wrote its number by \ref{eqn:hessian} (with parenthesis added) and its page
number by \pageref{eqn:hessian}. In the exercise to list what you like about
mathematics, I entered the label \label{exer:likeaboutmath} (page 29), which
I can now reference as exercise #4 by writing \#\ref{exer:likeaboutmath}.

The choice of label, such as subsubsec:webcite, is any string you want to use
that does not contain embedded blanks or special characters used by LATEX. In
my choice of label, I used the structure prefix :name. That is a matter of style,
and I used the prefix subsec here. This helps me to distinguish labels for different
things. For equations, I use the prefix eqn. Some people use this same form but
with different prefixes, such as ss for subsection and e for equation. You can choose
any labeling convention that is meaningful to you. (If you have a lot of labels and
need to keep track of them by printing each label and citation in your drafts, see
the showkeys package at CTAN [4].)

4.3 Figures and Tables

In this section I describe figure and table environments, which have the same
syntax:

\begin{figure}[options] \begin{table}[options]
[\caption{caption[\label{label}]}] [\caption{caption[\label{label}]}]

...
...

[\caption{caption[\label{label}]}] [\caption{caption[\label{label}]}]
\end{figure} \end{table}

The caption, if present, can go at the top or bottom; where you put it is where
it will appear. The label to reference a figure or table is put inside the caption.
(If you put it outside the caption, as given in [9], it will not be understood, even
though you will get no error message.)

Because figures and tables are not split, their exact location depends upon how
much room there is. For that reason they are called “floating objects,” or floats.
The environment options define where the float is to be located. The four choices
are shown in Table 6. In this document most tables and figures are specified with
[ht], which means they are to be placed “here,” the place where it is specified in
the source, if possible. If there is not enough room, it is to be located at the top
of the following page.

The placement of a float is sometimes a source of frustration. We might specify
[ht] and find the float in an unexpected place, perhaps on a page by itself. One
cause could be an accumulation of floats that should be cleared at some point

4.3 Figures and Tables 45

Table 6: Figure and Table Location Options

Option Meaning
h Locate here (where the environment is declared).
t Locate at the top of the next page.
b Locate at the bottom of the page (or the next page,

if this page does not have enough room).
p Locate on a separate page, called a float page,

which has no text, only figures and tables.

before continuing. This is done with the \clearpage command. This does the
same as \newpage, except that it also prints all remaining floating objects. It
is also advisable to specify \usepackage{float} in the preamble. One of the
enhancements is the placement option: [H], which insists that the float be placed
here (note the capital H and no other option specified). This option is used in many
places in this book, which is why you sometimes see pages with some blank space
in the lower portion, followed by a figure or table. I did this to avoid confusion by
having some float appear pages after it is cited and discussed.

The table environment is not to be confused with the tabular environment.
The latter makes tables, but the table environment does not have to contain a
table; it differs from a figure only in its name, and they have separate counters.
The figures and tables in this document appear as the form:

Figure number : caption vs. Table number : caption

That’s it.
As a matter of style, we generally use the figure environment to present what

we usually think of as figures, notably pictures, and we generally use the table
environment to present information in tabular form. However, neither of these
conditions is necessary for their LATEX environments.

Floats can be framed, using the \fbox command. For example, Figures 33 and
34 illustrate how to frame a figure with a thick border.

46 4 COUNTERS, LABELS, AND REFERENCES

\begin{figure}[ht]

\begin{center}

\setlength{\fboxrule}{3pt} % make border lines thick

\setlength{\fboxsep}{.2in} % increase distance to border

\fbox{ This is a framed figure. }

\end{center}

\caption{Framed Figure with Caption at Bottom \label{fig:fboxbottom}}

\end{figure}

Figure 33: Framed Figure 34 Source

This is a framed figure.

Figure 34: Framed Figure with Caption at Bottom

The parameter settings have returned to their default values, upon leaving the
figure environment. (This is called a local setting.) Thus, the frame in Figure 35
has thin lines and no extra padding around the border. Also note how the caption
is put at the top (see exercise 3).

Figure 35: Framed Figure with Caption at Top

This is framed with default parameter values.

4.4 Defining Your Own

In the preamble you can define your own counter with the \newcounter command:

\newcounter{name}[within]

where name is the (unique) name of the counter (cannot be the same as one of
the intrinsic counter names). The initial value of the counter is 0. For example,
\newcounter{mycounter} defines a counter whose name is mycounter. You can
also define the counter to be within another counter. For example,

\newcounter{mycounter}[section]

defines mycounter to be within the section counter. This will cause the value of
mycounter to be reset to 0 when entering a new section. Further, instead of the
printed values being 1, 2, . . . , they will be 1.1, 1.2, . . . within section 1; more

4.4 Defining Your Own 47

generally, the values of mycounter will be of the form s.1, s.2, . . . when printed
within section s.

The counter values are printed in Arabic numerals, but you can specify the
type of numeral, shown in Table 7.

Table 7: Numerals to Print Counters

What you see What you write
a, b, c, d, . . . \alph{mycounter}

A, B, C, D, . . . \Alph{mycounter}

1, 2, 3, 4, . . . \arabic{mycounter}

i, ii, iii, iv, . . . \roman{mycounter}

I, II, III, IV, . . . \Roman{mycounter}

Counter values can be incremented with the \addtocounter command. For
example, \addtocounter{mycounter}{1} adds 1 to the value of mycounter. If we
just want to increment the counter by 1, we can specify \stepcounter{mycounter}.
Counter values can be set to some absolute value with the \setcounter command.
For example, \setcounter{mycounter}{5} sets the value of mycounter to 5. This
can also be used to transfer the value of one counter to another. For example,

\setcounter{mycounter}{\value{page}}

sets the value of mycounter to the current page number (value of the intrinsic
counter, page).

When using a counter for some non-intrinsic sequence, we want to be able to
label it for future reference. This is done with the \refstepcounter command,
which also increments its value. For example, to increment mycounter by 1 and
establish a label to its value at the place this is done, write

\refstepcounter{mycounter} \label{mylabel}

Then, we can use \ref{mylabel} and \pageref{mylabel} wherever we like.
The default numeral type is arabic, but you can change the appearance to be

any of those listed in Table 7 by applying the \renewcommand to \thecounter. For
example,

\setcounter{mycounter}{0}

\renewcommand{\themycounter}{\roman{mycounter}}

\stepcounter{mycounter} (\themycounter),

\stepcounter{mycounter} (\themycounter), \dots

⇒ (i), (ii), . . .

48 4 COUNTERS, LABELS, AND REFERENCES

This can be used for intrinsic counters too. For example, consider the enumerate
list environment, where the types of numerals for the four levels are: arabic, alph,
roman and Alph. We can change these to be any type we want, such as illustrated
in Figures 36 and 37.

\renewcommand{\theenumi}{\Roman{enumi}}

\renewcommand{\theenumii}{\Alph{enumii}} % changes numeral type

\renewcommand{\labelenumii}{\theenumii.} % changes appearance

\begin{enumerate}

\item Introduction

\item Terms and Concepts

\begin{enumerate}

\item Groups and fields

\item Picnics and frolic

\end{enumerate}

\end{enumerate}

Figure 36: Alternative enumerate Symbols Source (Result in Figure 37)

I. Introduction

II. Terms and Concepts

A. Groups and fields

B. Picnics and frolic

Figure 37: Alternative enumerate Symbols Result (Source in Figure 36)

The second level, whose counter is enumii, had its label changed to what is
specified in the source: \renewcommand{\labelenumii}{\theenumii.} (the “ap-
pearance” parameter is \labelenumii). These changes remain in effect (called a
global setting), so we must change them back if we want to restore the defaults,
shown in Table 8.

4.4 Defining Your Own 49

Table 8: Default Settings for enumerate Counters

What
Counter changes Command
enumi numeral \renewcommand{\theenumi}{\arabic{enumi}}

label \renewcommand{\labelenumi}{(\theenumi)}

enumii numeral \renewcommand{\theenumii}{\alph{enumii}}

label \renewcommand{\labelenumii}{(\theenumii)}

enumiii numeral \renewcommand{\theenumiii}{\roman{enumiii}}

label \renewcommand{\labelenumiii}{(\theenumiii)}

enumiv numeral \renewcommand{\theenumiv}{\Alph{enumiv}}

label \renewcommand{\labelenumiv}{(\theenumiv)}

Exercises. Submit a printed copy of the LATEX source (tex file) and printed
copy of the associated postscript result (ps file). Be sure your name is on each.

1. Write a document with at least two pages and two sections. Put an enumer-
ated list of items near the beginning of your document, and use the \ref or
\pageref command to reference each of the following.

(a) Reference §2 by a label that you assign to section 2 (make whatever
label name you like).

(b) Somewhere near the end of your document reference the page number
of the first section.

(c) Reference item #2 of your enumerated list.

2. Include two tables and figures in your document, and reference them by label.
Also reference the page that they appear.

3. Produce Figure 35.

4. Produce lists using the enumerate environment with the following appear-
ance:

1. . . .

1.1 . . .
1.2 . . .

2. . . .

2.1 . . .
2.2 . . .

50 5 MATH MODE

5 Math Mode

One can write mathematical expressions by entering math mode, signified by de-
limiters $. . . $ or \[. . . \]. The $ delimiter keeps the mathematical expression in
the text, like this:

A consequence of Einstein’s postulates is that $E = mc^2$.

⇒ A consequence of Einstein’s postulates is that E = mc2.

The other form is math display mode, like this:

A consequence of Einstein’s postulates is that \[E = mc^2.\]

⇒ A consequence of Einstein’s postulates is that

E = mc2.

5.1 Mathematical Symbols

The example also illustrates the use of the superscript operator, ^. Table 9 shows
other common operations in math mode. (Each of the tables in this section applies
only to math mode.)

Table 9: Some Mathematical Operations

Example
Operation Symbol How it appears What you write
subscript _ x3 x_3

superscript ^ x3 x^3

multiply \times a× b a\times b

divide \div a÷ b a\div b

The braces enclose an expression that can be used to define a more com-
plex operand. For example, xa+b is written as x_{a+b} and xa

2

is written as
x^{a^2}. The order of subscripts and superscripts does not matter:

x_{a+b}^{c+d} ⇒ xc+d
a+b

x^{c+d}_{a+b} ⇒ xc+d
a+b

5.1 Mathematical Symbols 51

Table 10 shows some set notation. The complement of A often appears as ∼ A,
produced by $\sim A$, but this is not universal notation; some authors use Ac or
A′, produced by A^c and A^\prime, respectively, and some use A, produced
by \overline{A}.

Preceding any symbol by \not puts the line through the symbol, as in the
following examples:

A\not\subseteq B ⇒ A 6⊆ B
x\not\in A\cup B ⇒ x 6∈ A ∪B

A\setminus B\not\supset B ⇒ A \B 6⊃ B

Table 10: Set Notation

What it is How it appears What you write
empty set ∅ \emptyset

intersection ∩ \cap

union ∪ \cup

set minus \ \setminus

element in ∈ \in

subset (proper) ⊂ \subset

subset or equal ⊆ \subseteq

superset (proper) ⊃ \supset

superset or equal ⊇ \supseteq

You can control the size of the font by using the usual specification before enter-

ing math mode. For example, {\Large $(x\div y) + z$}⇒ (x÷y)+z. Font
style, however, does not apply to math mode because math mode has its own, sep-
arate from text mode. You can make math fonts boldface by specifying \boldmath

before entering math mode. For example, {\boldmath $x^n+y^n=z^n$} ⇒ xn +

yn = zn. Note that \boldmath is surrounded by the braces; otherwise, math fonts
would remain bold, even when leaving and re-entering. The following illustrates
this, where B ∪ C is boldface in the first case, and returns to normal style in the
second case.

\boldmath$A\supset B$ text $B\cup C$ ⇒ A ⊃ B text B ∪ C

{\boldmath$A\supset B$} text $B\cup C$ ⇒ A ⊃ B text B ∪ C
Within math mode, we can control the font style of letters with the command,

\mathfont{expression}, where font is one of: {bf, cal, it, normal, rm, sf,

tt} (analogous to the \textfont command, p. 9). Unlike \boldmath, this applies
only to letters, digits and accents, but not to special mathematical symbols. For
example,

52 5 MATH MODE

{\boldmath$\tilde A\times\vec{1}\otimes\overline{2}$} ⇒ Ã × ~1 ⊗ 2

$\mathbf{\tilde A\times\vec{1}\otimes\overline{2} }$ ⇒ Ã× 1̃⊗ 2

Table 11 illustrates the outcome of each font for this expression:
\mathfont{\tilde A\times\vec{1}\otimes\overline{2}}

Table 11: The \mathfont Commands

Font Style Command Example Result

boldface \mathbf Ã× 1̃⊗ 2

calligraphic \mathcal Ã × ~∞⊗∈
italic \mathit Ã× 1̃ ⊗ 2

normal \mathnormal Ã×~⊗ 

roman \mathrm Ã× 1̃⊗ 2

sans serif \mathsf Ã× 1̃⊗ 2

typewriter \mathtt ~A× ~1⊗ 2

The calligraphic style applies only to capital letters, causing unintended results
when applied to other symbols, as shown in Table 11. The calligraphic alphabet
looks like this (and it is available only in math mode):

ABCDEFGHIJKLMNOPQRST UVWXYZ.

Write ${\cal P} = A + B$ to produce P = A+ B; without the braces, the calli-
graphic fonts remain in effect: $\cal P = A + B$ ⇒ P = A+ B.

Greek letters are defined only in math mode, and they are specified by spelling
them as keywords. For example, to produce

α− β = ∆− δ

write \[\alpha - \beta = \Delta - \delta \]. As Lamport [9, p. 43] says,
“Making Greek letters is as easy as π (or Π)” (written π or Π). (Not
every Greek letter is included — see Appendix Table 36.) The \mathbf does not
make Greek letters boldface. We could use \boldmath to achieve this, but there
is a package that not only provides the boldface font, but also produces proper
spacing. In the preamble specify \usepackage{bm}, then \bm{\beta} ⇒β.

5.2 Fractions and Variable Size Functionality

To make fractions, we could write $(x+y)/4$ to make (x + y)/4, but if we want
x+y
4 , we use the \frac command: $\frac{x+y}{4}$. We can make this appear

larger, as
x+y
4

, by preceding the math mode with \large.

5.2 Fractions and Variable Size Functionality 53

The general form is \frac{numerator}{denominator}, where the numerator
and denominator can be any expression. Here is a more complex equation in math
display mode:

A =
x2 + yα
1 + η

x2+1

,

written as \[A = \frac{x^2+y_\alpha}{1+\frac{\eta}{x^2+1}}, \]. Note how
the sizes of the fractions adjust automatically.

Some mathematical symbols adjust their size to fit the expression. Table 12
shows some of the most common of these, and I present more examples below. In
the case of the integrals, note the use of \, between the integrand and dx. This
inserts a thin space (compare the results by writing the expression with and without
the \,).

Table 12: Variable Size Mathematical Operation Symbols

Operation How it appears What you write

sum
∑

\sum
n∑

i=1

xi \sum_{i=1}^n x_i

integral
∫

\int∫ b

a

f(x) dx \int_a^b f(x)\,dx

parentheses () \left(\right)(
x

1 + y

)
\left(\frac{x}{1+y} \right)

braces {} \left\{ \right\}{∑

i

xi

}
\left\{\sum_i x_i \right\}

brackets [] \left[\right][∫ ∞

0

f(x) dx

]
\left[\int_0^\infty f(x)\,dx\right]

In LATEX, symbols whose size you would want to adapt to expressions are
generally designed to do so. Figures 38 and 39 illustrate this with another example,
which uses the \sqrt and \prod functions:

54 5 MATH MODE

\[\sqrt{\frac{\prod_{n=1}^N \left(\sum_{i\in I_n} x_i^n\right)}

{\sqrt[3]{\sum_{i\in I_\infty} x_i}}

}

\]

Figure 38: Variable Sizes Source (Result in Figure 39)

√√√√√
∏N

n=1

(∑
i∈In x

n
i

)

3

√∑
i∈I∞ xi

Figure 39: Variable Sizes Result (Source in Figure 38)

Notice that even though it is written in math display mode, the indices on the
sums and product appear as they would in line. LATEX compilers make judgments
about the layout, but you can force either of the two styles with the \displaystyle
and \textstyle commands. Figures 40 and 41 illustrate this.

\[\sqrt{\frac{\displaystyle

\prod_{n=1}^N \left(\sum_{i\in I_n} x_i^n\right)}

{\sqrt[3]{\displaystyle\sum_{i\in I_\infty} x_i}}

}

\]

Figure 40: \displaystyle Source (Result in Figure 41)

√√√√√√√√√√

N∏

n=1

(∑

i∈In

xn
i

)

3

√∑

i∈I∞

xi

Figure 41: \displaystyle Result (Source in Figure 40)

In text mode you can force the display style of placing these subscripts and
superscripts on functions, as well as sizing the expression, as though it were in
display mode. Figure 42 gives more examples to compare in line text and display
mode, using \textstyle and \displaystyle to override the default form for the

5.2 Fractions and Variable Size Functionality 55

mode. The “default” is not always predictable; in particular, math display mode
does not always use displaystyle.

What to write What to write
Appearance in text mode in display mode
x
2

\frac{x}{2} \textstyle\frac{x}{2}

x

2
\displaystyle\frac{x}{2} \frac{x}{2}

maxx∈X \max_{x\in X} \textstyle\max_{x\in X}

max
x∈X

\displaystyle\max_{x\in X} \max_{x\in X}

Figure 42: Examples to Compare Text and Display Modes

Table 13 shows symbols used in logical expressions. For example, to have

(x ∈ A⇒ x ∈ B)⇔ (A ⊆ B).

write \[(x\in A\Rightarrow x\in B) \Leftrightarrow (A\subseteq B). \]

To have
∀x∃y ∋ [P (x) ∧Q(y)].

write \[\forall x\exists y\ni [P(x)\wedge Q(y)]. \]

Table 13: Some Symbols in Logic

Logical Term How it appears What you write
existential quantifier ∃ \exists

universal quantifier ∀ \forall

negation ¬ \neg

disjunction ∨ \vee

conjunction ∧ \wedge

implication → \rightarrow

⇒ \Rightarrow

equivalence ⇔ \Leftrightarrow

≡ \equiv

such that ∋ \ni

56 5 MATH MODE

The quantifiers in this last example seem a bit crowded, so we might want
to add some spacing between terms. In math mode a full space is obtained by
specifying \; and a half space by \,. Here is how each looks:

\forall x \exists y ⇒ ∀x∃y
\forall x\, \exists y ⇒ ∀x∃y
\forall x\; \exists y ⇒ ∀x ∃y

(There are other spacing commands, including negative spacing, shown in Ap-
pendix Table 35.)

Table 14 shows some relations for ordered sets (besides those on the keyboard:
< = >). Here are some examples:

(-\infty,0] = \{x\ni x \le 0\} ⇒ (−∞, 0] = {x ∋ x ≤ 0}
a_j\prec b_i \equiv b_i \succ a_j ⇒ aj ≺ bi ≡ bi ≻ aj

\forall y\,\{x: x\not\prec y\}
\not\subset {\cal A} ⇒ ∀y {x : x 6≺ y} 6⊂ A

Table 14: Order Relations

Relation How it appears What you write
less than or equal ≤ \le

greater than or equal ≥ \ge

not equal 6= \ne

precedes ≺ \prec

precedes or equals � \preceq

succeeds ≻ \succ

succeeds or equals � \succeq

We have seen how to embed math mode into text, but we can also do the
reverse with the \mbox command. Compare each of the following:

xi < 0foralli = 1, . . . written as $x_i < 0 for all i=1,\dots$

xi < 0 for all i = 1, . . . written as $x_i < 0$ for all $i=1,\dots$

xi < 0 for all i = 1, . . . written as $x_i < 0 \mbox{ for all } i=1,\dots$

The first line points out that blanks mean nothing in math mode, and all letters
are in the math form of italic (not quite the same as the italic in text mode). The
use of \mbox is particularly convenient in math display mode, which I shall illustrate
in the next section.

5.3 Arrays and Equations 57

5.3 Arrays and Equations

The array environment is to math mode what tabular environment is to text mode,
and more. It has the form:

\begin{array}{column specs}options
first row spec \\

...
last row spec [\\ options]
\end{array}

The column specifications and options are the same as in the tabular environment,
but the body is in math mode. The following table has text headers and math
body, so it can be generated in either of two ways: with the tabular environment,
using the math mode designation for each body entry: $. . . $, or with the array
environment, using \mbox for each header entry.

Variable Current Value Limit
x 1.234567 1
y −9.87 −12.2

This can be generated by either of the following two ways:

\[\begin{array}{ccc}

\mbox{Variable} & \mbox{Current Value} & \mbox{Limit} \\ \hline

x & 1.234567 & 1 \\

y & -9.87 & -12.2 \\ \hline

\end{array}

\]

or

\begin{center}

\begin{tabular}{ccc}

Variable & Current Value & Limit \\ \hline

x & $ 1.234567$ & $ 1 $ \\

y & $-9.87 $ & $-12.2 $ \\ \hline

\end{tabular}

\end{center}

You can align a series of equations to appear this way:

x = 5.2
y = 2.5
z = 7.7 (= x+ y)

58 5 MATH MODE

The above was produced by the following use of math display mode (which is
always centered):

\[\begin{array}{lcl}

x &=& 5.2 \\

y &=& 2.5 \\

z &=& 7.7 \; (= x+y)

\end{array}

\]

The \; specifies a space; otherwise, 7.7 (= x+y) ⇒ 7.7(= x+ y).
Another environment is eqnarray. This is like a 3-column array with specifica-

tions {lcl}, as above, but each row is numbered:

x = y (1)

y = z (2)

(Another difference is that the eqnarray environment uses displaystyle.) We use
the eqnarray environment directly (without entering math display mode), so the
above is produced by the following:

\begin{eqnarray}

x &=& y \label{eqn:xy} \\

y &=& z \label{eqn:yz}

\end{eqnarray}

The \label statements are to illustrate that we can reference these by writing
(\ref{eqn:xy}) to produce (1) and (\ref{eqn:yz}) to produce (2). (Note that
\ref gives just the number; parentheses are added.)

The relation need not literally be an equation; anything could be used for the
middle column. Further, there are times when we need to use more than one line
for an ‘equation,’ in which case we need to suppress the numbering of all but one
of the rows. Figures 43 and 44 give an example. The \nonumber command causes
no number to be assigned to the first part of the second equation.

There is also an eqnarray* environment, which is the same as eqnarray, but
without the equation numbers. There is no apparent advantage to this since the
same result can be produced by the ordinary array environment, specialized to this
column specification. It does, however, let us change our mind easily as to whether
or not to include equation numbers by simply adding or removing the * from the
environment specification.

For a single, numbered equation, there is the equation environment. This poses
no particular advantage over specifying eqnarray and merely entering one row

5.3 Arrays and Equations 59

\begin{eqnarray}

x &\mbox{is equal to}& y \\

y & \preceq & \frac{a+b+c+d}{\Psi} + \frac{e+f+g+h}{\Phi}

+ \nonumber \\

& & I+K+J+L

\end{eqnarray}

Figure 43: eqnarray Environment Source (Result in Figure 44)

x is equal to y (3)

y � a + b+ c + d

Ψ
+

e + f + g + h

Φ
+

I +K + J + L (4)

Figure 44: eqnarray Environment Result (Source in Figure 43)

(except that column separators (&) are not used in the equation environment).
Analogous to eqnarray*, there is the equation* environment, which suppresses the
equation numbering. To illustrate, Figures 45 and 46 show how to present a matrix
equation. Also, note how x′ is specified. Table 15 shows other ways to denote the
transpose of a vector.

Table 15: Transpose of a Vector

What you write How it appears
x’ ⇒ x′

x^t ⇒ xt

x^T ⇒ xT

x^{\mathsf{T}} ⇒ xT

x^{\mbox{\tiny T}} ⇒ xT

60 5 MATH MODE

\begin{equation*}

Ax^\prime = \left[\begin{array}{rrr}

1.1 & 1.2 & 1.3 \\

21.0 & 22.0 & -2.1 \\

\end{array} \right]

\left(\begin{array}{cc} x_1 \\ x_2 \\ x_3

\end{array} \right).

\end{equation*}

Figure 45: Matrix Equation Source (Result in Figure 46)

Ax′ =

[
1.1 1.2 1.3
21.0 22.0 −2.1

]


x1

x2

x3


 .

Figure 46: Matrix Equation Result (Source in Figure 45)

Array environments can be nested, as illustrated in Figures 47 and 48. No-
tice how the vertical line was drawn by the column specification, {c|c}, and the
horizontal line separating the blocks is obtained by specifying \hline before the
second row of the outer array.

\[\left[\begin{array}{c|c}

\begin{array}{ccc} A_{11} & A_{12} & A_{13} \\

A_{21} & A_{22} & A_{23}

\end{array}

& 0 \\ \hline

0 & \begin{array}{cc} B_{11} & B_{12} \\ B_{21} & B_{22}

\end{array}

\end{array} \right]

\]

Figure 47: Nested Arrays Source (Result in Figure 48)




A11 A12 A13

A21 A22 A23
0

0
B11 B12

B21 B22




Figure 48: Nested Arrays Result (Source in Figure 47)

5.3 Arrays and Equations 61

We can enclose mathematical expressions in a box, sometimes used for empha-
sis. For example,

\fbox{$ \begin{array}{lcl}

\displaystyle\int_0^\infty xe^{-\tau x}\,dx

&=& \displaystyle\frac{1}{\tau} \\ \\

&=& \displaystyle\oint_a^{b+c} \Psi(x)\,dx

\end{array}

$}

⇒

∫ ∞

0
xe−τx dx =

1

τ

=

∮ b+c

a
Ψ(x) dx

We can use \fbox within math mode, such as writing $x = \fbox{y} + z$ to
produce x = y +z. Note how the line height does not adjust to the frame, causing
an undesirable clash. This could be overcome by putting a vertical space command
just after the expression. In particular, putting \vspace{.2\baselineskip} after
x = y +z causes extra vertical space equal to 20% of the value of \baselineskip,

which is the height of one line of normal text. (In the longrun, it is better to use
parameters, like \baselineskip, rather than absolute measurements for spacing,
because the former takes into account the font size, which you might change.)

Now consider the following conditional assignment:

f(x) =




−1 if x < 0;
0 if x = 0;
1 if x > 0.

produced by the following LATEX code:

\[f(x) = \left\{ \begin{array}{rll}

-1 & \mbox{if} & x < 0; \\

0 & \mbox{if} & x = 0; \\

1 & \mbox{if} & x > 0.

\end{array}\right.

\]

Note the use of \right. after the array. This is because \left and \right

must balance — i.e., there must be an equal number of each. It is not necessary
that the left symbol be related to the right one — i.e., \left\{ does not require

62 5 MATH MODE

\right\} to balance; any right symbol will do. The period is not printed in this
case, used specifically for this purpose of balance.

We have seen the use of \left and \right for brackets around a matrix. Now
the use of the \left LATEX command for conditional assignment raises related uses
of the underbrace and overbrace. Figures 49 and 50 illustrate these, along with
\overline, \underline, \widehat and \widetilde.

\[\begin{array}{cc}

\mbox{This sum has} \\ \mbox{an overbrace} \\

\overbrace{\overline{i\dots j} + \underline{k\cdots l}}

& \underbrace{\widehat{xy} - \widetilde{ab}}

\\ & \mbox{This difference}

\\ & \mbox{has an underbrace}

\end{array} \]

Figure 49: Horizontal Braces Source (Result in Figure 50)

This sum has
an overbrace︷ ︸︸ ︷
i . . . j + k · · · l x̂y − ãb︸ ︷︷ ︸

This difference
has an underbrace

Figure 50: Horizontal Braces Result (Source in Figure 49)

We often need to mix mathematical notation and text. We could use the
tabular environment and specify in-line math mode where needed (with $), or we
could use the array environment and use either the \mbox or \parbox (see p. 20) to
enter the text. There are, however, some nuances to understand. Figures 51 and
52 show the problem with using \flushleft to make the text within the parbox
flush left. (Try it with the default justify and you will see that the spacing gives a
poor appearance.) The problem is that \flushleft skips a line, which ruins the
alignment (even though [t] is specified). The solution is to use the \raggedright

command, as shown in figures 53 and 54. In addition, the \raisebox command is
used to lower the small matrix, giving it some space below the horizontal line.

5.3 Arrays and Equations 63

\renewcommand{\arraystretch}{1.2}

\begin{center} \begin{small} \begin{tabular}{lll}

Matrix & Definition & Example \\ \hline

\parbox[t]{.9in}{Covariance}

& \parbox[t]{2in}{\flushleft

$A_{ij} = E[(X_i-\mu_i)(X_j-\mu_j)]$, where $\{X_i\}$

are random variables, and $E[\cdot]$ is the expected

value operator with $\mu_i=E(X_i)$. }

& \parbox[t]{1.4in}{\scriptsize

$\left[\begin{array}{rrrrr}

\frac{1}{2}&0 \\ 0&\frac{1}{2}

\end{array}\right]$

\flushleft for $X_2=X_1^2$ and

$Pr[X_1=x]$ \\

$= \left\{ \begin{array}{lll}

\fourth &\mbox{for}& x=-1~ \vspace{.05in} \\

\half &\mbox{for}& x=~~0~ \vspace{.05in}\\

\fourth &\mbox{for}& x=~~1.

\end{array}\right.$ } \vspace{.1in} \\ \hline

\end{tabular} \end{small} \end{flushleft}

\renewcommand{\arraystretch}{1}

Figure 51: \flushleft in parbox Source (Result in Figure 52)

Matrix Definition Example

Covariance

Aij = E[(Xi − µi)(Xj − µj)],
where {Xi} are random
variables, and E[·] is the
expected value operator with
µi = E(Xi).

[

1

2
0

0 1

2

]

for X2 = X2
1 and

Pr[X1 = x]

=



















1
4 for x = −1

1
2 for x = 0

1
4 for x = 1.

Figure 52: \flushleft in parbox Result (Source in Figure 51)

64 5 MATH MODE

\begin{center} \begin{small} \begin{tabular}{lll}

Matrix & Definition & Example \\ \hline

\parbox[t]{.9in}{Covariance}

& \parbox[t]{2in}{\raggedright

$A_{ij} = E[(X_i-\mu_i)(X_j-\mu_j)]$, where $\{X_i\}$

are random variables, and $E[\cdot]$ is the expected

value operator with $\mu_i=E(X_i)$. }

& \parbox[t]{1.4in}{\scriptsize\raisebox{-.1in}{

$\left[\begin{array}{rrrrr}

\frac{1}{2}&0 \\ 0&\frac{1}{2}

\end{array}\right]$}

\flushleft for $X_2=X_1^2$ and

$Pr[X_1=x]$ \\

$= \left\{ \begin{array}{lll}

\fourth &\mbox{for}& x=-1~ \vspace{.05in} \\

\half &\mbox{for}& x=~~0~ \vspace{.05in}\\

\fourth &\mbox{for}& x=~~1.

\end{array}\right.$ } \vspace{.1in} \\ \hline

\end{tabular} \end{small} \end{center}

Figure 53: \raggedright in parbox Source (Result in Figure 54)

Matrix Definition Example
Covariance Aij = E[(Xi − µi)(Xj − µj)],

where {Xi} are random
variables, and E[·] is the
expected value operator with
µi = E(Xi).

[

1

2
0

0 1

2

]

for X2 = X2
1

and
Pr[X1 = x]

=



















1
4 for x = −1

1
2 for x = 0

1
4 for x = 1.

Figure 54: \raggedright in parbox Result (Source in Figure 53)

5.4 Special Functions and Alphabets

Math mode recognizes a collection of special functions. Table 16 shows some com-
mon ones. These special functions are used to make the source clearer, rather than
using \mbox to achieve the same result.

Among the special functions are the complete set of trigonometric functions.
For example, we write $\tan\theta = \frac{\sin\theta}{\cos\theta}$ to pro-
duce: tan θ = sin θ

cos θ . Appendix Table 40 (p. 126) has a much longer list of special
functions, as well as the arrows used in some of the examples shown in Table 17.

5.4 Special Functions and Alphabets 65

Table 16: Some Common Mathematical Functions

Function How it appears What you write
limit lim \lim

lim inf lim inf \liminf

log log \log

maximum max \max

tangent tan \tan

Table 17: Examples of Mathematical Functions

How it appears
textstyle displaystyle What you write

limn→∞ xn lim
n→∞

xn \lim_{n\rightarrow\infty}x_n

lim infn↓0 log xn lim inf
n↓0

log xn \liminf_{n\downarrow 0}\log\,x_n

maxx∈X f(x) max
x∈X

f(x) \max_{x\in X}f(x)

tan(θ+π)
ln x

tan(θ + π)

ln x
\frac{\tan(\theta + \pi)}{\ln\,x}

There is also a package of AMS symbols, which you declare in your preamble
with \usepackage{amssymb}. This gives the following alphabet with the mathbb

font:

$\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

⇒ ABCDEFGHIJKLMNOPQRSTUVWXYZ

For example, the real line is sometimes denoted by R, rather than ℜ, which is
the LATEX special symbol, \Re. Table 18 shows how \mathbb can be used for
specifying other numerical spaces.

66 5 MATH MODE

Table 18: Notation Using mathbb Fonts from amssymb Package

What you write† How it appears What it means
\mathbb{R} ⇒ R Real values
\mathbb{C} ⇒ C Complex values
\mathbb{Z} ⇒ Z Integer values
\mathbb{Q} ⇒ Q Rational values

†In math mode.

Another alphabet is \mathscr, for which you specify \usepackage{mathrsfs}

in the preamble. This gives the following alphabet:

$\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$

⇒A BC DE FG H I J K L MN OPQRS T U V W X Y Z

In particular, L is often used to denote the Laplace transform or the Lagrangian,
and H is sometimes used to denote the Hamiltonian. (Compare with \mathcal,
H, which is also used by some authors.)

5.5 Derivatives and Integrals

We can express a total derivative, df(x)/dx, by writing $df(x)/dx$; or, we can use

the \frac command to produce df(x)
dx . The partial derivative symbol, ∂, is written

\partial, so you can write \partial f(x)/\partial x to produce ∂f(x)/∂x, and

{\large$\frac{\partial f(x)}{\partial x}$} to produce
∂f(x)
∂x .

The usual notation for the gradient of a function is the nabla, denoted by
the symbol ∇, (also called “del”), which is an upside down delta (introduced by
Hamilton in 1853). In LATEX it is produced by \nabla, and its mathematical
definition is the vector of first partial derivatives:

∇f(x) = (∂f(x)/∂x1, . . . , ∂f(x)/∂xn). (5)

I leave it as an exercise to show the LATEX code that produced equation (5).
The Hessian is the matrix of second partial derivatives:

∇2f(x) =

[
∂2f(x)

∂xi∂xj

]
.

This was produced by the following code:

5.5 Derivatives and Integrals 67

\[\begin{array}{lll}

\nabla^2f(x) &=& \left[\displaystyle \frac{\partial^2f(x)}

{\partial x_i \partial x_j}

\right].

\end{array}

\]

There seems to be some crowding in this direct specification. Compare with the
following and see if you can produce it:

∇ 2f(x) =

[
∂ 2f(x)

∂xi ∂xj

]
. (6)

There are two integral signs: \int⇒
∫

and \oint⇒
∮
, which are both variable-

size symbols. For example, note how the outer integral is large in the following
expression: ∫ b

a
lim
λ→∞

∣∣∣∣∣

∮
X(v) xe

λf(x) dx
∮
X(v) e

λf(x) dx

∣∣∣∣∣ Φ(v) dv.

This was obtained by the following code:

\[\int_a^b \lim_{\lambda\rightarrow\infty} \left|

\frac{\oint_{X(v)} xe^{\lambda f(x)}\,dx}

{\oint_{X(v)} e^{\lambda f(x)}\,dx}\right|

\,\Phi(v)\,dv .

\]

(Note the use of the thin space, \,.)
Definite multiple integrals are no problem. To have

∫ ∞

0

∫ xn

0

∫ xn−1

0
· · ·
∫ x2

0
H(x1, . . . , xn) dx1 · · · dxn

write

\[\int_0^\infty \int_0^{x_n} \int_0^{x_{n-1}} \cdots

\int_0^{x_2} H(x_1,\dots,x_n)\,dx_1\cdots dx_n

\]

However, consider the following:
∫ ∫

S
(u∇v − v∇u) · dS =

∫ ∫ ∫

τ
(u∇ · ∇v − v∇ · ∇u) dτ.

The domains of integration, and the spacing of the integral signs, are better with
the following, which is not produced by standard LATEX2ε, but by specifying
\usepackage{amsmath} in the preamble (see The LATEX Companion [5, p. 223]):

68 5 MATH MODE

∫∫

S

(u∇v − v∇u) · dS =

∫∫∫

τ

(u∇ · ∇v − v∇ · ∇u) dτ.

Note how the domains are centered on the multiple integrals and the spacing of
the integral signs.

5.6 Theorems and Definitions

The foundations of mathematics are axioms and rules of inference. The rules
create theorems, which are statements whose truths are established relative to the
underlying logic. This is so fundamental that LATEX has the facility to define a
special environment that includes a keyword, like “Theorem,” and a name, which
is not only the name of the environment, but is also the name of the associated
counter. Consider the following example:

Theorem 5.1 For n > 2, there is no solution to xn + yn = zn for
x, y, z ∈ Z++.

Notice how “Theorem 5.1” appears, all text is in italic, and we have the
counter value: \thetheorem=5.1. This was defined in the preamble by:

\newtheorem{theorem}{Theorem}[section]

Then, the theorem was produced by the following LATEX code:

\begin{theorem}

For $n > 2$, there is no solution to $x^n + y^n = z^n$ for

\newline $x,y,z\in \LZ_{++}$.

\end{theorem}

Other theorem-like environments can be defined to have the same properties.
This requires both a keyword, like Theorem, and a unique name for the environment,
like theorem, also used as a counter. Here is the syntax:

\newtheorem{name}{keyword}[within]

The name defines the environment name, and it defines a counter, so it must be
different from all other environment and counter names. The within option defines
the counter to be within some other, which can be intrinsic or some other counter
defined by the \newcounter command (p. 46) or by some other \newtheorem.
In this document, I defined the theorem environment to be numbered within the
section, so you see Theorem 5.1, rather than Theorem 1. To further illustrate,
here is a corollary environment:

5.6 Theorems and Definitions 69

Corollary 5.1.1 The sum of cubes cannot be a cube.

It was defined in the preamble as follows:

\newtheorem{corollary}{Corollary}[theorem]

Note that this is within the theorem counter, which is valid by having been defined
by its own \newtheorem. Then, the above corollary was written as:

\begin{corollary} The sum of cubes cannot be a cube.

\end{corollary}

The following creates an axiom environment that is not within any other
counter.

\newtheorem{axiom}{Axiom}

The “Axiom of Choice” can then be stated thusly:

Axiom 1 From any (infinite) family of sets a new set can be created that contains
exactly one element from each set in the family.

This was created by the following code:

\begin{axiom} \label{axm:choice}

From any (infinite) family of sets a new set can be created

that contains exactly one element from each set in the family.

\end{axiom}

The label allows us to refer to the Axiom of Choice as ‘Axiom 1 on page 69’ by
writing Axiom~\ref{axm:choice} on page~\pageref{axm:choice}.

The environment created by \newtheorem puts the text in italics, but this is
generally not desirable for a definition. Consider the following example:

Definition 5.1 The circumference of a sphere is the circumference of any great
circle on the sphere.

This was created by first entering (in the preamble):

\newtheorem{defn}{Definition}[section]

Then, in the text:

\begin{defn} The circumference of a sphere is the

circumference of any great circle on the sphere.

\end{defn}

70 5 MATH MODE

Compare this with the following:

Definition 5.1 The circumference of a sphere is the circumference of any great
circle on the sphere.

This was created by first entering (in the preamble):

{\theorembodyfont{\rmfamily} \newtheorem{mydefn}{Definition}[section]}

Then, in the text:

\begin{mydefn} The \textit{circumference of a sphere} is the

circumference of any great circle on the sphere.

\end{mydefn}

For more customization, the theorem package enables a wide range of varia-
tions over the font style (among other things).

5.7 Refinements

Mathematical delimiters, like parentheses and braces, must be varied to en-
close some expressions. Whereas \left and \right commands adjust the
size of a mathematical delimiter to fit the enclosed expression, we can also
enlarge these delimiters ourselves. One way is with a size command — for
example,

{\large(}$E=mc^2${\large)} ⇒ (E = mc2).

There are, however, delimiter size control commands, which apply to a single
character: \big, \Big, \bigg, and \Bigg. For example,

$\big(E=mc^2\big)$ ⇒
(
E = mc2

)
.

The use of text font environments comes close to the corresponding math
size, (large↔big, . . . , Huge↔Bigg), but they are different, especially the
thicknesses. This is more evident with the square and angular brackets:

$\Big[E=mc^2\Big]$ ⇒
[
E = mc2

]
.

{\Large[}$E=mc^2${\Large]} ⇒[E = mc2].

$\bigg\langleE=mc^2\bigg\rangle$ ⇒
〈
E = mc2

〉
.

{\LARGE\langle}$E=mc^2${\LARGE\rangle} ⇒〈E = mc2〉.

5.7 Refinements 71

The remaining refinements use the amsmath package (introduced on p. 67
for obtaining better multiple integrals).

The gather and gather* environments allow the new line specification,
\\, in math mode. They behave like the eqnarray and eqnarray* environ-
ments, respectively, except the equations are not aligned. Figures 55 and 56
illustrate this. The same result with equation numbers is obtained by the
gather environment.

\begin{gather*}

(a+b)^2 = a^2 + 2ab + b^2 \\

{\cal L} \oplus M^\varepsilon - V = H_0 \\

A(x) = \{y: \phi(y) = \cup_{a\in \cal A} \Psi(x)\}

\end{gather*}

Figure 55: gather* Environment Source (Result in Figure 56)

(a+ b)2 = a2 + 2ab+ b2

L ⊕Mε − V = H0

A(x) = {y : φ(y) = ∪a∈AΨ(x)}

Figure 56: gather* Environment Result (Source in Figure 55)

When writing a matrix within text, we could produce

(
a b
c d

)
by spec-

ifying $\left(\begin{array}{cc} a&b \\ c&d \end{array}\right)$. An al-
ternative is with the amsmath smallmatrix environment: (a b

c d) is obtained
by $\left(\begin{smallmatrix} a&b \\ c&d \end{smallmatrix}\right)$.
(Note that there are no column specifications.) This is not equivalent to
preceding the array specification with a text size environment; in particular,
\scriptsize produces

(

a b
c d

)

. While the letters inside the matrix are ap-

proximately the smallmatrix size, the spacing and parentheses are not the
same.

The amsmath package has a command to put dots across any number
of columns in an array. Its syntax is \hdotsfor[spacing]{n}, where spacing
determines the spacing between the dots, and n is the number of columns it
spans. For example,

\left|\begin{array}{ccccc}

1 & 2 & 3 & 4 & 5 \\

72 5 MATH MODE

\hdotsfor{3} \\

& \hdotsfor{3} \\

\hdotsfor[2]{5} \\

\hdotsfor[.5]{5} \\

\end{array}\right|

∣∣∣∣∣∣∣∣∣∣

1 2 3 4 5
.

.
.
.

∣∣∣∣∣∣∣∣∣∣

The \stackrel command lets us put characters over a relation: For

example, n^+\stackrel{\mathrm{def}{=}n+1 ⇒ n+ def
= n + 1. With more

generality, the \overset and \underset amsmath commands enable us to
put any characters over or under any character. For example,

$\overset{a}{X}$ ⇒
a

X

$\underset{b}{Y}$ ⇒ Y
b

$\overset{a}{\underset{b}{Z}}$ ⇒
a

Z
b

This can be used to stack subscripts:

$\displaystyle{\sum_{ \stackrel{ \mbox{\scriptsize$i\in I$} }

{j\in J}

} } A_{ij}

= \underset{j\in J}

{ \underset{i\in I}{\sum} } A_{ij} $

⇒
∑

i ∈ I
j∈J

Aij =
∑

i∈I
j∈J

Aij

Nesting the \underset command can be unwieldy; an alternative is the
\substack command:

$\displaystyle\sum_{\substack{i\in I\\j\in J\\k\in K}} A_{ij}$

⇒
∑

i∈I
j∈J
k∈K

Aij

Another package in the ams family is amscd, which makes it easy to
draw commutative diagrams. Figures 57 and 58 illustrate this. (Specify
\usepackage{amscd} in the preamble.) The horizontal arrows are specified
by @>>> (left to right) with any expression placed above or below. The

5.8 Grammar 73

vertical arrows are specified by @VVV (down) or @AAA (up), with an expression
placed to its left or right. All possible horizontal and vertical placements are
illustrated.

\[\begin{CD}

A @>a>> B @>>> C \\

\alpha @VV\beta V \gamma @AAA @VVV\delta \\

D @>>d> E @>e>> F

\end{CD} \]

Figure 57: Commutative Diagram Source (Result in Figure 58)

A
a−−−→ B −−−→ C

α
yβ γ

x
yδ

D −−−→
d

E
e−−−→ F

Figure 58: Commutative Diagram Result (Source in Figure 57)

There are many more refinements, and more packages to make things
nicer. Many of these are described in The LATEX Companion [5, Chapter 8],
and you can see an online catalog of packages at CTAN [4].

5.8 Grammar

When writing mathematical expressions, people make some common errors.
The general guide is to treat a mathematical expression linguistically. In
English this means that every sentence has a subject and predicate, clauses
are separated by commas, and phrases are appropriately punctuated. Here
are some of the most common elements of grammar to consider.

1. Punctuate math display mode. The expression usually needs a
comma or period. For example, note the colon before the display and
the comma at its end, which is incorrect to omit.

A symmetric rearrangement of a matrix has the following form:

R = P tMP,

where P is a permutation matrix.

74 5 MATH MODE

2. Define before use. As you read articles notice that those that are
among the most confusing are when the authors used a term that is not
defined until pages later. For example, we might see “The distinguishing
property of an abelian group is the commutivity . . . ” But a group had
not yet been defined.

3. Reference object is located after the reference. For example, a
figure appears after its first reference. LATEX does this automatically,
but you might want to take control over locating figures.

4. An object has only one definition. For example, if we write Φ =
au + bv, we cannot later refer to Φ(u, v). Sometimes we define the
complete object, Φ(u, v) = au + bv, then tell the reader something
like, “We shall use Φk, instead of Φ(uk, vk), when there is no risk of
confusion.” The overriding principle is clarity, and it is important that
the reader be told of this.

5. If . . . then . . . is not correct. Suppose A and C are expressions. We
can write either ‘If A, C.’ or ‘Suppose A. Then, C.’ The first form
is preferred if A and C are simple expressions. If either A or C are
compound, the second form is clearer. The form, ‘If A, then C.’ seems
like it ought to be all right, and the comma is used to clarify where
the antecedent (A) ends and the consequent (C) begins. In English,
however, this is not correct.

6. Equivalence needs commas. The expression, ‘A if and only if B.’
should be written as ‘A if, and only if, B.’

Exercises. Submit a printed copy of the LATEX source (tex file) and of the
associated postscript result (ps file). Be sure your name is on each. (Lookup
special symbols in the Appendix.)

1. Produce each of the following in math display mode.

(a) x2 = B2 − 4AC implies x = ±
√
B2 − 4AC.

(b) If ∆Fn+1 = Fn, it follows that ∆2Fn+1 = ∆Fn.

(c) x+ =

{
x if x ≥ 0;
0 otherwise.

5.8 Grammar 75

2. Produce the following in math display mode with the array environ-
ment and/or with the eqnarray* environment.

∆2Fn = Fn+2 − 2Fn+1 + Fn

= 2Fn − Fn+1.

3. Produce each of the following formulas in line with text (construct your
own sentences that contain them, and include proper punctuation).

(a) ln ex = x

(b) sin{θ + 2π} = sin θ

(c) yn =
∑n−1

i=i0
xi ⇒ yn+1 − yn = xn − xi0

(d) f(x) =
∞∑

n=0

f (n)(0)
xn

n!

(e)
∂

∂x

∫ x2

a

f(y)dy = 2xf(x2)

(f) MFe(H2O)6 = 6MH2O +MFe

4. Produce the following equation in math display mode.
[

1.1 −1.2 −1.3
−2.1 2.2 2.3

]
+

[
a1 a2 a3
b1 b2 b3

]
=

[
α −β γ
−δ λ θ

]
.

5. Produce the expression in the Preface.

6. Produce equations (5) and (6).

7. Produce each of the following expressions:

(a) x = y mod n
def
= x− y = kn for some k = 0, 1, . . .

(b)
︷ ︸︸ ︷
~α1 + ~β2 − x2 + y3

︸ ︷︷ ︸

8. Produce each of the following in line with text (that you compose) and
in math display mode.

(a) A ?
= {S ∈ S : S 6∈ S}

76 5 MATH MODE

(b)
√
|F × P| ≤ π

(c)




∣∣∣∣
a11 a12
a21 a22

∣∣∣∣
CB
BC




9. Produce each of the following formulas in math display mode (with
punctuation):

(a) q∗(G) ≥ max

{
∆(G),

2m(GA)√
A− 1

}
if G 6= ∅.

(b) (0, xT)T = (0, xT)

(
A B
0 C

)
=

(
0

xTC

)
= (0, CTx)T ,

(c) V =
3
√
3

2

∫ a

0

(−x 1

3 + a)2 dx;

10. Combine your knowledge of derivatives, conditional assignment (with
array environment), and mathematical symbols to produce the follow-
ing (called the truncated gradient):

∇+f(x)j =





max{0, ∂f(x)/∂xj} if xj = aj

∂f(x)/∂xj if aj < xj < bj

min{0, ∂f(x)/∂xj} if xj = bj

11. Produce the following symbols:

(a) Extended reals: R∞.

(b) Strictly positive integers: Z++.

(c) Complex n-vectors: Cn.

(d) Non-negative rational n-vectors: Qn
+.

12. Produce the following: ∂f(x)
∂xj

∣∣∣
x=x̄

.

13. Produce the following:

Definition 1 A matrix is singular if its determinate is zero.

5.8 Grammar 77

Definition 2 A matrix is non-singular if it is not singular.

Theorem 1 Every non-square matrix has an inverse.

Proof: The determinate of a non-square matrix cannot be zero
because it is not defined. Therefore, the matrix is non-singular.
This implies it has an inverse.

14. What is grammatically wrong with each of the following segments.

(a) A key is how to add velocities the formula is

(u+ v)
1 + uv

c2

where c is the velocity of light.

(b) A result of these assumptions is the following equation

E = mc2

Einstein first noticed this equivalence between energy (E) and
mass (m).

(c) Let x be an n-vector and ω a scalar, and define

y = Ax− ωb,

where A is an m × n matrix and b is an m-vector. Now suppose
y(ω) is specified and we want to find x.

(d) Now we consider adding velocities.

v

u+v

u

Figure 1. Adding velocity vectors: u+ v.

Figure 1 (above) shows how to add velocities simply as vectors.

(e) Theorem If x, y, z ∈ Z+ and xn + yn = zn, then n < 3.

78 5 MATH MODE

The remaining exercises are more difficult. You are to produce the mathe-
matical expressions shown in math display mode.

15. The following is tricky to get the evaluation expression, t = 1
2 to be the

right size and location.

d

dt
f(x+ t∇+f(x))

∣∣∣∣
t= 1

2

= − 2v

(1/2)1/4
+ 1.

16. Note the row and column labels outside the matrix.

A =

a b c d e
1
2
3
4




1 0 0 0 1
1 1 0 1 0
0 1 1 0 0
0 0 1 1 1




17. Row pointers:

A =

[
11 12
21 22

]
← rows in 1
← rows in 2 (this arrow is closer to matrix)

18. Column pointers:

A =

[
11 12
21 22

]

↑ ↑
columns columns

in 1 in 2

19. Row and column pointers:

A =

[
11 12
21 22

]
← rows in 1
← rows in 2

↑ ↑
columns columns

in 1 in 2

79

6 Graphics

Graphics may be part of a LATEX document by one of three ways:

1. Use standard LATEX2ε commands, notably the picture environment;

2. Use a graphics package to draw within the document;

3. Use a package to import some standard graphics file.

I illustrate each, but I do not provide a complete list of the relevant packages
(see CTAN [4] and The LATEX Companion [5]).

6.1 Picture Environment

If all we want is a series of boxes and arrows, we can do this simply with
\fbox and a long arrow in math mode, as follows:

\fbox{left}\longrightarrow\fbox{center}\longrightarrow\fbox{right}

⇒ left −→ center −→ right

The \framebox command can be used instead of \fbox to produce the
same result. However, \framebox also has two optional arguments to control
the length of the box and the position of the text within it. For example,

\framebox[2cm][l]{left}\longrightarrow\framebox[2cm][c]{center}$%

\longrightarrow\framebox[2cm][r]{right}

⇒ left −→ center −→ right

The % at the end of the first line is to avoid having a blank between the
center box and the \longrightarrow that follows it. The first optional
argument of this \framebox command is the width of the box, given as 2 cm
for each box. The second optional argument is the position of the inscribed
text: l = left, c = center, and r = right.

We can make the contents of a box obey all paragraph controls in text
mode by the \parbox command. By itself, it lets us stack short phrases,

like
top
middle
bottom

(note how the paragraph spacing adjusts). Combined with

80 6 GRAPHICS

\framebox, we can create vertical diagrams easily, as illustrated in Figures
59 and 60.

\begin{center} \parbox{2cm}{

\framebox[2cm]{top} \\ \centerline{\downarrow} \\

\framebox[2cm]{middle} \\ \centerline{\downarrow} \\

\framebox[2cm]{bottom}

} \end{center}

Figure 59: Vertical Diagram Source (Result in Figure 60)

top
↓

middle
↓

bottom

Figure 60: Vertical Diagram Result (Source in Figure 59)

The box created by \parbox has its center aligned with the text, but it
has an optional argument to align its top or bottom with the text. This is
done by specifying \parbox[t]{width}{text} or \parbox[b]{width}{text},
respectively.

These commands can be combined, along with other box commands, but
there is a need for more versatility, like ovals and diagonal arrows, and more
control over positioning. A basis for this is the picture environment. To
begin, Figure 61 shows a more elaborate chart, which was created by the
picture environment, whose source is shown in Figure 62. Going through its
parts will serve to explain the various commands.

v
top left

center bottom right

m1 a
b
c

�� �
oval

-

?

Z
Z
ZZ~

-� -
�
�
��

Figure 61: Variety of Objects in Picture Environment

6.1 Picture Environment 81

\begin{center} \setlength{\unitlength}{1in}

\begin{picture}(0,0)

\put(0, 0){\circle*{.1}}

\put(0,-.5){\framebox(.7,.3){center} }

\put(-1,-.5){\dashbox{.01}(.7,.3)[tl]{top left} }

\put(1,-.5){\dashbox{.1}(1.2,.3)[br]{bottom right} }

\put(-.65, -1){\circle{.2}} \put(-.7,-1.05){1}

\put(1, -1){\oval(.5,.25)} \put(.85,-1.05){oval}

\put(0,-1){\fbox{$\begin{array}{c}a\\b\\c\end{array}$}}

\put(-.3,-.35){\vector(1,0){.3}}

\put(-.65,-.5){\vector(0,-1){.4}}

\put(.35,-.5){\vector(4,-3){.5}}

\put(-.55,-1){\vector(1,0){.55}}

\put(0,-1){\vector(-1,0){.55}}

\put(.32,-1){\vector(1,0){.43}}

\put(1.2,-.895){\line(1,1){.3975}}

\end{picture}

\end{center} \vspace{1in}

Figure 62: Source for Figure 61

The first command begins a center environment, and I use the \setlength
command to set the units of measurement to be 1 inch. This means that when
I specify some length = 5, I am specifying 5 inches. The parameter that de-
termines this is \unitlength, and the default for the picture environment is
1 pt. Then, we enter the picture environment stating that the point of entry
is the origin, indicated by the coordinates (0,0). (There is an alternative way
to begin the picture environment, which is not described here.) The filled
circle shows where (0,0) is in this picture.

Every picture command begins with \put, which is exclusively for the
picture environment. The complete syntax is: \put(x,y){stuff }, where
stuff can be text or some picture object. The (x, y) coordinates are relative
to where the position is when the picture environment is entered. This could
be at the left margin, as in beginning a paragraph with \noindent; it could
be a column in a table defined within the tabular environment; or hp p

⌣ it
could be in the middle of a sentence, just as the smiley face appears here (see
Exercise 1).

The first \put in Figure 62 specifies the position at the origin, and the
stuff is a filled circle with diameter .1 inches (centered at the origin):

82 6 GRAPHICS

\put(0,0){\circle*{.1}} ⇒ v
The next three commands put three different kinds of boxes, each be-

ginning at .5 inches below the origin (i.e., y = −.5). The first is similar
to \framebox in text mode, but its syntax is different. In picture mode it
enables control over not only the width, but also the height, and this extends
the position options to a second character: t = top; b = bottom. The general
form of the \framebox command in the picture environment is as follows:

\framebox(width,height)[posn]{text}

In the example shown in Figure 62, the specifications are width = .7 inches
and height = .3 inches; the position is centered because that is the default.

The next \put puts a dashed box, having the same dimensions as the
framed box, with the length of the dash set to .01 inches. The next dashed
box has the dash length set equal to .1 inches, resulting in fewer dashes to
compose the box. The box length is set to 1.2 inches, and the text is at the
bottom right because of the optional specification, [br].

Now we come to the \circle specification, located at coordinates (−.65,−1)
(from \put), with diameter = .2 inches. The “1” inside the circle required an-
other \put, and some trial and error was needed to establish its position. We
know the center of the circle is at (−.65,−1), but that is not where we want
to put the inscribed text to be centered. Unlike the box family, we cannot
include the centering of text within the circle command. The same applies
to the \oval specification, followed by putting text that required some trial
and error to locate. The oval, itself, has dimensions .5× .25 (inches), where
.5 measures the entire width:

'
&

$
%

� width - height
6

?

After the \oval specification, I use the \fbox command. This is the same
as I used in text mode, except here I use it to frame an array, defined as usual
in math mode: the array has three rows and one column, which is centered.

Now the code begins to draw the vectors, which are lines with arrow
heads. Both \vector and \line have the same syntax:

\line(∆x,∆y){len} \vector(∆x,∆y){len}

6.1 Picture Environment 83

If ∆x = 0, the line is vertical, and len is the amount of change above or below
the original point (it does not matter what the magnitude of ∆y is; only its
sign matters). If ∆y = 0, the line is horizontal, and len is the amount of
change to the right or left of the original point (it does not matter what the
magnitude of ∆x is; only its sign matters). Otherwise, if ∆x 6= 0, the actual

change in x is still len, and the slope of the line is
∆y
∆x . This is undoubtedly

confusing, so consider Figure 63. The new point is determined by moving

from (x0, y0) along the line with slope
∆y
∆x

until the new x-coordinate is

x0 + len. Then, the new y-coordinate is y0 + len
∆y
∆x . The actual length of

the line segment is len

√
1 +

(
∆y
∆x

)2
.

slo
pe

=
∆
y

∆
x

b

b

b

x0

y0
x0 +∆x

y0 +∆y

x0 + len

y0 + len
∆y
∆x

Original
point

New
point

Figure 63: Line Parameters

As if this unnatural definition of the line segment were not enough, there
is an important restriction: ∆x,∆y must be integer-valued and within −6 to
6. Suppose our original point is (x0, y0), and we want our destination point
to be (xt, yt). If xt = x0, the calculation is simple: set ∆x = 0, len = |yt−y0|,
and

∆y =

{
1 if yt > y0;
−1 otherwise.

If xt 6= x0, we could have problems with approximating the results. Suppose,
for example, we want (xt, yt) = (x0 + 1.3, y0 + 1.5). If we we set len = 1.3

84 6 GRAPHICS

to obtain the correct x-coordinate, how should we set the slope parameters?

Ideally, we would set ∆x
∆y = 13

15 , but the restrictions do not permit this. The

closest we could come is 4
5 .

Fixing len = xt − x0, then searching for a nearest slope approximation,
is not necessarily the best overall approximation. We could setup a least-
squares estimation problem, but trial and error in selecting the parameters
tends to be just as efficient. Either way, we have some work to do.

The first \vector command in Figure 62 starts at (−.65,−1), which I
calculated to be from the “top left” box to the “center” box.

width

cbox begins here →

� - height

6

?

In Figure 61 the “top left” box starts at (−1, .5), and its width is .7, so
the right edge of that box is at x = −.3. Starting at y = −.35, the vertical
position changes by moving up half of the height, so the coordinate where
the arrow begins (called its tail) is (−.3,−.5 + 1

2 .3) = (−.3,−.35). That
accounts for the initial position given by \put(-.3,-.35). The arrow is
to be horizontal, drawn left to right, so ∆x = 1 and ∆y = 0, as specified
with \vector(1,0). Finally, we need to determine the length, specified as
{.3}. We want the coordinate of the end of the arrow (called the head) to
be flush to the left side of the “center” box. That box begins at (0,−.5),
so ∆x = 0 − (−.3) = .3. It required these computations to determine the
complete picture command: \put(-.3,-.35){\vector(1,0){.3}}.

Now consider the next \vector, which is a vertical arrow from the same
box to the circle below it. The initial position is calculated simply as the
midpoint of the bottom edge of the box: (x, y) = (x0 +

1
2h, y0), where the

box starts at (x0, y0) and h = height. In this case, (x0, y0) = (−1.,−.5)
and h = .3, so we obtain the coordinates of the arrow’s tail: (xt, yt) =
(−1 + 1

2 .3,−.5) = (−.65,−5), as specified. Since the arrow is downward,
∆x = 0 and ∆y < 0, given by \vector(0,-1). The length is determined
by where we want the arrowhead: at the top of the circle. The circles y
coordinate is −.65, which is its center. We must add the radius, which is 1

2(.2)
since .2 is the diameter specified by \circle{.2}. Thus, the position of the
arrowhead is (xh, yh) = (xt, yc−yt+r) = (−.65,−1−(−.5)+.1) = (−.65,−.4),
and we set len = |∆y| = .4, which is what is specified:

top left

m1?
⇐ \vector(0,-1){.4}

6.1 Picture Environment 85

The next arrow is double-headed, so we use two \vector commands to
draw one arrow left to right, then an arrow at the same end points, but drawn
right to left. Further, this involves more calculations because the arrow is
not simply horizontal or vertical. We begin the same way, by computing the
coordinates of the tail and head. The left end point is at the y-coordinate of
the center of the circle, and its x-coordinate is to the right by the length of
the radius: (x1, y1) = (xc + r, yc) = (−.65 + .1,−1) = (−.55,−1), so that is
where we \put the first arrow. The head is to be flush with the left edge of
the \fbox, and this needs some trial and error. The uncertainty is the width
of the box; we know only that the center of the box was put at (0,−1), but we
do not know the width of the box. With just a few iterations, the end point
was determined to be x = 0, so len = ∆x = .55. The reverse arrow begins at
(0,−1), and its slope is (−1, 0), which is why we have \vector(-1,0){.55}.

The last vector also required trial and error, due to not having the corner
of the oval coordinates. In this case, the end points were determined to be
from (1.2,−.895) to (1.6,−.5). The former was found by trial and error,
but the latter was computed by knowing that the “bottom right” box starts
at (1,−.5) and has a width of 1.2, so the midpoint of the bottom edge is at

(1.6,−.5). Now the true slope of the line we want is .395
.4 , but the restrictions

do not allow this. The closest slope we can have is with (∆x,∆y) = (1, 1),
which is what is specified. Given this slope, the best choice of len can be
found as the average of the deviations:

len = 1
2(.4 + .395) = .3975.

Thus, we specify \line(1,1){.3975} to obtain the line shown in Figure 61.
There are packages to extend the picture environment, and we can plot

curves, called Bezier approximations, to a set of points. However, I shall
cover these in the next section with a powerful package called PSTricks.

Table 46 (in the Appendix, p. 128) gives the commands in the picture
environment, but here are some things to note:

• Only boxes can have inscribed text; the circles and ovals require sepa-
rate \put commands, which can take some trial and error to position.

• Some calculations and some trial and error are needed to align objects
and lines.

• Moving a portion of the picture can be tedious, requiring re-calculations
and more effort for the new positions.

86 6 GRAPHICS

• There is no direct way to control the size or style of the arrow heads,
and there is very limited control over line thicknesses.

These can make using the picture environment time consuming and rather
unpleasant. There is a better way!

6.2 PSTricks

PSTricks [15] was written by Timothy Van Zandt, and is provided free of
charge. (It is not standard with MiKTeX, but you can obtain it at CTAN [4].)
In the preamble specify \usepackage{pst-all} for the entire system. (You
can use parts, in which case you specify the parts you use instead of pst-all
— see [15] for loading individual portions.)

One thing you need to know is that not all of the pst results can be seen
with a dvi viewer. Some require converting to postscript and viewing
the ps file. This is especially true of commands that involve rotations.

PSTricks (pst, for short) is designed to overcome difficulties with using
the picture environment, some of which were listed above. Here are some of
the features of PSTricks that I shall illustrate.

• Circles and ovals, in addition to boxes, can have inscribed text.

• Lines and arrows have the same command, identifying any of a great
variety of arrowheads simply.

• Only one command is needed to put lines through a sequence of points,
and slopes need not be calculated.

• Objects can be named (as nodes) and lines and arrows can be drawn
between them by naming the tail and head, thereby eliminating the
need for calculation or trial and error.

• Arrow heads are adjustable.

• Shapes are highly variable.

• Drawing curves is simple, including plots of points that can come from
a data file, and Bezier approximations of four points are available.

Another widely distributed picture-drawing system is MetaPost [6, 7],
written by John D. Hobby, also provided free of charge. It is more difficult to
learn than PSTricks, but MetaPost is more open-ended in its design, which

6.2 PSTricks 87

makes it potentially more versatile, especially on varying the types of file
outputs (PSTricks is tied to postscript). In particular, pdflatex (not covered
here; see [4]) does not work with PSTricks, but it does with MetaPost.

There are many packages [4], typically available free of charge, that do
many of the things done by PSTricks (and some additional things). Many of
these are described in The LATEX Companion [5].

All of the pst commands have options to override default settings for
relevant parameters. The defaults, themselves, can be set with the \psset

command: \psset{parameter = value[,. . .]}. For example, the default unit
of measurement is 1 cm, and the default fill color is white, but we can change
them by specifying:

\psset{unit=1in,fillcolor=gray}

A fundamental command in pst is \rput, but unlike the \put command
in the picture environment, this is not the only way to put objects. The
commands, themselves, can specify where to put them. Table 19 gives
some of the common commands to draw objects and lines. For those ex-
amples, the unit of measurement was set to 1 mm. For each command,
we can specify relevant options as [parameter = value]. For example, to
produce a solid circle with radius .1 cm, centered at the origin, we write
\pscircle[fillstyle=solid](0,0){.1} (having already set fillcolor=gray).

The origin is determined by where you are when issuing a pst command;
no environment is entered. Thus, I can put that circle right here: All
commands use the linewidth parameter to control the thickness of the lines
used in the drawing, and objects that could be made solid, like boxes and
circles, use the fillstyle parameter. I shall illustrate the commands in
Table 19 first, showing the ease and versatility of PSTricks, then I shall show
some additional shapes and commands. This is meant to be an introduction,
so many features are not presented here. The User’s Guide [15] is freely
available and clearly written.

In using these commands, we do want the \rput command in order to
put text into various objects. The idea of a box is to have some shape enclose
text. PSTricks extends the rectangle in \framebox by having a variety of
shapes, shown in Table 20. A parameter used by these commands is the dis-
tance between the border and the text inside, called framesep=len, where the
default value of len is 3 pt. (As usual, other parameters include linewidth,
linestyle, linecolor, and fillcolor.) The pst figures are drawn after
specifying \psset{unit=1mm,fillcolor=white}.

88 6 GRAPHICS

Table 19: Some Basic Drawing Commands in PSTricks

psframe(x0, y0)(x1, y1) Draws rectangle with a corner at

\psframe(0,1)(10,-2) (x0, y0) and opposite corner at (x1, y1).

pscircle(x, y){r} Draws circle centered at (x, y) with

\pscircle(5,0){2} radius = r.

psellipse(x, y)(rx, ry) Draws ellipse centered at (x, y) with

\psellipse(3,0)(5,2)
horizontal radius = rx and
vertical radius = ry

psline{a}(x0, y0) . . . (xn, yn) Draws line or arrow, determined by a:

\psline{-}(0,0)(10,0) - no arrow; -> forward arrow;

\psline{<->} <-> double arrow’ <- backward arrow;

(0,0)(5,-2)(1,0) (there are more!), along path given by

\psline{|-*} coordinates.

(0,0)(10,-2)

pspolygon(x0, y0) . . . (xn, yn) Draws closed polygon with given

\pspolygon(0,0) coordinates; same as \psline{-}. . . ,

(0,-3)(6,-3) except figure is closed by drawing
line from (xn, yn) to (x0, y0).

These commands can be used in the text. For example, we obtain

this oval by writing: . . . we obtain \psovalbox{this oval}. . .

Boxes need not be enclosed (like \makebox), and they can be scaled by
specifying one of the following:

\psscalebox{size}{stuff} scales stuff keeping the same aspect ratio
\psscalebox{width height}{stuff} scales the width and height individually

Here are some examples:

6.2 PSTricks 89

Table 20: Boxes in PSTricks

psframebox{stuff} Draws rectangle but could have rounded corners

framebox \psframebox{framebox}

framebox \psframebox[framearc=.4]{framebox}

psshadowbox{stuff} Adds shadow to psframebox

shadow added \psshadowbox{shadow added}

psdblframebox{stuff} Draws double frame

double frame \psdblframebox{double frame}

pscirclebox{stuff} Draws circle around stuff

circle \pscirclebox[linewidth=2pt]{circle}

psovalbox{stuff} Draws oval around stuff

oval \psovalbox[linestyle=dotted]{oval}

Halving
the

circle

\psscalebox{.5}{\pscirclebox{

\begin{tabular}{c}

Halving \\ the \\ circle

\end{tabular} } }

Doubling \psscalebox{2}{\psframebox{

\textsl{Doubling} }}

Tall \psscalebox{1 3}{Tall}

Wide \psscalebox{3 1}{Wide}

There are times when we want to rotate stuff. Here is how:

L
ef

t

Down

R
igh

t

\rotateleft{Left}\rotatedown{Down}

\rotateright{Right}

90 6 GRAPHICS

One application is given by the following:

Who is the founder of TEX? Who is the founder of \TeX?

Answer:DonaldE.Knuth

\rotatedown{Answer: Donald E. Knuth}

So far I have described a variety of shapes, by themselves and as enclosures
for boxes. These can be connected by \psline, with a great variety of styles,
including variations of arrowhead shape. To avoid the tedious calculations
in locating the coordinates of the tail and head, the objects being joined can
be referenced by name. In PSTricks, the named objects are called nodes.
Consider the following example:

Node A

Node B Node C

The source code is shown in Figure 64. After entering the centering envi-
ronment and setting the default units of measurement, the \rput command
puts a node, with the \rnode command. The name is set to A, and the text
Node A is put there (with no frame). The syntax for \rnode is:

\rnode{name}{stuff }

The next two commands put nodes named B and C, each enclosed with a
frame. The \ncline command has the same arrow options as \psline, but
with the following syntax:

\ncline{a}{name of node A}{name of node B}

The first \ncline in Figure 64 draws a plain line from node A to node B.
The [nodesepA=3pt] option gives 3 pt separation between the end of the
line and node A. Otherwise, the line would touch Node A text, which is not
what we want. The separation is exaggerated to 5 pt in the arrow from
node C to node A. The default value is nodesep=0pt, which is what we
want when the nodes are enclosed boxes, like B and C. In general, node
separation can be specified for either end point, or for both end points, by
specifying nodesepA=n, nodesepB=n, or nodesep=n, respectively. (nodesepA
and nodesepB are keywords and have nothing to do with the names we assign
to our nodes.)

Figure 66 shows a graph that could represent any number of things. Its
source, using PSTricks, is shown in figure 65. (Try adding one line at a time
and observe each effect.)

6.2 PSTricks 91

\begin{center}

\psset{unit=1cm}

\rput(0, 0){\rnode{A}{Node A}}

\rput(-2,-1){\rnode{B}{\psframebox{Node B}}}

\rput(2,-1){\rnode{C}{\psovalbox{Node C}}}

\ncline[nodesepA=3pt]{A}{B}

\ncline[nodesepA=5pt]{<-}{A}{C}

\ncline{<->}{B}{C}

\end{center} \vspace{.5in}

Figure 64: PSTricks Source for Connecting Nodes

\begin{center} \psset{unit=1cm}

% Nodes

\cnodeput(-2, 0){1}{1} \cnodeput(0, 0){2}{2}

\cnodeput(2, 1){3}{3} \cnodeput[doubleline=true](2,-1){4}{4}

\pnode(-3, 0){1tail} \ncline{->}{1tail}{1} % tailess arc into (1)

% Arcs (with labels)

\ncline{->}{1}{2} \aput{:U}{1/2} % \aput puts label above arc

\ncline{->}{2}{3} \aput{:U}{2/3}

\ncline{->}{2}{4} \bput{:U}{2/4} % \bput puts label below arc

\ncarc{->}{3}{4} \Aput{\small 3\rightarrow4} % \Aput keeps

\ncarc{->}{4}{3} \Aput{\small 4\rightarrow3} % label horizontal

\ncloop[angleB=180,loopsize=.5,arm=.2,linearc=.2]{->}{3}{3}

\Bput[5pt]{loop} % \Bput keeps label horizontal and 5pt is

% the space added between label and arc

\ncloop[angleA=180,loopsize=.5,arm=.2,linearc=.2]{<-}{4}{4}

\Bput[5pt]{loop}

\end{center} \vspace{1cm}

Figure 65: Graph Source (Result in Figure 66)

1 2

3

4

1/2
2/3

2/4

3→44→3

loop

loop

Figure 66: Graph Result (Source in Figure 65)

92 6 GRAPHICS

Now I describe curves that go through, perhaps approximately, given
points. The examples that follow use the following pst settings:

\psset{unit=.5cm,showpoints=true}

(The showpoints=true setting is what causes the points to be included in
the picture you see.)

We begin with the parabola, whose command syntax is:

\parabola{a}(x0, y0)(x1, y1),

where (x0, y0) is one point on the parabola, and (x1, y1) is the (unique) point
having dy/dx = 0. \parabola* specifies filling the parabola. For example,

\psgrid[subgriddiv=1,griddots=10,gridlabels=7pt](-1,0)(4,4)

\parabola{<->}(4,3)(2,0)

\parabola*[fillcolor=black,showpoints=false](1,1)(2,3)

⇒

-1 0 1 2 3 4
0

1

2

3

4

b

Question: What is the pst command to draw the parabola given by

y = ax2 + bx+ c, where a 6= 0?

Answer:\parabola(0,c)(−
b
2a,−

b
2

4a+c)

The following shows two commands: pscurve and psccurve, the latter
being a closed curve that joins the last point with the first.

b

b

b

\pscurve{(->}(0,0)(1,1)(1,-1)(-1,1)(-1,-1)

b

b

b

b

b

\psccurve(0,0)(1,1)(1,-1)(-1,1)(-1,-1)

The Bezier curve joins two end points and comes as close as possible to
two intermediate points. The command syntax is:

6.2 PSTricks 93

\psbezier[parameters]{a}(x0, y0)(x1, y1)(x2, y2)(x3, y3)

b

b

b

b

\psbezier(0,0)(1,3)(2,1)(3,4)

We can read data from a file, perhaps produced by mathematical soft-
ware like gnuplot c©, Octave c©, Maple c©, Mathematica c©, MATLAB c©, and
S-PLUS c©. The data file just needs pairs of coordinates, which can be sepa-
rated by a comma or just blank and can have parenthesis, braces, or nothing
around each pair. The following histogram was plotted by the source code in
Figure 67, which I shall explain. The data file had y = number of students
with test score = x+50. (The offset of 50 was used in establishing the origin
in the plot.)

b

b

b
b

b
b

b
b

b

b
b b

b

0

5

10

15

50 60 70 80 90 100 score

F

D

C
B

A

\psset{unit=2mm, showpoints=false}

\fileplot[plotstyle=dots]{mydata.dat}

\psaxes[Ox=50,Oy=0,Dx=10,Dy=5,dx=10,dy=5,ticks=y]{->}(60,17)

\rput[r](60,-2){\large score}

\psline(1,0)(1,6)(9,6)(9,0) \rput(5, 8){\textsf{F}}

\psline(10,0)(10,3)(19,3)(19,0) \rput(14, 5){\textsf{D}}

\psline(20,0)(20,10)(29,10)(29,0) \rput(25,12){\textsf{C}}

\psline(30,0)(30,8)(39,8)(39,0) \rput(35,10){\textsf{B}}

\psline(40,0)(40,5)(50,5)(50,0) \rput(45, 7){\textsf{A}}

Figure 67: Source Code for Drawing Histogram of Test Scores

After setting the units of measurement to 2 mm, the data file is read and
its points plotted with the \fileplot command. (Setting showpoints=false

94 6 GRAPHICS

suppresses plotting the points in the \psline commands.) The data file is
plain text and has the following entries:

% This is mydata.dat

5 2 9 4 % F = [0,60)

15 2 18 1 % D = [60,70)

22 6 27 4 % C = [70,80)

30 2 31 1 35 4 39 1 % B = [80,90)

40 2 45 2 50 1 % A = [90,100]

The plot, itself, is just the points, specified by plotstyle=dots. There
are other plot styles, such as plotstyle=line, and there are 11 dot styles.
Here is one of the alternatives:

\fileplot[dotstyle=+,plotstyle=dots]{mydata.dat} ⇒

+
+

+
+

+
+

+
+

+

+
+ +

+

Next, axes are superimposed with the \psaxes command:

\psaxes[params]{a}(x0, y0)(x1, y1)(x2, y2)

where (x0, y0) is the origin, (x1, y1) is the Southeast corner, and (x2, y2) is the
Northwest corner. As in \psline, if (x0, y0) is absent, the origin is assumed
to be at (0, 0). If (x1, y1) is absent, it is assumed to be equal to the origin.
Here are some examples:

\psaxes[unit=.5cm]{->}(4,0)(8,3) ⇒ 0
1
2

0 1 2 3

\psaxes[unit=.5cm]{->}(0,0)(-1.1,0)(2.1,2.1) ⇒
1
2

0 1 2−1

Note that ticks are uniformly spaced on each axes. This is suppressed for
the x-axis in Figure 67 by specifying the option, ticks=y. The other pa-
rameter settings are described in Table 21. (The default values, dx=dy=0,

6.2 PSTricks 95

cause the spacing to be equal (approximately) by using Dx÷\psxunit and
Dy÷\psyunit, respectively.)

Table 21: Parameters for \psaxes

Horizontal Vertical Default Meaning
Ox=n Oy=n 0 Label at origin
Dx=n Dy=n 1 Label increment
dx=n dy=n 0 Label spacing

The next command, rput[r](60,-2){\large score} puts “score” in
large font, flush right (indicated by [r]) at the coordinates (60,−2). Thus,
when I superimpose the commands \fileplot, \psaxes and \rput, we ob-
tain the data plot. The remaining commands draw the histogram boxes and
put the letter grade above each box in sans serif font. Leaving off the “score,”
Figure 68 shows the sequence of how each \psline and \rput adds to the
picture. To fit the picture and the code next to it, this is scaled (simply, by
specifying \psset{unit=1mm}):

We shall stop here, but this does not exhaust the PSTricks commands.
See [15] for lots more, including many examples.

96 6 GRAPHICS

b
b

b b

b b
b b

b
b b b b

\fileplot[plotstyle=dots]{mydata.dat}

b
b

b b

b b
b b

b
b b b b

0

5

10

15

50 60 70 80 90 100

\psaxes[Ox=50,Oy=0,Dx=10,Dy=5,
dx=10,dy=5,ticks=y]{<->}(60,17)

b
b

b b

b b
b b

b
b b b b

0

5

10

15

50 60 70 80 90 100

F

\psline(1,0)(1,6)(10,6)(10,0)
\rput(5,8){\textsf{F}}

b
b

b b

b b
b b

b
b b b b

0

5

10

15

50 60 70 80 90 100

F

D

\psline(11,0)(11,2)(19,2)(19,0)
\rput(14,4){\textsf{D}}

b
b

b b

b b
b b

b
b b b b

0

5

10

15

50 60 70 80 90 100

F

D

C \psline(20,0)(20,11)(29,11)(29,0)
\rput(25,13){\textsf{C}}

b
b

b b

b b
b b

b
b b b b

0

5

10

15

50 60 70 80 90 100

F

D

C
B \psline(30,0)(30,8)(39,8)(39,0)

\rput(35,10){\textsf{B}}

b
b

b b

b b
b b

b
b b b b

0

5

10

15

50 60 70 80 90 100

F

D

C
B

A
\psline(40,0)(40,5)(50,5)(50,0)

\rput(45,7){\textsf{A}}

Figure 68: Sequence of PSTricks Commands to Draw Histogram

6.3 Importing pictures 97

6.3 Importing pictures

The way to import a picture into LATEX is to convert it to encapsulated
postscript (eps). An exceptionally clear description of this, including his-
torical context, is given by Keith Reckdahl [12]. (He also goes deeper into
customizing placements of pictures in figures.) Many systems that let us
draw figures, and those that plot mathematical functions or data, have an
option to export an eps file. (If you can get a ps file, you could use \psfig,
or there is a unix conversion utility, \ps2epsi.) On unix, xfig is an excellent
system to draw figures, and the export options include the eps file format.
A basic plotting system for functions and data, for both unix and DOS that
produces eps files, is gnuplot. This is available free of charge at FTP://ftp.
dartmouth.edu/pub/gnuplot/. Octave extends the capabilities of gnuplot and
is also available free of charge, at http://www.che.wisc.edu/octave/. There
are also commercial systems, like Maple c©, Mathematica c©, MATLAB c©, and
S-PLUS c©, which can produce eps files of plots.

Another way to obtain an eps file is with conversion. The unix systems
xv and Image Magick can do this for a large variety of graphic file formats,
including bitmap (xbm), gif and jpeg files. There are free conversion systems
on MS Windows, notably jpeg2ps, which converts jpeg files to eps, and
emftoeps, which converts Windows Metafiles (wmf) to eps.

Once the file is in eps format, we can import it using the Graphics Bun-
dle [3], written by David P. Carlisle, provided free of charge. It comes with
MiKTeX and basic unix installations. There are two packages that provide
essentially the same capabilities but with different syntax. One is called
graphics, the other is graphicx. Here I use graphicx, as specified in the
preamble by \usepackage{graphicx}.

To include an eps file, simply specify \includegraphcs[options]{filename}.
For example, Figure 69 shows a figure that was imported with the following
statement:

\begin{center}\includegraphics[scale=.5]{sin.eps}\end{center}

In this case I specified the option, scale=.5, which prints the figure half
the size it was produced (in this case by MATLAB, by specifying print sin -deps

98 6 GRAPHICS

−8 −6 −4 −2 0 2 4 6 8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 69: Applying \includegraphics to Import an eps File

after plotting the sin function over the indicated grid). Figure 70 shows the
same eps file, but with the width and height set as follows:

\begin{center} \includegraphics[width=2in,height=1in]{sin.eps}

\end{center}

−8 −6 −4 −2 0 2 4 6 8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 70: Specifying Dimensions in \includegraphics

For a very large picture, we might want to specify width=\textwidth,height=!,
and let it fill the entire width of the page. The height specification (!) says
to maintain the aspect ratio.

If you find yourself importing eps files but would like to make some
changes in LATEX, read about the PSfrag package, by Michael C. Grant and
David Carlisle, which comes with a basic installation (including MiKTeX),
whose documentation is at CTAN [4]. It has two basic operations: (1) edit
some string or position in the figure (i.e., the eps file), and (2) translate LATEX

6.3 Importing pictures 99

commands that you put in the figure in the first place. The documentation
gives examples, with eps files produced by MATLAB and xfig.

Importing graphics is only one of the functions of graphicx. It can also
perform scaling, rotation, and sizing of an arbitrary box. The box could
contain text, pictures, or almost any stuff. Here are examples:

Double your fun \psscalebox{2}{Double your fun}

Open wide \resizebox{1in}{!}{\fbox{Open wide}}

Reflectonthis \reflectbox{Reflect on this}

L
an

ds
ca

p
e

\rotatebox[origin=c]{90}{Landscape}

W
as

Py
th
ag

or
as

a
sq
ua

re
?

\rotatebox[origin=rt]{45}

{\psframebox{

\begin{tabular}{c}

Was\\Pythagoras\\a square?

\end{tabular}

} }

These operations are available because the programs that perform them
are used in the \includegraphics command. Although it is feasible to
perform the operation after importing a graphic, it is more efficient to specify
that option in the \includegraphics. Here are some examples:

100 6 GRAPHICS

 ��

\includegraphics

{protractor.eps}

 ��

\includegraphics[width=.25\textwidth,

height=!]{protractor.eps}

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

\includegraphics[height=.5in,width=!,

angle=90,origin=c]{protractor.eps}

Exercises. Submit a printed copy of the LATEX source (tex file) and printed
copy of the associated postscript result (ps file). Be sure your name is on
each.

1. Use the picture environment to draw the smiley face on page 81.

2. Draw the following graph with the picture environment, where \thicklines
is specified and \unitlength = 1mm

mv1 mv2

mv3mv4

-

?
�

�
�

�
�

�	

3. Use PSTricks to draw Figure 3 (p. 4).

6.3 Importing pictures 101

4. Use PSTricks or the picture environment to draw the following.

rhombus

5. Use PSTricks or the picture environment to draw the following.

α

β

6. Make a figure in some system that lets you save it as an eps file (or use
some conversion program). Then, include it in your document.

7. Use whatever means you prefer (or that your instructor requires) to
include each of the following figures in your document. (They were
drawn here with PSTricks, but this section did not describe all that is
needed, so you must obtain the PSTricks User’s Guide [15].)

(a) Graphic view of Pythagorean Theorem:

hypotenuse

leg 1

le
g

2

square of
leg 1

square
of

leg 2

square of
hypotenuse

102 6 GRAPHICS

(b) Network with arc data:

1

2

3

4

5

(25, 30)

(35, 50)

(45, 10)

(15, 40)

(15, 30)

(25, 20)

(35, 50)
(45, 60)

(c) The sin function:

-4 -3 -2 -1 0 1 2 3 4
-1

0

1
y = sin

(
π
2x
)

x

(d) Bernoulli family tree:

Nikolaus
(1623–1708)

Jacob I
(1654–1705)

Nikolaus
(1662–1716)

Nikolaus I
(1687–1759)

Jahann I
(1667–1748)

Nikolaus II
(1695–1726)

Daniel
(1700–1782)

Johann II
(1710–1790)

Johann III
(1746–1807)

Jocob II
(1759–1789)

103

7 Making Special Parts

7.1 Cover Page

The easiest way to make a cover page is with the \maketitle command. This
is done in the document environment, generally just following \begin{document}.
The necessary parameters are \author and \title, which can be defined
anyplace before the \maketitle. Typically these are put into the preamble,
or right after \begin{document} followed immediately by \maketitle; it
depends upon your management style. Multiple authors are separated by
\and, such as in the example shown in Figures 71 and 72. (The jagged
edges in Figure 72 mean that there is more space between the title and the
top of the paper.)

Specifying \date is optional (\maketitle puts in the current date if the
date is not defined). The cover page is by itself and is not numbered.

\title{The \LaTeX\ Companion}

\author{Michel Goosens \and Frank Mittelbach \and Alexander Samarin}

\date{1994}

\maketitle

Figure 71: Title Page Source (Result in Figure 72)

The LATEX Companion

Michel Goosens Frank Mittelbach Alexander Samarin

1994

Figure 72: Title Page Result (Source in Figure 71)

Since articles often have this information on the first page of the article
(rather than a separate page), titlepage must be specified as an option in

104 7 MAKING SPECIAL PARTS

the \documentclass command. For example, the following does this while
specifying 12pt font as another option:

\documentclass[12pt,titlepage]{article}

Addresses, affiliations, and other information about each author can be
added, using \\ to create new lines. For example, Figure 73 shows how the
authors appear when the \author definition in Figure 71 is changed to the
following:

\author{Michel Goosens \\ Geneva, Switzerland

\and Frank Mittelbach \\ Mainz, Germany

\and Alexander Samarin \\ Geneva Switzerland}

As illustrated in Figure 73, \maketitle puts the third author on a sep-
arate line. This is because the added width of author information makes it
too long to fit on one line. All three authors would be put on separate lines
if the address information were extended further, or if the names were very
long.

The LATEX Companion

Michel Goosens Frank Mittelbach

Geneva, Switzerland Mainz, Germany

Alexander Samarin

Geneva, Switzerland

1994

Figure 73: Adding Addresses to Authors

There are times when we want to acknowledge support for one or more of
the authors. The \thanks command does this by creating a footnote, using

7.2 Abstract 105

different footnote marks for each one. Figures 74 and 75 illustrate this along
with some variation in the date.

\title{Pieces of π\thanks{Renamed.}}

\index{\texttt{\backslashthanks}} \index{footnote}

\author{Archimedes\thanks{Supported by the army.}\\ Syracuse, Sicily

\and Pythagoras \\ Samos, Ionia }

\date{210 {\sc bc} (revision of earlier version, 510 {\sc bc})}

Figure 74: Footnotes in the Cover Page Source (Result in Figure 75)

Pieces of π1

Archimedes2 Pythagoras

Syracuse, Sicily Samos, Ionia

210 bc (revision of earlier version, 510 bc)

1Renamed.
2Supported by the army.

Figure 75: Footnotes in the Cover Page Result (Source in Figure 74)

7.2 Abstract

The abstract environment is in all document styles, except article. To have
it, specify titlepage as an option in \documentclass (even if you do not in-
tend to use \maketitle). This environment is defined to produce an abstract
on a separate page (placed wherever you put the environment specification),
with the header: Abstract, in boldface and centered. The abstract, itself,

106 7 MAKING SPECIAL PARTS

is one paragraph and is printed without indentation. Figures 76 and 77 il-
lustrate this. (Like the cover page, the abstract is placed far from the top of
the paper, which is not shown in Figure 77.)

\begin{abstract}

This shows that the ratio of the circumference to the diameter

of any circle is the same constant value, denoted π.

We further prove that this constant is bounded by

$\frac{223}{71} < \pi < \frac{22}{7}$.

\end{abstract}

Figure 76: Making an Abstract Source (Result in Figure 77)

Abstract

This shows that the ratio of the circumference to the diameter
of any circle is the same constant value, denoted π. We further
prove that this constant is bounded by 223

71
< π < 22

7
.

Figure 77: Making an Abstract Result (Source in Figure 76)

7.3 Other Front Matter

The \tableofcontents command makes a table of contents; it is placed
wherever you put the command, which should be right after the cover page.
Then, you can include lists of figures and tables with the \listoffigures

and \listoftables commands, respectively.
The table of contents generally includes numbered parts, like sections and

subsections. To include other front matter, LATEX provides the \addcontentsline
command. For example, the table of contents in this document was obtained
with the specifications given in Figure 78.

The \pagenumber specification causes the page numbers for the front
matter to be put into Roman numerals. That is why you see the Table
of Contents on page i (first numbered page, just after the cover). Then, I
declare \listoffigures, which is on page v, followed by the list of tables.
Each of these are put on a new page. Just above each declaration, I use the

7.3 Other Front Matter 107

\newpage \pagenumbering{roman} \pagestyle{myheadings}

\tableofcontents \newpage

\addcontentsline{toc}{section}{List of Figures}

\listoffigures \newpage

\addcontentsline{toc}{section}{List of Tables}

\listoftables \newpage

Figure 78: Some Front Matter Specifications for This Document

\addcontentsline to add it to the table of contents, indicated by the toc

specification. The section parameter tells the latex program to format it
like a section — flush left.

The page numbering is reset when we finish the front matter by specifying

\newpage \pagenumbering{arabic} \pagestyle{headings}

This switches to the Arabic numerals and initializes the page counter.
The same format as the abstract can be used for other front matter that

we want to format the same way. The only change we require is another
header name. This is done by re-defining the \abstractname parameter
used by the abstract environment. The \renewcommand enables us to do
this. §8 has more to say about using this command to customize many
things. For now, consider the following example that illustrates how to have
an Acknowledgments page:

\renewcommand\abstractname{Acknowledgments}

\begin{abstract}

I thank my family and friends for all of their support.

I also thank the contributors to the Comprehensive \TeX\

Archive Network (CTAN).

\end{abstract}

Alternatively, we might want something to look like a section (and au-
tomatically added to the table of contents), but we do not want it to have
a section number. This is achieved by the \section* command, where the
* suppresses the numbering. For example, \section*{Preface} puts “Pref-
ace” in the same style as any section, but with no number (and the section
counter remains unchanged).

108 7 MAKING SPECIAL PARTS

7.4 Back Matter

After the main part of the document is finished, we put the bibliogra-
phy (see §3 and §8.6). We might first want to have appendices that fol-
low the main text. This could be done with the appendix environment:
\begin{appendix} . . . \end{appendix}.

The last portion in the back of any book is its index. This could also
be desirable in a long report. To make an index, we have three things to put
into our source file:

1. Put \usepackage{makeidx} in the preamble.

2. Put \makeindex at the end of the preamble.

3. Put \printindex just before \end{document}.

After a successful compilation, with all references resolved, enter at the
command line:

makeindex myfile

Then, compile again. This is analogous to the use of bibtex (p. 31), and is
illustrated in Figure 79.

To have entries in the index, you use \index{entry}. For example, the
index in this book contains several occurrences of ‘flushleft’. In the text,
at each occurrence, I specify \index{flushleft}. To put the entry as a
subordinate, use !. For example, \index{package!makeidx} puts the entry
‘makeidx’ under the entry ’package’.

myfile.tex myfile.dvi myfile.ps

create/edit view/print print/post
compile

with
latex

convert
with
dvips

makeindex

Figure 79: Adding makeindex to the Command Sequence

There are packages to make other back matter: acronym makes a list of
acronyms, nomencl makes a list of nomenclature, and gloss makes a glossary.

7.5 Footnotes 109

7.5 Footnotes

The \thanks command is one way to have a footnote on the cover page, and
was shown on page 105. More generally, the \footnote command can be
used anywhere. Figures 80 and 81 illustrate.

Here is my first footnote\footnote{first};

here is my second\footnote{second}.

Figure 80: Setting a Footnote Source (Result in Figure 81)

Here is my first footnote1; here is my second2.
1first
2second

Figure 81: Setting a Footnote Result (Source in Figure 80)

\thefootnote gives the counter for footnotes, and you can change from
numbers to letters by \renewcommand{\thefootnote}{\alph{footnote}}.
You can also change to common footnote symbols by specifying
\renewcommand{\thefootnote}{\fnsymbol{footnote}}, as shown in fig-
ures 82 and 83.

The distance between the line that underlies part of the last line of text
to the footnote is \footnotesep, which can be controlled by \setlength.

\renewcommand{\thefootnote}{\fnsymbol{footnote}}

Here is my first footnote\footnote{first};

here is my second\footnote{second}.

Figure 82: Setting a Footnote Source (Result in Figure 83)

Here is my first footnote∗; here is my second†.
∗first
†second

Figure 83: Setting a Footnote Result (Source in Figure 82)

Exercises. Submit a printed copy of both the LATEX source (tex file) and
the associated postscript result (ps file). Be sure your name is on each.

110 8 TAKING CONTROL

1. Write an article with a title page and abstract. Make the main body
have at least three sections: Introduction, Main Results, and Conclu-
sions.

2. Extend exercise 1 to have acknowledgments and references (using BibTEX).

3. Combine exercises 1 and 2 and add a table of contents showing not only
all sections and subsections, but also the abstract, acknowledgments
and references.

8 Taking Control

This section introduces you to fundamentals of customizing your document.
It is still in the context of an introduction, choosing only a few of the
things you can change. A key to these changes are the \newcommand and
\renewcommand commands, which enable you to define your own commands
and change parameter values of existing commands.

8.1 Your Own Abbreviations and Commands

The command that gives us the ability to make our own has the following
form: \newcommand{\name}[n]{whatever}, where n is the number of argu-
ments, and whatever is whatever you want the command to do. Here are two
examples simply to abbreviate commands with long names:

\newcommand{\ul}{\underline}

\newcommand{\mc}{\multicolumn}

The first lets us write \ul{something} to underline something. The second
lets us write \mc{3}{c}{stuff} to enter a multicolumn, in either a tabular
or an array environment, spanning 3 columns and centered.

The latex compiler will not let you use a name that is already being used.
For example, if you specify \newcommand{\fbox}..., you will get a fatal error
message since there is already a \fbox command.

A related use is when the command requires some lines of code. Consider
the following example:

\newcommand{\Box}{\mbox{\begin{picture}(0,0)

\put(2,0){\framebox(7,7)}

\end{picture} }}

(\mbox is used to ensure text mode). Now \Box ⇒ and, having defined
the \Box command, we can use it in other new commands. For example,

8.2 Your Own Names, Titles and Numbers 111

in the preamble I specified: \newcommand{\chkbox}{$\Box^\surd\;$} Then,
\chkbox ⇒

√

Some commands are specifically for math mode, but we want them to
work in any mode. This is achieved by the command: \ensuremath{math
stuff }. For example, consider \newcommand{\Gs}[1]{\ensuremath{G_{#1}}}.
If we are already in math mode, \Gs{i+j} is replaced by G_{i+j} to pro-
duce Gi+j ; otherwise, if \Gs{i+j} is specified in text mode, it is replaced by
G_{i+j} to put it into math mode first. Thus, we can specify \Gs{subscript},
no matter which mode we are in, and obtain the correct result.

Another reason to have our own commands is for consistency, particularly
of notation. Suppose we have a key term, like the null space of a matrix.
Some authors write N (A), some write nul A, and there are still more symbols
people use. We can choose one and define

\newcommand{\nul}{\ensuremath{\mathcal{N}}}.

Then, we can write \nul(A) to obtain N (A) (and we can be in text or math
mode when we write this). Some publishers have their own notation, so we
must be careful not to override them with ours. A way to do this is to choose
a different name, like mynul, then add to the preamble:

\newcommand{\usenul}{\mynul}

and specify \usenul in the document. If you need to use the publisher’s,
simply change the one line to:

\newcommand{\usenul}{\nul}

(where the publisher’s command name is \nul).
The preamble can become very long as we add our commands, so it

is useful to put them in a separate file, say mydefs.tex (note the .tex

suffix). Then, we use the \input command to have the latex compiler read
it wherever it is placed. In particular, the preamble of this document contains
the command:

\input{mydefs}

(The suffix .tex is assumed.) Different source files could simply input this
same file, so duplication of work is avoided.

8.2 Your Own Names, Titles and Numbers

There are times when we prefer some name other than the default. Table 22
shows the common names we might want to change. For example, in this

112 8 TAKING CONTROL

document the “Table of Contents” was obtained by specifying the following
in the preamble:

\renewcommand{\contentsname}{Table of Contents}.

Table 22: Intrinsic Name Parameters

What it is How it is called (keyword)
Abstract \abstractname

Appendix \appendixname

Chapter \chaptername

Contents \contentsname

Index \indexname

List of Figures \listfigurename

List of Tables \listtablename

Part \partname

References \refname for article style
\bibname for book and report styles

You might want to change the numbering of some intrinsic counter. We
saw an example of this in changing the counters for enumeration lists (p. 48).
The general form is

\renewcommand{\thecounter}{something}

Another example is to change section numbering in a report document
style. The first level of division is assumed to be a chapter, so the numbering
will be chapter.section[.subsection]. . . If you have no chapters, it will number
the first section as 0.1. Making the first level division chapters will overcome
the numbering problem, but the format of chapters is different, similar to
a book. Making the document class an article will also solve the problem,
since the section is the first level division. This might not be appropriate due
to other considerations, such as entering the document into a database using
BibTEX, where you want it to be counted as a report, not as an article.
The way to do this is as follows:

\makeatletter

\renewcommand\thesection{\@arabic\c@section}

\makeatother

The preceding command, \makeatletter, is to make the @ character a letter.
The succeeding command, \makeatother, restores @ to its special meaning
(\@ is for certain spacing, equal to about 2 spaces).

8.3 Your Own Environments 113

8.3 Your Own Environments

The \newenvironment command enables us to define our own environments,
and the \renewenvironment command enables us to revise an existing envi-
ronment. They have the same syntax:

newenvironment{name}[n]{begin}{end}

renewenvironment{name}[n]{begin}{end}

where name is the name of the environment, n = number of arguments (omit
[0] for n = 0), begin is what is executed upon entering the environment, and
end is what is executed upon leaving the environment. For example, the
following creates a proof environment:

\newenvironment{proof}

{\begin{flushleft} \begin{description}

\item \textit{\textbf{Proof:}}~ } % begin proof

{\hfill\rule{2.1mm}{2.1mm}

\end{description}\end{flushleft} } % end proof

Then,

\begin{proof}

First, suppose \dots \linebreak

Thus, the theorem follows.

\end{proof}

produces:

Proof: First, suppose . . .
Thus, the theorem follows.

8.4 Your Own Margins and Spacing

The default margins and spacing are set with purposeful values, and you
will usually not need to change them. When you do, however, they can
be changed by setting certain parameters in the preamble. The margins
of the document are controlled by the parameters shown in Figure 84 and
described in Table 23. (See Table 25 for conversion factors; in particular,
1 pt = 72.27 in.)

For example, if we are using 81
2 × 11 paper, the current settings (shown

in Table 23) break down the horizontal parts as follows:

114 8 TAKING CONTROL

6.14.295 pt

8.5 in

72.27 pt

1 in

39 pt

54 in

113.025 pt

1.564 in

390 pt

5.396 in
begin body stuff end body stuff

We can increase the text width by setting \textwidth=length in the
preamble. For example, \textwidth=6in increases the text width to 6 inches.
The body expands to the right unless we also change \oddsidemargin.
Margin settings can be negative; for example, we raise the body 1 inch by
specifying \topmargin=-1in in the preamble. This might be accompanied by
increasing the text length. The geometry package provides easy specifications
for page layout.

The \hspace* and \vspace* commands provide a great deal of control
over horizontal and vertical spacing, respectively. We might want some global
settings to make repeated use of these unnecessary. Table 24 lists some you
can set with the \setlength command, showing their default values (used
in this document).

8.4 Your Own Margins and Spacing 115

\pagewidth

\p
a
g
e
h
e
i
g
h
t

1 in +

\hoffset

1 in +

\voffset

header

body

footer

\textwidth

\t
e
x
t
h
e
i
g
h
t

\headheight

\footskip

\headsep

\topmargin

\o
d
d
s
i
d
e
m
a
r
g
i
n

Figure 84: Document Margins

116 8 TAKING CONTROL

Table 23: Margin Parameters

Current
Parameter Setting† Meaning
\footskip 30.0pt space between bottom of body and top of

footer
\headsep 25.0pt space between bottom of header and top of

body
\headheight 12.0pt height of header
\hoffset 0.0pt horizontal offset to add to indentation of

body
\oddsidemargin 17.0pt extra space added at left (applies only

to odd numbered pages if the style is
two-sided, in which case there is also an
\evensidemargin parameter)

\paperheight 794.96999pt height of the paper
\paperwidth 614.295pt width of the paper
\textheight 570.93256pt height of the body
\textwidth 390.0pt width of the body
\topmargin 17.0pt space added before the top of the header
\voffset 0.0pt vertical offset to add to indentation of body
†Printed using \theparameter.

Table 24: Spacing Parameters

Parameter Meaning
\itemsep space added to \parsep between items in a list.
\parindent indentation at beginning of paragraph.
\parsep space between paragraphs in the same item of a list.
\parskip space between paragraphs.

In the case of list parameters, they must be set after entering the list
environment. (Defaults are restored after leaving.) For example, the lists in
§2.2 (p. 13) are spaced by default values. Here is what happens when we
change \itemsep:

• The default value of \itemsep is 5.0pt plus 2.5pt minus 1.0pt, and I
have saved it by: \setlength{\mylength}{\itemsep}.

• See the above spacing between items. What you see next is with
\setlength{\itemsep}{0pt}.

8.4 Your Own Margins and Spacing 117

• What you see next is with \setlength{\itemsep}{10pt}.

• Next is back to normal by \setlength{\itemsep}{\mylength}.

• We are back to normal with \itemsep = 5.0pt plus 2.5pt minus 1.0pt.

Figure 85 shows two enumerate lists, varying by the value of \itemsep.

1. This list specified

\setlength{\itemsep}{0pt}
right after \begin{itemize}

2. This item is fairly close to the

first one.

1. This list specified

\setlength{\itemsep}{12pt}
right after \begin{itemize}

2. This item is farther from the first

one.

Figure 85: Varying \itemsep to control item spacing in a list

Figures 86 and 87 show the presentation of an array with a p-column to
put horizontal space between the other two columns. Note how congested it
is, so we want to increase its vertical spacing.

\[\begin{array}{lp{.3in}l}

\,B\,x_B = b_N + \frac{1}{2}\theta\delta b_N

&& \pi_N B = c_B + \frac{1}{2}\theta\delta c_B \\

B^*x_B > b_B + \frac{1}{2}\theta\delta b_B

&& \pi_N N < c_N + \frac{1}{2}\theta\delta c_N

\end{array}

\]

Figure 86: Array with Fixed Width Column Source (Result in Figure 87)

B xB = bN + 1
2
θδbN πNB = cB + 1

2
θδcB

B∗xB > bB + 1
2
θδbB πNN < cN + 1

2
θδcN

Figure 87: Array with Fixed Width Column Result (Source in Figure 86)

Here is 1.3 line spacing: \renewcommand{\arraystretch}{1.3}

B xB = bN + 1
2
θδbN πNB = cB + 1

2
θδcB

B∗xB > bB + 1
2
θδbB πNN < cN + 1

2
θδcN

118 8 TAKING CONTROL

Here is 1.6 line spacing: \renewcommand{\arraystretch}{1.6}

B xB = bN + 1
2
θδbN πNB = cB + 1

2
θδcB

B∗xB > bB + 1
2
θδbB πNN < cN + 1

2
θδcN

Back to default: \renewcommand{\arraystretch}{1}

B xB = bN + 1
2
θδbN πNB = cB + 1

2
θδcB

B∗xB > bB + 1
2
θδbB πNN < cN + 1

2
θδcN

Line spacing is controlled by \baselinestretch , but it is easier to use
the setspace package. You will have control of the whole document, or just
some lines whose space you want to control.

8.5 Your Own Output Control

You can write conditionals to do one thing or another with the ifthen package.
The syntax is

\ifthenelse{condition}{action if true}{action if false}

For example, suppose your preamble contains

\newcommand{ \printsol}[2]{ \ifthenelse{\equal{#1}{1}}%

{\textsf{\textbf{Solution. }#2}}{} }

This will test the condition if your first argument equals 1. If so, it will print
Solution. followed by your second argument; if not, it will do nothing.
This is illustrated in figures 88 and 89.

How much is 2+2?

\printsol{\sol}{4}

Figure 88: \ifthenelse Source (Results in Figure 89)

\def\sol{0}
...

How much is 2+2?

\def\sol{1}
...

How much is 2+2? Solution. 4

Figure 89: \ifthenelse Results (Source in Figure 88)

8.6 Your Own Bibliography 119

Another example is to decide on page numbering. Suppose that you
want no page numbering if there is only one page. If there is more than
one page, suppose you want to use headings in the header with page num-
bers. You can do this as follows. First, just before \end{document}, put
\label{lastpage}. Just after \begin{document}, put the following:

\ifthenelse{\equal{\pageref{lastpage}}{1}}{\pagestyle{empty}}{%

\pagestyle{headings}}

This will test if the value of \pageref{lastpage} is equal to 1. If so,
there is only one page, and the first statement applies: \pagestyle{empty}.
If not, there is more than one page, and the second statement applies:
\pagestyle{headings}.

8.6 Your Own Bibliography

You can choose not to use BibTEX, and use thebibliography environment
instead. You will have complete control over the formatting, and there
will be no sorting — the list of references will appear in the order you put
them. Instead of the BibTEX commands, \bibliography{mybiblio} and
\bibliographystyle{plain}, specify the following:

\begin{thebibliography}{n}

\bibitem[what appears]{label (that you cite)} entry
...

\end{thebibliography}

where n is the width of the widest label you want to allow. (It works if
you specify 99.) Each \bibitem is an entry, as described for BibTEX in §3
(p. 30), with label the unique identifier used by the \cite command. The
option is an alternative to having the references numbered, and you can enter
whatever you like.

Here is a complete example with two references, which I formatted to
agree with the plain style of BibTEX:

\begin{thebibliography}{99}

\bibitem{companion} Michel Goosens, Frank Mittelbach and Alexander

Samarin, \textit{The \LaTeX\ Companion}, Addison-Wesley

Publishing Company, Reading, MA, 1994.

\bibitem{tex} Donald E. Knuth, \textit{The \TeX\ Book},

Addison-Wesley Publishing Company, Reading, MA,

15th edition, 1989.

\end{thebibliography}

120 8 TAKING CONTROL

These will appear in the document’s list of references even if they are not
cited. They can be cited in the same way described in §3: by \cite{companion}

and \cite{tex}, respectively. When citing Knuth’s book, for example, we
obtain [2] in the text. Alternatively, we can exercise the option:

\bibitem[Knuth, 1989]{tex} Donald E. Knuth, . . .

in which case \cite{tex} ⇒ [Knuth, 1989].
Some publishers give you no choice, but if you are writing a report and

have control over the formatting, it generally helps the reader to know some-
thing about the citation. Thus, [Knuth, 1989] is preferred to [2] because
it immediately gives the reader information about the document without
having to flip to the bibliography section.

With you in control, there is no format monitoring, so each entry appears
however you put it, even if there are inconsistencies in style. This is one
reason it is usually better to use BibTEX, even though you lose control
over what appears (i.e., they will be numbers). The bib style file, such as
plain.bst, applies in either case. Most installations come with more than
the basic plain, and its three variations (given on p. 40). Alternative bst files
are achicago (from the frankenstein package), apalike and plainnat (from
natbib), which give the author and year, such as [Knuth, 1989] instead of [8].
These packages provide even more versatility in how the citations appear (see
[4] or [5, Chapter 13]).

If you want to have several bibliographic units in one document, such as
at the end of each chapter of a book, use the bibunits package, which you
obtain from CTAN [4].

Closing Remarks

Now you know how to write a mathematical document in LATEX2ε and you
know there is much more you can learn to gain refinements. Besides what
you can do yourself to elevate the quality of the results, there are many
packages, available from CTAN [4]. Figure 90 shows the preamble used for
this document. As you begin to use packages, it is necessary to become aware
of updates. You learn about these at CTAN [4].

You will find other packages useful, depending upon your technical area.
Here are some packages that give you special symbols: chemsym, qsymbols,
wasysym, and xypic. Also, the algorithm package enables an environment
to write source code with standard language elements, and there are oth-
ers with similar properties or for particular programming languages (viz.,

APPENDIX 121

c-pascal and listings). The graphtex package specializes in all sorts of graphs,
including those commonly found in automata theory.

\usepackage{amsmath} % formerly amstex

\usepackage{amssymb} % ams symbols (\mathbb fonts)

\usepackage{amscd} % draws commutative diagrams

\usepackage{bm} % bold math fonts (\mathbm)

\usepackage{graphicx,pst-all} % graphics

\usepackage{hyphenat} % enables control over hyphenation

\usepackage{fancyvrb,moreverb} % verbatim

\usepackage{float} % enable float [H] option

\usepackage[T1]{fontenc} % ...to write \textbf{\textsc{..}}

\usepackage{ifthen} % ifthenelse {condition}{true}{false}

\usepackage{makeidx} % index

\usepackage{multirow} % like multicolumn

\usepackage{mathrsfs} % more math symbols (viz., \mathscr)

\usepackage{theorem} % enables more control over newtheorem

\usepackage{url} % \url{...}

\renewcommand\contentsname{Table of Contents} % Change ‘Contents’

\renewcommand\url{\begingroup\urlstyle{sf}\Url} % put url in sf font

\input{mydefs} % My commands and environments

\makeindex % make myfile.idx (input to makeindex at command line)

Figure 90: Most of the Preamble for this Book

Appendix

This contains complete tables of font information and basic LATEX commands.
It is designed like a reference manual for easy lookup, beginning with Ta-
ble 25, which gives conversion among three common units of measurement.

Table 25: Conversions of Common Units of Measurement

pt in cm
pt 1 .01384 .03515
in 72.27 1 2.54
cm 28.45 .3937 1

122 APPENDIX

Table 26 is a guide to how most of the remaining tables are organized.
Afterwards, Table 45 gives special symbols that can be used in either text or
math mode, and Table 46 gives the commands for the picture environment.

Table 26: Reference Tables

Table Contents
Text mode 27 Commands/Environments for Font Appearance

28 Commands/Environments for Controlling Position
29 Text Accents and Symbols
30 Commands for Counters
31 Commands/Environments to Organize Document
32 Commands to Control Document Style

Math mode 33 Commands to Control Fonts in Math Mode
34 Accents in Math Mode
35 Spacing Commands in Math Mode
36 Greek and Special Letters
37 Frequently Used Mathematical Symbols
38 Binary Operations
39 Operators and Quantifiers
40 Special Functions
41 Relation Symbols
42 Arrows
43 Dots Circles, Triangles and Lines
44 Variable Size Symbols

Table 27: Commands/Environments for Text Font Appearance

textbf textit textrm textsc textsf texttt

tiny scriptsize footnotesize small normalsize large

Large LARGE huge Huge underline verb

verbatim

APPENDIX 123

Table 28: Commands/Environments for Controlling Text Position

bigskip center centerline clearpage flushleft

flushright hfill hspace hspace* linebreak

medskip newpage noindent nolinebreak nopagebreak

pagebreak quotation quote raisebox samepage

smallskip tabbing tabular verse vfill

vspace vspace*

Table 29: Text Accents and Special Symbols

á \’{a} ŭ \u{u} ç \c{c} ẋ \.{x}

è \‘{e} ñ \~{n} d. \d{d} z̄ \={z}

î \^{i} H̋ \H{H} b
¯

\b{b} v̌ \v{v}

ö \"{o} ⁀oo \t{oo} . . . \dots

æ \ae œ \oe å \aa ø \o

Æ \AE Œ \OE Å \AA Ø \O

Ł \L ß \ss ¿ ?‘ ¡ !‘

Table 30: Commands for Counters

addtocounter label newcounter pageref

ref refstepcounter setcounter stepcounter

thecounter value

Table 31: Commands/Environments to Organize Document

abstract addcontentsline addtocontents

appendix bibliography bibliographystyle

listoffigures listoftables makeindex

maketitle printindex section

subsection subsubsection subsubsubsection

tableofcontents thanks thebibliography

124 APPENDIX

Table 32: Commands to Control Document Style

markright markboth pagenumbering pagestyle

renewcommand setlength thispagestyle

Table 33: Commands to Control Fonts in Math Mode

left boldmath (set in text mode)

cal displaystyle mathbf mathcal

mathit mathnormal mathrm mathsf

mathtt mbox overbrace overline

right textstyle underbrace underline

Table 34: Accents in Math Mode

ǎ \check{a} ĕ \breve{e} í \acute{i} ò \grave{o}

ẋ \dot{x} ÿ \ddot{y} z̄ \bar{z} ~v \vec{v}

ı̂ \hat{\imath} ̃ \tilde{\jmath} ~ \hbar

x̂yz \widehat{xyz} ãbc \widetilde{abc}
(Note that it is better style to use \imath, rather than i, and \jmath,
rather than j, to avoid the clash between the accent and dot.)

Table 35: Spacing Commands in Math Mode

What you write What you see
x y ⇒ xy no space
x\,y ⇒ x y thin space
x\;y ⇒ x y medium space
x\quad y ⇒ x y space = 1em
x\qquad y ⇒ x y space = 2em
x\!y ⇒ xy negative thin space
x\negmedspace y ⇒ xy negative medium space
x\negthickspace y ⇒ xy negative thick space

APPENDIX 125

Table 36: Greek and Special Letters

α \alpha θ \theta o o τ \tau

β \beta ϑ \vartheta π \pi υ \upsilon

γ \gamma ι \iota ̟ \varpi φ \phi

δ \delta κ \kappa ρ \rho ϕ \varphi

ǫ \epsilon λ \lambda ̺ \varrho χ \chi

ε \varepsilon µ \mu σ \sigma ψ \psi

ζ \zeta ν \nu$ ς \varsigm ω \omega

η \eta ξ \xi

Γ \Gamma Λ \Lambda Σ \Sigma Ψ \Psi

∆ \Delta Ξ \Xi Υ \Upsilon Ω \Omega

Θ \Theta Π \Pi Φ \Phi

ℵ \aleph ℓ \ell ℜ \Re ℑ \Im

A . . . Z {\mathcal A...Z}

Table 37: Frequently Used Mathematical Symbols

{superscript} ^{} ′ \prime ∞ \infty ∅ \emptyset

{subscript} _{}

Table 38: Binary Operations

± \pm ∩ \cap ∪ \cup ⊙ \odot

∓ \mp ⊓ \sqcap ⊔ \sqcup ⊗ \otimes

× \times ∧ \wedge ⊎ \uplus ⊘ \oslash

÷ \div ∨ \vee ⊕ \oplus ⊖ \ominus

\ \setminus
⋂

\bigcap
⋃

\bigcup
⊙

\bigodot

\ \backslash
∨

\bigvee
⊕

\bigoplus
⊗

\bigotimes⊎
\biguplus

∧
\bigwedge

⊔
\bigsqcup

Table 39: Operators and Quantifiers

∇ \nabla ∂ \partial
√

\surd ℘ \wp

∀ \forall ∃ \exists ¬ \neg

126 APPENDIX

Table 40: Special Functions

arccos arcsin arctan arg cos cosh cot coth

csc det dim exp gcd hom inf ker

lg lim liminf limsup ln log max min

Pr sec sin sinh sup tan tanh

Table 41: Relation Symbols

≤ \leq ≥ \geq 6= \neq ≡ \equiv

≺ \prec ≻ \succ ∼ \sim
.
= \doteq

� \preceq � \succeq ≃ \simeq |= \models

≪ \ll ≫ \gg ∼= \cong ∝ \propto

⊂ \subset ⊃ \supset ≍ \asymp ∈ \in

⊆ \subseteq ⊇ \supseteq ≈ \approx ∋ \ni

⊑ \sqsubseteq ⊒ \sqsupseteq

Table 42: Arrows

← \leftarrow ←− \longleftarrow ↑ \uparrow

⇐ \Leftarrow ⇐= \Longleftarrow ⇑ \Uparrow

→ \rightarrow −→ \longrightarrow ↓ \downarrow

⇒ \Rightarrow =⇒ \Longrightarrow ⇓ \Downarrow

↔ \leftrightarrow ←→ \longleftrightarrow l \updownarrow

⇔ \Leftrightarrow ⇐⇒ \Longleftrightarrow m \Updownarrow

7→ \mapsto 7−→ \longmapsto ր \nearrow

←֓ \hookleftarrow →֒ \hookrightarrow ց \searrow

↼ \leftharpoonup ⇀ \rightharpoonup ւ \swarrow$

↽ \leftharpoondown ⇁ \rightharpoondown տ \nwarrow

⇋ \rightleftharpoons

APPENDIX 127

Table 43: Dots, Circles, Triangles and Lines

◦ \circ © \bigcirc

· · · \cdots
. . . \ddots

... \vdots • \bullet

⌢ \frown ⌣ \smile

△ \triangle ⋄ \diamond

⊲ \triangleright ⊳ \triangleleft

△ \bigtriangleup ▽ \bigtriangledown

⊲⊳ \bowtie ⊥ \perp

⊤ \top ⊥ \bot

⊣ \dashv ⊢ \vdash

∠ \angle ‖ \|

| \mid ‖ \parallel

Table 44: Variable Size Symbols

∑
\sum

∫
\int

∮
\oint

∏
\prod ︷︸︸︷. \overbrace{ . } .︸︷︷︸ \underbrace{ . }

∐
\coprod . \overline{ . } . \underline{ . }

n
d \frac{n}{d}

√
. \sqrt{ . }

These use \left and \right
() () {} \{ \} [] []

| | ⌊ \lfloor ⌋ \rfloor

\ \backslash ⌈ \lceil ⌉ \rceil

〈 \langle 〉 \rangle

Table 45: Special Symbols in Both Text and Math Modes

† \dag § \S c© \copyright

‡ \ddag ¶ \P £ \pounds

. . . \ldots

128 Some Tips

Table 46: Commands and Parameters in Picture Environment

put(x, y){stuff } multiput(x, y)(∆x,∆y){number}{stuff }
line(x, y){length} framebox(width, height)[p]{text}
vector(x, y){length} dashbox{dashsize}(width, height)[p]{text}
circle{radius) makebox(width, height)[p]{text}
circle*{radius) oval(width, height)[p]
linethickness{dimension}

p ∈ {l,r,t,b,lt,lb,rt,rb}. For oval, it is the portion selected;
for boxes, p is where the text goes.

Some Tips

This contains some tips that apply in special situations.

Structuring large documents. Theses, books and other large documents
are best managed with the \input command. The document might
look like this:

Preamble
\begin\{document}

\input{Abstract}

\input{Chapter1}

\input{Chapter2}
...

\end\{document}

Preamble
\begin\{document}

%\input{Abstract}

\input{Chapter1}

%\input{Chapter2}
...

\end\{document}

(a) Separate chapters in a
document (input files are
Abstract.tex, Chapter1.tex,
. . .)

(b) Compiling just Chapter 1

This is also a good structure for co-authoring.

Counting words. Under linux enter dvi2tty file.dvi | wc --words

This takes file.dvi as input into the program dvi2tty, which con-
verts it into a plain text file (without latex commands). That output
file is passed to the command wc, which counts the words. If you need
to apply this to a portion of the document, such as an abstract, you

Some Tips 129

can put that portion into a skeleton latex file and compile it. Using
the above structure, this is particularly easy to obtain the word or line
count of any section.

Commenting text. Besides putting % in column 1, you can logically delete
a block of text by \if 0 ... \fi. This is a good way to manage a
document when you might want to remove some text with the idea that
you it might be restored, at least in part.

\if 0

stuff here is ignored
\fi

(See §8.5 for more general control.)

\newcommand vs. \def. It is generally better to use \newcommand because
you will get an error if the command name is already defined, such as by
some package. The syntax is \newcommand{\name}[#]{what to do};
for example, \newcommand{\note}[1]{\texttt{note: #1}} defines a
\note command that has one argument. When you specify \note{hello},
you will get note: hello in the text.

\def is to be used only when you want to allow an over-ride (without
warning). Its syntax is \def\name{what} or \def\name#1{what} if
there is one argument. To suppress printing all notes, defined by the
above \note command, you can specify \def\note#1{ }. This says to
do nothing when seeing \note{stuff}.

You can have an \input file with many commands and environment
definitions that you use repeatedly. It might have something like the
following:

\newcommand{\note}[1]{\texttt{note: #1}}

% \def\note #1{ } % activate to suppress printing notes

The \note command is useful when collaborating, and you could define
a separate one for each author, showing initials.

Also consult the TEX Catalog Online [14].

130 REFERENCES

References

[1] Johannes L. Braams. Babel, a multilingual style-option system for use
with LATEX’s standard document styles. TUGboat, 12(2):291–301, 1991.
Available at CTAN [4].

[2] Johannes L. Braams, David P. Carlisle, Alan Jeffrey, Frank Mittelbach,
Chris Rowley, and Rainer Schöpf. LATEX2ε and the LaTeX3 project.
World Wide Web, http://www.latex-project.org/latex3.html, 1994–99.

[3] David P. Carlisle. Packages in the ‘graphics’ bundle. World Wide Web,
CTAN/macros/latex/required/graphics/ (see [4] for replacing CTAN),
1994–99.

[4] Comprehensive TEX archive (CTAN). UK: ftp.tex.ac.uk/tex-archive/;
Germany: ftp.dante.de/tex-archive/; USA: ftp.tug2.cs.umb.edu/tex-
archive/ . These are host sites, which contain a list of mirror sites.

[5] Michel Goosens, Frank Mittelbach, and Alexander Samarin. The LATEX
Companion. Addison-Wesley Publishing Company, Reading, MA, 1994.

[6] John D. Hobby. A User’s Manual for MetaPost. Computing Science
Technical Report no. 162, AT&T Bell Laboratories, Murray Hill, New
Jersey, 1992. Available at http://cm.bell-labs.com/who/hobby/MetaPost.
html/.

[7] John D. Hobby. Drawing Graphs with MetaPost. Computing Science
Technical Report no. 164, AT&T Bell Laboratories, Murray Hill, New
Jersey, 1993. Available at http://cm.bell-labs.com/cs/cstr/164.ps.gz.

[8] Donald E. Knuth. The TEX Book. Addison-Wesley Publishing Company,
Reading, MA, 15th edition, 1989.

[9] Leslie Lamport. LATEX: A Document Preparation System. Addison-
Wesley Publishing Company, Reading, MA, 1986 (also see 2nd edition,
1994).

[10] LATEX2ε for authors. CTAN/macros/latex/doc/usrguide.ps (see [4] for
replacing CTAN), 1995–99.

[11] Oren Patashnik. BibTEXing. World Wide Web, http://www.uic.edu/
depts/adn/infwww/ps/btxdoc.ps, 1988.

REFERENCES 131

[12] Keith Reckdahl. Using imported graphics in LATEX2ε. World Wide Web
site Version 2.0, Comprehensive TEX Archive, CTAN/info/epslatex.ps
(see [4] for replacing CTAN), 1995–97.

[13] Christian Schenk. MiKTEX Local Guide. World Wide Web, http://
www.miktex.de/, 1998–99 (version 1.2).

[14] Graham Williams. TEX Catalogue Online. Technical report, CTAN,
http://www.ctan.org/tex-archive/help/Catalogue/catalogue.html.

[15] Timothy Van Zandt. PSTricks: PostScript macros for Generic TeX.
World Wide Web, http://www.tug.org/applications/PSTricks/, 1993–98.

Index

\Bigg, 70
\Big, 70
\addtocounter, 47
\arraystretch, 117
\author, 103
\baselineskip, 28, 61
\baselinestretch, 118
\bibliographystyle, 40
\bibliography, 40
\bigg, 70
\bigskip, 11, 12
\big, 70
\boldmath, 51
\cdots, 62, 67
\centerline, 7, 21
\cite, 40
\clearpage, 45
\cline, 17
\dashbox, 80
\date, 103
\def, 129
\displaystyle, 54, 61
\documentclass, 1, 104
\dotfill, 28
\dots, 9
\dvi2tty, 128
\dvips, 3
\ensuremath, 111
\equal, 118, 119
\fboxrule, 46
\fboxsep, 46
\fbox, 10, 45, 61, 79, 82
\footnotesep, 109
\frac, 52, 66
\framebox, 79, 82
\frame, 10

\hfill, 11, 13, 27, 28
\hline, 17, 60
\hrulefill, 28
\hspace*, 25, 27
\hspace, 27
\imath, 124
\input, 111, 128
\itemsep, 116
\jmath, 124
\kill, 25
\label, 43, 58
\left, 61, 127
\linebreak, 26
\line, 82
\listoffigures, 106
\listoftables, 106
\makebox, 80
\makeindex, 108
\maketitle, 103
\mathbb, 65
\mathscr, 66
\mathfont, 51
\mbox, 56, 62, 64
\medskip, 12
\multicolumn, 21, 110
\newcommand, 39, 110, 129
\newcounter, 46
\newenvironment, 113
\newline, 26
\newpage, 26, 45
\newtheorem, 68
\nocite, 41
\noindent, 11
\nolinebreak, 26
\nopagebreak, 26
\oddsidemargin, 114

132

INDEX 133

\overbrace, 62
\overline, 62
\overset, 72
\pagebreak, 26
\pagenumbering, 107
\pageref, 44, 69
\pagestyle, 107, 119
\parbox, 20, 21, 79
\parindent, 116
\parsep, 116
\parskip, 116
\partial, 66
\prime, 59
\printindex, 108
\prod, 53
\psset, 87
\raggedright, 62
\raisebox, 62
\refstepcounter, 47
\ref, 43, 44, 58, 69
\renewcommand, 37, 47, 107, 110
\renewenvironment, 113
\right, 61, 127
\samepage, 26
\section*, 107
\section, 5
\setcounter, 47
\setlength, 46, 80, 109
\smallskip, 12
\sqrt, 53
\stackrel, 72
\stepcounter, 47
\subsection, 5
\substack, 72
\tableofcontents, 106
\textstyle, 54
\textwidth, 114
\textfont, 9
\thanks, 104

\theenumi, 48
\thecounter, 43, 47
\title, 103
\underbrace, 62
\underline, 10, 18, 62
\underset, 72
\unitlength, 80, 81
\url, 27, 37
\usepackage, 28, 45, 65–67, 86
\value, 47
\vector, 82
\verb, 23, 129
\vfill, 28
\vspace*, 28
\vspace, 28, 61
\widehat, 62
\widetilde, 62
\\, 16
pdftex, 87
titlepage, 104

accents, 24
AMS, 1
amsmath, 67

Bezier curve, 92
bibtex program, 31
body, 1
boldmath, 51
box, 80

co-authoring, 128
column specification, 18
command line, 1
comment, 23
comments, 1, 129
compile, 2
conditional assignment, 61
counting words, 128
cross referencing, 38

134 INDEX

dash, 11
debugging, 2
derivative, 66
document styles, 1
DOS, 3, 4, 31
dvi viewer, 3
dvips, 4

emftoeps, 97
environment, 1, 6

abstract, 105, 107
appendix, 108
array, 57, 60, 62
axiom, 69
center, 7
corollary, 69
description, 13, 23
document, 1, 103
enumerate, 15
eqnarray, 58
eqnarray*, 58
equation, 58
figure, 44, 45
flushleft, 7, 20, 21, 62
flushright, 7
gather, 71
gather*, 71
itemize, 14
large, 10
longtable, 22
picture, 80
quotation, 11
quote, 10
smallmatrix, 71
tabbing, 25
table, 44, 45
tabular, 16, 23, 45, 62
thebibliography, 119
theorem, 68
verbatim, 23

verse, 12

file
bib, 30, 31, 35, 37, 38, 40
bst (bib style), 40, 120
dvi, 2, 86
eps, 97
jpeg, 97
ps (postscript), 3, 86, 97
tex, 1, 35
wmf, 97

float, 44
float page, 45
floating object, 44
font size, 4, 9, 10, 61
font style

bold small caps, 9
boldface, 9
boldmath, 51
calligraphic, 52
Greek, 52
italic, 9, 18
math mode, 51, 59, 65
non-English, 24
Roman, 18
sans serif, 9
slanted, 9
small caps, 9, 18
typewriter, 9
underlined, 9

footnote, 105, 109
fractions, 52

ghostview, 3
global setting, 48
graph, 90

Hamiltonian, 66
horizontal fill, 11
hyphenation, 27

INDEX 135

index (making of), 108

jpeg2ps, 97

Lagrangian, 66
landscape, 89
Laplace transform, 66
latex command, 1
list environment, 13

description, 13
enumerate, 15
itemize, 14

local setting, 46

make index, 108
math display mode, 50, 54, 58
mathbf, 51
matrix equation, 59
message, 2

Overfull . . . , 2
Repeated entry, 41
Underfull . . . , 2
warning, 2

MetaPost, 86
MiKTeX, 3, 86, 97

nodes, 90

package, ix, 1, 5, 8
acronym, 108
algorithm, 120
amscd, 72
amsmath, 67, 71
amssymb, 65
babel, 24
bibunits, 120
bm, 52
c-pascal, 121
chemsym, 120
fancyvrb, 121
float, 45

fontenc, 9
frankenstein, 120
geometry, 114
gloss, 108
graphicx, 97
graphtex, 121
hyphenat, 27
ifthen, 118
listings, 121
longtable, 22
makeidx, 108
mathrsfs, 66
moreverb, 121
nomencl, 108
psfrag, 98
pstricks, 85, 86
qsymbols, 120
setspace, 28, 118
showkeys, 44
theorem, 70
url, 37
wasysym, 120
xypic, 120

page numbering, 119
paragraph positions, 6
preamble, 1, 39, 113, 120

quotation marks, 11

rotate, 89

section, 5
SIAM, 1
spacing, 14, 114

~, 26
horizontal, 27
math mode, 53, 56, 117
vertical, 12, 28

special character, 1, 14, 17, 23, 26, 32,
50, 112

136 INDEX

\textspec , 23
in url, 36

special function, 64
stacking, 72
subscript, 50

stack, 72
subsection, 5
superscript, 50

tabbing commands, 25
table, 16
ticks, 94
transpose, 59
trigonometric functions, 64

units of measurement, 4, 18, 81, 87,
90, 93, 121

unix, 3, 4, 31, 97

wc, 128
word count, 128

xdvi, 3

YAP, 3

