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1 Drawing approximations to the area under a graph by rectangles

1.1 Description

We recall here an operation in Calculus. Let f(x) be a function, defined and bounded on an interval
[a, b]. If f is integrable (in Riemann sense) on [a, b], then its definite integral over this interval is∫ b

a
f(x)dx = lim

‖P‖→0

n∑
i=1

f(ξi)∆xi,

∗PSTricks is the original work of Timothy Van Zandt (email address: tvz@econ.insead.fr). It is currently edited
by Herbert Voß (hvoss@tug.org).
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where P : a = x0 < x1 < · · · < xn = b, ∆xi = xi − xi−1 is a partition of [a, b], ξi ∈ [xi−1, xi],
i = 1, 2, . . . , n, and ‖P‖ = max{∆xi : i = 1, 2, . . . , n}. Hence, when ‖P‖ is small enough, we may
have an approximation

I =

∫ b

a
f(x)dx ≈

n∑
i=1

f(ξi)∆xi. (1)

Because I is independent to the choice of P and ξi, we may divide [a, b] into n subintervals with
equal length and choose ξi = (xi + xi−1)/2. Then, I can be approximately seen as the sum of areas
of the rectangles with sides f(ξi) and ∆xi.

We will make a drawing procedure to illustrate the approximation (1). Firstly, we establish
commands to draw the “sum” of rectangles, like the area under piecewise-constant functions (called
step shape, for brevity). The chosen procedure here obviously includes a combination of the macros
\pscustom (to join horizontal segments, automatically) and \multido. In particular, horizontal
segments are depicted within the loop \multido by

\psplot[settings]{xi−1}{xi}{f(ξi)}

Then, \pscustom will join these segments altogether with the ending points (a, 0), (b, 0) to make
the boundary of the step shape. Next, we draw the points (ξi, f(ξi)), i = 1, 2, . . . , n, and the dotted
segments between these points and the points (ξi, 0), i = 1, 2, . . . , n, by

\psdot[algebraic,...](*{ξi} {f(x)})

\psline[algebraic,linestyle=dotted,...](ξi,0)(*{ξi} {f(x)})

where we use the structure (*{value} {f(x)}) to obtain (ξi, f(ξi)). Finally, we draw vertical seg-
ments to split the step shape into rectangular cells by

\psline[algebraic,...](xi,0)(*{xi} {f(x−∆xi/2)})

The process of approximation is depicted in Figure 1.

We now combine the above steps to make a procedure whose calling sequence consists of main
parameters a, b, f and n, and dependent parameters xi−1, xi, ξi, f(ξi) and f(x ± ∆xi/2). For
instance, let us consider approximations to the integral of f(x) = sinx − cosx over [−2, 3] in cases
of n = 5 and n = 20. They are given in Figure 2.

In summary, we can make a procedure to illustrate the approximation (1), say RiemannSum,
whose calling sequence has the form of

\RiemannSum{a}{b}{f(x)}{n}{xini}{xend}{xchoice}{f(x+ ∆xi/2)}{f(x−∆xi/2)},

where x0 = a and for each i = 1, 2 . . . , n:

xi = a+
b− a
n

i, ∆xi = xi − xi−1 =
b− a
n

,

xini = x0 + ∆xi, xend = x1 + ∆xi, xchoice =
xini + xend

2
=
x0 + x1

2
+ ∆xi.

Note that xini, xend and xchoice are given in such forms to be suitable to variable declaration in
\multido. They are nothing but xi−1, xi and ξi, respectively, at the step i-th in the loop.

Tentatively, in PSTricks language, the definition of RiemannSum is suggested to be
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Figure 1: Steps to make the drawing procedure.
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Figure 2: Approximations to the integral of f(x) = sinx− cosx over [−2, 3].
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\def\RiemannSum#1#2#3#4#5#6#7#8#9{%

\psplot[linecolor=blue]{#1}{#2}{#3}

\pscustom[linecolor=red]{%

\psline{-}(#1,0)(#1,0)

\multido{\ni=#5,\ne=#6}{#4}

{\psline(*{\ni} {#8})(*{\ne} {#9})}}

\multido{\ne=#6,\nc=#7}{#4}

{\psdot(*{\nc} {#3})

\psline[linestyle=dotted,dotsep=1.5pt](\nc,0)(*{\nc} {#3})

\psline[linecolor=red](\ne,0)(*{\ne} {#9})}}

1.2 Examples

We give here two more examples just to see that using the drawing procedure is very easy. In the
first example, we approximate the area under the graph of the function f(x) = x − (x/2) cosx + 2
on the interval [0, 8]. To draw the approximation, we try the case n = 16; thus x0 = 0 and for
each i = 1, . . . , 16, we have xi = 0.5 i, ∆xi = 0.5, xini = 0.00 + 0.50, xend = 0.50 + 0.50 and
xchoice = 0.25 + 0.50.
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Figure 3: An approximation to the area under the graph of f(x) = x− (x/2) cosx+ 2 on [0, 8].

To get Figure 3, we have used the following LATEX code:

\begin{pspicture}(0,0)(4.125,5.5)

\psset{plotpoints=500,algebraic,dotsize=2.5pt,unit=0.5}

\RiemannSum{0}{8}{x-(x/2)*cos(x)+2}{16}{0.00+0.50}{0.50+0.50}{0.25+0.50}

{x+0.25-((x+0.25)/2)*cos(x+0.25)+2}{x-0.25-((x-0.25)/2)*cos(x-0.25)+2}

\psaxes[ticksize=2.2pt,labelsep=4pt]{->}(0,0)(8.5,11)

\end{pspicture}

In the second example below, we will draw an approximation to the integral of f(x) = x sinx
over [1, 9]. Choosing n = 10 and computing parameters needed, we get Figure 4, mainly by the
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command

\RiemannSum{1}{9}{x sinx}{10}{1.00 + 0.80}{1.80 + 0.80}{1.40 + 0.80}

{(x+ 0.4) sin(x+ 0.4)}{(x− 0.4) sin(x− 0.4)}

in the drawing procedure.
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Figure 4: An approximation to the integral of f(x) = x sinx over [1, 9].

2 Drawing the vector field of an ordinary differential equation of order one

2.1 Description

Let us consider the differential equation

dy

dx
= f(x, y). (2)

At each point (x0, y0) in the domain D of f , we will put a vector v with slope k = f(x0, y0). If
y(x0) = y0, then k is the slope of the tangent to the solution curve y = y(x) of (2) at (x0, y0). The
v’s make a vector field and the picture of this field would give us information about the shape of
solution curves of (2), even we have not found yet any solution of (2).

The vector field of (2) will be depicted on a finite grid of points in D. This grid is made of lines,
paralell to the axes Ox and Oy. The intersectional points of those lines are called grid points and
often indexed by (xi, yj), i = 0, . . . , Nx, j = 0, . . . , Ny. For convenience, we will use polar coordinates
to locate the terminal point (x, y) of a field vector, with the initial point at grid point (xi, yj). Then,
we can write

x = xi + r cosϕ,

y = yj + r sinϕ.

Because k = f(xi, yj) = tanϕ is finite, we may take −π/2 < ϕ < π/2. From sin2 ϕ+ cos2 ϕ = 1 and
sinϕ = k cosϕ, we derive

cosϕ =
1√

1 + k2
, sinϕ =

k√
1 + k2

.
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Figure 5: Field vectors on a grid.

The field vectors should all have the same magnitude and we choose here that length to be 1/2,
that means r = 1/2. Thus, vectors on the grid have their initial and terminal points as

(xi, yj),
(
xi +

1

2
cosϕ, yj +

1

2
sinϕ

)
,

respectively. Hence, we easily get the parametrization of a vector at grid point (xi, yj):

x = xi +
t

2
cosϕ = xi +

t

2
√

1 + k2
,

y = yj +
t

2
sinϕ = yj +

tk

2
√

1 + k2
,

where t goes from 0 to 1, as along the direction of the vector.

Of macros in PSTricks to draw lines from their parametrization, we select \parametricplot1

for its fitness. The macro has the syntax

\parametricplot[settings]{tmin}{tmax}{x(t)|y(t)},

where we may use the option algebraic to make the declaration of x(t) and y(t) simpler in ASCII

code.

From the above description of one field vector, we now construct the vector field on a grid within
a domain R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}. To determine the grid, we confine grid points to the
range

a ≤ xi ≤ b, c ≤ yj ≤ d. (3)

We start with initial values x0 = a and y0 = c to have points (xi, yj) with increments ∆x = ∆y = δ,
corresponding to the length of vectors and the distance between grid points as indicated in Figure
5. Thus, to draw vectors at grid points (xi, yj), we need two loops for indices i and j, with 0 ≤
i ≤ bm/δc, 0 ≤ j ≤ bn/δc, where m = b − a, n = d − c. Apparently, these two loops are nested
\multidos, with variable declaration for each loop as follows

\nx = initial value + increment = x0 + ∆x,

\ny = initial value + increment = y0 + ∆y.

1This macro is of ones, often added and updated in the package pstricks-add, the authors: Dominique Rodriguez
(dominique.rodriguez@waika9.com), Herbert Voß (voss@pstricks.de).
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Finally, we will replace \nx, \ny by xi, yj in the below calling sequence for simplicity.

Thus, the main command to draw the vector field of the equation (2) on the grid (3) is

\multido
{
yj = y0 + ∆y

}{
bn/δc

}{
\multido

{
xi = x0 + ∆x

}{
bm/δc

}
{
\parametricplot[settings]{0}{1}

{
xi +

t

2
√

1 +
[
f(xi, yj)

]2 ∣∣∣ yj +
tf(xi, yj)

2
√

1 +
[
f(xi, yj)

]2}
}

where we at least use arrows=-> and algebraic for settings.

We can combine the steps mentioned above to define a drawing procedure, say \avecfld, that
consists of 6 parameters in the order as \nx=x0+∆x, \ny=y0+∆y, bm/δc, bn/δc, δ and f(\nx, \ny).
We may change these values to modify the vector field or to avoid the vector intersection. Such a
procedure is suggested to be

\def\avecfld#1#2#3#4#5#6{%

\multido{#2}{#4}{\multido{#1}{#3}

{\parametricplot[algebraic,arrows=->,linecolor=red]{0}{1}

{\nx+((#5)*t)*(1/sqrt(1+(#6)^2))|\ny+((#5)*t)*(1/sqrt(1+(#6)^2))*(#6)}}}}

Actually, the procedure \parametricplot is used here only to draw a vector by its parametriza-
tion (x(t), y(t)), so we can use the structure \curvepnodes in the package pst-node2 to extract the
two ending points of the curve (x(t), y(t)) by the command

\curvepnodes[algebraic,plotpoints=2]{0}{1}{x(t)|y(t)}{P},

where P is a name of the root of nodes and we just get the two nodes P0, P1 when executing this
command. Then, the corresponding vector is drawn by the command

\psline[linecolor=settings]{->}(P0)(P1)

Therefore, another procedure to draw a vector field may be defined as

\def\anothervecfld#1#2#3#4#5#6{%

\multido{#2}{#4}{\multido{#1}{#3}

{\curvepnodes[algebraic,plotpoints=2]{0}{1}

{\nx+((#5)*t)*(1/sqrt(1+(#6)^2))|\ny+((#5)*t)*(1/sqrt(1+(#6)^2))*(#6)}{P}

\psline[linecolor=red]{->}(P0)(P1)}}}

2.2 Examples

Firstly, we consider the equation that describes an object falling in a resistive medium:

dv

dt
= 9.8− v

5
, (4)

where v = v(t) is the speed of the object in time t. In Figure 6, the vector field of (4) is given on
the grid R = {(t, y) : 0 ≤ t ≤ 9, 46 ≤ v ≤ 52}, together with the graph of the equilibrium solution
v = 49.

2Package authors: Timothy Van Zandt (tvz@econ.insead.fr), Michael Sharpe (msharpe@euclid.ucsd.edu) and
Herbert Voß (hvoss@tug.org).
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Figure 6: The vector field of (4).

Figure 6 is made of the following LATEX code:

\begin{pspicture}(0,46)(9.5,52.5)

\anothervecfld{\nx=0.25+0.50}{\ny=46.25+0.50}{18}{12}{0.5}{9.8-0.2*\ny}

\psplot[algebraic,linewidth=1.2pt]{0}{9}{49}

\psaxes[Dy=1,Dx=1,Oy=46]{->}(0,46)(0,46)(9.5,52.5)

\rput(9.5,45.8){$t$}\rput(-0.2,52.5){$y$}

\end{pspicture}

Let us next consider the problem

dy

dx
= x+ y, y(0) = 0. (5)

It is easy to check that y = ex − x − 1 is the unique solution to (5). We now draw the vector field
of (5) and the solution curve3 on the grid R = {(x, y) : 0 ≤ x ≤ 3, 0 ≤ y ≤ 5} in Figure 7.
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0 1 2 3 x

y

Figure 7: The vector field of (5).

3We have used ch(1) + sh(1) for the declaration of e, natural base of logarithmic function.
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We then go to the logistic equation, which is chosen to be a model for the dependence of the
population size P on time t in Biology:

dP

dt
= kP

(
1− P

M

)
, (6)

where k and M are constants, respectively various to selected species and environment. For
specification, we take, for instance, k = 0.5 and M = 100. The right hand side of (6) then
becomes f(t, P ) = 0.5P (1 − 0.01P ). In Figure 8, we draw the vector field of (6) on the grid
R = {(t, P ) : 0 ≤ t ≤ 10, 95 ≤ P ≤ 100} and the equilibrium solution curve P = 100. Furthermore,
with the initial condition P (0) = 95, the equation (6) has the unique solution P = 1900(e−0.5t+19)−1.
This solution curve is also given in Figure 8.

95

96

97

98

99

100

0 1 2 3 4 5 6 7 8 9 10 t

P

Figure 8: The vector field of (6) with k = 0.5 and M = 100.

The previous differential equations are all of seperated variable or linear cases that can be solved
for closed-form solutions by some simple integration formulas. We will consider one more equation
of the non-linear case whose solution can only be approximated by numerical methods. The vector
field of such an equation is so useful and we will use the Runge-Kutta curves (of order 4) to add more
information about the behaviour of solution curves. Here, those Runge-Kutta curves are depicted
by the procedure \psplotDiffEqn, also updated from the package pstricks-add.

The vector field of the non-linear differential equation

dy

dx
= y2 − xy + 1 (7)

will be depicted on the grid R = {(x, y) : − 3 ≤ x ≤ 3, −3 ≤ y ≤ 3} and the solutions of Cauchy
problems for (7), corresponding to initial conditions

(i) y(−3) = −1,

(ii) y(−2) = −3,

(iii) y(−3) = −0.4,

will be approximated by the method of Runge-Kutta, with the grid size h = 0.2. It is very easy to
recognize approximate curves, respective to (i), (ii) and (iii) in Figure 9 below.

2.3 Remarks on how to color arrows properly for a vector field

There remains a problem in drawing a vector field. That is coloring arrows. Obviously, their color
shade should vary according to their slope and this would give us the picture of domains containing
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Figure 9: The vector field of (7) and the Runge-Kutta curves.

increase or decrease solutions of a differential equation. In some cases, we even know how large the
rate of change of those solutions is in a specific domain.

In Subsection 2.1, we know for the equation (2) that f(xi, yj) is right the slope of field vectors
at grid points (xi, yj), and we will divide these slopes into some number of scales, corresponding
to the degree of color shades. Here, we confine our interest to a continuous function f(x, y) in two
independent variables on a domain R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d} and choose the scale of 10
degrees. This number of degrees can be changed to any positive integer.

According to the input data from the differential equation (2), the set R and the grid points on
it and the value M = max{|f(xi, yj)| : 0 ≤ i ≤ bm/∆xc, 0 ≤ j ≤ bn/∆yc}, where m = b − a and
n = d− c, we can now define the degree of color shade for each arrow in our vector field. It should
be an integer nij such that nij = b10|f(xi, yj)|/Mc, that is

nijM ≤ 10|f(xi, yj)| < (nij + 1)M. (8)

For finding such an integer, in TEX codes, we need one \newcount for it and two \newdimen for
f(xi, yj) and intermediate values to be compared with |f(xi, yj)|. For more explanation, let us begin
with settings \newcount\intg (referring (ref.) to “integer”), \newdimen\slope (ref. to “slope”)
and \newdimen\interm (ref. to “intermediate values”). Then, the integer nij at stage (i, j) within
the two \multido loops can be defined by the recursive macro \fintg (ref. to “find the integer”)
as follows

\def\fintg{\interm=Mpt \interm=\intg\interm%

\ifdim\ifdim\slope<0pt -\fi\slope<\interm\advance\intg by -1\relax

\else\advance\intg by 1\fintg\fi}

where M and \slope are holding the values M and f(xi, yj), respectively. Note that, before running
our macro, \slope should be multiplied by 10 with the assignment \slope=10\slope, as defined in
(8). Besides, by simulating the expression of f(x, y), the calculation of f(xi, yj) should be declared
with operations on \newcounts and \newdimens. Then, the integer nij , which is found at stage



2. Drawing the vector field of an ordinary differential equation of order one 11

(i, j), should take its degree, say k, from 0 to 10 by its value, suitably associated to the command
\psline[linecolor=red!case-k]{->}(P0)(P1). Here, we choose red for the main color (it can
be changed, of course), and case-k will be replaced with an appropriate percentage of red. Finally,
such a color scale is local and relative, so we can use one more parameter in the procedure to adjust
color shades. The old procedures take 6 parameters and the new one will take two more parameters:
one for declaration of computing f(xi, yj) and the other for adjusting color shades.

Let us take some examples on how to compute f(xi, yj) by TEX codes or by commands from
the package calculator4. For a simple polynomial f(x, y), computing f(xi, yj) by TEX codes
might be facile. Because \nx and \ny are respectively holding values of xi and yj , we need the
two corresponding variables \newdimen\fx and \newdimen\fy to take these values. By assigning
\fx=\nx pt\fy=\ny pt, we compute f(\nx, \ny) and assign its value to \slope. The declaration
of calculations for some cases of f(x, y) is given in the following table.

f(x, y) TEX codes for computing f(\nx, \ny)

x+ y \advance\slope by \fx \advance\slope by \fy

1− xy \advance\slope by -\decimal\fx\fy \advance\slope by 1pt

y(3− y) \advance\slope by -\decimal\fy\fy \advance\slope by 3\fy

y2 − xy \advance\slope by \decimal\fy\fy \advance\slope by -\decimal\fx\fy

In the table, the command \decimal, which is quotative from [5] for producing decimal numbers
from dimensions, is put in the preamble using a definition as

\def\xch{\catcode‘\p=12 \catcode‘\t=12}\def\ych{\catcode‘\p=11 \catcode‘\t=11}

\xch \def\dec#1pt{#1}\ych \def\decimal#1{\expandafter\dec \the#1}

For a transcendental or rational function f(x, y), we may use the package calculator for com-
puting f(xi, yj). The following table shows how to perform calculations.

f(x, y) The commands from the package calculator for computing f(\nx, \ny)

sin(y − x) \SUBTRACT{\ny}{\nx}{\sola}\SIN{\sola}{\solb}\slope=\solb pt

2xy/(1 + y2)
\SUMfunction{\ONEfunction}{\SQUAREfunction}{\Fncty}

\Fncty{\ny}{\soly}{\Dsoly}\DIVIDE{\Dsoly}{\soly}{\tempa}

\MULTIPLY{\nx}{\tempa}{\tempb}\slope=\tempb pt

From the old macros \avecfld or \anothervecfld, we will construct the new one \vecfldnew

by adding up to the former the two parameters as described above. According to the description of
new parameters and of known ones, the calling sequence of \vecfldnew may have the form of

\vecfldnew{\nx= x0 + ∆x}{\ny= y0 + ∆y}{nx}{ny}{`}{f(\nx, \ny)}{TEX codes}{na}

where na is an estimate value for M and can be adjusted to be greater or less than M . This flexible
mechanism might be to increase or decrease the degree of color shades. Finally, \intg and \slope

should be reset to zero at the end of each stage. Now, all materials to make the new macro are
ready, and its definition is suggested to be

4Package author: Robert Fuster (rfuster@mat.upv.es).



2. Drawing the vector field of an ordinary differential equation of order one 12

\def\vecfldnew#1#2#3#4#5#6#7#8{%

\newcount\intg \newdimen\slope \newdimen\interm \newdimen\fx \newdimen\fy

\def\fintg{\interm=#8 \interm=\intg\interm%

\ifdim\ifdim\slope<0pt -\fi\slope>\interm \advance\intg by 1\fintg\fi}

\multido{#2}{#4}

{\multido{#1}{#3}

{\curvepnodes[algebraic,plotpoints=2]{0}{1}

{\nx+((#5)*t)*(1/sqrt(1+(#6)^2))|\ny+((#5)*t)*(1/sqrt(1+(#6)^2))*(#6)}{P}

#7\slope=10\slope \fintg \ifnum\intg>10\psline[linecolor=red]{->}(P0)(P1)

\else\ifnum\intg=0\psline[linecolor=red!5]{->}(P0)(P1)

\else\multiply\intg by 10\psline[linecolor=red!\the\intg]{->}(P0)(P1)\fi\fi

\intg=0\slope=0pt

}}}

If we predefine some scale of degrees, instead of the code \ifnum\intg>10 . . . \fi\fi, the struc-
ture \ifcase can be used as

\ifcase\intg

\psline[linecolor=red!5]{->}(P0)(P1)\or

\psline[linecolor=red!10]{->}(P0)(P1)\or
...

\psline[linecolor=red]{->}(P0)(P1)\fi

The first example is given with two values of na to see how different the color shades are between
the two cases. The left vector field in Figure 10 is made of the calling sequence

\vecfldnew{\nx=-2.00+0.3}{\ny=-2.00+0.3}{14}{14}{0.3}{(\nx)-2*(\ny)}

{\fy=\ny pt \fx=\nx pt \advance\slope by -2\fy \advance\slope by \fx}{7pt}

1

−1

−2

1−1−2

1

−1

−2

1−1−2

Figure 10: The vector fields of the equation y′ = x− 2y with na = 7pt (the left) and na = 4pt (the
right)

In Figure 11, the vector fields of the equations y′ = y − x and y′ = x(2 − y) are respectively
drawn by the calling sequences

\vecfldnew{\nx=-3.00+0.4}{\ny=-3.00+0.4}{15}{15}{0.35}{(\ny)-(\nx)}

{\fy=\ny pt \fx=\nx pt \advance\slope by -\fx \advance\slope by \fy}{5pt}

and



3. Drawing partitions of a simply connected plane domain 13

\vecfldnew{\nx=-3.00+0.4}{\ny=-3.00+0.4}{15}{15}{0.35}{(\nx)*(2-(\ny))}

{\fy=\ny pt \fx=\nx pt \advance\slope by -\decimal\fx\fy

\advance\slope by 2\fx}{6pt}

1

2

−1

−2

−3

1 2−1−2−3

1

2

−1

−2

−3

1 2−1−2−3

Figure 11: The vector fields of the equation y′ = y − x (the left) and y′ = x(2− y) (the right).

Finally, we consider two more examples on vector fields of differential equations y′ = f(x, y)
containing trigonometric or rational functions on their right side. The calling sequences

\vecfldnew{\nx=-3.00+0.4}{\ny=-3.00+0.4}{15}{15}{0.35}{sin(\nx)*cos(\ny)}

{\SIN{\nx}{\tmpa}\COS{\ny}{\tmpb}\MULTIPLY{\tmpa}{\tmpb}{\tmpc}

\slope=\tmpc pt}{0.6pt}

and

\vecfldnew{\nx=-3.00+0.3}{\ny=-3.00+0.3}{20}{20}{0.3}{2*(\nx)*(\ny)/(1+(\ny)^2)}

{\SUMfunction{\ONEfunction}{\SQUAREfunction}{\Fncty}\Fncty{\ny}{\soly}{\Dsoly}

\DIVIDE{\Dsoly}{\soly}{\tempa}\MULTIPLY{\nx}{\tempa}{\tempb}

\slope=\tempb pt}{2.5pt}

respectively result in the vector fields on the left and on the right in Figure 12.

3 Drawing partitions of a simply connected plane domain

3.1 Description

Bézier curves have been used in many different aspects, but mostly in computer graphics to model
smooth curves designed by computer programs. We just recall here the vector function of a Bézier
curve of degree n with n+ 1 control points whose position vectors are r0, r1, . . . , rn. It is the vector
function r(t) in a real variable t ∈ [0, 1] that is defined as

r(t) =
n∑

i=0

(
n

i

)
ti(1− t)n−iri. (9)
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1

2

−1

−2

−3

1 2−1−2−3

1

2

−1

−2

−3

1 2−1−2−3

Figure 12: The vector fields of the equation y′ = sin(x) cos(y) (the left) and y′ = 2xy/(1 + y2) (the
right).

Since r(0) = r0, r(1) = rn and r′(0) = n(r1 − r0), r′(1) = n(rn − rn−1), we can take a curve such
that it is closed and tangent to a line (∆) at the point whose position vector is r0, by letting rn = r0
and the points whose position vectors are r0, r1 and rn−1 all be on the line (∆).

Taking a closed Bézier curve to be the boundary of a plane domain has the great advantage.
That is because coordinates of points on the curve are evaluated by polynomials, and the curve
has necessary smoothness, beautiful enough for graphic illustrations. PSTricks has the procedure
\parametricplot to draw such a curve. But, an important problem here is how to control the
coordinates of its points to construct a procedure for drawing a partition of a simply connected
plane domain and coloring (or marking) its cells having common points with the boundary of the
domain. We particularly need such a procedure for illustrations of essential notions in measure
theory or double integral definition. Because of the limitation in accuracy imposed by the TEX
arithmetic, we should mention about 2-dimension vector functions of a Bézier curve of small degree
(in fact, as small as possible). According to the above requirements for the closed boundary of a
simply connected domain, we will design a family of closed Bézier curves of degree 6, although we
may extend their degree to 12.

From the expression of r(t) in (9), we will construct the following functions and procedures:

• The factorial function FACTORIAL.

• The binomial function BINOMIAL.

• Polynomials tm(1− t)n.

• A procedure to compute a sum of 7 terms: values of r(t) as linear combinations of the Bernstein
polynomials (

6

k

)
tk(1− t)6−k, k = 0, . . . , 6.

These functions and procedures are macros given by definitions with or without parameters. In
the following subsections we will construct them step by step and show how to make connections
between them.
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3.1.1 Factorial functions and binomial coefficients

To obtain the factorial function, a procedure for multiplying consecutively an integer n with its
diminished values will be constructed. For the declared integer variables \Fa and \Fct, the latter
will hold values of the function, and the former will hold factors that are multiplied consecutively
and reduced by 1. Namely, if \Fa is 0 or 1 then \Fct takes 1; else if \Fa > 1 then \Fct takes the
initial value of \Fa to begin a loop: diminishing \Fa by 1 and updating \Fct by multiplying its old
value with the new value of \Fa. The loop is defined by the control sequence \Factor and is ended
when \Fa is diminished to 1; then, the factorial function obtains its value from the one given back
after calling \FACTORIAL with one parameter.

\newcount\Fa\newcount\Fct

\newcount\tempA

\def\Factor{\ifnum\Fa=1\relax\else\advance\Fa by -1\multiply\Fct by \Fa\Factor\fi}

\def\FACTORIAL#1{\Fa=#1 \ifnum\Fa=0 \Fct=1\relax\else\Fct=\Fa \Factor\fi%

\global\tempA=\Fct}

Since TEX limits the largest integer number to 230 − 1, we can evaluate only to

\FACTORIAL{12} = 12! = 479001600.

Besides, the last value of \Fct, which is right the one obtained from calling the function, is assigned
to a global integer variable \tempA for use in other procedures. Finally, make the calling sequence

\FACTORIAL{k}\the\Fct

to obtain and show up the value of k!. From these values we derive binomial coefficients by the
formula (

m

n

)
=

m!

n!(m− n)!
.

A simple procedure that makes division of m! by n!, then of the result by (m−n)! can be performed
by the control sequence \BINOMIAL with two parameters as follows

\newcount\BINOM

\newcount\temp\newcount\tmp

\def\BINOMIAL#1#2{%

\temp=#1\advance\temp by -#2

\FACTORIAL{#1}

\tmp=\tempA

\FACTORIAL{\temp}

\temp=\tempA

\divide\tmp by \temp

\FACTORIAL{#2}

\temp=\tempA

\divide\tmp by \temp\global\BINOM=\tmp}

Again, the last value of \tmp is assigned to a global integer variable \BINOM for later use. Because
the vector function of a Bézier curve of degree 6 is only needed, so are the binomial coefficients
\BINOMIAL{6}{k}, k = 0, 1, . . . , 6.
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3.1.2 Bernstein polynomials

The construction of Bernstein functions is based on an iterative multiplication of the same value t
by a given number m of times, then the process is repeated with the value 1− t by a given number
n of times. The last result is multiplied by a variable that holds the value of

(
m+n
m

)
. We will use an

integer variable \kc to count times of multiplication for the same factor t or 1 − t. The procedure
of iterative multiplication \xmult with one parameter m or n is a recursive one that is performed
iteratively until \kc reaches the value m or n.

\newdimen\Xa\newdimen\Yb\newcount\kc

\def\xmult#1{\ifnum\kc<#1\advance\kc by 1\Yb=\decimal\Xa\Yb\xmult{#1}

\else\relax\fi}

Finally, the value of tm(1−t)n that is hold by the variable \Yb is multiplied by \BINOM, the value
(
6
m

)
.

Thus, Bernstein polynomials are given by the following macro \BERNSTEIN with three parameters
that hold values of m, n and t, respectively.

\newdimen\BSTemp

\def\BERNSTEIN#1#2#3{\Xa=#3pt\kc=0\Yb=1pt\xmult{#1}\kc=0\Xa=-\Xa

\advance\Xa by 1pt\xmult{#2}\BINOMIAL{6}{#1}\global\BSTemp=\BINOM\Yb}

Also, values of \BERNSTEIN are assigned to a global variable.

3.1.3 Vector functions of a plane Bézier curve of degree 6

We will construct here the vector function of a plane and closed Bézier curve with the control points
M0(x0, y0), M1(x1, y1), . . . , M6(x6, y6) that is chosen in such a way that the curve is tangent to
a line (∆) at its initial point M0. According to the mentioned properties of a Bézier curve, the
requirements for the curve are satisfied when M6 = M0 and M0, M1, M5 are all on the line (∆). In

b
M0

b
M1

b
M2

b
M3

b
M4

b
M5

Figure 13: A Bézier curve of degree 6 with the required control points.

case n = 6, from (9) we derive the vector function r(t) with the two components

X(t) =
6∑

i=0

(
6

i

)
ti(1− t)6−ixi, Y (t) =

6∑
i=0

(
6

i

)
ti(1− t)6−iyi. (10)

We first evaluate values of X(t) by the procedures that just have been constructed, with a choice
of xi, i = 1, . . . , 6, from a given x0 and the requirements of the Bézier curve as in Figure 13. For
example, we may take

x1 = x0 − 1.5, x2 = x0 + 2, x3 = x0 + 6, x4 = x0 + 5, x5 = x0 + 1.5, x6 = x0.
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Moreover, we may change the shape of the curve by taking a factor α for X(t). In short, we will
make a procedure to evaluate the sum of terms

(
6
i

)
ti(1 − t)6−i(αxi), i = 0, 1, . . . , 6. In fact, it is a

procedure to add up values into a global variable \XBST that is called by a macro \XBC with three
declaring parameters for xi, t and α. The value of α is used last when being multiplied by a variable
that holds X(t). Such a procedure is suggested to be the following macro

\newdimen\Xrf\newdimen\Yrf

\newdimen\XBST\newdimen\YBST

\def\XBC#1#2#3{%

\BERNSTEIN{0}{6}{#2}

\Xrf=#1pt

\XBST=\decimal\BSTemp\Xrf

\BERNSTEIN{1}{5}{#2}

\Xrf=#1pt\advance\Xrf by -1.5pt

\advance\XBST by \decimal\BSTemp\Xrf

\BERNSTEIN{2}{4}{#2}

\Xrf=#1pt\advance\Xrf by 2pt

\advance\XBST by \decimal\BSTemp\Xrf

\BERNSTEIN{3}{3}{#2}

\Xrf=#1pt\advance\Xrf by 6pt

\advance\XBST by \decimal\BSTemp\Xrf

\BERNSTEIN{4}{2}{#2}

\Xrf=#1pt\advance\Xrf by 5pt

\advance\XBST by \decimal\BSTemp\Xrf

\BERNSTEIN{5}{1}{#2}

\Xrf=#1pt\advance\Xrf by 1.5pt

\advance\XBST by \decimal\BSTemp\Xrf

\BERNSTEIN{6}{0}{#2}

\Xrf=#1pt

\advance\XBST by \decimal\BSTemp\Xrf

\global\XBST=#3\XBST}

In the macro, a control sequence of the form \decimal\Xdim is for obtaining the decimal value of a
variable \Xdim without units (pt, by default). This can be defined by

\def\xch{\catcode‘\p=12 \catcode‘\t=12}\def\ych{\catcode‘\p=11 \catcode‘\t=11}

\xch \def\dec#1pt{#1}\ych \gdef\decimal#1{\expandafter\dec \the#1}

Besides, the last line in the definition of \XBC (\global\XBST=#3\XBST) signifies \XBST is adjusted
for multiplication by α when holding the current value of the sum X(t). In Table 1, some values of
\XBC are compared with those of a simpler procedure in Maple5.

Likewise, from a given y0, we may have a choice of yi, i = 1, . . . , 6, as follows

y1 = y0 + 2, y2 = y0 + 5, y3 = y0 + 3, y4 = y0 − 1, y5 = y0 − 2, y6 = y0.

The macro \YBC is constructed in a quite analogous way as for \XBC to evaluate values of Y (t) in
(10), and the value βY (t) (β is again an adjustment factor) is hold by a global variable \YBST.

5Maple is a computer algebra system. It was first developed in 1980 by the Symbolic Computation Group at the
University of Waterloo in Waterloo, Ontario, Canada. Maple supports numeric and symbolic computations and can
be used as a programming language, which resembles Pascal.
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(−2.4, 0.23, 1.5) (4.2, 0.45, 1.1) (−3.4, 0.7, 1.24) (−0.89, 0.4, 1.5) (5.21, 0.5, 2.15)

\XBC −2.41216 8.12482 −0.13675 2.78271 18.75995

Maple −2.41044 8.13235 −0.13696 2.78628 18.76008

Table 1: A comparison between some values of \XBC and those of a procedure in Maple.

3.1.4 Partition of a simply connected plane domain by a rectangular grid

We consider here a simply connected plane domain D surrounded by a Bézier curve of degree 6 that
will be depicted by the procedure \NetDraw. This is called together with its five parameters whose
values are assigned to the five local variables with their following meaning:

\CellNum: The number of horizontal and vertical cells of the grid.

\Xref: The value of x0.

\Yref: The value of y0.

\Xfact: The value of α.

\Yfact: The value of β.

We denote by R a rectangular domain containing D and having edges parallel to the coordinate
axes. A grid of rectangular cells will be depicted on R. According to the given values of x0, y0, α
and β, the vertices of R can be chosen as the points (\XMin, \YMax), (\XMax, \YMax), (\XMax, \YMin),
(\XMin, \YMin), where

\XMin = α(\Xref− 1.5), \XMax = α(\Xref + 6),

\YMin = β(\Yref− 2), \YMax = β(\Yref + 5).

Then, the horizontal step size \Xsize and the vertical step size \Ysize may be taken as

\Xsize =
\XMax− \XMin

\CellNum
, \Ysize =

\YMax− \YMin

\CellNum
.

At first, the grid is made by using the structure \multido to draw vertical and horizontal lines
whose equations are

x = \XMin + i\Xsize, y = \YMin + i\Ysize, i = 0, . . . , \CellNum.

Next, the Bézier curve is depicted by the command

\parametricplot[algebraic,fillstyle=solid]{0}{1}{αX(t)|βY (t)}

and it is approximated by the sequence of points (Xi, Yi), i = 1, . . . , N , where Xi and Yi are given
from the calling sequences

\XBC{\XRef}{ti}{\Xfact}, \YBC{\YRef}{ti}{\Yfact}.

Finally, the most important algorithm is to determine cells that have points in common with the
Bézier curve, and to color them. The chosen “filter” method here can be described as follows: for
each point (Xi, Yi) of the approximate sequence, i = 1, . . . , N , we examine cells from left to right
in horizontal direction, and from below to above in vertical direction. As soon as being found, the
cell containing (Xi, Yi) is specifically colored by the command \pspolygon[fillstyle=solid,. . .]
passing its four vertices; then, we examine the next point (Xi+1, Yi+1), and so on. Actually, a
structure of three nested \multido loops is used to perform this filter method, and the loop for
counting points (Xi, Yi) is the most outer one. The algorithm to examine if a cell contains (Xi, Yi)
may have the form of
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\ifdim\YBST<y\relax\else\advance y by \Ysize

\ifdim\YBST>y\relax\else

\ifdim\XBST<x\relax\else\advance x by \Xsize

\ifdim\XBST>x\relax\else

\pspolygon[fillstyle=solid,fillcolor=red]

(x,y)(x+\Xsize,y)(x+\Xsize,y+\Ysize)(x,y+\Ysize)(x,y)\relax

\fi\fi\fi\fi

The single characters “x”, “y” and the opertation “+” will be replaced appropriately in the procedure
\NetDraw below. For increasingly chosen values of N , we may know if the set of cells having points
in common with the curve can cover the curve itself? On the other hand, to increase the number of
approximate points is corresponding to reduce the increment in the most outer loop \multido. For
instance, if we take N = 100, then the variable \nz in the loop should be declared as \nz = 0.00+0.01
because ti ∈ [0, 1].

In summary, to illustrate a partition of a simply connected plane domain, we can apply the
following procedure \NetDraw. As mentioned above, step by step, \NetDraw can: draw the boundary
of a plane domain D by a Bézier curve of degree 6, draw a partition of a rectangle R containing D
by a grid of rectangular cells, and color cells having points in common with the boundary of D.

\def\NetDraw#1#2#3#4#5{%

\newcount\CellNum

\newdimen\XRef

\newdimen\YRef

\newdimen\Xfact

\newdimen\Yfact

\newdimen\XMin

\newdimen\XMax

\newdimen\YMin

\newdimen\YMax

\newdimen\Xsize

\newdimen\Ysize

\newdimen\tempx

\newdimen\tempy

\CellNum=#1

\XRef=#2pt

\YRef=#3pt

\Xfact=#4pt

\Yfact=#5pt

\XMin=\decimal\Xfact\XRef \advance\XMin by -1.50\Xfact

\XMax=\decimal\Xfact\XRef \advance\XMax by 6.00\Xfact

\YMin=\decimal\Yfact\YRef \advance\YMin by -2.00\Yfact

\YMax=\decimal\Yfact\YRef \advance\YMax by 5.00\Yfact

\Xsize=\XMax \advance\Xsize by -\XMin \divide\Xsize by \CellNum

\Ysize=\YMax \advance\Ysize by -\YMin \divide\Ysize by \CellNum

\parametricplot[algebraic,fillstyle=solid,fillcolor=yellow!80,plotpoints=200,

linewidth=0.5pt]{0}{1}{\XBsix{\decimal\XRef}{\decimal\Xfact}|

\YBsix{\decimal\YRef}{\decimal\Yfact}}
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\multido{\nz=0.00+0.005}{200}{\XBC{\decimal\XRef}{\nz}{\decimal\Xfact}

\YBC{\decimal\YRef}{\nz}{\decimal\Yfact}

\multido{\nx=\decimal\XMin+\decimal\Xsize}{\the\CellNum}

{\tempx=\nx pt\multido{\ny=\decimal\YMin+\decimal\Ysize}{\the\CellNum}

{\tempy=\ny pt\ifdim\YBST<\tempy\relax\else\advance\tempy by \Ysize%

\ifdim\YBST>\tempy\relax\else

\ifdim\XBST<\tempx\relax\else\advance\tempx by \Xsize

\ifdim\XBST>\tempx\relax\else

\pspolygon[fillstyle=solid,fillcolor=blue!90,linecolor=black,

linewidth=0.2pt]

(\nx,\ny)(\decimal\tempx,\ny)(\decimal\tempx,\decimal\tempy)

(\nx,\decimal\tempy)(\nx,\ny)\relax\fi\fi\fi\fi}

}}

\advance\CellNum by 1

\multido{\nx=\decimal\XMin+\decimal\Xsize}{\the\CellNum}

{\psline[linewidth=0.2pt](\nx,\decimal\YMax)(\nx,\decimal\YMin)}

\multido{\ny=\decimal\YMin+\decimal\Ysize}{\the\CellNum}

{\psline[linewidth=0.2pt](\decimal\XMin,\ny)(\decimal\XMax,\ny)}

\parametricplot[algebraic,linecolor=white,plotpoints=200,linewidth=0.5pt]{0}{1}

{\XBsix{\decimal\XRef}{\decimal\Xfact}|\YBsix{\decimal\YRef}{\decimal\Yfact}}}

In the definition of \NetDraw, the expressions αX(t), βY (t) are declared in the algebraic form
by the macros \XBsix, \YBsix with two parameters that hold values of x0, α and y0, β, respectively.
These macros are given by the following definitions:

\def\XBsix#1#2{%

(1-t)^6*(#1)*(#2)+6*t*(1-t)^5*(#1-1.5)*(#2)+15*t^2*(1-t)^4*(#1+2)*(#2)+

20*t^3*(1-t)^3*(#1+6)*(#2)+15*t^4*(1-t)^2*(#1+5)*(#2)+

6*t^5*(1-t)*(#1+1.5)*(#2)+t^6*(#1)*(#2)}

\def\YBsix#1#2{%

(1-t)^6*(#1)*(#2)+6*t*(1-t)^5*(#1+2)*(#2)+15*t^2*(1-t)^4*(#1+5)*(#2)+

20*t^3*(1-t)^3*(#1+3)*(#2)+15*t^4*(1-t)^2*(#1-1)*(#2)+

6*t^5*(1-t)*(#1-2)*(#2)+t^6*(#1)*(#2)}

3.2 Examples

Firstly, let us see the effect of change for the shape of a domain when adjusting its boundary by
taking different values of α and β. The calling sequence for this purpose may have the form of

\parametricplot[algebraic,plotpoints=200,linewidth=0.5pt]{0}{1}

{XBsix{x0}{α}|\YBsix{y0}{β}}

and its result is given in Figure 14.

The Table 2 below provides three partitions of a domain D with cells that decrease in size. In
each case, \NetDraw can determine the cells that have points in common with the boundary curve
and color them. The calling sequence here takes a simple form

\NetDraw{c}{x0}{y0}{α}{β}
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Figure 14: From left to right, corresponding to the couple of values: α = 2, β = 2; α = 2.5, β = 2;
α = 2, β = 2.5.

The numerical argument c is assigned to the local variable \CellNum. The number of approximate
points (Xi, Yi) for the boundary curve is chosen to be 200, by default, corresponding to the increment
∆z = 0.005. The numberN can be made larger and the filter procedure for determining required cells
may be more exact. In Table 2, the Bézier curves are depicted with the choice x0 = y0 = α = β = 2.

Table 2: The partitions of D with c = 18, c = 36 and c = 63.
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