
List of internal LATEX2e Macros useful to Package
Authors

Compiled by Martin Scharrer
martin@scharrer-online.de

Version 0.4a – 2017/12/09

Abstract

This document lists the internal macros defined by the LATEX2e base files which
can be also useful to package authors. The macros are hyper-linked to their descrip-
tion in source2e. For this to work both PDFs must be inside the same directory.

This document is not yet complete in content and format and may miss some
macros.

Contents

1 Constants 2
1.1 Number Constants 2
1.2 Dimension Constants 2
1.3 String Constants 3
1.4 Token Constants 3
1.5 Other 3

2 Variables 4
2.1 Temporary Variables 4
2.2 Dimension Variables 4
2.3 String and Other Variables . 5

3 Macros 5
3.1 Macro Definition 5
3.2 Expanding/Gobbling Argu-

ments 6

3.3 Lists 6

3.4 Loops 7

3.5 Colors 7

3.6 Auxiliary Macros 7

3.7 Catcodes 8

3.8 Messages 8

3.9 Dimensions, Length and Skips 9

3.10 Class and Package Options . 9

3.11 Files 10

3.12 Saved plainTEX primitives . 11

3.13 Fonts 12

3.14 Paragraph 12

3.15 Space Hack 12

3.16 Boxes 13

3.17 Base Conversion 13

3.18 Conditionals 14

1

martin@scharrer-online.de

1 Constants

1.1 Number Constants

Some of the following integer values are defined using \countdef (for −1), \chardef (for
values between 0–255) and \mathchardef (> 255). They are robust and do not expand
in an \edef context. When used on the right side of an assignment the act the same
way as a count register. The \m@ne is a real count register and can still be modified, but
doing so would certainly break various code. In the terms defined by The TeXbook, this
integer constants yield internal integers rather than integer denotations.
The other numbers are defined as normal macros, which will simply expand to the contain-
ing number. They were defined to be used to set font sizes, which explains the non-integer
numbers. Please note that if they are used for an assignment or other numeric context
(e.g. \ifnum) TeX will keep expanding the following tokens until a non-numeric token is
found.

Macro Value Defined using

\@ne 1 chardef
\tw@ 2 chardef
\thr@@ 3 chardef
\sixt@@n 16 chardef
\@xxxii 32 chardef
\@cclv 255 chardef
\@cclvi 256 mathchardef
\@m 1000 mathchardef
\@M 10000 mathchardef
\@Mi 10001 mathchardef
\@Mii 10002 mathchardef
\@Miii 10003 mathchardef
\@Miv 10004 mathchardef
\@MM 20000 mathchardef

Macro Value Defined using

\@vpt 5 def
\@vipt 6 def
\@viipt 7 def
\@viiipt 8 def
\@ixpt 9 def
\@xpt 10 def
\@xipt 10.95 def
\@xiipt 12 def
\@xivpt 14.4 def
\@xviipt 17.28 def
\@xxpt 20.74 def
\@xxvpt 24.88 def

\m@ne −1 countdef

1.2 Dimension Constants

The following dimension and skip constants are defined using registers. They must not
be changed.

Macro Value Defined using Notes

\p@ 1pt newdimen Can be used as a replacement of pt be-
hind a number due to the resulting mul-
tiplication

\z@ 0pt newdimen Can be used both for 0pt and 0
\maxdimen 16383.99999pt newdimen Largest valid dimension

Macro Value Defined using Notes

\z@skip 0pt plust0pt minus0pt newskip
\hideskip −1000pt plus 1fill newskip negative but can grow
\@flushglue 0pt plus 1fil newskip

2

1.3 String Constants

The following macros hold common strings and are fully expandable. Some special char-
acters are defined here as their verbatim ASCII representation. This makes them useful
if such characters are to be written into an auxiliary file.

Macro Value Note

\space One space An explicit space (catcode 10 “space”).
\@spaces Four spaces Contains 4×\space.
\empty Empty string Commonly used to define empty macros using

\let.
\@empty Empty string Same as above. Used by the LATEX kernel com-

mands.
\@backslashchar “\” Backslash with catcode 12 (other), i.e. simple

ASCII backlash usable in e.g. \write.
\@percentchar “%” Percent character with catcode 12 (other), i.e. sim-

ple ASCII percent usable in e.g. \write.
\@charlb “{” Left brace with catcode 11 (letter).
\@charrb “}” Right brace with catcode 11 (letter).
\@clsextension “cls” Used for comparison with \@currext.
\@pkgextension “sty” Used for comparison with \@currext.
\@depth “depth” Used for box size declarations (\hb@xt@).
\@height “height” Used for box size declarations.
\@width “width” Used for box size declarations.
\@minus “minus” Used for skip declarations.
\@plus “plus” Used for skip declarations.

1.4 Token Constants

The following macros are defined using \let〈macro〉=〈token〉 and therefore equal to this
token. They are useful for \ifx comparisons with tokens read by \let or \futurelet.

Name Token Catcode Note

\@sptoken Space 10 Should not be confused with \space

\bgroup { 1 Begin of group
\egroup } 2 End of group

1.5 Other

Macro Value Defined using Notes

\voidb@x (void) newbox permanently void box register
\@undefined (undef) (undefined) This macro is not defined. It is used to test

if other macros are undefined (using \ifx) or
set them to an undefined state (using \let).

3

2 Variables

2.1 Temporary Variables

The following variables are defined and used by the LATEX kernel commands as scratch
registers and macros. They can be used with care, but should only be redefined inside
a local group to avoid interference with other code. Care must also be taken if they are
used together with external macros, which might use them as well – maybe not yet but
in the next release.

Temp variable Type Note

\count@ counter
\@tempcnta counter
\@tempcntb counter
\dimen@ dimension
\dimen@i dimension Marked as “global only”
\dimen@ii dimension
\@tempdima dimension
\@tempdimb dimension
\@tempdimc dimension
\@tempa macro
\@tempb macro
\@tempc macro
\@gtempa macro For temporary definitions which must be made global
\skip@ skip
\@tempskipa skip
\@tempskipb skip
\toks@ token register
\@temptokena token register
\if@tempswa if switch Comes with the usual setters \@tempswatrue and

\@tempswafalse

\@tempboxa box register
\@let@token ‘let’ Used by \@ifnextchar to temporary store the next

token using \futurelet. Can be used for similar pur-
poses.

2.2 Dimension Variables

Macro Description

\@wholewidth This dimen register hold the full line width (thickness) in picture en-
vironments.[=*

\@halfwidth This dimen register holds the half line width (thickness) in picture en-
vironments.[=*

4

2.3 String and Other Variables

Macro Description

\@currext Extension of the current package or class file, empty outside.
\@currname File name base of the current package or class file, empty outside.
\@currenvir Name of the current environment.
\@currenvline Line number of the begin of the current environment
\@currentlabel The value a \label will point to. Set by \stepcounter and

\refstepcounter.

3 Macros

3.1 Macro Definition

\@namedef{〈name〉}〈parameter list〉{〈definition〉}

Defines macro \〈name〉 using \def. Can be prefixed with \long and \global.

\@nameuse{〈name〉}

Expands to macro \〈name〉.

\@ifnextchar〈token〉{〈yes〉}{〈no〉}

Tests if next non-space token is equal to 〈token〉.

\@ifstar{〈yes〉}{〈no〉}

Tests of next non-space token is ‘*’. Removes star for 〈yes〉 branch.

\@dblarg{〈cmd〉}{〈arg〉}

Expands to 〈cmd〉[〈arg〉]{〈arg〉}.

\@ifundefined{〈name〉}{〈yes〉}{〈no〉}

Tests if \〈name〉 is defined (and not equal to \relax).

\@ifdefinable\〈name〉{〈yes〉}

Tests if \〈name〉 is undefined, 〈name〉 not ‘relax’ and doesn’t start with ‘end’, and if
\end〈name〉 is not defined.

\@onlypreamble〈macro〉

The given 〈macro〉 is marked as only be valid in the preamble. It will be redefined as an
error message AtBeginDocument.

5

\@star@or@long

Tests for a following ‘*’, if found \l@ngrel@x will be let to \relax, but \long otherwise.
It can the be used before \def as an potential prefix.

\@testopt{〈1 〉}{〈2 〉}

Short for \@ifnextchar[{〈1 〉}{〈1 〉[{〈2 〉}]}, i.e. 〈2 〉 will be used as default argument if
non was given.

\@protected@testopt

Robust version of \@testopt?

\addto@hook〈token register〉{〈code〉}

Appends code to the token register.

\g@addto@macro〈macro〉{〈code〉}

Appends 〈code〉 to the definition of 〈macro〉.

3.2 Expanding/Gobbling Arguments

Macro Description

\@gobble{〈arg〉} Removes (gobbles) its argument. (long)
\@gobbletwo{〈arg 1 〉}{〈arg 2 〉} Removes (gobbles) two arguments. (long)
\@gobblefour{〈1 〉}{〈2 〉}{〈3 〉}{〈4 〉} Removes (gobbles) four arguments. (long)
\@gobblecr Gobbles a following carriage return, ignores

spaces otherwise
\@firstofone{〈arg〉} Expands to 〈arg〉, i.e. is used to remove braces.

(long)
\@iden{〈arg〉} Identity. Same as \@firstofone for compati-

bility reasons. (long)
\@firstoftwo{〈1 〉}{〈2 〉} Expands to 〈1 〉, discards 〈2 〉. (long)
\@secondoftwo{〈1 〉}{〈2 〉} Expands to 〈2 〉, discards 〈1 〉. (long)
\@thirdofthree{〈1 〉}{〈2 〉}{〈3 〉} Expands to 〈3 〉, discards 〈1 〉 and 〈2 〉. (long)
\@expandtwoargs\macro{〈1 〉}{〈2 〉} Expands the two arguments using \edef and

feeds it to \macro.

3.3 Lists

\in@{〈1 〉}{〈2 〉}

Checks if first argument occurs in the second and sets the switch \ifin@ accordantly.
The arguments are not expanded. This must be done beforehand.

6

\@removeelement{〈element〉}{〈list〉}{〈cs〉}

Removes an element from a comma-separated list and puts it into a control sequence.

3.4 Loops

Macro Description

\loop ... \iterate ... \repeat

\@whilenum〈test〉\do{〈body〉} While loop with \ifnum test.
\@whiledim〈test〉\do{〈body〉} While loop with \ifdim test.
\@whilesw〈switch〉\fi{〈body〉} While loop with 〈switch〉 test.
\@for〈macro〉:=〈list〉\do{〈body〉} For loop. The 〈list〉 is supposed to expand to

a comma separated list. Defines 〈macro〉 to
each element of the list and executes 〈body〉 each
time. Supports an empty lists without errors.

\@tfor〈macro〉:=〈list〉\do{〈body〉} For loop. The 〈list〉 is not expanded and taken
as a list of tokens or {...}. Defines 〈macro〉 to
each element of the list and executes 〈body〉 each
time. Supports an empty lists without errors.

\@break@tfor Break out of a \@tfor loop. This should be
called inside the scope of an \fi.

NOTES:

1. These macros use no \@temp sequences.

2. These macros do not work if the body contains anything that looks syntactically
to TeX like an improperly balanced \if \else \fi.

3.5 Colors

The following macros are defined equal to \relax by LaTeX2e as placeholder for the real
code added by the color or xcolor package. They are needed to handle colors inside
saved boxes correctly. See the definitions of \sbox for an example.

Macro Definition given by color

\color@begingroup \begingroup

\color@endgroup \endgroup

\color@setgroup \begingroup\set@color

\color@hbox \hbox\bgroup\color@begingroup

\color@vbox \vbox\bgroup\color@begingroup

\color@endbox \color@endgroup\egroup

3.6 Auxiliary Macros

This auxiliary macros were originally defined to handle font changes but can be used for
other code as well.

7

Macro Description

\ifnot@nil{〈1 〉}{〈2 〉} Checks if 〈1 〉 is the token \@nil. If so gobbles 〈2 〉 oth-
erwise uses \@firstofone to remove the braces around
〈2 〉.

\@nil This macro is undefined on purpose and used as end-
marker in loops and other macros which process token
lists.

\@nnil Definition contains only \@nil and is used beside others
to test for the presents of \@nil in \ifnot@nil. Is also
used as endmarker.

\remove@to@nnil Removes everything behind it until and including
\@nnil.

\remove@star Removes everything behind it until and including *.
\zap@space〈text〉 \@empty Removes all spaces from 〈text〉. Expandable.[=*

\strip@prefix Removes everything up to and including to the next >.

3.7 Catcodes

Name Description

\@makeother{〈letter〉} Changes the catcode of the letter to ‘other’ (12). Spe-
cial letters must be escaped with a backslash.

\@sanitize Changes catcodes of everything except braces to
‘other’ (12).

\@onelevel@sanitize〈macro〉 Sanitizes 〈macro〉, turns it definition into ver-
batim code. Resulting characters except spaces
are in catcode ‘other’ (12)! Uses \meaning and
\strip@prefix. (With ε-TEX many applications can
be replaced by \detokenize{〈content〉}.)

3.8 Messages

\MessageBreak

Inside a message this macro create a new line followed by a continuation text. Outside
it is equal to \relax.

\GenericInfo{〈continuation〉}{〈message〉}

Prints 〈message〉 to a log file. An included \MessageBreak will cause a new line which
start with 〈continuation〉.

8

\GenericError{〈continuation〉}{〈error message〉}
{〈where to go for further information〉}{〈help text〉}

Print error message to log file followed by the ‘further information’ line. The help text is
displayed if the user presses ‘h’.

\wlog{〈log message〉}

Write on log file only.

3.9 Dimensions, Length and Skips

Name Description

\@settopoint〈register〉 Rounds register to whole number of points.
\rem@pt〈dimension value〉 Awaits a value dimension value (〈int〉.〈frac〉pt) as string

where the “pt” is removed. If 〈frac〉 is numerical equal to
0, then it and the decimal dot are removed as well.

\strip@pt〈dimension〉 Expands dimension using \the and strips the “pt” using
\rem@pt.

\@killglue Removes (\unskips) the last and then all further skips
(\lastskip) till one with a size of zero is reached.

\@defaultunits

Used to provide a default unit for dimen or skip assignment.
Usage: \@defaultunits\dimen=#1pt\relax\@nnil. Other units can be used instead of
‘pt’.

3.10 Class and Package Options

Macro Description

\@classoptionslist List of options of the main class.
\@unusedoptionlist List of options to the main class that haven’t been declared.
\@declaredoptions Comma separated list of the options declared by the current

package or class. The list is in the order in which the options
were declared.

9

3.11 Files

Macro Description

\if@filesw If false the package should not be produce or write to output files.
Set to false by \nofiles.

\if@partsw

\@currdir Holds the current directory, e.g. “./” in an Unix OS.
\input@path List of input paths. Each path should be enclosed in braces with

no delimiters between paths.
\@filelist The comma separated list of all files read so far. Only active if

\listfiles is used in the preamble.
\@inputcheck Input file handle to check for the existence of the file.
\@unused Output file handle used to reserve the standard output. Used in

\typeout to write to the terminal.
\@mainaux Output file handle for the main aux file.
\@partaux Output file handle for include file aux files.
\@auxout Let to \@partaux inside include files, but to \@mainaux otherwise.
\@partlist Holds the comma-separated list defined by \includeonly.
\@pushfilename pushes file name, extension and current catcode of “@” onto the

file stack.
\@popfilename pushes file name, extension and current catcode of “@” onto the

file stack.
\@currnamestack file name stack.

\filename@parse{〈filename〉}

Parses 〈filename〉 and provides its directory, name base and extension in \filename@area,
\filename@base and \filename@ext. The latter is let to \relax if it does not exists.

\@filef@und

The macro \IfFileExists(which is used by \InputIfFileExists{)} stores the found
file followed by a space in this macro.

\@starttoc{〈ext〉}

Reads the file with the given extension (\jobname.〈ext〉) and opens it for writing after-
wards. The file is initially empty. Creates the output file handle \tf@〈ext〉.

\@writefile{〈ext〉}{〈code〉}

Writes code using the output handle \tf@〈ext〉 if it exists.

\@iffileonpath{〈filename〉}

Check if given file is found by TEX directly or in any of the directories given by \input@path.

10

\@obsoletefile{〈new〉}{〈obsolete〉}

Prints warning message (only) that now a different file is used a input.

\@addtofilelist{〈filename〉}

Adds the given filename to the list of files. Only active if \listfiles is used in the
preamble.

\@ptionlist{〈filename〉}

Expands the option list of package, class or file given by full filename.

\@ifpackageloaded{〈package〉}{〈true〉}{〈false〉}
\@ifclassloaded{〈class〉}{〈true〉}{〈false〉}
\@ifl@aded{〈extension〉}{〈file base〉}{〈true〉}{〈false〉}

Tests if given package/class/file has been loaded.

\@ifpackagewith{〈name〉}{〈option-list〉}{〈true〉}{〈false〉}
\@ifclasswith{〈name〉}{〈option-list〉}{〈true〉}{〈false〉}
\@if@ptions{〈extension〉}{〈name〉}{〈option-list〉}{〈true〉}{〈false〉}

Tests if given package/class/file has been loaded with the given options.

\@ifpackagelater{〈name〉}{〈date YYYY/MM/DD〉}{〈true〉}{〈false〉}
\@ifclasslater{〈name〉}{〈date YYYY/MM/DD〉}{〈true〉}{〈false〉}
\@ifl@ter{〈extension〉}{〈file base〉}{〈date YYYY/MM/DD〉}{〈true〉}{〈false〉}

Tests if given package/class/file has been loaded with a version more recent than 〈version〉.

3.12 Saved plainTEX primitives

The following plainTEX macros are redefined by LATEX and therefore saved away first:

LATEX Macro plainTEX original Description/Note

\@@par \par Some LATEX environments redefine \par

locally
\@@input \input Syntax: \input 〈filename〉
\@@end \end

\@@underline \underline

\frozen@everymath \everymath

\frozen@everydisplay \everydisplay

11

3.13 Fonts

Macro Description

\f@encoding Holds the current font encoding.
\f@family Holds the current font family.
\f@series Holds the current font series.
\f@shape Holds the current font shape.
\f@size Holds the current font size (in pt but without unit).
\f@baselineskip Holds the current baseline skip (in pt but without unit).
\f@linespread Holds the current internal value for \baselinestretch.
\@currsize Let to the last font size command (e.g. \small).
\curr@math@size Holds locally the current math size.
\curr@fontshape \f@encoding /\f@family /\f@series /\f@shape

3.14 Paragraph

Macro Description

\@@par PlainTEX primitive \par.
\@setpar{〈val〉} Used to make environment-wide changes to \par. Sets both \par

and \@par to 〈val〉.
\@restorepar Defines \par to \@par.

3.15 Space Hack

Macro Description

\@bsphack

\@esphack Both of these macro ensure that the code between them does not insert
any spaces into the document. The code itself should not produce any
text and not change the mode (e.g. start or stop math mode).

\@Esphack Variant of \@esphack which sets the @ignore switch to true which causes
an \ignorespaces after the \end of the environment.

\@vbsphack Variant of \@bsphack which ensure the invisible material is not set in
vmode. Not used by LATEX itself at the moment.

12

3.16 Boxes

Macro Description

\null Empty \hbox. Good to fill places which must
not be empty.

\strutbox Box with dimension of \strut, i.e. maximum
height and depth of the current font and zero
width. Can be used to extract this dimension
with \ht\strutbox and \dp\strutbox.

\@arstrutbox Defined inside array and tabular. Like
\strutbox but stretched by \arraystretch.

\@begin@tempboxa〈box 〉{〈content〉} Stores 〈content〉 into \@tempboxa as 〈box 〉
(\hbox or \vbox) and stores its dimension into
\width, \height, \depth and \totalheight.

\@end@tempboxa Ends a \@begin@tempboxa environment.
\hb@xt@

\hbox to

\hmode@bgroup
\leavevmode\bgroup

\@settodim{〈dimension cs〉}{〈length register〉}{〈content〉}

Sets the 〈length register〉 to the dimension given by the 〈dimension〉 (\ht, \dp and \wd

) of the 〈content〉. Example: \@settodim{\wd}{\@tempdima}{Hello World} will set
\@tempdima to the width of “Hello World”.

3.17 Base Conversion

Macro Description

\hexnumber@{〈number〉} Returns a single digit hexadecimal number (0–9, A–F) from
given 〈number〉, which must either be a numeric register or
a number ending with a space!

\@alph{〈number〉} Expands to lower case letter corresponding to the given
number (1=a, 2=b, . . .). Expands to \@ctrerr if number
is larger then 26.

\@Alph{〈number〉} Expands to upper case letter corresponding to the given
number (1=A, 2=B, . . .). Expands to \@ctrerr if number
is larger then 26.

\two@digits{〈number〉} Returns 〈number〉 (e.g. a count register) as string and en-
sures that it has at least two digits by appending a ‘0’ if re-
quired.[=*

13

3.18 Conditionals

Macro Description

\if@compatibility Switch to indicate if the LaTeX2.09 compatibility mode is ac-
tive.

\if@ignore Whether or not to ignore spaces after an environment. Set to
true by \ignorespacesafterend.

\if@minipage True for a minipage, false for a parbox. Responsible for adding
space, skips and paragraph indents for a parbox.

\if@twoside True for two-sided documents
\if@twocolumn Indicates if two-column mode is active
\if@firstcolumn Indicates if the first column is processed

14

	Constants
	Number Constants
	Dimension Constants
	String Constants
	Token Constants
	Other

	Variables
	Temporary Variables
	Dimension Variables
	String and Other Variables

	Macros
	Macro Definition
	Expanding/Gobbling Arguments
	Lists
	Loops
	Colors
	Auxiliary Macros
	Catcodes
	Messages
	Dimensions, Length and Skips
	Class and Package Options
	Files
	Saved plainTeX primitives
	Fonts
	Paragraph
	Space Hack
	Boxes
	Base Conversion
	Conditionals

