
101

The POOLtype processor

(Version 3, September 1989)

Section Page
Introduction . 1 102
The character set . 4 103
String handling . 12 104
System-dependent changes . 21 105
Index . 25 106

Editor’s Note: The present variant of this C/WEB source file has been modified for use in
the TEX Live system.

The following sections were changed by the change file: 1, 2, 6, 10, 15, 18, 19, 20, 21, 22, 23, 24,
25.

The preparation of this report was supported in part by the National Science Foundation
under grants IST-8201926 and MCS-8300984, and by the System Development Foundation.
‘TEX’ is a trademark of the American Mathematical Society.

March 12, 2025 at 15:40

102 INTRODUCTION POOLtype changes for C §1

1*. Introduction. The POOLtype utility program converts string pool files output by TANGLE into a
slightly more symbolic format that may be useful when TANGLEd programs are being debugged.

It’s a pretty trivial routine, but people may want to try transporting this program before they get up
enough courage to tackle TEX itself. The first 256 strings are treated as TEX treats them, using routines
copied from TEX82.

define my name ≡ ´pooltype´

2*. POOLtype is written entirely in standard Pascal, except that it has to do some slightly system-dependent
character code conversion on input and output. The input is read from pool file , and the output is written
on output . If the input is erroneous, the output file will describe the error.

program POOLtype (pool file , output);
type ⟨Types in the outer block 5 ⟩
var ⟨Globals in the outer block 7 ⟩
⟨Define parse arguments 21* ⟩

procedure initialize ; { this procedure gets things started properly }
var ⟨Local variables for initialization 6* ⟩
begin kpse set program name (argv [0],my name); parse arguments ;
⟨ Set initial values of key variables 8 ⟩
end;

§4 POOLtype changes for C THE CHARACTER SET 103

6*. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common, so
it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital and
small letters in a convenient way, especially in a program for typesetting; so the present specification of TEX
has been written under the assumption that the Pascal compiler and run-time system permit the use of text
files with more than 64 distinguishable characters. More precisely, we assume that the character set contains
at least the letters and symbols associated with ASCII codes 4́0 through 1́76 ; all of these characters are
now available on most computer terminals.

Since we are dealing with more characters than were present in the first Pascal compilers, we have to
decide what to call the associated data type. Some Pascals use the original name char for the characters in
text files, even though there now are more than 64 such characters, while other Pascals consider char to be
a 64-element subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name text char to stand for the data type of
the characters that are converted to and from ASCII code when they are input and output. We shall also
assume that text char consists of the elements chr (first text char) through chr (last text char), inclusive.
The following definitions should be adjusted if necessary.

define text char ≡ ASCII code { the data type of characters in text files }
define first text char = 0 { ordinal number of the smallest element of text char }
define last text char = 255 { ordinal number of the largest element of text char }

⟨Local variables for initialization 6* ⟩ ≡
i: integer ;

This code is used in section 2*.

10*. The ASCII code is “standard” only to a certain extent, since many computer installations have found it
advantageous to have ready access to more than 94 printing characters. Appendix C of The TEXbook gives a
complete specification of the intended correspondence between characters and TEX’s internal representation.

If TEX is being used on a garden-variety Pascal for which only standard ASCII codes will appear in the
input and output files, it doesn’t really matter what codes are specified in xchr [0 . . 3́7], but the safest
policy is to blank everything out by using the code shown below.

However, other settings of xchr will make TEX more friendly on computers that have an extended character
set, so that users can type things like ‘≠’ instead of ‘\ne’. People with extended character sets can assign
codes arbitrarily, giving an xchr equivalent to whatever characters the users of TEX are allowed to have
in their input files. It is best to make the codes correspond to the intended interpretations as shown in
Appendix C whenever possible; but this is not necessary. For example, in countries with an alphabet of
more than 26 letters, it is usually best to map the additional letters into codes less than 4́0 . To get the
most “permissive” character set, change ´␣´ on the right of these assignment statements to chr (i).

⟨ Set initial values of key variables 8 ⟩ +≡
for i← 0 to 3́7 do xchr [i]← chr (i);
for i← 1́77 to 3́77 do xchr [i]← chr (i);

104 STRING HANDLING POOLtype changes for C §12

15*. This is the main program, where POOLtype starts and ends.

define abort (#) ≡
begin write ln (stderr , #); uexit (1);
end

begin initialize ;
⟨Make the first 256 strings 16 ⟩;
s← 256;
⟨Read the other strings from the POOL file, or give an error message and abort 19* ⟩;
write ln (´(´, count : 1, ´␣characters␣in␣all.)´); uexit (0);
end.

18*. When the WEB system program called TANGLE processes a source file, it outputs a Pascal program and
also a string pool file. The present program reads the latter file, where each string appears as a two-digit
decimal length followed by the string itself, and the information is output with its associated index number.
The strings are surrounded by double-quote marks; double-quotes in the string itself are repeated.

⟨Globals in the outer block 7 ⟩ +≡
pool file : packed file of text char ; { the string-pool file output by TANGLE }
pool name : const c string ;
xsum : boolean ; { has the check sum been found? }

19*. ⟨Read the other strings from the POOL file, or give an error message and abort 19* ⟩ ≡
xsum ← false ;
if eof (pool file) then abort (´!␣I␣can´´t␣read␣the␣POOL␣file.´);
repeat ⟨Read one string, but abort if there are problems 20* ⟩;
until xsum ;
if ¬eof (pool file) then abort (´!␣There´´s␣junk␣after␣the␣check␣sum´)

This code is used in section 15*.

20*. ⟨Read one string, but abort if there are problems 20* ⟩ ≡
if eof (pool file) then abort (´!␣POOL␣file␣contained␣no␣check␣sum´);
read (pool file ,m); read (pool file , n); { read two digits of string length }
if m ̸= ´*´ then
begin if (xord [m] < "0") ∨ (xord [m] > "9") ∨ (xord [n] < "0") ∨ (xord [n] > "9") then

abort (´!␣POOL␣line␣doesn´´t␣begin␣with␣two␣digits´);
l← xord [m] ∗ 10 + xord [n]− "0" ∗ 11; { compute the length }
write (s : 3, ´:␣"´); count ← count + l;
for k ← 1 to l do
begin if eoln (pool file) then
begin write ln (´"´); abort (´!␣That␣POOL␣line␣was␣too␣short´);
end;

read (pool file ,m); write (xchr [xord [m]]);
if xord [m] = """" then write (xchr [""""]);
end;

write ln (´"´); incr (s);
end

else xsum ← true ;
read ln (pool file)

This code is used in section 19*.

§21 POOLtype changes for C SYSTEM-DEPENDENT CHANGES 105

21*. System-dependent changes. Parse a Unix-style command line.

define argument is (#) ≡ (strcmp (long options [option index].name , #) = 0)

⟨Define parse arguments 21* ⟩ ≡
procedure parse arguments ;

const n options = 2; {Pascal won’t count array lengths for us. }
var long options : array [0 . . n options] of getopt struct ;
getopt return val : integer ; option index : c int type ; current option : 0 . . n options ;

begin ⟨Define the option table 22* ⟩;
repeat getopt return val ← getopt long only (argc , argv , ´´, long options , address of (option index));
if getopt return val = −1 then

begin do nothing ;
end

else if getopt return val = ´?´ then
begin usage (my name);
end

else if argument is (´help´) then
begin usage help(POOLTYPE HELP ,nil);
end

else if argument is (´version´) then
begin print version and exit (´This␣is␣POOLtype,␣Version␣3.0´,nil, ´D.E.␣Knuth´,nil);
end; {Else it was just a flag; getopt has already done the assignment. }

until getopt return val = −1; {Now optind is the index of first non-option on the command line. }
if (optind + 1 ̸= argc) then
begin write ln (stderr ,my name , ´:␣Need␣exactly␣one␣file␣argument.´); usage (my name);
end;

pool name ← extend filename (cmdline (optind), ´pool´);
{Try opening the file here, to avoid printing the first 256 strings if they give a bad filename. }

resetbin (pool file , pool name);
end;

This code is used in section 2*.

22*. Here are the options we allow. The first is one of the standard GNU options.

⟨Define the option table 22* ⟩ ≡
current option ← 0; long options [current option].name ← ´help´;
long options [current option].has arg ← 0; long options [current option].flag ← 0;
long options [current option].val ← 0; incr (current option);

See also sections 23* and 24*.

This code is used in section 21*.

23*. Another of the standard options.

⟨Define the option table 22* ⟩ +≡
long options [current option].name ← ´version´; long options [current option].has arg ← 0;
long options [current option].flag ← 0; long options [current option].val ← 0; incr (current option);

24*. An element with all zeros always ends the list.

⟨Define the option table 22* ⟩ +≡
long options [current option].name ← 0; long options [current option].has arg ← 0;
long options [current option].flag ← 0; long options [current option].val ← 0;

106 INDEX POOLtype changes for C §25

25*. Index. Indications of system dependencies appear here together with the section numbers where
each identifier is used.

The following sections were changed by the change file: 1, 2, 6, 10, 15, 18, 19, 20, 21, 22, 23, 24, 25.

−help : 22*.
−version : 23*.
abort : 15*, 19*, 20*.
address of : 21*.
argc : 21*.
argument is : 21*.
argv : 2*, 21*.
ASCII code: 4.
ASCII code : 5, 6*, 7.
boolean : 18*.
c int type : 21*.
carriage return : 9, 17.
char : 6*.
character set dependencies: 10*, 17.
chr : 6*, 7, 10*, 11.
cmdline : 21*.
const c string : 18*.
count : 13, 14, 15*, 16, 20*.
current option : 21*, 22*, 23*, 24*.
decr : 3.
do nothing : 3, 21*.
eof : 19*, 20*.
eoln : 20*.
extend filename : 21*.
false : 19*.
first text char : 6*, 11.
flag : 22*, 23*, 24*.
getopt : 21*.
getopt long only : 21*.
getopt return val : 21*.
getopt struct : 21*.
has arg : 22*, 23*, 24*.
i: 6*.
incr : 3, 16, 20*, 22*, 23*.
initialize : 2*, 15*.
integer : 6*, 12, 13, 21*.
invalid code : 9, 11.
k: 12.
kpse set program name : 2*.
l: 12.
last text char : 6*, 11.
lc hex : 16.
long options : 21*, 22*, 23*, 24*.
m: 12.
my name : 1*, 2*, 21*.
n: 12.
n options : 21*.
name : 21*, 22*, 23*, 24*.
null code : 9.

optind : 21*.
option index : 21*.
ord : 7.
output : 2*.
parse arguments : 2*, 21*.
pool file : 2*, 12, 18*, 19*, 20*, 21*.
pool name : 18*, 21*.
POOLtype : 2*.
POOLTYPE HELP : 21*.
print version and exit : 21*.
read : 20*.
read ln : 20*.
resetbin : 21*.
s: 12.
stderr : 15*, 21*.
strcmp : 21*.
system dependencies: 2*, 6*, 8, 10*, 17.
The TEXbook: 10*, 17.
text char : 6*, 7, 12, 18*.
true : 17, 20*.
uexit : 15*.
usage : 21*.
usage help : 21*.
val : 22*, 23*, 24*.
write : 16, 20*.
write ln : 15*, 16, 20*, 21*.
xchr : 7, 8, 10*, 11, 16, 17, 20*.
xord : 7, 11, 20*.
xsum : 18*, 19*, 20*.

POOLtype changes for C NAMES OF THE SECTIONS 107

⟨Character k cannot be printed 17 ⟩ Used in section 16.

⟨Define parse arguments 21* ⟩ Used in section 2*.

⟨Define the option table 22*, 23*, 24* ⟩ Used in section 21*.

⟨Globals in the outer block 7, 12, 13, 18* ⟩ Used in section 2*.

⟨Local variables for initialization 6* ⟩ Used in section 2*.

⟨Make the first 256 strings 16 ⟩ Used in section 15*.

⟨Read one string, but abort if there are problems 20* ⟩ Used in section 19*.

⟨Read the other strings from the POOL file, or give an error message and abort 19* ⟩ Used in section 15*.

⟨ Set initial values of key variables 8, 10*, 11, 14 ⟩ Used in section 2*.

⟨Types in the outer block 5 ⟩ Used in section 2*.

	 Introduction
	 The character set
	 String handling
	 System-dependent changes
	 Index
	Names of the sections
	Character k cannot be printed
	Define parse_arguments
	Define the option table
	Globals in the outer block
	Local variables for initialization
	Make the first 256 strings
	Read one string, but abort if there are problems
	Read the other strings from the POOL file, or give an error message and abort
	Set initial values of key variables
	Types in the outer block

