The MFT processor

(Version 2.1, January 2021)

Section
Introduction 1
The character Sett 11
Input and outpubo 19
Reporting errors to the User 29
Inserting the changes i 34
Data structures 50
Initializing the primitive tokens 63
Inputting the next token 75
Low-level output routines 86
Translation 97
The main Programttt 112
System-dependent changes 114
Index .o 115

The preparation of this report was supported in part by the National Science Founda-
tion under grants IST-8201926, MCS-8300984, and CCR-8610181, and by the System
Development Foundation. ‘TEX’ is a trademark of the American Mathematical Society.
‘METAFONT’ is a trademark of Addison-Wesley Publishing Company.

March 12, 2025 at 15:39

401

Page
402
405
408
410
412
417
420
429
432
435
440
441
442

402 INTRODUCTION MFT §1

1. Introduction. This program converts a METAFONT source file to a TEX file. It was written by D. E.
Knuth in June, 1985; a somewhat similar SAIL program had been developed in January, 1980.

The general idea is to input a file called, say, foo.mf and to produce an output file called, say, foo.tex.
The latter file, when processed by TEX, will yield a “prettyprinted” representation of the input file.

Line breaks in the input are carried over into the output; moreover, blank spaces at the beginning of a
line are converted to quads of indentation in the output. Thus, the user has full control over the indentation
and line breaks. Each line of input is translated independently of the others.

A slight change to METAFONT’s comment convention allows further control. Namely, ‘%%’ indicates that
the remainder of an input line should be copied verbatim to the output; this interrupts the translation and
forces MFT to produce a certain result.

Furthermore, ‘%%% (token;) ... (token,,)’ introduces a change in MFT’s formatting rules; all tokens after
the first will henceforth be translated according to the current conventions for (token;). The tokens must
be symbolic (i.e., not numeric or string tokens). For example, the input line

%%% addto fill draw filldraw

says that the ‘fill’, ‘draw’, and ‘filldraw’ operations of plain METAFONT should be formatted as the
primitive token ‘addto’, i.e., in boldface type. (Without such reformatting commands, MFT would treat ‘fi11’
like an ordinary tag or variable name. In fact, you need a reformatting command even to get parentheses to
act like delimiters!)

METAFONT comments, which follow a single % sign, should be valid TEX input. But METAFONT material
can be included in | ... | within a comment; this will be translated by MFT as if it were not in a comment.
For example, a phrase like ‘make |x2r| zero’ will be translated into ‘make x_{2r} zero’.

The rules just stated apply to lines that contain one, two, or three % signs in a row. Comments to MFT can
follow “%%%%’. Five or more % signs should not be used.

Beside the normal input file, MFT also looks for a change file (e.g., ‘foo.ch’), which allows substitutions
to be made in the translation. The change file follows the conventions of WEB, and it should be null if there
are no changes. (Changes usually contain verbatim instructions to compensate for the fact that MFT cannot
format everything in an optimum way.)

There’s also a third input file (e.g., ‘plain.mft’), which is input before the other two. This file normally
contains the ‘%%’ formatting commands that are necessary to tune MFT to a particular style of METAFONT
code, so it is called the style file.

The output of MFT should be accompanied by the macros in a small package called mftmac.tex.

Caveat: This program is not as “bulletproof” as the other routines produced by Stanford’s TEX project.
It takes care of a great deal of tedious formatting, but it can produce strange output, because METAFONT
is an extremely general language. Users should proofread their output carefully.

2. MFT uses a few features of the local Pascal compiler that may need to be changed in other installations:

1) Case statements have a default.
2) Input-output routines may need to be adapted for use with a particular character set and/or for printing
messages on the user’s terminal.

These features are also present in the Pascal version of TEX, where they are used in a similar (but more
complex) way. System-dependent portions of MFT can be identified by looking at the entries for ‘system
dependencies’ in the index below.

The “banner line” defined here should be changed whenever MFT is modified.

define banner = "“This is MFT, Version 2.1

83 MFT INTRODUCTION 403

3. The program begins with a fairly normal header, made up of pieces that will mostly be filled in later.
The MF input comes from files mf file, change_file, and style_file; the TEX output goes to file tez_file.

If it is necessary to abort the job because of a fatal error, the program calls the ‘jump_out’ procedure,
which goes to the label end_of MFT.

define end_of MFT =9999 {go here to wrap it up }

(Compiler directives 4)
program MFT (mf-file, change_file, style_file, tex_file);
label end_of-MFT; {go here to finish }
const (Constants in the outer block 8)
type (Types in the outer block 12)
var (Globals in the outer block 9)
(Error handling procedures 29)
procedure initialize;
var {Local variables for initialization 14)
begin (Set initial values 10)
end;

4. The Pascal compiler used to develop this system has “compiler directives” that can appear in comments
whose first character is a dollar sign. In our case these directives tell the compiler to detect things that are
out of range.
(Compiler directives 4) =

0{e&$C+, A+, D—0} {range check, catch arithmetic overflow, no debug overhead }

This code is used in section 3.

5. Labels are given symbolic names by the following definitions. We insert the label ‘exit:’ just before
the ‘end’ of a procedure in which we have used the ‘return’ statement defined below; the label ‘restart’
is occasionally used at the very beginning of a procedure; and the label ‘reswitch’ is occasionally used just
prior to a case statement in which some cases change the conditions and we wish to branch to the newly
applicable case. Loops that are set up with the loop construction defined below are commonly exited by
going to ‘done’ or to ‘found’ or to ‘not_found’, and they are sometimes repeated by going to ‘continue’.

define ezit =10 {go here to leave a procedure }

define restart =20 {go here to start a procedure again }

define reswitch =21 {go here to start a case statement again }
define continue =22 {go here to resume a loop }

define done =30 {go here to exit a loop }

define found =31 {go here when you’ve found it }

define not_found = 32 {go here when you’ve found something else }

6. Here are some macros for common programming idioms.

define incr(#) =# < #+1 {increase a variable by unity }

define decr(#) =# <+ #—1 {decrease a variable by unity }

define loop = while true do {repeat over and over until a goto happens }
define do_nothing = {empty statement }

define return = goto exit {terminate a procedure call }

format return = nil

format loop = zclause

404 INTRODUCTION MFT §7

7. We assume that case statements may include a default case that applies if no matching label is found.
Thus, we shall use constructions like

case x of

1: (code for z =1);

3: (code for z = 3);

othercases (code for z # 1 and x # 3)
endcases

since most Pascal compilers have plugged this hole in the language by incorporating some sort of default
mechanism. For example, the compiler used to develop WEB and TEX allows ‘others:” as a default label, and
other Pascals allow syntaxes like ‘else’ or ‘otherwise’ or ‘otherwise:’, etc. The definitions of othercases
and endcases should be changed to agree with local conventions. (Of course, if no default mechanism is
available, the case statements of this program must be extended by listing all remaining cases.)

define othercases = others: { default for cases not listed explicitly }

define endcases = end {follows the default case in an extended case statement }
format othercases = else

format endcases = end

8. The following parameters are set big enough to handle the Computer Modern fonts, so they should be
sufficient for most applications of MFT.

(Constants in the outer block 8) =
maz_bytes = 10000; {the number of bytes in tokens; must be less than 65536 }
maz_names = 1000; { number of tokens }
hash_size = 353; {should be prime }
buf_size = 100; { maximum length of input line }
line_length = 80; {lines of TEX output have at most this many characters, should be less than 256 }

This code is used in section 3.

9. A global variable called history will contain one of four values at the end of every run: spotless means that
no unusual messages were printed; harmless_message means that a message of possible interest was printed
but no serious errors were detected; error_message means that at least one error was found; fatal_message
means that the program terminated abnormally. The value of history does not influence the behavior of the
program; it is simply computed for the convenience of systems that might want to use such information.

define spotless =0 { history value for normal jobs }

define harmless_message =1 { history value when non-serious info was printed }

define error_message =2 { history value when an error was noted }

define fatal_message =3 { history value when we had to stop prematurely }

define mark_harmless = if history = spotless then history < harmless_message

define mark_error = history < error_message

define mark_fatal = history < fatal_message
(Globals in the outer block 9) =
history: spotless .. fatal_message; {how bad was this run? }
See also sections 15, 20, 23, 25, 27, 34, 36, 51, 53, 55, 72, 74, 75, 77, 78, and 86.

This code is used in section 3.

10. (Set initial values 10) =
history <— spotless;
See also sections 16, 17, 18, 21, 26, 54, 57, 76, 79, 88, and 90.

This code is used in section 3.

§11 MFT THE CHARACTER SET 405

11. The character set. MFT works internally with ASCII codes, like all other programs associated with
TEX and METAFONT. The present section has been lifted almost verbatim from the METAFONT program.

12. Characters of text that have been converted to METAFONT’s internal form are said to be of type
ASCII_code, which is a subrange of the integers.

(Types in the outer block 12) =
ASCII_code =0 ..255; {eight-bit numbers }
See also sections 13, 50, and 52.

This code is used in section 3.

13. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common,
so it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital
and small letters in a convenient way, especially in a program for font design; so the present specification
of MFT has been written under the assumption that the Pascal compiler and run-time system permit the
use of text files with more than 64 distinguishable characters. More precisely, we assume that the character
set contains at least the letters and symbols associated with ASCII codes 40 through “176. If additional
characters are present, MFT can be configured to work with them too.

Since we are dealing with more characters than were present in the first Pascal compilers, we have to
decide what to call the associated data type. Some Pascals use the original name char for the characters in
text files, even though there now are more than 64 such characters, while other Pascals consider char to be
a 64-element subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name tezt_char to stand for the data type of
the characters that are converted to and from ASCII_code when they are input and output. We shall also
assume that text_char consists of the elements chr(first_text_char) through chr(last_text_char), inclusive.
The following definitions should be adjusted if necessary.

define text_char = char {the data type of characters in text files }
define first_text_char =0 {ordinal number of the smallest element of text_char }
define last_text_char = 255 {ordinal number of the largest element of text_char }

(Types in the outer block 12) +=
text_file = packed file of text_char;

14. (Local variables for initialization 14) =
i 0 .. 255;
See also section 56.

This code is used in section 3.

15. The MFT processor converts between ASCII code and the user’s external character set by means of
arrays zord and zchr that are analogous to Pascal’s ord and chr functions.

(Globals in the outer block 9) +=
zord: array [text_char] of ASCIIcode; {specifies conversion of input characters }
xchr: array [ASCIL code] of text_char; {specifies conversion of output characters }

406 ~ THE CHARACTER SET MFT §16

16. Since we are assuming that our Pascal system is able to read and write the visible characters of
standard ASCII (although not necessarily using the ASCII codes to represent them), the following assignment
statements initialize most of the xchr array properly, without needing any system-dependent changes. On
the other hand, it is possible to implement MFT with less complete character sets, and in such cases it will
be necessary to change something here.

(Set initial values 10) +=

xehr[40] <= “u7; xchr[41] < V75 mchr[42] <= ~" 7 xchr[43] « “#7; xchr[44] < “$7;
xchr[45) < “h7; xchr[46] < & ; xchr[47] <« ~ 7

zchr['50] < ~ (75 xchr[51] « 7) 75 achr['52] < “*7; xchr[53] + "+7; xchr[54] + ~,7;
xchr['55] <= “=7; xchr[’56] « ~.7; xchr[57) «+ /7

xchr[’60] <= “07; xchr[61] < "17; xchr[62] < "27; zchr[63] + "37; xchr[64] < "47;
xchr[’65] <— "57; xchr[66] < 675 xchr[67] < 77,

xchr[10] <= "87; wchr["71] <= "97; xchr[72] <= ~: 7 xchr[13] « "5 xchr[74] + <7
xchr|15] <= “=7; xchr[16] + ">7; xchr[77]) + "77;

xzchr[’100] < “@~; xchr[’101] + "A”; xchr[’102] < "B"; xzchr['103] < "C~; zchr['104] + D~;
xzchr[’105] <— "E”; xchr[’106] + "F~; xzchr[107] + "G~;

xchr['110] <— "H"; xchr['111] « "I7; xchr[112] < ~J7; xchr['113] < "K~; zchr['11}] + "L~;
xchr[’115] <= "M~ xchr['116] < "N7; xzchr[117] < "07;

xchr[120] <= "P7; xchr[’121] < "Q7; xchr[’122] <= "R"; xchr['123] < "87; xchr['124] + "T~;
xzchr|'125] <+ “U”; zchr['126] + V75 xchr[127] + "W~

xchr['130] <= "X~ xchr['131] = Y75 xchr[182] < "Z7; xchr['133] < “[7; zchr['134] + "\~;
xchr['135] < “17; xchr['136] « ~~7; xchr[137] «+ ~_7;

xchr['140] <= =~ 75 wchr['141] < "a”; xchr[142] < "b"; xchr['143] < "¢ zchr['144] + "d~;
zchr['145] < “e7; xchr['146] < "£7; xchr['147]) <+ "g~;

xzchr['150] <= “h”; zchr['151] + "i7; xchr[152] + “j7; xchr['153] + "k~; zchr['154] + "17;
xzchr[’155] < "m”; xchr[’156] + "n”; xchr[157] + “o7;

xchr[’160] < "p~; xchr['161] + "q"; xchr[162] < "7 xchr['163] < "s~; zchr['164] + "t~;
xchr[’165] <— “u”; xchr[’166] < "v7; xchr[167] « "w’;

xchr['170] <= "x7; xchr['171] <= "y°; xchr[172] < "z xchr['173] <= {7 zchr['174] + ~|;
xchr[175] <= "} 75 xchr['176] < =77

17. The ASCII code is “standard” only to a certain extent, since many computer installations have found
it advantageous to have ready access to more than 94 printing characters. If MFT is being used on a garden-
variety Pascal for which only standard ASCII codes will appear in the input and output files, it doesn’t
really matter what codes are specified in zchr[0 .. “87], but the safest policy is to blank everything out by
using the code shown below.

However, other settings of zchr will make MFT more friendly on computers that have an extended character
set, so that users can type things like ‘#’ instead of ‘<>’, and so that MFT can echo the page breaks found
in its input. People with extended character sets can assign codes arbitrarily, giving an zchr equivalent to
whatever characters the users of MFT are allowed to have in their input files. Appropriate changes to MFT’s
char_class table should then be made. (Unlike TEX, each installation of METAFONT has a fixed assignment
of category codes, called the char_class.) Such changes make portability of programs more difficult, so they
should be introduced cautiously if at all.

(Set initial values 10) +=
for i < 0to 37 do xchr[i] + "u;
for i «+ 177 to 377 do xzchrli] + "7

818 MFT THE CHARACTER SET 407

18. The following system-independent code makes the zord array contain a suitable inverse to the infor-
mation in xzchr. Note that if zchr[i] = xchr[j] where i < j < “177, the value of zord[zchr[i]] will turn out
to be j or more; hence, standard ASCII code numbers will be used instead of codes below 40 in case there

is a coincidence.

(Set initial values 10) +=
for i + first_text_char to last_text_char do wxord|[chr(i)] + 177;
for i < 200 to 377 do zord[xchr[i]] + i;
for i < 1to 176 do zord[zchr[i]] < i

408 INPUT AND OUTPUT MFT §19

19. Input and output. TheI/O conventions of this program are essentially identical to those of WEAVE.
Therefore people who need to make modifications should be able to do so without too many headaches.

20. Terminal output is done by writing on file term_out, which is assumed to consist of characters of type
text_char:

define print(#) = write(term_out,#) {‘print’ means write on the terminal }
define print_ln(#) = write_In(term_out,#) {‘print’ and then start new line }
define new_line = write_In(term_out) {start new line on the terminal }

define print_nl(#) = {print information starting on a new line }
begin new_line; print(#);
end

(Globals in the outer block 9) +=
term_out: text_file; {the terminal as an output file }

21. Different systems have different ways of specifying that the output on a certain file will appear on the
user’s terminal. Here is one way to do this on the Pascal system that was used in WEAVE’s initial development:
(Set initial values 10) +=

rewrite (term_out, “TTY:); {send term_out output to the terminal }

22. The update_terminal procedure is called when we want to make sure that everything we have output
to the terminal so far has actually left the computer’s internal buffers and been sent.

define update_terminal = break (term_out) {empty the terminal output buffer }

23. The main input comes from mf file; this input may be overridden by changes in change_file. (If
change_file is empty, there are no changes.) Furthermore the style_file is input first; it is unchangeable.

(Globals in the outer block 9) +=

mf_file: text_file; { primary input }

change_file: text_file; {updates}

style_file: text_file; {formatting bootstrap }

24. The following code opens the input files. Since these files were listed in the program header, we assume
that the Pascal runtime system has already checked that suitable file names have been given; therefore no
additional error checking needs to be done.
procedure open_input; { prepare to read the inputs }

begin reset(mf_file); reset(change_file); reset(style_file);

end;

25. The main output goes to tex_file.

(Globals in the outer block 9) +=
tex_file: text_file;

26. The following code opens tex_file. Since this file was listed in the program header, we assume that the
Pascal runtime system has checked that a suitable external file name has been given.
(Set initial values 10) +=

rewrite (tez_file);

27. Input goes into an array called buffer.

(Globals in the outer block 9) +=
buffer: array [0 .. buf_size] of ASCII code;

§28 MFT INPUT AND OUTPUT 409

28. The input_In procedure brings the next line of input from the specified file into the buffer array and
returns the value true, unless the file has already been entirely read, in which case it returns false. The
conventions of TEX are followed; i.e., ASCII_code numbers representing the next line of the file are input
into buffer[0], buffer[1], ..., buffer[limit — 1]; trailing blanks are ignored; and the global variable limit is set
to the length of the line. The value of limit must be strictly less than buf size.

function input_ln(var f : text_file): boolean; {inputs a line or returns false }
var final_limit: 0 .. buf_size; { limit without trailing blanks }
begin limit < 0; final_limit < 0
if eof (f) then input_ln < false
else begin while —eoln(f) do
begin buffer[limit] < zord[f1]; get(f); incr(limit);
if buffer[limit — 1] # """ then final_limit < limit;
if limit = buf_size then
begin while —eoln(f) do get(f);
decr(limit); {keep buffer|[buf-size] empty }
if final_limit > limit then final_limit < limit;
print_nl ("' Input line too long”); loc < 0; error;
end;
end;
read_In(f); limit < final_-limit; input_ln + true;
end;
end;

410 REPORTING ERRORS TO THE USER MFT §29

9

29. Reporting errors to the user. The command ‘err_print(”! Error message”)’ will report a
syntax error to the user, by printing the error message at the beginning of a new line and then giving
an indication of where the error was spotted in the source file. Note that no period follows the error
message, since the error routine will automatically supply a period.

The actual error indications are provided by a procedure called error.

define err_print(#) =
begin new_line; print(#); error;
end
(Error handling procedures 29) =
procedure error; {prints ‘.’ and location of error message }
var k,l: 0.. buf-size; {indices into buffer }
begin (Print error location based on input buffer 30);
update_terminal; mark_error;
end;

See also section 31.

This code is used in section 3.

30. The error locations can be indicated by using the global variables loc, line, styling, and changing,
which tell respectively the first unlooked-at position in buffer, the current line number, and whether or not
the current line is from style_file or change_file or mf file. This routine should be modified on systems whose
standard text editor has special line-numbering conventions.

(Print error location based on input buffer 30) =
begin if styling then print(~ . (style file,")
else if changing then print(~.,(change file,, ") else print(~.,(");
print_in("1. 7 line : 1,7)7);
if loc > limit then [+ limit
else [< loc;
for k < 1to ! do print(xzchr|buffer[k — 1]]); { print the characters already read }
new_line;
for k + 1tol do print(","); {space out the next line}
for k < 1+ 1 to limit do print(zchr|[buffer[k — 1]]); { print the part not yet read }
end

This code is used in section 29.

31. The jump_out procedure just cuts across all active procedure levels and jumps out of the program.
This is the only non-local goto statement in MFT. It is used when no recovery from a particular error has
been provided.

Some Pascal compilers do not implement non-local goto statements. In such cases the code that appears
at label end_of MFT should be copied into the jump_out procedure, followed by a call to a system procedure
that terminates the program.

define fatal_error(#) =

begin new_line; print(#); error; mark_fatal; jump_out;
end
(Error handling procedures 29) 4+=
procedure jump_out;
begin goto end_of MFT;
end;

§32 MFT REPORTING ERRORS TO THE USER 411

32. Sometimes the program’s behavior is far different from what it should be, and MFT prints an error
message that is really for the MFT maintenance person, not the user. In such cases the program says
confusion(“indication, of jwhere we are)

define confusion(#) = fatal_error(” ' This can” "t happen (", #, ") ")

33. An overflow stop occurs if MFT’s tables aren’t large enough.

define overflow (#) = fatal_error(” ! Sorry,. ,#, "ucapacity exceeded”)

412 INSERTING THE CHANGES MFT §34

34. Inserting the changes. Let’s turn now to the low-level routine get_line that takes care of merging
change_file into mf_file. The get_line procedure also updates the line numbers for error messages. (This
routine was copied from WEAVE, but updated to include styling.)

(Globals in the outer block 9) +=

line: integer; {the number of the current line in the current file }

other_line: integer; {the number of the current line in the input file that is not currently being read }
temp_line: integer; {used when interchanging line with other_line }

limit: 0 .. buf_size; {the last character position occupied in the buffer }

loc: 0 .. buf_size; {the next character position to be read from the buffer }

input_has_ended: boolean; {if true, there is no more input }

changing: boolean; {if true, the current line is from change_file }

styling: boolean; {if true, the current line is from style_file }

35. As we change changing from true to false and back again, we must remember to swap the values of
line and other_line so that the err_print routine will be sure to report the correct line number.

define change_changing = changing < —changing; temp_line < other_line; other_line < line;
line < temp_line { line <> other_line }

36. When changing is false, the next line of change_file is kept in change_buffer[0 .. change_limit], for
purposes of comparison with the next line of mf._file. After the change file has been completely input, we set
change_limit < 0, so that no further matches will be made.

{ Globals in the outer block 9) +=
change_buffer: array [0 .. buf_size] of ASCII code;
change_limit: 0 .. buf_size; {the last position occupied in change_buffer }

37. Here’s a simple function that checks if the two buffers are different.

function lines_dont_match: boolean;
label ezit;
var k: 0 .. buf_size; {index into the buffers }
begin lines_dont_match <+ true;
if change_limit # limit then return;
if limit > 0 then
for k < 0 to limit — 1 do
if change_buffer[k] # buffer[k] then return;
lines_dont_match < false;
exit: end;

38. Procedure prime_the_change_buffer sets change_buffer in preparation for the next matching operation.
Since blank lines in the change file are not used for matching, we have (change_limit = 0) A —changing if
and only if the change file is exhausted. This procedure is called only when changing is true; hence error
messages will be reported correctly.

procedure prime_the_change_buffer;
label continue, done, exit;
var k: 0 .. buf_size; {index into the buffers }
begin change_limit < 0; {this value will be used if the change file ends }
(Skip over comment lines in the change file; return if end of file 39);
(Skip to the next nonblank line; return if end of file 40);
(Move buffer and limit to change_buffer and change_limit 41);

exit: end;

639 MFT INSERTING THE CHANGES 413

39. While looking for a line that begins with @x in the change file, we allow lines that begin with @, as
long as they don’t begin with @y or @z (which would probably indicate that the change file is fouled up).

(Skip over comment lines in the change file; return if end of file 39) =
loop begin incr(line);
if —input_In(change_file) then return;
if limit < 2 then goto continue;
if buffer[0] # "@" then goto continue;
if (buffer[1] > "X") A (buffer[1] < "2") then buffer[l] + buffer[l] + "z" —"Z"; {lowercasify }
if buffer[1] = "x" then goto done;
if (buffer[l] ="y") V (buffer[l] = "z") then
begin loc + 2; err_print(”! Where is the matching @x?");
end;
continue: end;
done:

This code is used in section 38.

40. Here we are looking at lines following the @x.

(Skip to the next nonblank line; return if end of file 40) =
repeat incr(line);
if —input_In(change_file) then
begin err_print(~! Change_ file ended after 0x"); return;
end;
until limit > 0;

This code is used in section 38.

41. (Move buffer and limit to change_buffer and change_limit 41) =
begin change_limit < limit;
if limit > 0 then
for k «+ 0 to limit — 1 do change_buffer|[k] < buffer|[k];
end

This code is used in sections 38 and 42.

414 INSERTING THE CHANGES MFT 842

42. The following procedure is used to see if the next change entry should go into effect; it is called only
when changing is false. The idea is to test whether or not the current contents of buffer matches the current
contents of change_buffer. If not, there’s nothing more to do; but if so, a change is called for: All of the
text down to the @y is supposed to match. An error message is issued if any discrepancy is found. Then the
procedure prepares to read the next line from change._file.

procedure check_change; {switches to change_file if the buffers match }
label ezit;
var n: integer; {the number of discrepancies found }
k: 0.. bufsize; {index into the buffers }
begin if lines_dont_match then return;
n < 0;
loop begin change_changing; {now it’s true }
incr(line);
if —input_In(change_file) then
begin err_print(~ ! Change file ended before Qy~); change_limit + 0; change_changing;
{ false again }
return;
end;
(If the current line starts with @y, report any discrepancies and return 43);
(Move buffer and limit to change_buffer and change_limit 41);
change_changing; {now it’s false }
incr (line);
if —input_In(mf_file) then
begin err_print(~ ! MF,file ended during a change’); inpul_has_ended < true; return;
end;
if lines_dont_match then incr(n);
end;
exit: end;

43. (If the current line starts with @y, report any discrepancies and return 43) =
if limit > 1 then
if buffer[0] = "@" then
begin if (buffer[l] > "X") A (buffer[1] < "Z") then buffer[l] - buffer[l] + "z" — "Z";
{ lowercasify }
if (buffer[1] = "x") V (buffer[l] = "z") then
begin loc + 2; err_print(~ ! Where_ is_ the matching Qy?");
end
else if buffer[l] = "y" then
begin if n > 0 then
begin loc <+ 2;
err,print(’ ' \Hmm. .., ,n:1, ’._|ofutheuprecedingulinesufai1ed_,to._|match’);
end;
return;
end;
end

This code is used in section 42.

844 MFT INSERTING THE CHANGES 415

44. Here’s what we do to get the input rolling.
(Initialize the input system 44) =
begin open_input; line < 0; other_line <+ 0;
changing < true; prime_the_change_buffer; change_changing;
styling < true; limit < 0; loc < 1; buffer[0] < ""; input_has_ended < false;
end

This code is used in section 112.

45. The get_line procedure is called when loc > limit; it puts the next line of merged input into the buffer
and updates the other variables appropriately.

procedure get_line; {inputs the next line }
label restart;
begin restart: if styling then (Read from style_file and maybe turn off styling 47);
if —styling then
begin if changing then (Read from change_file and maybe turn off changing 48);
if —changing then
begin (Read from mf_file and maybe turn on changing 46);
if changing then goto restart;
end;
end;
end;

46. (Read from mf_file and maybe turn on changing 46) =
begin incr(line);
if —input_In(mf_file) then input_has_ended < true
else if change_limit > 0 then check_change;
end

This code is used in section 45.

47. (Read from style_file and maybe turn off styling 47) =
begin incr(line);
if —input_In(style_file) then
begin styling < false; line < 0;
end;
end

This code is used in section 45.

416 INSERTING THE CHANGES MFT 848

48. (Read from change_file and maybe turn off changing 48) =
begin incr(line);
if —input_In(change_file) then
begin err_print(~ ! Change_ file ended without 0z"); buffer[0] + "@"; buffer[l] < "z"; limit « 2;
end;
if limit > 1 then {check if the change has ended }
if buffer[0] = "@" then
begin if (buffer[1l] > "X") A (buffer[1] < "Z") then buffer[l] < buffer[l] + "z" — "Z";
{ lowercasify }
if (buffer[l] = "x") V (buffer[l] = "y") then
begin loc < 2; err_print(”! Where is the matching 0z7");
end
else if buffer[l] = "z" then
begin prime_the_change_buffer; change_changing;
end;
end;
end

This code is used in section 45.

49. At the end of the program, we will tell the user if the change file had a line that didn’t match any
relevant line in mf_file.

{ Check that all changes have been read 49) =
if change_limit # 0 then { changing is false }
begin for loc < 0 to change_limit — 1 do buffer[loc] <+ change_buffer[loc];
limit < change_limit; changing < true; line < other_line; loc < change_limit;
err,print("1 Change file entry ,did not match ’);
end

This code is used in section 112.

850 MFT DATA STRUCTURES 417

50. Data structures. MFT puts token names into the large byte_mem array, which is packed with eight-
bit integers. Allocation is sequential, since names are never deleted.

An auxiliary array byte_start is used as a directory for byte_mem; the link and ilk arrays give further
information about names. These auxiliary arrays consist of sixteen-bit items.

(Types in the outer block 12) +=
eight_bits = 0 .. 255; { unsigned one-byte quantity }
sizteen_bits = 0 .. 65535; {unsigned two-byte quantity }

51. MFT has been designed to avoid the need for indices that are more than sixteen bits wide, so that it
can be used on most computers.

(Globals in the outer block 9) +=

byte_mem: packed array [0 .. maz_bytes] of ASCIL code; {characters of names }
byte_start: array [0 .. maz_names] of sixzteen_bits; {directory into byte_mem }
link: array [0 .. maz_names] of sizteen_bits; {hash table links }

ilk: array [0 .. maz_names] of sizteen_bits; {type codes}

52. The names of tokens are found by computing a hash address h and then looking at strings of
bytes signified by hash[h], link[hash[h]], link[link[hash[R]]], ..., until either finding the desired name or
encountering a zero.

A ‘name_pointer’ variable, which signifies a name, is an index into byte_start. The actual sequence of
characters in the name pointed to by p appears in positions byte_start[p] to byte_start[p + 1] — 1, inclusive,
of byte_mem.

We usually have byte_start[name_ptr] = byte_ptr, which is the starting position for the next name to be
stored in byte_mem.

define length(#) = byte_start[# + 1] — byte_start[#] {the length of a name }

(Types in the outer block 12) +=
name_pointer = 0 .. maz_names; {identifies a name }

53. (Globals in the outer block 9) +=
name_ptr: name_pointer; {first unused position in byte_start }
byte_ptr: 0 .. max_bytes; {first unused position in byte_mem }

54. (Set initial values 10) +=
byte_start[0] < 0; byte_ptr < 0; byte_start[1] < 0; {this makes name 0 of length zero }
name_ptr < 1;

55. The hash table described above is updated by the lookup procedure, which finds a given name and
returns a pointer to its index in byte_start. The token is supposed to match character by character. If it was
not already present, it is inserted into the table.

Because of the way MFT’s scanning mechanism works, it is most convenient to let lookup search for a token
that is present in the buffer array. Two other global variables specify its position in the buffer: the first
character is buffer[id_first], and the last is buffer|id_loc — 1].

{ Globals in the outer block 9) +=
id_first: 0 .. buf_size; { where the current token begins in the buffer }
id-loc: 0 .. buf_size; {just after the current token in the buffer }

hash: array [0 .. hash_size] of sizteen_bits; {heads of hash lists }

56. Initially all the hash lists are empty.

(Local variables for initialization 14) +=
h: 0 .. hash_size; {index into hash-head array }

418 DATA STRUCTURES MFT §57

57. (Set initial values 10) +=
for h < 0 to hash_size — 1 do hash[h] « 0;

58. Here now is the main procedure for finding tokens.

function lookup: name_pointer; {finds current token }
label found;
var i: 0.. bufsize; {index into buffer }
h: 0 .. hash_size; {hash code }
k: 0..maz_bytes; {index into byte_mem }
I: 0.. buf-size; {length of the given token }
p: name_pointer; { where the token is being sought }
begin | + id_loc — id_first; {compute the length }
(Compute the hash code h 59);
(Compute the name location p 60);
if p = name_ptr then (Enter a new name into the table at position p 62);
lookup < p;
end;

)

59. A simple hash code is used: If the sequence of ASCII codes is cica . .. ¢y, its hash value will be

(2" tey 42" %co 4+ - +¢,) mod hash_size.

(Compute the hash code h 59) =
h < buffer[id_first]; i < id_first + 1;
while ¢ < id_loc do
begin h < (h + h + buffer[i]) mod hash_size; incr(i);
end

This code is used in section 58.

60. If the token is new, it will be placed in position p = name_ptr, otherwise p will point to its existing
location.
{ Compute the name location p 60) =
p < hashl[h];
while p # 0 do
begin if length(p) =1 then (Compare name p with current token, goto found if equal 61);
p + link[p];
end;
p < name_ptr; {the current token is new }
link [p] < hash[h]; hash[h] < p; {insert p at beginning of hash list }
found:

This code is used in section 58.

61. (Compare name p with current token, goto found if equal 61) =
begin i < id_first; k < byte_start[pl;
while (i < id_loc) A (buffer[i] = byte_mem[k]) do
begin incr(i); incr(k);
end;
if ¢ = id_loc then goto found; {all characters agree }
end

This code is used in section 60.

862 MFT DATA STRUCTURES

62. When we begin the following segment of the program, p = name_ptr.

(Enter a new name into the table at position p 62) =
begin if byte_ptr + 1 > maz_bytes then overflow(byte memory~);
if name_ptr +1 > maz_names then overflow(name”);
i < id_first; {get ready to move the token into byte_mem }
while i < id_loc do
begin byte_mem[byte_ptr] < buffer[i]; incr(byte_ptr); incr(i);
end;
incr (name_ptr); byte_start[name_ptr] < byte_ptr; (Assign the default value to ilk[p] 63);
end

This code is used in section 58.

419

420 INITIALIZING THE PRIMITIVE TOKENS MFT 863

63. Initializing the primitive tokens. FEach token read by MFT is recognized as belonging to one of
the following “types”:

define indentation =0 {internal code for space at beginning of a line }

define end_of-line =1 {internal code for hypothetical token at end of a line }
define end_of_file =2 {internal code for hypothetical token at end of the input }
define verbatim =3 {internal code for the token ‘%%’ }

define set_format =4 {internal code for the token ‘%%% }

define mft_comment =5 {internal code for the token ‘%%%%’ }

define min_action_type = 6 {smallest code for tokens that produce “real” output }
define numeric_token =6 {internal code for tokens like ‘3.14159’ }

define string_token =7 {internal code for tokens like ‘"pie"’}

define min_symbolic_token =8 {smallest internal code for a symbolic token }
define op =8 {internal code for tokens like ‘sqrt’}

define command =9 {internal code for tokens like ‘addto’ }

define endit = 10 {internal code for tokens like ‘fi’}

define binary =11 {internal code for tokens like ‘and’}

define abinary = 12 {internal code for tokens like ‘+’ }

define bbinary = 13 {internal code for tokens like ‘step’ }

define ampersand =14 {internal code for the token ‘&’ }

define pyth_sub = 15 {internal code for the token ‘+-+’}

define as_is = 16 {internal code for tokens like ‘1’ }

define bold = 17 {internal code for tokens like ‘nullpen’}

define type_name =18 {internal code for tokens like ‘numeric’}

define path_join =19 {internal code for the token ‘.." }

define colon =20 {internal code for the token ‘:’}

define semicolon =21 {internal code for the token *;’ }

define backslash = 22 {internal code for the token ‘\’}

define double_back =23 {internal code for the token ‘\\’}

define less_or_equal = 24 {internal code for the token ‘<=’}

define greater_or_equal = 25 {internal code for the token ‘>="}

define not_equal = 26 {internal code for the token ‘<>’ }

define sharp =27 {internal code for the token ‘#’}

define comment =28 {internal code for the token ‘%’ }

define recomment =29 {internal code used to resume a comment after ‘| ... |}
define min_suffix = 30 {smallest code for symbolic tokens in suffixes }

define internal =30 {internal code for tokens like ‘pausing’ }

define input_.command =31 {internal code for tokens like ‘input’ }

define special_tag = 32 {internal code for tags that take at most one subscript }
define tag = 33 {internal code for nonprimitive tokens }

(Assign the default value to ilk[p] 63) =
ilk [p] « tag

This code is used in section 62.

§64

64.

MFT

them every time MFT is run.
A few macros permit us to do the initialization with a compact program. We use the fact that the longest
primitive is intersectiontimes, which is 17 letters long.

define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

spri17(#) = buffer[17]
spr16 (#) = buffer[16] «
sprl5 (#) = buffer[15]
spri1j (#) = buffer([14] +
spri13 (#) = buffer[13] +
spri2(#) = buffer[12] <
spril(#) = buffer[11] <
spr10(#) = buffer [10]
spr9 (#) = buffer[9] +
spr8 (#) = buffer(8] +
spr7 (#) = buffer(7] +
spré (#) = buffer[6]
sprd (#) = buffer[5] +
spr4 (#) = buffer[4] +
spr3 (#) = buffer|[3] «
spr2 (#) = buffer(2] +
sprl (#) = buffer[l] +
prl = id_first < 17;
pr2 = id_first < 16;
prd = id_first < 15;

pr4 = id_first < 14;
prd = id_first < 13;
pr6 = id_first < 12;
pr7 = id_first < 11;
pr8 = id_first < 10;

<—#

INITIALIZING THE PRIMITIVE TOKENS

cur_tok < lookup; ilk[cur_tok] +
; sprl7
; sprl6
; sprld
; sprl4
; sprld
3 spri2
; spril

spr] 0
; spr9
; sprs
3 spr7
; Spro
; Sprd
; Spr4
; spr3
; spr2

spr17
sprl6
sprlb
spri4
sprisd
spri2
spril
spr10

pr9 = id_first < 9; spr9

pri10 = id_first < 8;
pril =id_first < T;
pri2 = id_first < 6;
prl8 = id_first < 5;

prij = id_first < 4;
pris = id_first < 3;
pri6 = id_first < 2;
pr17 = id_first < 1;

sprs
spr7
spr6
sprd
spr4
sprd
spr2
sprl

421

We have to get METAFONT’s primitives into the hash table, and the simplest way to do this is to insert

§65

MFT

The intended use of the macros above might not be immediately obvious, but the riddle is answered

INITIALIZING THE PRIMITIVE TOKENS
by the following:

(Store all the primitives 65) =

422
65.

~~ ~~
]]
I I
.- .~ a a e e .-
£ £ S § & g
3 3 3 3 3 3 3
g g = = E§£ & &
g g EE &
S S lr .ll_ S O S
O Q = = NSRS} Q
~— ~— . ~— ~— ~—— ~—
- -) - - - - -
o [T o = © BT W
< .= L 2. 0 T
= —~ < g — S = -~ -~ -—X
= .. = = = = = = =
5 = rJMd g P me o o o n,m
= =¥ = 3 S o = S 3 = = = = 3
(0 ~— [\b} Q - -~ ~— S— ~— .
e =~ = ~=s = — = = = = s ~S
—~ = Q mn = n..T_ = m ~ T O Q m —~ S
Q= v = S a0 §= R = = = = 3 2, S
.- Q ~—~ = ~ O = = ~— = Q ~— S— ~ QO (w)
— —_ T — T m — N —~ —~ ~ m
d N = ~— - NN - —~ - - - - — ~— .
S N = P = = = m] = = [0) [=I] o= = — m
S Pz 2 >89 o 3= o g = = = e o = S
~ = - ~ = = = Q ~— = = ~— ~—— | ~— = = < [}
—~ 3 R L e e N N = = = s s~ L. —~ N —~
m a0 = N ‘- = = = = ™ = = Fi] - g N o = H By H .
S w= 0 3 = ®8 O MmM¥H = 5T A = = =32 2 > o = oA
Q ~— = ~ = = = = — T = = = ~— — ~— = & .= S L. = I~
— ()(\m ~ T~ 3 2~ \l/\l/m\l/(a\l/(\ — N 5
— —~ = o~ eI NN E, S Ny S = = T P L
= g = m)mn = = = a .8 = N a = O mtn S nn = nu =
- Pige] W = H O &= H H >»Hd= o g 4 = == 9= oo 3 - 30
—~~ < = = ~—= O OQ~—= = = = —o = — L O~ = 0O = = = =3
e S S = N e R I N g R
— S a\l/.7\l/| e e e T R R N e N N T = s = = /N N . — 2
< ~ S S A= A= = = - = = = = o = m.l S g O = g = = mu ~ = mu S =
g . Q P >0 PAAE Q0N PE HHA O QS 3= 5 0= Q0 0N oA QT O o~
. —_ O = .~ Q = &~ = ~= = = ~=z = = = ~=z = = QO = ~~~—~= ~= = O = o o= =
rJ7 n ~— N LTS a A D N I S N i D L N m TN TN N TN e e a S N &; n
-~ O\/.w n\l/b\/n)n A~~~ ~ ~ "~~~ ~ ~ —~ = = = ~= ST o ke
= [L| = 1 S< 3= .8 b0 = — = = = o, = = Wmen g = = = = .S = = = B
IS] L Qo w ~ R O TS H= 84 4= W O A= O B P P = Q= = P H 0 HAS PHH G
IS AN A e Y a.70.m.du10u(nun(nunu(uunu(C((l(nnunbuuu6S
~— T NN N ((().C D T N e e TN e e N TN N e e TN TN T N TN N N e N e S e -
—~ . N 9N 9 ~——_— N T~~~ ~—~ 5 ~—~—~ "~ ~—~ "~~~ —~= = —~ ~—~—~—~—~—~—~—~ g 4
- S 'S S S O - - - ~ - - - - - = =TTy s A M=)= = e e e e e . =
= o s = = = i £ S = = o O = = (ol = (V] 0, d Os= = = = = = = = e
wn o N n Q= N IV PP 03 I Adg PP K= HEdHd 0= H= = ©d= 94 OO0 g0 d@ , T
= TS Q= S xS = = = = ~—~= = = ~= = = = ~= = = = ~=z ~~= ~= = = = = = = = =
M)\ll/\l)\l)\l)\l)\ll/\l)\ll/\l)ﬂ)\l)\l)\l)\l)\l)ﬂo\ll/\l/\llld\|l/\|l/\|l/\l/|e\ll\|)\l/\l/|n\|l/|0 lr\l/IS\lll\ll/\ll/\ll/\ll/\lll\ll/\ll/uu ot
S e — - @ @ BE OOV VOO0 HHAHAE O = Wz ©WwOwpPos3o e 8 7
= = = = = = = = = = = = = = = = ~= = = ~=z =T = = ~= = =T = ~—~=z ~~—=z ~=z =z =z = =z =z =z = w 9
AN TN TN TN TN T A D AN TN TN YN N NN 0TSO N OSSN TN YA NDSSINDNO B
NN N N N N N -~~~ - R
ppe..m
D
»n B

423

INITIALIZING THE PRIMITIVE TOKENS

MFT

§66

(There are so many primitives, it’s necessary to break this long initialization code up into pieces so as

not to overflow WEAVE’s capacity.)

66.

.7
= E
E s
S g
s 2 =
=T 3 3
S S s =
o © .e
S=5 g an =
e = m m M =
IS H Q S S ~
= O Q ~= —~
S = — . — Piq =
—~ —~ —_ — ~3 i)
m = = = ~= = -~ =
S O H 2] N [=) —
O = = = 3 = = —
S N ~— ~— ~— =
N o £ o o= o
= = = = md = = s =
H T O [0) N ~ a0 3 ~—
= = = = S 3 = = o —~
— — — ~— .. e Q ~— ~— S =
—~ — = SN m - — —~— -
= = = = —~ = =~ =
o7 % 3 TE X 5 o :
= = = = 3 S > Q S = =0 -
NN, N . = O oS . ~ = It
= = = = ~ A~ ~ =SS E b
T H > - g S == &%= S === —
= = = = Q.. 3 QS H I3 P 3 = o o= —
— NN ~ O = QO = = m = ~— O O — A
—~ —~— G = g —_ N g —~—— ~ w0
= = = 'S = NS —~ m\I/ =S~ w =
PSR I Y- s 3 S m = = = 8= m O = = N R
= = = ¢g = H S 3 Q > O H 3B) g 0= 0 2 ©
— N — QO ~ = [\8) Q .. = = = 1 - Q L= = = ~—~ = T R~ [
TR Lo s S " Lo L S L
4 O © = w=="EZ="8="¢ S, S = T A= = p 3 =L
= = = = 0O H O 3 = 3 H T © & o S H S = O 8= H | "N~
~—~—~— = L — = Q = = = S = S ~— = = ~~— ~= -~ -~ I = >
A~ S~ m(\ m(\(\(\((m(\\)(\\l/(\(\)(\.a —~ ~~ g
llewa=m="S5 £= & £ n E S 353 S
- = = = = = = = = = = = = = w = =
+z 2 0§ PoodH3®aH P - SHS 0= od= A o W oA A AS
— = ~— = S = O = = = = = .. Q= O = ~—~= = —~—= o e e 8T = = O
B o ERT oy oL SR
) = & m= = = = = = = = = = = = = = = = SN = S= = = = =
=2 2 "W 3 OHPHHP HOPBSHS _000wn= 8= 0T BARA——— @
N ~— ' = O~= = = = = = = = = = = —_ = = ~= ~— = I S = = = = =
L N N N N N m o e T N e T N T O N e e e e e N
W nl HC nr —~ nr e L R T e e e e m ,m)))ﬂ/.nl. —~ = —~ M T e e e
B T2 DB HE HTOAHKHOHAT SIS NN Az 10z g0 §—— H
m ~—~—~~~—~ = = = = = = = = = =z = = = Q VU= =z = = ~=z = ~= = Q= = = = = = = =
T T T T N T O N Y e e e e e e e N e N N S N N S TN N TN N N N N S N N S S e
—~ Hr He ne 7 ,Ho R R R i R R /nu [,He R R L R S N
pn = = 4 0=z 0o0dg 8 X3 0 &4 00oddH AA+ &~ @©d= 83 O0O= OO wu un n n o
O~~~z = ~—~= = = = = = = = = = = = = = = = = ~= = ~—~= = = = = = = = = = =
il N SN N N N N T N N N N N N N N N N
S N L R T T R R R R R R T R TRy TR TR TR
= = = = O H= H O T 0O 0P 0P A OHH OO P g ™ o Nl —=-———— XN
®~~—~—= = ~—~= = = = = = = = = = = = = = = = = ~=z = ~—= = = = = = = = = = =
SN N TN O N NS0 OO NTO DO 0NN O T NS DTN TN O O
O &£ & & & £ & & £ & & & &£ & & &£ & & & K S S Y Y Y Y Y Y Y Y Y Y Y Y YR E s
mmD..ppppppppppppppppppppppppppppppppppppp
~

§67

MFT

INITIALIZING THE PRIMITIVE TOKENS

424

~~
~
3
— — —
=~ ~ ~
NS 3 3
= 8 IS IS
= = £ £
—~ s
- O —~ NS NS
=N = -
nES g S
/"\(m ~— ~—
S T —~ .= S s~
N = T = N S =5
& - S A e 03 3 3
1) = = S = =
. . = & Ex==.. =<Et.EfE.Ex
—~ — = = Lpbu = = = “/ = ,.aL.v \.[),.pbu \b/ L =
—~ g S S T §°PP2s FPsrssrssE?
o~ ~— ~— ~— o (\/I\/l\/l\m ~— — M(M((\
& o - P - WA 0SESI A0S P ESOH
! = N = 5 Ll cosglilcezlcel
0 = . = =) == L = = ===
— = — = = e) = = = = = = = = = = = =
- £ W o o w P 3 O®WS®ONZ ®WE O
g = = = = —_ 2222282222220
- o » el el z w8 0" O nEHO 0P AP
< N N N = o D
chb = = = —_= AAARAARAAARAARAARAA=A=/==
= = = = = I} = = = = = = = = = = = = =
® i nﬂ |m lV 12 = £ lu |p oo |n lm o |g i |a — n
S — — — —~— <5} NN N N N N~~~
m nV S ng nu ne ML % nl nq ua nh np ne nO na .mQ nu wb nn ne
m N g N NN HM NN NN
—~ N —~ —~ —~ P L N N N N N L NN
S .e \ph \Phﬂrm\nh)\p)a H = T ® 2 PO OUOOLOMWEOUEH OO WO M
= = = = =) = = = = = = = = = = = = =
2 = S Ll eX = == = O]
= —~ o~~~ = = e e e e = = = = = = = = = = = = = = =
- 0 = R R N R R S, o0 b0 b) b0 b b b b b0 b0 b0 b0 b0
2 = S o= DO == XXX
= = = ===X== == === o= = -~ ob = =, = == ="="="="="="%="%
T —~ = = = = ~ = g4~ —~= = = AISNH K S =B g d 8 d d d d a8 dddgd o
= = g n © O = =¥ S o= QL L P P PP QL = QL = = = = = = = = = = = = =
g = £z i X S XLz I S2==Ls A A _EEEEEEEX
mnv. = —~— A~~~ = — e e R e e A A NN I} = = = = = = = = = = = = =
Il [0} = = = — ~~= «H = = = = = = I~~~ —~-— O O = = 1l o oA A A1 H A A A e eH A A e
2+ FO EhHppr HERPEPPHHHNENRRRRRNEE 00 3 4z
.Muc ~ N T~ o A L L s oo A © B T L N D N
S e N/ i~~~/ .. AN AN AN T AN N N A = ~—~ Mm ,»,= = = = = = = = = = = = =
t%m)un)uuuua)) = = g= = = = = = = = = = = = Y4 ¥4 %%CCCCCCCCCCCCC
m w0 /l|\ w..lw ln wlll le le le “\ w.. WLII lr lg/nl\lr lr la la la la hTu lp lgﬂq MQ IO /l\“\ﬁl. .l|_ w S/"i\/"l\/"i\/ﬂ!\/"l\/"i\/"l\“\“\“\”\/ﬂi\/ﬂl\
I B N N B N NN N L n O~~~
P S o~~~ ~ T ~ T N~~~ o~~~ o~~~ 2~~~ = » = = = = = = = = = = = = =
ymrnuuunnnutnnnuurnnuuunnnuunn.lauu hﬁaaaaaaaaaaaaa
= == T O M P O B> M M= p KOO GH:= dadEe oo H XK O g ®m o= = b)o ¥ 2 = = = = = = = = = = = =
3 m ~— = = = = = = = = ~= = = = = ~=z= = = = = = = = = = = = ~~—~= = A m — e e N e e e e e S e N
R e NN I B S N e N N U T D s 4 BT
L 0 A AAAAAAAAAAAR: A AAAAAR:E: AAARARARARARARARARARAARAARARAAR=E = /=X = '§f = = = = = = = = = = = = =
yp0nnnnnnnnOnnnunﬂnnnnnnnnnnnnnh = o O H H H M H H HHHNHNNHH
=1 = U 8 4 0 0 0 ® d© = O oM g o = QLM BN OO0 HH O H = = g > e} = = = = = = = = = = = = =
a [«] ~— = = = = = = = = ~— = = = = = ~— = = = = = = = = = = = = ~— ~— = = D e e e e e N e e
+~ - e R e N e N e O R AN NN TN = AN AN AN AN AN TN TN TN NN NN - - N = - = = = s = s s s s = = =
%1nuoukuuunmaurumumtuownMucultuquuxuquuYusumumusucuucuauc mogpPPPrPPPbbbbbbEP
= = = = = = = = = = = = = = = = = = =
D a ~— = = = = = = = = ~— = = = = = ~— = = = = = = = = = = = “l— N~ ~— = = H a N N N N e e e S S N N N
~ o) S N T S N N O N N N NI NI N N g ~ o N O WO NN LY AN AN
SN N SN SI-WSE T O N O DD O OO O N N N DD ST TN TN TN YN TN YN TN TN YN TN Y T
[T T e T T e S e e T S T T O e T T S T T N O & & & &£ &£ & & & & & & & &
~(.m\bupppppppppppppppppppppppppppppppp &msbuppppppppppppp
O — © —

425

INITIALIZING THE PRIMITIVE TOKENS

MFT

§69

) +=

=

th

~

.o . e v e e
~ ~ ~ O~ o~
~ S L. [SO N
g 3§35 $33
I NS g g
il TS n TR TN e
~— (r S— N
.o —~ e~ —~ — =~
— = = X = = =
= o0 3 W s MM
g N NN NN
& —~ & —_~ —~
O = N8} - - - - -
.,W un ,W] nn ny nC nC na
- o .S oo
= o O P v o4
S < 38l 22
g = =X XX XXX
L = N D e e - W IR R = i o a0
+ +
£ = ERERE RPN A
N —~ f R g 2= P
\)W.7.7.7.7.9.7u WWWU = < —~= = ..= = =
= AN AN AN AN S SR EE A= = g 4T 0 0O =
P SITITSTTITE S 285 = A= = "S= = =
S EEEEEEDT S~ A E
.~ ~~ = ~~ ~ = =~ —~= = = = =
= = R YRR YYD = = = oM = 3 © X 60 b0 H
= T = P P 0= = g A = = = = =
m = = .m .m .m ‘m ym m ~— = = = ~— ~— = = ((.m S N
s W .a\/\}\/\/\/\/\/\}nn e e~ === na —~ = = \/nn nn ua
— ~~=z = = = = = = = N /™= = = p = = O+ =
IE I OKXKTPOEOOUK ™= IZovodg:= = dg= = d= = =
= = = = = = = = = ~~ = = = ~—— = Nz
n ~— n o N e e e N N N T n n NN N R N N NN NN N
S XN s A A=A AAAAA===_ 5 A~~~ = = ~ = = ~—~= = =
= ~ L = = = = = = = = = = = = = .
SR R i N T A A M o
.mu a.m = = = = = = = = N m m = = = /II\/II\f Mb/ll\/l\l = NN
))6)))))\'/)))] e R e N e - NN = - ~— - -
Hr = = ue ur Hr ur ur ur ur ur ur .|1 up up = = HS |W MTJ 5 HO IO |n .ul_ o |n ln
P glhbhbhbhbBhHbBhs BB BREZ P A2
R A N e DO N T R e T
NN N N N N~~~ o~~~ o~~~ —~ — = nn \/)mb na\lur nr uu
= = = = = = = = = = = = W= = = = = O = = =
g g >g 86 0 d@ 8@ @@ @d @ ©@ = QO HH 3= = O 0= = = =
= = = = = = = = = = = = N e N N NN N
= = = = = = = = = = = = @©= = = = = o = = = le)
o o@ A d4ddd4dddd= 000 d= = HH= = H= = =
.~ A
e e e R e e e R N N N I N N N =~ = = —~ = = =
= = = = = = = = = = = = MW= = = = = n yH = = o o0 = P = Q
S E T £ 0O 0O 0O OOV LV OL OO b MM B>OoO= = 0,0 = = Y4 = = =
- - - - = = = = = = = = ~— = = = = = ~— ~— = = ~— ~— = S— N
I R IS IS e I N & B N R & B N e R . Ak Sl SR S I IS S e =TI T
DT T T T T S S T T S N T T T S S S U NI NI
QR RS SSSSSSSS RS SSSRSSSRS

§70

MFT

INITIALIZING THE PRIMITIVE TOKENS

Still more.

426
70.

~~
3
5 =
2 g g
] m 3
S g
g o =
- £ = .. — -2
— m" ~— = %)
.M Ol.m o] g
S S 3 N S
g —~— g = S
S P oof o &
8 I 8 N ‘e . D
= o= _—=" —~ —~ = —~
—~r~3 = = = —~ = L L O =
=T ® ot o LB o g g g%
LS 2 3 3xEEex sl gF
£ T o= £T£&§ E-g%EFg05795 S =
\|)m10 lrub\l) 3 3 alr 3 3 alC) m) (S
< = M S g ~gH g g & I IS
g o = = = Q S 'S ~S = S S 'S S DI D S M
= O~ ..~ —= 00 30 —0 O O — v S P -~ =
—_— N —— DT T S — —_ —
NN = dl - —))a)| NN TN =)e) e
= = A nt =T = nu (e} = = QO = pu = =
H 8= 3= = w T VSTV = WDTT= O F & o O
= = = ~—~— = = 0 = = = = ~—~= = iy = = by
—~ = = =~ A~~~ A~~~ I~~~ —~
= = i) m g O = = = (1] = = n = m = = m
o P o= S = = O O T O = [O O RN - B0 © 3 H HOI
- = = — O~ ~—= = = = = ~= = = ~= = = ‘= =
= I~~~ NN SN~ NI~
Il Pi 3 A~~~ —~= = .~ A~~~ = \)\)\u/r\)\)\)e, m\)\)e,
o XS = = O0O= O O = wm = = = = =
+ <= = g P O Pz = W PP OB A Hd o XS P e S
n D (=} QO = = ~—~= —~— ~—= = = = = ~= = = ~= = = % N = =
—~ S <} [\.lN((\ll/(\ll/\ll/(NN N T N N T N | S
0 < 3 S & o —~—= —~= = A~~~ P e NN N
© I N~ PN) S I = Q O $ = = = o = ueuuuupuuu
—_~ DS~ | ! S o= 4= O ..d - +H= ®© d © O A4 9 P g H
9] >S5S 0 > &~ s > = ~— ~—~— = = = ~— = = ~—~= = = = = = =
<) e — o) Lpbu CQ —— T — T T — ™ — T TN N e
P e e S~ 3 | S | —~ —~= —~ = e, N E N T,
B~ S = = N % S + = 19 O n = 3 = = (o] = pPp= = = = = = = =
- S D D S + O S 3 < S 0 o= A= g o £ © @ 4= O O O g H O+ 8 O d A
mrrr ~ = ~ >y K = ~— ~—~— = & = = = = ~= = = ~= = = = = = = =
IR TS TR T - T N N e N N N N I i B e N S R e N N e NI
o S & wﬂ)\)\i)\l) wﬂ)w H)w \||/\||/\)Hnl\)nr O\|) p\)\l}\u/\u/nr \)\)\lu/nn TSN
PSS 8 431 gl 2 AP BE of v E o oud: nww: B3P O®O A HT
[OBRSTIRS SRS SRR~ B = = 8= 8= 8= = = ~—~= —~~—= YW= = = = ~—~= = = ~—~= = = = = = = =
i N N N N N B e e N N N N N N N N N
=+ 1 ¥ N+ + ® OVVAAIV Qa®O= = = 08 HH 0O 0 ® X P> N g n o 0,0 0P o
@ = = = = = = = = = = = = = = = = ~= ~~—'=z = = = =T = ~= = = ~—= = = = = = = =
ST TN Y T A N AN TN TN TN A A T D SISO SIS TSO>S EMNS D
O &£ & & &£ £ & & £ & & & £ & & &£ & & & f Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y S YEss
mxbuppppppppppppppppppppppppppppppppppppppp
~

427

INITIALIZING THE PRIMITIVE TOKENS

MFT

§71

“)("nt)("e")(*17)(e")("5") (bold):

M("1")("e")(command);

Piy ~~ ~~ = = ~~
~3 =] = = =
. = S g S g s g
% = 3 3 3 3 I 3
= = = = g g g EES g
m [ONEES N O S S S S L S
= 0 S = Q Q Q NSRS 3 O
o S— ~— ~— ~— ~— S— ~—
2 oo g = o o o= o RIS E o
5 TSP oF EX 23 = »E o EEeos o
S22 38 L. s .. .8 8.
m — T ~—— T~ —~T m\u/\./\lu/) m m\l)\lu/()\l)
~= = = —— = = = = = = =~ =
2 L 0T A =5, SEETP ETAEETEMESEOPLES
g Lz z BRI 8 $I1.8388I. 888l FsI
m —~ NN —~— g~ ESE~— &8 & ~ESE -8
~= = = —~— = = = =~ = A~~~ = —~ =
o = g oo == H o0 £ o Ew= EE® == 0 = &~
= T = = = o P = = Qo= Q= B0 Q= QP O= = O Q=
= = ~—~—— = = ~—— O ~— Q ~— = QO Q — Q = = ~— = Q ~—
—_ N L N — N SN T P e B SN e NI L S W N
o \l/npnm wb NS S nr up\l/np \l/nl \l/\)\l/nS \l/\l/\)nl wD\l/\l/nC i3
w0 = = = A= = = = = = = =
= O = = = S g Mo = = o = o = g a0 O = o, n = = g8 — = =
O = N— N a a = = . ~— ~— = ~— - = ~— = = = ~— = = = ~— ~— = = ~— n
o= ~—_— TN TN m m(()))())(\/((()((())(() L
el ~—~= = = m m\/\/d na ue\/ned\/ne)\/\/ns))\/nS nr \/\}ne m
<] = o~ 0 = H = = = = = = = =
2 LB §80P S PSR P AME A s s L
.Muc N T — — m\l/\l/ﬂ\\) m N~~~ ~ = w
= S~ = T~~~ = = —~= ~=T ~—~—~FT —~ —~ = = —~ = S L
"Nz P H N = = m > - = m = == = = Q = = = g o = = o, ﬂ
< + .. 4 = = HH P ®WOWmOSO= = 0= O A/ O ©®8= OH ®= = O A= m g
+~ — QL = S— N = = Q ~—— = ~ QO = ~— = = = ~— = = = ~—~— = = ~— r
BN N e NN Ve NPT B e SN D e i § U\ " QO —
W n S ~N/—= = =T N~~~ = = —~= ~—~= ~—~—~=5 —~—~—~= = —~ =)fj,\l/
@) | = = [)] |O |O = = = = = |W IW = QO = = Hﬂ = = = |m = = = |e MQ = = IS m « uo
=] n m lp lC _ o le === NN .lt /|\IO Hﬂ N lp lp IS /l|\Hn lr .lt /l|\/l|\hTU IC N & % N/
O 9o T~ A A A A A~ B2
= —~— = =T~~~ —~ = = .~ ~—~= ~—~—~ ~ —~—~= = ~ —~= T~
‘5=, =, = g 4 4= = = = = O O = 5 = = p = = = 4 = = = P © = = =] ,m < = =
() - T g8 ¥ = = g 4+ O O 0 = = o n $ = O O wm = 4 © 0= = g o = S o N ..
M m = = ~— ~—~— = = = = = ~—~— = ~— = = ~— = = = ~— = = = ~—— = = ~— > = =
B= NP L Can NI b e N e D e SN b S e e S U e m(((<%
o B = = ~—~—~—~—~= = ~=T ~—~% —~—~—~% —~ —~ —~3F = —~ —~= —~—~—~
W o, = = O U 4= = = = = o 49 = o= = «+ = = = 4 = = = X O = = 3 m = = = I
[«] A lu la /I\H(\“\ = lu = Hn = “\(n IO /HI\ I.|_ .I_l_ (n lr Ie Ie /HI\ lr Hﬂ .ll /HI\“\ IO lpn(\ w 0|/o I/o OI/o <
7 = i =Xz "= xR "= xR Elr
< +~ \l/\ll/\ll/ln "S ne \ll/\ll/\ll/\ll/\ll/ HS HS\I)Hd \II/\II/H \ll/\ll/\ll/ ne \ll/\ll/\l) He nh \ll/\ll/"n \Il/\ll/\ll/\ll/\ll/
T =2 0w o = = HOoOwmw®ww= = O= ® = BME= 0 O0OH= = H 0= T2 H
- a = = N~— N — = = = = = ~— ~— = ~— = = ~— = = = ~— = = = S— = ~— = = = = =
SN D TN N TN D DD SN TN NS Y SN T 0SS S0 N DS N N AN SN
O & &£ & £ &£ &£ & £ &£ & &£ & & & & & & & & L E D S S S S S S Y ES S s
- m\bu ST S T T e T e S T S T T e e e e e S R T
~ —

428 INITIALIZING THE PRIMITIVE TOKENS

MFT

§72

72. We also want to store a few other strings of characters that are used in MFT’s translation to TEX code.

define tir! (#) = byte_mem[byte_ptr — 1] < #; cur_tok < name_ptr; incr(name_ptr);

byte_start [name_ptr] < byte_ptr

define ttr2 (#) = byte_mem[byte_ptr — 2] < #; tirl
define ttr8 (#) = byte_mem|[byte_ptr — 3] < #; ttr2
define tir4 (#) = byte_mem[byte_ptr — 4] < #; tirs
define tir5 (#) = byte_mem[byte_ptr — 5] < #; tir4
define tr1 = incr(byte_ptr); tirl

define {r2 = byte_ptr + byte_ptr + 2; tir2

define ir3 = byte_ptr < byte_ptr + 3; ttr3

define trj = byte_ptr < byte_ptr + 4; tir4

define tr5 = byte_ptr < byte_ptr + 5; tird

(Globals in the outer block 9) +=
translation: array [ASCII_code] of name_pointer;
i: ASCII_code; {index into translation }

73. (Store all the translations 73) =
for i < 0 to 255 do translation[i] < 0;

tr2 ("\")("$"); translation["$"] < cur_tok;

tr2 ("\")("#"); translation["#"] < cur_tok;

tr2 ("\")("&"); translation["&"] < cur_tok;

tr2("\")("{"); translation["{"] + cur_tok;

tr2("\")("}"); translation["}"] < cur_tok;

tr2 ("\")("_"); translation["_"] + cur_tok;

tr2 ("\")("%"); translation["%"] < cur_tok;

trd ("\")("B")("S")(""); translation["\"] < cur_tok;

tr4 ("\")("H")("A")(","); translation["""] < cur_tok;

trd ("\")("T")("I")("L"); translation["~"] < cur_tok;

t,,,5(u\n)(nan)(usn)(utn)(n 11)7 tmnslatzon["*"] — cur,tok;

trd ("\")("AM)("M")("L"); tr_amp < cur_tok;

trd ("\")("B")("L")(","); tr_skip < cuntok,

trd ("\")("S")("H")("L"); tr_sharp < cur-tok;

tr4 ("\")("P")("S")("L"); tr_ps « cur_tok;

t’l"4 (u\n)(nln)(nen)(uun); tr,le — cuntok;

trf ("\")("g")("e")("L"); tr_ge + cur_tok;

trd ("\")("n")("e")(","); tr_ne + cur_tok;

tr5 ("\")("q")("u")("a")("d"); tr-quad < cur_tok;
This code is used in section 112.

74. (Globals in the outer block 9) +=

tr_le, tr_ge, trne, troamp, tr_sharp, tr_skip, tr_ps, tr_quad: name_pointer; {special translations }

875 MFT INPUTTING THE NEXT TOKEN 429

75. Inputting the next token. MFT’s lexical scanning routine is called get_next. This procedure inputs
the next token of METAFONT input and puts its encoded meaning into two global variables, cur_type and
cur_tok.

(Globals in the outer block 9) +=

cur_type: eight_bits; {type of token just scanned }
cur_tok: integer; {hash table or buffer location }
prev_type: eight_bits; {previous value of cur_type }
prev_tok: integer; {previous value of cur_tok }

76. (Set initial values 10) +=
cur_type < end_of_line; cur_tok < 0;

77. Two global state variables affect the behavior of get_next: A space will be considered significant when
start_of_line is true, and the buffer will be considered devoid of information when empty_buffer is true.

(Globals in the outer block 9) +=
start_of-line: boolean; {has the current line had nothing but spaces so far? }
empty_buffer: boolean; {is it time to input a new line? }

78. The 256 ASCII_code characters are grouped into classes by means of the char_class table. Individual
class numbers have no semantic or syntactic significance, expect in a few instances defined here. There’s
also maz_class, which can be used as a basis for additional class numbers in nonstandard extensions of
METAFONT.

define digit_class =0 {the class number of 0123456789 }

define period_class =1 {the class number of *.” }

define space_class =2 {the class number of spaces and nonstandard characters }
define percent_class =3 {the class number of ‘%’ }

define string_class =4 {the class number of ‘"’ }

define right_paren_class =8 {the class number of ‘)’ }

define isolated_classes = 5,6,7,8 {characters that make length-one tokens only }
define letter_class =9 {letters and the underline character }

define left_bracket_class =17 {‘[’}

define right_bracket_class =18 {1}

define invalid_class =20 {bad character in the input }

define end_line_class =21 {end of an input line (MFT only) }

define maz_class =21 {the largest class number }

(Globals in the outer block 9) +=
char_class: array [ASCII_code] of 0..max_class; {the class numbers }

430 INPUTTING THE NEXT TOKEN MFT 879

79. If changes are made to accommodate non-ASCII character sets, they should be essentially the same in
MFT as in METAFONT. However, MFT has an additional class number, the end_line_class, which is used only
for the special character carriage_return that is placed at the end of the input buffer.

define carriage_return = ‘15 {special code placed in buffer[limit] }

(Set initial values 10) +=
for i + "0" to "9" do char_class[i] + digit_class;

char_class["."] < period_class; char_class[","] + space_class; char_class["%"] < percent_class;
char_class[""""] « string_class;
char_class[","] < 5; char_class[";"] <— 6; char_class[" ("] <= 7; char_class[")"] < right_paren_class;

for i < "A" to "Z" do char_class[i] + letter_class;
for i + "a" to "z" do char_class[i] + letter_class;

char_class["_"] + letter_class;

char_class["<"] < 10; char_class["="] < 10; char_class[">"] < 10; char_class[":"] + 10;
char_class[" | "] < 10;

char_class|"™"| < 11; char_class|" "] < 11;

char_class|"+"| < 12; char_class|"-"] < 12;

/ + 13; char_class["\"] + 13;
char_class|["!"
char_class["#"] < 15; char_class["&"] + 15; char_class["@"] + 15; char_class["$"] < 15;

]
]
]
« 14; char_class["?"] « 14;
]
]

char_class[" "] < 16; char_class["~"] < 16;

char_class[" ["] + left_bracket_class; char_class["]1"] < right_bracket_class;
char_class["{"] + 19; char_class["}"] + 19;

for i < 0to """ —1 do char_class[i] « invalid_class;
char_class[carriage_return] < end_line_class;

for i < 127 to 255 do char_class[i] < zm}alzd class;

["<"]
" 1]
["="] [
["+"] [
char_class["/"] + 13; char_class["*"
[1] [
["#"] [
["~"]
"]

80. And now we'’re ready to take the plunge into get_next itself.

define switch =25 {a label in get_next }
define pass_digits = 85 { another }
define pass_fraction = 86 { and still another, although goto is considered harmful }

procedure get_next; {sets cur_type and cur_tok to next token }

label switch, pass_digits, pass_fraction, done, found, exit;

var ¢: ASCII_code; {the current character in the buffer }

class: ASCII_code; {its class number }

begin prev_type < cur_type; prev_tok < cur_tok;

if empty_buffer then (Bring in a new line of input; return if the file has ended 85);
switch: ¢ < buffer[loc]; id_first < loc; incr(loc); class < char_class|c]; { Branch on the class, scan the

token; return directly if the token is special, or goto found if it needs to be looked up 81);

found: id_loc + loc; cur_tok < lookup; cur_type < ilk[cur_tok];
erit: end;

881 MFT INPUTTING THE NEXT TOKEN 431

81. define emit(#) = begin cur_type < #; cur_tok < id_first; return; end

(Branch on the class, scan the token; return directly if the token is special, or goto found if it needs to
be looked up 81) =

case class of

digit_class: goto pass_digits;

period_class: begin class < char_class[buffer[loc]];
if class > period_class then goto switch {ignore isolated ‘.’ }
else if class < period_class then goto pass_fraction; { class = digit_class }
end;

space_class: if start_of_line then emit(indentation)
else goto switch;

end_line_class: emit(end_of line);

string_class: { Get a string token and return 82);

isolated_classes: goto found;

invalid_class: (Decry the invalid character and goto switch 84);

othercases do_nothing {letters, etc. }

endcases;
while char_class|[buffer[loc]] = class do incr(loc);
goto found;
pass_digits: while char_class[buffer[loc]] = digit_class do incr(loc);

if buffer[loc] # "." then goto done;
if char_class[buffer[loc + 1]] # digit_class then goto done;
incr (loc);
pass_fraction: repeat incr(loc);
until char_class[buffer[loc]] # digit_class;
done: emit(numeric_token)
This code is used in section 80.

82. (Get a string token and return 82) =

loop begin if buffer[loc] ="""" then
begin incr(loc); emit(string_token);
end;
if loc = limit then (Decry the missing string delimiter and goto switch 83);
incr(loc);
end

This code is used in section 81.

83. (Decry the missing string delimiter and goto switch 83) =
begin err_print(~!,Incomplete string ,will be ignored”); goto swilch;
end

This code is used in section 82.

84. (Decry the invalid character and goto switch 84) =
begin err_print(”~!,Invalid character will be ignored”); goto swilch;
end

This code is used in section 81.

85. (DBring in a new line of input; return if the file has ended 85) =
begin get_line;
if input_has_ended then emit(end_of-file);
buffer[limit] < carriage_return; loc < 0; start_of-line « true; empty_buffer + false;
end

This code is used in section 80.

432 LOW-LEVEL OUTPUT ROUTINES MFT 886

86. Low-level output routines. The TEX output is supposed to appear in lines at most line_length
characters long, so we place it into an output buffer. During the output process, out_line will hold the
current line number of the line about to be output.

(Globals in the outer block 9) +=

out_buf: array [0 .. line_length] of ASCII_code; {assembled characters }
out_ptr: 0 .. line_length; {number of characters in out_buf }

out_line: integer; {coordinates of next line to be output }

87. The flush_buffer routine empties the buffer up to a given breakpoint, and moves any remaining
characters to the beginning of the next line. If the per_cent parameter is true, a "%" is appended to
the line that is being output; in this case the breakpoint b should be strictly less than line_length. If the
per_cent parameter is false, trailing blanks are suppressed. The characters emptied from the buffer form a
new line of output.

procedure flush_buffer (b : eight_bits; per_cent : boolean); {outputs out_buf[l .. b], where b < out_ptr }
label done;
var j,k: 0 .. line_length;
begin j < b;
if —per_cent then {remove trailing blanks }
loop begin if j =0 then goto done;
if out_buf[j] # "u" then goto done;
decr ()
end;
done: for k <+ 1to j do write(tex_file, xchrout_buf [k]]);
if per_cent then write(tex_file, zchr["%"]);
write_In (tex_file); incr(out_line);
if b < out_ptr then
for k + b+ 1 to out_ptr do out_buf [k — b] + out_buf [k];
out_ptr < out_ptr — b;
end;
88. MFT calls flush_buffer(out_ptr, false) before it has input anything. We initialize the output variables
so that the first line of the output file will be ‘\input mftmac’.

(Set initial values 10) +=
out_ptr < 1; out_buf[1] < "u"; out.line < 1; write(tex_file, "\input, mftmac ");

89. When we wish to append the character ¢ to the output buffer, we write ‘out(c)’; this will cause the
buffer to be emptied if it was already full. Similarly, ‘out2(c1)(c2)’ appends a pair of characters. A line
break will occur at a space or after a single-nonletter TEX control sequence.

define oot (#) =
if out_ptr = line_length then break_out;
incr (out_ptr); out_buf [out_ptr] < #;

define oot! (#) = oot (#) end

define o00t2 (#) = oot (#) oot!

define oot3 (#) = oot (#) oot2

define oot/ (#) = oot (#) oot3

define oot5 (#) = oot (#) oot/

define out = begin ootl

define out2 = begin o00t2

define out3 = begin o0t3

define out/ = begin oot}

define out5 = begin oot5

#
#

890 MFT LOW-LEVEL OUTPUT ROUTINES 433

90. The break_out routine is called just before the output buffer is about to overflow. To make this routine
a little faster, we initialize position 0 of the output buffer to ‘\’; this character isn’t really output.

(Set initial values 10) +=
out_buf [0] < "\";

91. A long line is broken at a blank space or just before a backslash that isn’t preceded by another
backslash. In the latter case, a "%" is output at the break. (This policy has a known bug, in the rare
situation that the backslash was in a string constant that’s being output “verbatim.”)

procedure break_out; {finds a way to break the output line }
label exit;
var k: 0 .. line_length; {index into out_buf }
d: ASCII code; { character from the buffer }
begin k + out_ptr;
loop begin if k¥ =0 then (Print warning message, break the line, return 92);
d < out_buf [k];
if d ="_" then
begin flush_buffer (k, false); return;
end;
if (d="\")A (outbuf[k — 1] # "\") then {in this case k > 1}
begin flush_buffer (k — 1, true); return,;
end;
decr (k);
end;
erit: end;

92. We get to this module only in unusual cases that the entire output line consists of a string of backslashes
followed by a string of nonblank non-backslashes. In such cases it is almost always safe to break the line by
putting a "%" just before the last character.
(Print warning message, break the line, return 92) =

begin print_nl(" ! Line_had jto_ be broken (output, l. ", out_line : 1); println("):");

for k < 1 to out_ptr — 1 do print (zchrout_buf [k]]);

new_line; mark_harmless; flush_buffer (out_ptr — 1, true); return;

end

This code is used in section 91.

93. To output a string of bytes from byte_mem, we call out_str.
procedure out_str(p : name_pointer); {outputs a string }
var k: 0 .. max_bytes; {index into byte_mem }
begin for k < byte_start[p] to byte_start[p+ 1] — 1 do out (byte_mem|k]);
end;

434 LOW-LEVEL OUTPUT ROUTINES MFT 894

94. The out_name subroutine is used to output a symbolic token. Unusual characters are translated into
forms that won’t screw up.

procedure out_name(p : name_pointer); {outputs a name }
var k: 0 .. maz_bytes; {index into byte_mem }
t: name_pointer; {translation of character being output, if any }
begin for k < byte_start[p] to byte_start[p+ 1] — 1 do
begin t < translation [byte_mem|[k]];
if t =0 then out(byte_memlk])
else out_str(t);
end;
end;

b

95. We often want to output a name after calling a numeric macro (e.g., ‘\1{foo}’).

procedure out_mac_and_name(n : ASCII_code; p : name_pointer);
begin out("\"); out(n);
if length(p) = 1 then out_name(p)
else begin out("{"); out_name(p); out("}");
end;
end;

k)

96. Here’s a routine that simply copies from the input buffer to the output buffer.
procedure copy/(first_loc : integer); {output buffer|first_loc .. loc — 1]}

var k: 0 .. buf_size; { buffer location being copied }

begin for k < first_loc to loc — 1 do out(buffer|k]);

end;

897 MFT TRANSLATION 435

97. Translation. The main work of MFT is accomplished by a routine that translates the tokens, one by
one, with a limited amount of lookahead/lookbehind. Automata theorists might loosely call this a “finite
state transducer,” because the flow of control is comparatively simple.

procedure do_the_translation;

label restart, reswitch, done, exit;

var k: 0 .. buf size; {looks ahead in the buffer }
t: integer; {type that spreads to new tokens }

begin restart: if out_ptr > 0 then flush_buffer (out_ptr, false);

empty_buffer < true;

loop begin get_next;
if start_of-line then (Do special actions at the start of a line 98);

reswitch: case cur_type of
numeric_token: (Translate a numeric token or a fraction 105);
string_token: (Translate a string token 99);
indentation: out_str(tr_quad);
end_of_line, mft_comment: (Wind up a line of translation and goto restart, or finish a | ... | segment

and goto reswitch 110);
end_of-file: return;
(Cases that translate primitive tokens 100)
comment, recomment: (Translate a comment and goto restart, unless there’s a | ... | segment 108);
verbatim: (Copy the rest of the current input line to the output, then goto restart 109);
set_format: (Change the translation format of tokens, and goto restart or reswitch 111);
internal, special_tag, tag: (Translate a tag and possible subscript 106);
end; {all cases have been listed }
end;
erit: end;

98. (Do special actions at the start of a line 98) =
if cur_type > min_action_type then
begin out("$"); start_of-line + false;
case cur_type of
endit: out2("\")("1");
binary, abinary, bbinary, ampersand , pyth_sub: out2 ("{")("}");
othercases do_nothing
endcases;
end
else if cur_type = end_of_line then
begin out_str(tr_skip); goto restart;
end
else if cur_type = mft_comment then goto restart

This code is used in section 97.

99. Let’s start with some of the easier translations, so that the harder ones will also be easy when we get
to them. A string like "cat" comes out ‘\7"cat"’.
(Translate a string token 99) =

begin out2 ("\")("7"); copy(cur_tok);

end

This code is used in section 97.

436 TRANSLATION MFT §100

100. Similarly, the translation of ‘sqrt’ is ‘\1{sqrt}’.

(Cases that translate primitive tokens 100) =
op: out-mac_and_name("1", cur_tok);
command: out-mac_and_name("2", cur_tok);
type_name: if prev_type = command then out_mac_and_name("1", cur_tok)
else out_mac_and_name("2", cur_tok);
endit: out_mac_and_name("3", cur_tok);
bbinary: out-mac-and_name("4", cur_tok);
bold: out_mac_and_name("5", cur_tok);
binary: out-mac_and_name("6", cur_tok);
path_join: out_mac_and_name("8", cur_tok);
colon: out_mac_and_name("?", cur_tok);
See also sections 101, 102, and 103.

This code is used in section 97.

101. Here are a few more easy cases.

(Cases that translate primitive tokens 100) +=
as-is, sharp, abinary: out_name (cur_tok);
double_back: out2("\")(";");
semicolon: begin out_name(cur_tok); get_next;
if cur_type # end_of_line then
if cur_type # endit then out2("\")(",");
goto reswitch;
end;

102. Some of the primitives have a fixed output (independent of cur_tok):

(Cases that translate primitive tokens 100) +=
backslash: out_str (translation["\"]);

pyth_sub: out_str(tr_ps);

less_or_equal: out_str(tr_le);

greater_or_equal: out_str(tr_ge);

not_equal: out_str(tr_ne);

ampersand: out_str(tr_amp);

103. The remaining primitive is slightly special.

(Cases that translate primitive tokens 100) +=

input_command: begin out_mac_and_name("2", cur_tok); out5 ("\")("h")("b")("o")("x");
(Scan the file name and output it in typewriter type 104);
end;

§104 MFT TRANSLATION 437

104. File names have different formats on different computers, so we don’t scan them with get_next. Here
we use a rule that probably covers most cases satisfactorily: We ignore leading blanks, then consider the file
name to consist of all subsequent characters up to the first blank, semicolon, comment, or end-of-line. (A
carriage_return appears at the end of the line.)

(Scan the file name and output it in typewriter type 104) =
while buffer[loc] = "," do incr(loc);
out3 (+{) ("N (") (15 (1)
while (buffer[loc] # ",") A (buffer[loc] # "%") A (buffer[loc] # ";") A (loc < limit) do
begin out (buffer|loc]); incr(loc);
end;
out("}")

This code is used in section 103.

105. (Translate a numeric token or a fraction 105) =
if buffer[loc] = "/" then
if char_class|buffer[loc + 1]] = digit_class then {it’s a fraction }
begin out5 ("\")("£")("r")("a")("c"); copy(cur_tok); get_next; out2("/")("{"); get_next;
copy (cur_tok); out("}");
end
else copy(cur-tok)
else copy (cur_tok)

This code is used in section 97.

106. (Translate a tag and possible subscript 106) =

begin if length(cur_tok) = 1 then out-name (cur_tok)

else out_-mac_and_name("\", cur_tok);

get_next;

if byte_mem[byte_start[prev_tok]] = """ then goto reswitch;

case prev_type of

internal: begin if (cur_type = numeric_token) V (cur_type > min_suffiz) then out2("\")(",");
goto reswitch;
end;

special_tag: if cur_type < min_suffiz then goto reswitch
else begin out("."); cur_type < internal; goto reswitch;

end;
tag: begin if cur_type = tag then
if byte_mem|[byte_start[cur_tok]] = """ then goto reswitch;

{a sequence of primes goes on the main line }
if (cur_type = numeric_token) V (cur_type > min_suffiz) then (Translate a subscript 107)
else if cur_type = sharp then out_str(tr_sharp)
else goto reswitch;
end;
end; {there are no other cases }
end

This code is used in section 97.

438 TRANSLATION MFT §107

107. (Translate a subscript 107) =
begin out2("_")("{");
loop begin if cur_type > min_suffiz then out_name(cur_tok)
else copy (cur_tok);
if prev_type = special_tag then
begin get_next; goto done;
end;
get_next;
if cur_type < min_suffiz then
if cur_type # numeric_token then goto done;
if cur_type = prev_type then
if cur_type = numeric_token then out2("\")(",")
else if char_class[byte_mem[byte_start[cur_tok]]] = char_class[byte_mem [byte_start [prev_tok]]] then
if byte_mem[byte_start[prev_tok]] # "." then out(".")
else out2("\")(",");
end;
done: out("}"); goto reswitch;
end

This code is used in section 106.

108. The tricky thing about comments is that they might contain | ... |. We scan ahead for this, and
replace the second ‘|’ by a carriage_return.

(Translate a comment and goto restart, unless there’s a | ... | segment 108) =
begin if cur_type = comment then out2("\")("9");
id_first + loc;
while (loc < limit) A (buffer[loc] # "1") do incr(loc);
copy (id_first);
if loc < limit then
begin start_of line < true; incr(loc); k < loc;
while (k < limit) A (buffer[k] # "1") do incr(k);
buffer[k] < carriage_return;
end

else begin if out_buf [out_ptr] = "\" then out("");
out/ ("\")("p")("a")("r"); goto restart;
end;

end

This code is used in section 97.

109. (Copy the rest of the current input line to the output, then goto restart 109) =
begin id_first + loc; loc < limit; copy (id_first);
if out_ptr =0 then
begin out_ptr + 1; out_buf[1] + "";
end;
goto restart;
end

This code is used in section 97.

§110 MFT TRANSLATION 439

110. (Wind up a line of translation and goto restart, or finish a | ... | segment and goto reswitch 110) =
begin out("$");
if (loc < limit) A (cur_type = end_of-line) then
begin cur_type < recomment; goto reswitch;
end
else begin out/ ("\")("p")("a")("r"); goto restart;
end;
end

This code is used in section 97.

111. (Change the translation format of tokens, and goto restart or reswitch 111) =
begin start_of-line < false; get_next; t < cur_type;
while cur_type > min_symbolic_token do
begin get_next;
if cur_type > min_symbolic_token then ilk[cur_tok] + t;
end;
if cur_type # end_of-line then
if cur_type # mft_comment then
begin err_print(~!,0nly_symbolic tokens should appear after %%%"); goto reswitch;
end;
empty_buffer < true; goto restart;
end

This code is used in section 97.

440 THE MAIN PROGRAM MFT 8112

112. The main program. Let’s put it all together now: MFT starts and ends here.
begin initialize; {beginning of the main program }
print_In(banner); {print a “banner line” }
(Store all the primitives 65);
(Store all the translations 73);
(Initialize the input system 44);
do_the_translation; (Check that all changes have been read 49);
end_of MFT: {here files should be closed if the operating system requires it }
(Print the job history 113);
end.

113. Some implementations may wish to pass the history value to the operating system so that it can be
used to govern whether or not other programs are started. Here we simply report the history to the user.
(Print the job history 113) =

case history of

spotless: print_nl(~ (No errors were_ found.) 7);

harmless-message: print_nl(~ (Did_you, see the_ warning message above?) *);

error_message: pm’nt,nl(" (Pardon, me ,._,but._,IL,thinkuI._,spottedusomethinguwrong.) ’);

fatal_message: print_nl(” (That was_a,fatal error, my_friend.));

end {there are no other cases }

This code is used in section 112.

§114 MFT SYSTEM-DEPENDENT CHANGES 441

114. System-dependent changes. This module should be replaced, if necessary, by changes to the
program that are necessary to make MFT work at a particular installation. It is usually best to design your
change file so that all changes to previous modules preserve the module numbering; then everybody’s version
will be consistent with the printed program. More extensive changes, which introduce new modules, can be
inserted here; then only the index itself will get a new module number.

442 INDEX

115. Index.

\!: O8.

\,: 106, 107.
\;: 101.

\7: 100.

\\: 106.

\ : 101.

\AM, etc: T73.
\frac: 105.

\input mftmac: 88.
\par: 108, 110.

\1: 100.
\2: 100.
\3: 100.
\4: 100.
\5: 100.
\6: 100.
\7: 99.
\8: 100.
\9: 108.
{3: 98

abinary: 63, 70, 98, 101.

ampersand: 63, 70, 98, 102.

as_is: 63, 65, 66, 70, 101.

ASCII code: 11.

ASCII code: 12, 13, 15, 27, 28, 36, 51, 72, 78,
80, 86, 91, 95.

b: 87.

backslash: 63, 65, 102.

banner: 2, 112.

bbinary: 63, 65, 98, 100.

binary: 63, 66, 70, 98, 100.

bold: 63, 66, 71, 100.

boolean: 28, 34, 37, 77, 87.

break: 22.

break_out: 89, 90, 91.

buf_size: 8, 27, 28, 29, 34, 36, 37, 38, 42, 55,
58, 96, 97.

buffer: 27, 28, 29, 30, 37, 39, 41, 42, 43, 44,
48, 49, 55, 58, 59, 61, 62, 64, 79, 80, 81, 82,
85, 96, 104, 105, 108.

bytemem: 50, 51, 52, 53, 58, 61, 62, 72, 93,
94, 106, 107.

byte_ptr: 52, 53, 54, 62, 72.

byte_start: 50, 51, 52, 53, 54, 55, 61, 62, 72,
93, 94, 106, 107.

c: 80.

carriage_return: 79, 85, 104, 108.

Change file ended...: 40, 42, 48.

Change file entry did not match: 49.

change_buffer: 36, 37, 38, 41, 42, 49.

change_changing: 35, 42, 44, 48.

MFT §115

change_file: 3, 23, 24, 30, 34, 36, 39, 40, 42, 48.

change_limit: 36, 37, 38, 41, 42, 46, 49.

changing: 30, 34, 35, 36, 38, 42, 44, 45, 49.

char: 13.

char_class: 17, 78, 79, 80, 81, 105, 107.

character set dependencies: 17, 79.

check_change: 42, 46.

chr: 13, 15, 18.

class: 80, 81.

colon: 63, 65, 100.

command: 63, 65, 66, 70, 71, 100.

comment: 63, 71, 97, 108.

confusion: 32.

continue: 5, 38, 39.

copy: 96, 99, 105, 107, 108, 109.

cur_tok: 64, 72, 73, 75, 76, 80, 81, 99, 100, 101,
102, 103, 105, 106, 107, 111.

cur_type: 75, 76, 80, 81, 97, 98, 101, 106, 107,
108, 110, 111.

d: 91.

decr: 6, 28, 87, 91.

digit_class: 78, 79, 81, 105.

do_nothing: 6, 81, 98.

do_the_translation: 97, 112.

done: 5, 38, 39, 80, 81, 87, 97, 107.

double_back: 63, 65, 101.

eight_bits: 50, 75, 87.

else: 7.

emit: 81, 82, 85.

empty_buffer: 77, 80, 85, 97, 111.

end: 7.

end_line_class: 78, 79, 81.

end_of_file: 63, 85, 97.

end_of_line: 63, 76, 81, 97, 98, 101, 110, 111.

end_of MFT: 3, 31, 112.

endcases: 7.

endit: 63, 65, 66, 71, 98, 100, 101.

eof: 28.

eoln: 28.

err_print: 29, 35, 39, 40, 42, 43, 48, 49, 83, 84, 111.

error: 28, 29, 31.

error-message: 9, 113.

exit: 5, 6, 37, 38, 42, 80, 91, 97.

f: 28.

false: 28, 35, 36, 37, 42, 44, 47, 85, 87, 88,
91, 97, 98, 111.

fatal_error: 31, 32, 33.

fatal_message: 9, 113.

final_limit: 28.

first_loc: 96.

first_text_char: 13, 18.

8115 MFT

flush_buffer: 87, 88, 91, 92, 97.

found: 5, 58, 60, 61, 80, 81.

get: 28.

get_line: 34, 45, 85.

get_next: 75, 77, 80, 97, 101, 104, 105, 106,

107, 111.
greater_or_equal: 63, 70, 102.
h: 56, 58.

harmless_message: 9, 113.

hash: 52, 55, 57, 60.

hash_size: 8, 55, 56, 57, 58, 59.

history: 9, 10, 113.

Hmm... n of the preceding...: 43.

ir 14, 58, 72.

id_first: 55, 58, 59, 61, 62, 64, 80, 81, 108, 109.

id_loc: 55, 58, 59, 61, 62, 65, 80.

ilk: 50, 51, 63, 64, 80, 111.

Incomplete string...: 83.

incr: 6, 28, 39, 40, 42, 46, 47, 48, 59, 61, 62, 72,
80, 81, 82, 87, 89, 104, 108.

indentation: 63, 81, 97.

initialize: 3, 112.

Input line too long: 28.

input_command: 63, 66, 103.

input_has_ended: 34, 42, 44, 46, 85.

imputln: 28, 39, 40, 42, 46, 47, 48.

integer: 34, 42, 75, 86, 96, 97.

internal: 63, 68, 69, 97, 106.

Invalid character...: 84.

invalid_class: 78, 79, 81.

isolated_classes: 78, 81.

j: 87.

Jump_out: 3, 31.

k: Ea ﬂa @7 Qa @a &a 9717 %7 %; %7 ﬂ

Knuth, Donald Ervin: 1.

l: 29, 58.

last_text_char: 13, 18.

left_bracket_class: 78, 79.

length: 52, 60, 95, 106.

less_or_equal: 63, 70, 102.

letter_class: 78, 79.

limit: 28, 30, 34, 37, 39, 40, 41, 43, 44, 45, 48,
49, 79, 82, 85, 104, 108, 109, 110.

line: 30, 34, 35, 39, 40, 42, 44, 46, 47, 48, 49.

Line had to be broken: 92.

line_length: 8, 86, 87, 89, 91.

lines_dont_match: 37, 42.

link: 50, 51, 52, 60.

loc: 28, 30, 34, 39, 43, 44, 45, 48, 49, 80, 81, 82,
85, 96, 104, 105, 108, 109, 110.

lookup: 55, 58, 64, 80.

loop: 6.

INDEX 443

mark_error: 9, 29.

mark_fatal: 9, 31.

mark_harmless: 9, 92.

maz_bytes: 8, 51, 53, 58, 62, 93, 94.

mazx_class: T78.

maz_names: 8, b1, 52, 62.

MF file ended...: 42.

mf file: 3, 23, 24, 30, 34, 36, 42, 46, 49.

MFT: 3.

mft_comment: 63, 71, 97, 98, 111.

mftmac: 1, 88.

min_action_type: 63, 98.

min_suffiz: 63, 106, 107.

min_symbolic_token: 63, 111.

n: 42, 95.

name_pointer: 52, 53, 58, 72, 74, 93, 94, 95.

name_ptr: 52, 53, 54, 58, 60, 62, 72.

new_line: 20, 29, 30, 31, 92.

nil: 6.

not_equal: 63, 70, 102.

not_found: 5.

numeric_token: 63, 81, 97, 106, 107.

Only symbolic tokens...: 111.

oot: 89.

ootl: 89.

oot2: 89.

oot3: 89.

oot} : 89.

ooth: 89.

op: 63, 65, 67, 100.

open_input: 24, 44.

ord: 15.

other_line: 34, 35, 44, 49.

othercases: 7.

others: 7.

out: 89, 93, 94, 95, 96, 98, 104, 105, 106,
107, 108, 110.

out_buf: 86, 87, 88, 89, 90, 91, 92, 108, 109.

out_line: 86, 87, 88, 92.

out_mac_and_name: 95, 100, 103, 106.

out_name: 94, 95, 101, 106, 107.

out_ptr: 86, 87, 88, 89, 91, 92, 97, 108, 109.

out_str: 93, 94, 97, 98, 102, 106.

out2: 89, 98, 99, 101, 105, 106, 107, 108.

outd: 89.

out4: 89, 108, 110.

out5: 89, 103, 104, 105.

overflow: 33, 62.

p: 98, 93, 94, 95.

pass_digits: 80, 81.

pass_fraction: 80, 81.

path_join: 63, 65, 100.

444 INDEX MFT §115

per_cent: 87. spri7: 64.

percent_class: 78, 79. spr2: 64.

period_class: 78, 79, 81. sprd: 64.

prev_tok: 75, 80, 106, 107. spr4 . 64.

prev_type: 75, 80, 100, 106, 107. spro: 64.
prime_the_change_buffer: 38, 44, 48. spré: 64.

print: 20, 29, 30, 31, 92. spr7: 64.

print_ln: 20, 30, 92, 112. spr8: 64.

print_nl: 20, 28, 92, 113. spr9: 64.

prl: 64, 65, 70, 71. start_of -line: 77, 81, 85, 97, 98, 108, 111.
pri0: 64, 65, 66, 67, 69, 70, 7T1. string_class: 78, 79, 81.

prll: 64, 65, 66, 67, 68, 69, 70, 71. string_token: 63, 82, 97.

pri2: 64, 66, 68, 69, 71. style_file: 3, 23, 24, 30, 34, 47.
pri8: 64, 67, 68, 70, 7T1. styling: 30, 34, 44, 45, 47.
prlj: 64, 67, 68. switch: 80, 81, 83, 84.

pri5: 64, 68. system dependencies: 2, 3,4, 7, 13, 16, 17, 20, 21,
pri6: 64, 68, 71. 22, 24, 26, 28, 30, 31, 79, 112, 113, 114.
pri7: 64, 70. t: 94, 97.

pr2: 64, 65, 66, 70, 71. tag: 63, 97, 106.

prd: 64, 65, 66, 67, 69, 70, 71. temp_line: 34, 35.

pr4: 64, 65, 66, 67, 69, 70, 7T1. term_out: 20, 21, 22.

pro: 64, 65, 66, 67, 69, 70, 71. tex_file: 3, 25, 26, 87, 88.
pr6: 64, 65, 66, 67, 69, 70. text_char: 13, 15, 20.

pr7: 64, 65, 66, 67, 69, 70, 71. text_file: 13, 20, 23, 25, 28.
pr8: 64, 65, 66, 67, 69, 71. This can’t happen: 32.

pr9: 64, 66, 69, 70, 71. tr.amp: 73, 74, 102.

pyth_sub: 63, 70, 98, 102. trge: 73, 74, 102.

read_ln: 28. trle: 73, 74, 102.

recomment: 63, 97, 110. trone: 73, 74, 102.

reset: 24. trops: 73, 74, 102.

restart: 5, 45, 97, 98, 108, 109, 110, 111. tr_quad: 73, 74, 97.

reswitch: 5, 97, 101, 106, 107, 110, 111. tr_sharp: 73, 74, 106.

return: 5, 6. tr_skip: 73, 74, 98.

rewrite: 21, 26. translation: 72, 73, 94, 102.
right_bracket_class: 78, 79. true: 6, 28, 34, 35, 37, 42, 44, 46, 49, 77, 85,
right_paren_class: 78, 79. 87, 91, 92, 97, 108, 111.
semicolon: 63, 65, 101. tri: T72.

set_format: 63, 71, 97. tr2: 72, 73.

sharp: 63, 71, 101, 106. trs: 72.

sixteen_bits: 50, 51, 55. trg:. T2, 73.

Sorry, x capacity exceeded: 33. tro: 72, 73.

space_class: 78, 79, 81. tirl: 72.

special_tag: 63, 66, 97, 106, 107. ttr2: 72.

spotless: 9, 10, 113. tirs: 72.

sprl: 64. tirg: T2.

spri0: 64. ttry: T72.

spril: 64. type_name: 63, 70, 100.
spri2: 64. update_terminal: 22, 29.
spri3: 64. user manual: 1.

sprij: 64. verbatim: 63, 71, 97.

spris: 64. Where is the match...: 39, 43, 48.

spri6: 64. write: 20, 87, 88.

8115 MFT INDEX 445

write_ln: 20, 87.

zchr: 15, 16, 17, 18, 30, 87, 92.
xclause: 6.

zord: 15, 18, 28.

446 NAMES OF THE SECTIONS MFT

(Assign the default value to lk[p] 63) Used in section 62.

(Branch on the class, scan the token; return directly if the token is special, or goto found if it needs to
be looked up 81 > Used in section 80.

(Bring in a new line of input; return if the file has ended 85) Used in section 80.

(Cases that translate primitive tokens 100, 101, 102, 103) Used in section 97.

(Change the translation format of tokens, and goto restart or reswitch 111) Used in section 97.

(Check that all changes have been read 49) Used in section 112.

(Compare name p with current token, goto found if equal 61) Used in section 60.

(Compiler directives 4) Used in section 3.

(Compute the hash code h 59) Used in section 58.

(Compute the name location p 60) Used in section 58.

(Constants in the outer block 8) Used in section 3.

(Copy the rest of the current input line to the output, then goto restart 109) Used in section 97.

{Decry the invalid character and goto switch 84) Used in section 81.

(Decry the missing string delimiter and goto switch 83) Used in section 82.

(Do special actions at the start of a line 98) Used in section 97.

(Enter a new name into the table at position p 62) Used in section 58.

(Error handling procedures 29, 31) Used in section 3.

(Get a string token and return 82) Used in section 81.

(Globals in the outer block 9, 15, 20, 23, 25, 27, 34, 36, 51, 53, 55, 72, 74, 75, 77, 78, 86) Used in section 3.

(If the current line starts with @y, report any discrepancies and return 43) Used in section 42.

(Initialize the input system 44) Used in section 112.

(Local variables for initialization 14, 56) Used in section 3.

{Move buffer and limit to change_buffer and change_limit 41) Used in sections 38 and 42.

(Print error location based on input buffer 30) Used in section 29.

(Print the job history 113) Used in section 112.

(Print warning message, break the line, return 92) Used in section 91.

(Read from change_file and maybe turn off changing 48) Used in section 45.

(Read from mf_file and maybe turn on changing 46) Used in section 45.

(Read from style_file and maybe turn off styling 47) Used in section 45.

(Scan the file name and output it in typewriter type 104) Used in section 103.

(Set initial values 10, 16, 17, 18, 21, 26, 54, 57, 76, 79, 88, 90) Used in section 3.

(Skip over comment lines in the change file; return if end of file 39) Used in section 38.

(Skip to the next nonblank line; return if end of file 40) Used in section 38.

(Store all the primitives 65, 66, 67, 68, 69, 70, 71) Used in section 112.

(Store all the translations 73) Used in section 112.

(Translate a comment and goto restart, unless there’s a | ... | segment 108) Used in section 97.

(Translate a numeric token or a fraction 105) Used in section 97.

(Translate a string token 99) Used in section 97.

(Translate a subscript 107) Used in section 106.

(Translate a tag and possible subscript 106) Used in section 97.

(Types in the outer block 12, 13, 50, 52) Used in section 3.

(Wind up a line of translation and goto restart, or finish a | ... | segment and goto reswitch 110) Used

in section 97.

	 Introduction
	 The character set
	 Input and output
	 Reporting errors to the user
	 Inserting the changes
	 Data structures
	 Initializing the primitive tokens
	 Inputting the next token
	 Low-level output routines
	 Translation
	 The main program
	 System-dependent changes
	 Index
	Names of the sections
	Assign the default value to ilk[p]
	Branch on the class, scan the token; return directly if the token is special, or goto found if it needs to be looked up
	Bring in a new line of input; return if the file has ended
	Cases that translate primitive tokens
	Change the translation format of tokens, and goto restart or reswitch
	Check that all changes have been read
	Compare name p with current token, goto found if equal
	Compiler directives
	Compute the hash code h
	Compute the name location p
	Constants in the outer block
	Copy the rest of the current input line to the output, then goto restart
	Decry the invalid character and goto switch
	Decry the missing string delimiter and goto switch
	Do special actions at the start of a line
	Enter a new name into the table at position p
	Error handling procedures
	Get a string token and return
	Globals in the outer block
	If the current line starts with @y, report any discrepancies and return
	Initialize the input system
	Local variables for initialization
	Move buffer and limit to change_buffer and change_limit
	Print error location based on input buffer
	Print the job history
	Print warning message, break the line, return
	Read from change_file and maybe turn off changing
	Read from mf_file and maybe turn on changing
	Read from style_file and maybe turn off styling
	Scan the file name and output it in typewriter type
	Set initial values
	Skip over comment lines in the change file; return if end of file
	Skip to the next nonblank line; return if end of file
	Store all the primitives
	Store all the translations
	Translate a comment and goto restart, unless there's a |...|segment
	Translate a numeric token or a fraction
	Translate a string token
	Translate a subscript
	Translate a tag and possible subscript
	Types in the outer block
	Wind up a line of translation and goto restart, or finish a |...| segment and goto reswitch

