
301

The GFtoDVI processor

(Version 3.0, October 1989)

Section Page
Introduction . 1 302
The character set . 10 305
Device-independent file format . 19 308
Generic font file format . 27 314
Extensions to the generic format . 34 319
Font metric data . 36 321
Input from binary files . 45 325
Reading the font information . 52 327
The string pool . 70 335
File names . 86 342
Shipping pages out . 102 347
Rudimentary typesetting . 116 350
Gray fonts . 124 354
Slant fonts . 134 358
Representation of rectangles . 139 359
Doing the labels . 153 363
Doing the pixels . 204 376
The main program . 219 380
System-dependent changes . 222 381
Index . 223 382

The preparation of this report was supported in part by the National Science Founda-
tion under grants IST-8201926, MCS-8300984, and CCR-8610181, and by the System
Development Foundation. ‘TEX’ is a trademark of the American Mathematical Society.
‘hijklmnj ’ is a trademark of Addison-Wesley Publishing Company.

March 12, 2025 at 15:39

302 INTRODUCTION GF to DVI §1

1. Introduction. The GFtoDVI utility program reads binary generic font (“GF”) files that are produced
by font compilers such as METAFONT, and converts them into device-independent (“DVI”) files that can be
printed to give annotated hardcopy proofs of the character shapes. The annotations are specified by the
comparatively simple conventions of plain METAFONT; i.e., there are mechanisms for labeling chosen points
and for superimposing horizontal or vertical rules on the enlarged character shapes.

The purpose of GFtoDVI is simply to make proof copies; it does not exhaustively test the validity of a GF

file, nor do its algorithms much resemble the algorithms that are typically used to prepare font descriptions
for commercial typesetting equipment. Another program, GFtype, is available for validity checking; GFtype
also serves as a model of programs that convert fonts from GF format to some other coding scheme.

The banner string defined here should be changed whenever GFtoDVI gets modified.

define banner ≡ ´This is GFtoDVI, Version 3.0´ { printed when the program starts }

2. This program is written in standard Pascal, except where it is necessary to use extensions; for example,
GFtoDVI must read files whose names are dynamically specified, and such a task would be impossible in pure
Pascal. All places where nonstandard constructions are used have been listed in the index under “system
dependencies.”

Another exception to standard Pascal occurs in the use of default branches in case statements; the
conventions of TANGLE, WEAVE, etc., have been followed.

define othercases ≡ others : { default for cases not listed explicitly }
define endcases ≡ end { follows the default case in an extended case statement }
format othercases ≡ else
format endcases ≡ end

3. The main input and output files are not mentioned in the program header, because their external names
will be determined at run time (e.g., by interpreting the command line that invokes this program). Error
messages and other remarks are written on the output file, which the user may choose to assign to the
terminal if the system permits it.

The term print is used instead of write when this program writes on the output file, so that all such
output can be easily deflected.

define print (#) ≡ write (#)
define print ln (#) ≡ write ln (#)
define print nl (#) ≡ begin write ln ; write (#); end

program GF to DVI (output);
label 〈Labels in the outer block 4 〉
const 〈Constants in the outer block 5 〉
type 〈Types in the outer block 9 〉
var 〈Globals in the outer block 12 〉
procedure initialize ; { this procedure gets things started properly }

var i, j,m, n: integer ; { loop indices for initializations }
begin print ln (banner);
〈 Set initial values 13 〉
end;

4. If the program has to stop prematurely, it goes to the ‘final end ’.

define final end = 9999 { label for the end of it all }
〈Labels in the outer block 4 〉 ≡

final end ;

This code is used in section 3.

§5 GF to DVI INTRODUCTION 303

5. The following parameters can be changed at compile time to extend or reduce GFtoDVI’s capacity.

〈Constants in the outer block 5 〉 ≡
max labels = 2000; {maximum number of labels and dots and rules per character }
pool size = 10000; {maximum total length of labels and other strings }
max strings = 1100; {maximum number of labels and other strings }
terminal line length = 150;

{maximum number of characters input in a single line of input from the terminal }
file name size = 50; { a file name shouldn’t be longer than this }
font mem size = 2000; { space for font metric data }
dvi buf size = 800; { size of the output buffer; must be a multiple of 8 }
widest row = 8192; {maximum number of pixels per row }
lig lookahead = 20; { size of stack used when inserting ligature characters }

This code is used in section 3.

6. Labels are given symbolic names by the following definitions, so that occasional goto statements will
be meaningful. We insert the label ‘exit :’ just before the ‘end’ of a procedure in which we have used the
‘return’ statement defined below; the label ‘reswitch ’ is occasionally used just prior to a case statement in
which some cases change the conditions and we wish to branch to the newly applicable case. Loops that are
set up with the loop construction defined below are commonly exited by going to ‘done ’ or to ‘found ’ or to
‘not found ’, and they are sometimes repeated by going to ‘continue ’.

Incidentally, this program never declares a label that isn’t actually used, because some fussy Pascal
compilers will complain about redundant labels.

define exit = 10 { go here to leave a procedure }
define reswitch = 21 { go here to start a case statement again }
define continue = 22 { go here to resume a loop }
define done = 30 { go here to exit a loop }
define done1 = 31 { like done , when there is more than one loop }
define found = 40 { go here when you’ve found it }
define not found = 45 { go here when you’ve found nothing }

7. Here are some macros for common programming idioms.

define incr (#) ≡ #← # + 1 { increase a variable by unity }
define decr (#) ≡ #← #− 1 {decrease a variable by unity }
define loop ≡ while true do { repeat over and over until a goto happens }
format loop ≡ xclause { WEB’s xclause acts like ‘while true do’ }
define do nothing ≡ { empty statement }
define return ≡ goto exit { terminate a procedure call }
format return ≡ nil { WEB will henceforth say return instead of return }

8. If the GF file is badly malformed, the whole process must be aborted; GFtoDVI will give up, after issuing
an error message about the symptoms that were noticed.

Such errors might be discovered inside of subroutines inside of subroutines, so a procedure called jump out
has been introduced. This procedure, which simply transfers control to the label final end at the end of the
program, contains the only non-local goto statement in GFtoDVI.

define abort (#) ≡ begin print (´ ´, #); jump out ; end
define bad gf (#) ≡ abort (´Bad GF file: ´, #, ´! (at byte ´, cur loc − 1 : 1, ´)´)

procedure jump out ;
begin goto final end ;
end;

304 INTRODUCTION GF to DVI §9

9. As in TEX and METAFONT, this program deals with numeric quantities that are integer multiples of 216,
and calls them scaled .

define unity ≡ 2́00000 { scaled representation of 1.0 }
〈Types in the outer block 9 〉 ≡

scaled = integer ; { fixed-point numbers }
See also sections 10, 11, 45, 52, 70, 79, 104, and 139.

This code is used in section 3.

§10 GF to DVI THE CHARACTER SET 305

10. The character set. Like all programs written with the WEB system, GFtoDVI can be used with any
character set. But it uses ASCII code internally, because the programming for portable input-output is
easier when a fixed internal code is used. Furthermore, both GF and DVI files use ASCII code for file names
and certain other strings. The next few sections of GFtoDVI have therefore been copied from the analogous
ones in the WEB system routines.

〈Types in the outer block 9 〉 +≡
ASCII code = 0 . . 255; { eight-bit numbers, a subrange of the integers }

11. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common,
so it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital
and small letters in a convenient way. So we shall assume that the Pascal system being used for GFtoDVI has
a character set containing at least the standard visible ASCII characters ("!" through "~"). If additional
characters are present, GFtoDVI can be configured to work with them too.

Some Pascal compilers use the original name char for the data type associated with the characters in text
files, while other Pascals consider char to be a 64-element subrange of a larger data type that has some
other name. In order to accommodate this difference, we shall use the name text char to stand for the
data type of the characters in the output file. We shall also assume that text char consists of the elements
chr (first text char) through chr (last text char), inclusive. The following definitions should be adjusted if
necessary.

define text char ≡ char { the data type of characters in text files }
define first text char = 0 { ordinal number of the smallest element of text char }
define last text char = 255 { ordinal number of the largest element of text char }

〈Types in the outer block 9 〉 +≡
text file = packed file of text char ;

12. The GFtoDVI processor converts between ASCII code and the user’s external character set by means
of arrays xord and xchr that are analogous to Pascal’s ord and chr functions.

〈Globals in the outer block 12 〉 ≡
xord : array [text char] of ASCII code ; { specifies conversion of input characters }
xchr : array [ASCII code] of text char ; { specifies conversion of output characters }
See also sections 16, 18, 37, 46, 48, 49, 53, 71, 76, 80, 86, 87, 93, 96, 102, 105, 117, 127, 134, 140, 149, 155, 158, 160, 166, 168,

174, 182, 183, 207, 211, 212, and 220.

This code is used in section 3.

306 THE CHARACTER SET GF to DVI §13

13. Under our assumption that the visible characters of standard ASCII are all present, the following
assignment statements initialize the xchr array properly, without needing any system-dependent changes.

〈 Set initial values 13 〉 ≡
xchr [4́0]← ´ ´; xchr [4́1]← ´!´; xchr [4́2]← ´"´; xchr [4́3]← ´#´; xchr [4́4]← ´$´;
xchr [4́5]← ´%´; xchr [4́6]← ´&´; xchr [4́7]← ´´´´;
xchr [5́0]← ´(´; xchr [5́1]← ´)´; xchr [5́2]← ´*´; xchr [5́3]← ´+´; xchr [5́4]← ´,´;
xchr [5́5]← ´−´; xchr [5́6]← ´.´; xchr [5́7]← ´/´;
xchr [6́0]← ´0´; xchr [6́1]← ´1´; xchr [6́2]← ´2´; xchr [6́3]← ´3´; xchr [6́4]← ´4´;
xchr [6́5]← ´5´; xchr [6́6]← ´6´; xchr [6́7]← ´7´;
xchr [7́0]← ´8´; xchr [7́1]← ´9´; xchr [7́2]← ´:´; xchr [7́3]← ´;´; xchr [7́4]← ´<´;
xchr [7́5]← ´=´; xchr [7́6]← ´>´; xchr [7́7]← ´?´;
xchr [1́00]← ´@´; xchr [1́01]← ´A´; xchr [1́02]← ´B´; xchr [1́03]← ´C´; xchr [1́04]← ´D´;
xchr [1́05]← ´E´; xchr [1́06]← ´F´; xchr [1́07]← ´G´;
xchr [1́10]← ´H´; xchr [1́11]← ´I´; xchr [1́12]← ´J´; xchr [1́13]← ´K´; xchr [1́14]← ´L´;
xchr [1́15]← ´M´; xchr [1́16]← ´N´; xchr [1́17]← ´O´;
xchr [1́20]← ´P´; xchr [1́21]← ´Q´; xchr [1́22]← ´R´; xchr [1́23]← ´S´; xchr [1́24]← ´T´;
xchr [1́25]← ´U´; xchr [1́26]← ´V´; xchr [1́27]← ´W´;
xchr [1́30]← ´X´; xchr [1́31]← ´Y´; xchr [1́32]← ´Z´; xchr [1́33]← ´[´; xchr [1́34]← ´\´;
xchr [1́35]← ´]´; xchr [1́36]← ´^´; xchr [1́37]← ´_´;
xchr [1́40]← ´`´; xchr [1́41]← ´a´; xchr [1́42]← ´b´; xchr [1́43]← ´c´; xchr [1́44]← ´d´;
xchr [1́45]← ´e´; xchr [1́46]← ´f´; xchr [1́47]← ´g´;
xchr [1́50]← ´h´; xchr [1́51]← ´i´; xchr [1́52]← ´j´; xchr [1́53]← ´k´; xchr [1́54]← ´l´;
xchr [1́55]← ´m´; xchr [1́56]← ´n´; xchr [1́57]← ´o´;
xchr [1́60]← ´p´; xchr [1́61]← ´q´; xchr [1́62]← ´r´; xchr [1́63]← ´s´; xchr [1́64]← ´t´;
xchr [1́65]← ´u´; xchr [1́66]← ´v´; xchr [1́67]← ´w´;
xchr [1́70]← ´x´; xchr [1́71]← ´y´; xchr [1́72]← ´z´; xchr [1́73]← ´{´; xchr [1́74]← ´|´;
xchr [1́75]← ´}´; xchr [1́76]← ´~´;

See also sections 14, 15, 54, 97, 103, 106, 118, 126, and 142.

This code is used in section 3.

14. Here now is the system-dependent part of the character set. If GFtoDVI is being implemented on a
garden-variety Pascal for which only standard ASCII codes will appear in the input and output files, you
don’t need to make any changes here. But if you have, for example, an extended character set like the one
in Appendix C of The TEXbook, the first line of code in this module should be changed to

for i← 0 to 3́7 do xchr [i]← chr (i);

WEB’s character set is essentially identical to TEX’s.

〈 Set initial values 13 〉 +≡
for i← 0 to 3́7 do xchr [i]← ´?´;
for i← 1́77 to 3́77 do xchr [i]← ´?´;

15. The following system-independent code makes the xord array contain a suitable inverse to the infor-
mation in xchr .

〈 Set initial values 13 〉 +≡
for i← first text char to last text char do xord [chr (i)]← " ";
for i← 1 to 3́77 do xord [xchr [i]]← i;
xord [´?´]← "?";

§16 GF to DVI THE CHARACTER SET 307

16. The input ln routine waits for the user to type a line at his or her terminal; then it puts ASCII-code
equivalents for the characters on that line into the buffer array. The term in file is used for terminal input.

Since the terminal is being used for both input and output, some systems need a special routine to make
sure that the user can see a prompt message before waiting for input based on that message. (Otherwise the
message may just be sitting in a hidden buffer somewhere, and the user will have no idea what the program
is waiting for.) We shall call a system-dependent subroutine update terminal in order to avoid this problem.

define update terminal ≡ break (output) { empty the terminal output buffer }
〈Globals in the outer block 12 〉 +≡
buffer : array [0 . . terminal line length] of 0 . . 255;
term in : text file ; { the terminal, considered as an input file }

17. A global variable line length records the first buffer position after the line just read.

procedure input ln ; { inputs a line from the terminal }
begin update terminal ; reset (term in);
if eoln (term in) then read ln (term in);
line length ← 0;
while (line length < terminal line length) ∧ ¬eoln (term in) do

begin buffer [line length]← xord [term in↑]; incr (line length); get (term in);
end;

end;

18. The global variable buf ptr is used while scanning each line of input; it points to the first unread
character in buffer .

〈Globals in the outer block 12 〉 +≡
buf ptr : 0 . . terminal line length ; { the number of characters read }
line length : 0 . . terminal line length ; { end of line read by input ln }

308 DEVICE-INDEPENDENT FILE FORMAT GF to DVI §19

19. Device-independent file format. Before we get into the details of GFtoDVI, we need to know
exactly what DVI files are. The form of such files was designed by David R. Fuchs in 1979. Almost any
reasonable typesetting device can be driven by a program that takes DVI files as input, and dozens of such
DVI-to-whatever programs have been written. Thus, it is possible to print the output of document compilers
like TEX on many different kinds of equipment. (The following material has been copied almost verbatim
from the program for TEX.)

A DVI file is a stream of 8-bit bytes, which may be regarded as a series of commands in a machine-like
language. The first byte of each command is the operation code, and this code is followed by zero or
more bytes that provide parameters to the command. The parameters themselves may consist of several
consecutive bytes; for example, the ‘set rule ’ command has two parameters, each of which is four bytes
long. Parameters are usually regarded as nonnegative integers; but four-byte-long parameters, and shorter
parameters that denote distances, can be either positive or negative. Such parameters are given in two’s
complement notation. For example, a two-byte-long distance parameter has a value between −215 and
215 − 1.

Incidentally, when two or more 8-bit bytes are combined to form an integer of 16 or more bits, the most
significant bytes appear first in the file. This is called BigEndian order.

A DVI file consists of a “preamble,” followed by a sequence of one or more “pages,” followed by a
“postamble.” The preamble is simply a pre command, with its parameters that define the dimensions
used in the file; this must come first. Each “page” consists of a bop command, followed by any number of
other commands that tell where characters are to be placed on a physical page, followed by an eop command.
The pages appear in the order that they were generated, not in any particular numerical order. If we ignore
nop commands and fnt def commands (which are allowed between any two commands in the file), each eop
command is immediately followed by a bop command, or by a post command; in the latter case, there are
no more pages in the file, and the remaining bytes form the postamble. Further details about the postamble
will be explained later.

Some parameters in DVI commands are “pointers.” These are four-byte quantities that give the location
number of some other byte in the file; the first byte is number 0, then comes number 1, and so on. For
example, one of the parameters of a bop command points to the previous bop ; this makes it feasible to read
the pages in backwards order, in case the results are being directed to a device that stacks its output face
up. Suppose the preamble of a DVI file occupies bytes 0 to 99. Now if the first page occupies bytes 100 to
999, say, and if the second page occupies bytes 1000 to 1999, then the bop that starts in byte 1000 points to
100 and the bop that starts in byte 2000 points to 1000. (The very first bop , i.e., the one that starts in byte
100, has a pointer of −1.)

20. The DVI format is intended to be both compact and easily interpreted by a machine. Compactness
is achieved by making most of the information implicit instead of explicit. When a DVI-reading program
reads the commands for a page, it keeps track of several quantities: (a) The current font f is an integer;
this value is changed only by fnt and fnt num commands. (b) The current position on the page is given by
two numbers called the horizontal and vertical coordinates, h and v. Both coordinates are zero at the upper
left corner of the page; moving to the right corresponds to increasing the horizontal coordinate, and moving
down corresponds to increasing the vertical coordinate. Thus, the coordinates are essentially Cartesian,
except that vertical directions are flipped; the Cartesian version of (h, v) would be (h,−v). (c) The current
spacing amounts are given by four numbers w, x, y, and z, where w and x are used for horizontal spacing
and where y and z are used for vertical spacing. (d) There is a stack containing (h, v, w, x, y, z) values; the
DVI commands push and pop are used to change the current level of operation. Note that the current font f
is not pushed and popped; the stack contains only information about positioning.

The values of h, v, w, x, y, and z are signed integers having up to 32 bits, including the sign. Since they
represent physical distances, there is a small unit of measurement such that increasing h by 1 means moving
a certain tiny distance to the right. The actual unit of measurement is variable, as explained below.

§21 GF to DVI DEVICE-INDEPENDENT FILE FORMAT 309

21. Here is a list of all the commands that may appear in a DVI file. Each command is specified by
its symbolic name (e.g., bop), its opcode byte (e.g., 139), and its parameters (if any). The parameters
are followed by a bracketed number telling how many bytes they occupy; for example, ‘p[4]’ means that
parameter p is four bytes long.

set char 0 0. Typeset character number 0 from font f such that the reference point of the character is
at (h, v). Then increase h by the width of that character. Note that a character may have zero or
negative width, so one cannot be sure that h will advance after this command; but h usually does
increase.

set char 1 through set char 127 (opcodes 1 to 127). Do the operations of set char 0 ; but use the character
whose number matches the opcode, instead of character 0.

set1 128 c[1]. Same as set char 0 , except that character number c is typeset. TEX82 uses this command
for characters in the range 128 ≤ c < 256.

set2 129 c[2]. Same as set1 , except that c is two bytes long, so it is in the range 0 ≤ c < 65536.

set3 130 c[3]. Same as set1 , except that c is three bytes long, so it can be as large as 224 − 1. Not even
the Chinese language has this many characters, but this command might prove useful in some yet
unforeseen way.

set4 131 c[4]. Same as set1 , except that c is four bytes long, possibly even negative. Imagine that.

set rule 132 a[4] b[4]. Typeset a solid black rectangle of height a and width b, with its bottom left corner
at (h, v). Then set h← h+ b. If either a ≤ 0 or b ≤ 0, nothing should be typeset. Note that if b < 0,
the value of h will decrease even though nothing else happens.

put1 133 c[1]. Typeset character number c from font f such that the reference point of the character is at
(h, v). (The ‘put’ commands are exactly like the ‘set’ commands, except that they simply put out a
character or a rule without moving the reference point afterwards.)

put2 134 c[2]. Same as set2 , except that h is not changed.

put3 135 c[3]. Same as set3 , except that h is not changed.

put4 136 c[4]. Same as set4 , except that h is not changed.

put rule 137 a[4] b[4]. Same as set rule , except that h is not changed.

nop 138. No operation, do nothing. Any number of nop ’s may occur between DVI commands, but a nop
cannot be inserted between a command and its parameters or between two parameters.

bop 139 c0[4] c1[4] . . . c9[4] p[4]. Beginning of a page: Set (h, v, w, x, y, z) ← (0, 0, 0, 0, 0, 0) and set the
stack empty. Set the current font f to an undefined value. The ten ci parameters can be used to
identify pages, if a user wants to print only part of a DVI file; TEX82 gives them the values of \count0
. . . \count9 at the time \shipout was invoked for this page. The parameter p points to the previous
bop command in the file, where the first bop has p = −1.

eop 140. End of page: Print what you have read since the previous bop . At this point the stack should
be empty. (The DVI-reading programs that drive most output devices will have kept a buffer of the
material that appears on the page that has just ended. This material is largely, but not entirely, in
order by v coordinate and (for fixed v) by h coordinate; so it usually needs to be sorted into some
order that is appropriate for the device in question. GFtoDVI does not do such sorting.)

push 141. Push the current values of (h, v, w, x, y, z) onto the top of the stack; do not change any of these
values. Note that f is not pushed.

pop 142. Pop the top six values off of the stack and assign them to (h, v, w, x, y, z). The number of pops
should never exceed the number of pushes, since it would be highly embarrassing if the stack were
empty at the time of a pop command.

right1 143 b[1]. Set h ← h + b, i.e., move right b units. The parameter is a signed number in two’s
complement notation, −128 ≤ b < 128; if b < 0, the reference point actually moves left.

right2 144 b[2]. Same as right1 , except that b is a two-byte quantity in the range −32768 ≤ b < 32768.

right3 145 b[3]. Same as right1 , except that b is a three-byte quantity in the range −223 ≤ b < 223.

310 DEVICE-INDEPENDENT FILE FORMAT GF to DVI §21

right4 146 b[4]. Same as right1 , except that b is a four-byte quantity in the range −231 ≤ b < 231.

w0 147. Set h ← h + w; i.e., move right w units. With luck, this parameterless command will usually
suffice, because the same kind of motion will occur several times in succession; the following commands
explain how w gets particular values.

w1 148 b[1]. Set w ← b and h← h+ b. The value of b is a signed quantity in two’s complement notation,
−128 ≤ b < 128. This command changes the current w spacing and moves right by b.

w2 149 b[2]. Same as w1 , but b is a two-byte-long parameter, −32768 ≤ b < 32768.

w3 150 b[3]. Same as w1 , but b is a three-byte-long parameter, −223 ≤ b < 223.

w4 151 b[4]. Same as w1 , but b is a four-byte-long parameter, −231 ≤ b < 231.

x0 152. Set h← h+x; i.e., move right x units. The ‘x’ commands are like the ‘w’ commands except that
they involve x instead of w.

x1 153 b[1]. Set x← b and h← h+ b. The value of b is a signed quantity in two’s complement notation,
−128 ≤ b < 128. This command changes the current x spacing and moves right by b.

x2 154 b[2]. Same as x1 , but b is a two-byte-long parameter, −32768 ≤ b < 32768.

x3 155 b[3]. Same as x1 , but b is a three-byte-long parameter, −223 ≤ b < 223.

x4 156 b[4]. Same as x1 , but b is a four-byte-long parameter, −231 ≤ b < 231.

down1 157 a[1]. Set v ← v + a, i.e., move down a units. The parameter is a signed number in two’s
complement notation, −128 ≤ a < 128; if a < 0, the reference point actually moves up.

down2 158 a[2]. Same as down1 , except that a is a two-byte quantity in the range −32768 ≤ a < 32768.

down3 159 a[3]. Same as down1 , except that a is a three-byte quantity in the range −223 ≤ a < 223.

down4 160 a[4]. Same as down1 , except that a is a four-byte quantity in the range −231 ≤ a < 231.

y0 161. Set v ← v + y; i.e., move down y units. With luck, this parameterless command will usually
suffice, because the same kind of motion will occur several times in succession; the following commands
explain how y gets particular values.

y1 162 a[1]. Set y ← a and v ← v + a. The value of a is a signed quantity in two’s complement notation,
−128 ≤ a < 128. This command changes the current y spacing and moves down by a.

y2 163 a[2]. Same as y1 , but a is a two-byte-long parameter, −32768 ≤ a < 32768.

y3 164 a[3]. Same as y1 , but a is a three-byte-long parameter, −223 ≤ a < 223.

y4 165 a[4]. Same as y1 , but a is a four-byte-long parameter, −231 ≤ a < 231.

z0 166. Set v ← v + z; i.e., move down z units. The ‘z’ commands are like the ‘y’ commands except that
they involve z instead of y.

z1 167 a[1]. Set z ← a and v ← v + a. The value of a is a signed quantity in two’s complement notation,
−128 ≤ a < 128. This command changes the current z spacing and moves down by a.

z2 168 a[2]. Same as z1 , but a is a two-byte-long parameter, −32768 ≤ a < 32768.

z3 169 a[3]. Same as z1 , but a is a three-byte-long parameter, −223 ≤ a < 223.

z4 170 a[4]. Same as z1 , but a is a four-byte-long parameter, −231 ≤ a < 231.

fnt num 0 171. Set f ← 0. Font 0 must previously have been defined by a fnt def instruction, as explained
below.

fnt num 1 through fnt num 63 (opcodes 172 to 234). Set f ← 1, . . . , f ← 63, respectively.

fnt1 235 k[1]. Set f ← k. TEX82 uses this command for font numbers in the range 64 ≤ k < 256.

fnt2 236 k[2]. Same as fnt1 , except that k is two bytes long, so it is in the range 0 ≤ k < 65536. TEX82
never generates this command, but large font numbers may prove useful for specifications of color
or texture, or they may be used for special fonts that have fixed numbers in some external coding
scheme.

fnt3 237 k[3]. Same as fnt1 , except that k is three bytes long, so it can be as large as 224 − 1.

§21 GF to DVI DEVICE-INDEPENDENT FILE FORMAT 311

fnt4 238 k[4]. Same as fnt1 , except that k is four bytes long; this is for the really big font numbers (and
for the negative ones).

xxx1 239 k[1] x[k]. This command is undefined in general; it functions as a (k+ 2)-byte nop unless special
DVI-reading programs are being used. TEX82 generates xxx1 when a short enough \special appears,
setting k to the number of bytes being sent. It is recommended that x be a string having the form of
a keyword followed by possible parameters relevant to that keyword.

xxx2 240 k[2] x[k]. Like xxx1 , but 0 ≤ k < 65536.

xxx3 241 k[3] x[k]. Like xxx1 , but 0 ≤ k < 224.

xxx4 242 k[4] x[k]. Like xxx1 , but k can be ridiculously large. TEX82 uses xxx4 when xxx1 would be
incorrect.

fnt def1 243 k[1] c[4] s[4] d[4] a[1] l[1] n[a+ l]. Define font k, where 0 ≤ k < 256; font definitions will be
explained shortly.

fnt def2 244 k[2] c[4] s[4] d[4] a[1] l[1] n[a+ l]. Define font k, where 0 ≤ k < 65536.

fnt def3 245 k[3] c[4] s[4] d[4] a[1] l[1] n[a+ l]. Define font k, where 0 ≤ k < 224.

fnt def4 246 k[4] c[4] s[4] d[4] a[1] l[1] n[a+ l]. Define font k, where −231 ≤ k < 231.

pre 247 i[1] num [4] den [4] mag [4] k[1] x[k]. Beginning of the preamble; this must come at the very
beginning of the file. Parameters i, num , den , mag , k, and x are explained below.

post 248. Beginning of the postamble, see below.

post post 249. Ending of the postamble, see below.

Commands 250–255 are undefined at the present time.

22. Only a few of the operation codes above are actually needed by GFtoDVI.

define set1 = 128 { typeset a character and move right }
define put rule = 137 { typeset a rule }
define bop = 139 { beginning of page }
define eop = 140 { ending of page }
define push = 141 { save the current positions }
define pop = 142 { restore previous positions }
define right4 = 146 {move right }
define down4 = 160 {move down }
define z0 = 166 {move down z }
define z4 = 170 {move down and set z }
define fnt num 0 = 171 { set current font to 0 }
define fnt def1 = 243 { define the meaning of a font number }
define pre = 247 { preamble }
define post = 248 { postamble beginning }
define post post = 249 { postamble ending }

312 DEVICE-INDEPENDENT FILE FORMAT GF to DVI §23

23. The preamble contains basic information about the file as a whole. As stated above, there are six
parameters:

i[1] num [4] den [4] mag [4] k[1] x[k].

The i byte identifies DVI format; currently this byte is always set to 2. (The value i = 3 is currently used
for an extended format that allows a mixture of right-to-left and left-to-right typesetting. Some day we will
set i = 4, when DVI format makes another incompatible change—perhaps in the year 2048.)

The next two parameters, num and den , are positive integers that define the units of measurement;
they are the numerator and denominator of a fraction by which all dimensions in the DVI file could be
multiplied in order to get lengths in units of 10−7 meters. (For example, there are exactly 7227 TEX points
in 254 centimeters, and TEX82 works with scaled points where there are 216 sp in a point, so TEX82 sets
num = 25400000 and den = 7227 · 216 = 473628672.)

The mag parameter is what TEX82 calls \mag, i.e., 1000 times the desired magnification. The actual
fraction by which dimensions are multiplied is therefore mag · num/1000den . Note that if a TEX source
document does not call for any ‘true’ dimensions, and if you change it only by specifying a different \mag

setting, the DVI file that TEX creates will be completely unchanged except for the value of mag in the
preamble and postamble. (Fancy DVI-reading programs allow users to override the mag setting when a DVI

file is being printed.)
Finally, k and x allow the DVI writer to include a comment, which is not interpreted further. The length

of comment x is k, where 0 ≤ k < 256.

define dvi id byte = 2 { identifies the kind of DVI files described here }

24. Font definitions for a given font number k contain further parameters

c[4] s[4] d[4] a[1] l[1] n[a+ l].

The four-byte value c is the check sum that TEX (or whatever program generated the DVI file) found in the
TFM file for this font; c should match the check sum of the font found by programs that read this DVI file.

Parameter s contains a fixed-point scale factor that is applied to the character widths in font k; font
dimensions in TFM files and other font files are relative to this quantity, which is always positive and less
than 227. It is given in the same units as the other dimensions of the DVI file. Parameter d is similar to s; it
is the “design size,” and (like s) it is given in DVI units. Thus, font k is to be used at mag · s/1000d times
its normal size.

The remaining part of a font definition gives the external name of the font, which is an ASCII string of
length a + l. The number a is the length of the “area” or directory, and l is the length of the font name
itself; the standard local system font area is supposed to be used when a = 0. The n field contains the area
in its first a bytes.

Font definitions must appear before the first use of a particular font number. Once font k is defined, it
must not be defined again; however, we shall see below that font definitions appear in the postamble as well
as in the pages, so in this sense each font number is defined exactly twice, if at all. Like nop commands,
font definitions can appear before the first bop , or between an eop and a bop .

§25 GF to DVI DEVICE-INDEPENDENT FILE FORMAT 313

25. The last page in a DVI file is followed by ‘post ’; this command introduces the postamble, which
summarizes important facts that TEX has accumulated about the file, making it possible to print subsets of
the data with reasonable efficiency. The postamble has the form

post p[4] num [4] den [4] mag [4] l[4] u[4] s[2] t[2]
〈 font definitions 〉
post post q[4] i[1] 223’s[≥4]

Here p is a pointer to the final bop in the file. The next three parameters, num , den , and mag , are duplicates
of the quantities that appeared in the preamble.

Parameters l and u give respectively the height-plus-depth of the tallest page and the width of the widest
page, in the same units as other dimensions of the file. These numbers might be used by a DVI-reading
program to position individual “pages” on large sheets of film or paper; however, the standard convention
for output on normal size paper is to position each page so that the upper left-hand corner is exactly one
inch from the left and the top. Experience has shown that it is unwise to design DVI-to-printer software
that attempts cleverly to center the output; a fixed position of the upper left corner is easiest for users to
understand and to work with. Therefore l and u are often ignored.

Parameter s is the maximum stack depth (i.e., the largest excess of push commands over pop commands)
needed to process this file. Then comes t, the total number of pages (bop commands) present.

The postamble continues with font definitions, which are any number of fnt def commands as described
above, possibly interspersed with nop commands. Each font number that is used in the DVI file must be
defined exactly twice: Once before it is first selected by a fnt command, and once in the postamble.

26. The last part of the postamble, following the post post byte that signifies the end of the font definitions,
contains q, a pointer to the post command that started the postamble. An identification byte, i, comes next;
this currently equals 2, as in the preamble.

The i byte is followed by four or more bytes that are all equal to the decimal number 223 (i.e., 3́37 in
octal). TEX puts out four to seven of these trailing bytes, until the total length of the file is a multiple of
four bytes, since this works out best on machines that pack four bytes per word; but any number of 223’s is
allowed, as long as there are at least four of them. In effect, 223 is a sort of signature that is added at the
very end.

This curious way to finish off a DVI file makes it feasible for DVI-reading programs to find the postamble
first, on most computers, even though TEX wants to write the postamble last. Most operating systems
permit random access to individual words or bytes of a file, so the DVI reader can start at the end and skip
backwards over the 223’s until finding the identification byte. Then it can back up four bytes, read q, and
move to byte q of the file. This byte should, of course, contain the value 248 (post); now the postamble can
be read, so the DVI reader can discover all the information needed for typesetting the pages. Note that it is
also possible to skip through the DVI file at reasonably high speed to locate a particular page, if that proves
desirable. This saves a lot of time, since DVI files used in production jobs tend to be large.

Unfortunately, however, standard Pascal does not include the ability to access a random position in a file,
or even to determine the length of a file. Almost all systems nowadays provide the necessary capabilities, so
DVI format has been designed to work most efficiently with modern operating systems.

314 GENERIC FONT FILE FORMAT GF to DVI §27

27. Generic font file format. The “generic font” (GF) input files that GFtoDVI must deal with have a
structure that was inspired by DVI format, although the operation codes are quite different in most cases. The
term generic indicates that this file format doesn’t match the conventions of any name-brand manufacturer;
but it is easy to convert GF files to the special format required by almost all digital phototypesetting
equipment. There’s a strong analogy between the DVI files written by TEX and the GF files written by
METAFONT; and, in fact, the reader will notice that many of the paragraphs below are identical to their
counterparts in the description of DVI already given. The following description has been lifted almost
verbatim from the program for METAFONT.

A GF file is a stream of 8-bit bytes that may be regarded as a series of commands in a machine-like language.
The first byte of each command is the operation code, and this code is followed by zero or more bytes that
provide parameters to the command. The parameters themselves may consist of several consecutive bytes;
for example, the ‘boc ’ (beginning of character) command has six parameters, each of which is four bytes
long. Parameters are usually regarded as nonnegative integers; but four-byte-long parameters can be either
positive or negative, hence they range in value from −231 to 231 − 1. As in DVI files, numbers that occupy
more than one byte position appear in BigEndian order, and negative numbers appear in two’s complement
notation.

A GF file consists of a “preamble,” followed by a sequence of one or more “characters,” followed by a
“postamble.” The preamble is simply a pre command, with its parameters that introduce the file; this must
come first. Each “character” consists of a boc command, followed by any number of other commands that
specify “black” pixels, followed by an eoc command. The characters appear in the order that METAFONT

generated them. If we ignore no-op commands (which are allowed between any two commands in the file),
each eoc command is immediately followed by a boc command, or by a post command; in the latter case,
there are no more characters in the file, and the remaining bytes form the postamble. Further details about
the postamble will be explained later.

Some parameters in GF commands are “pointers.” These are four-byte quantities that give the location
number of some other byte in the file; the first file byte is number 0, then comes number 1, and so on.

28. The GF format is intended to be both compact and easily interpreted by a machine. Compactness
is achieved by making most of the information relative instead of absolute. When a GF-reading program
reads the commands for a character, it keeps track of two quantities: (a) the current column number, m; and
(b) the current row number, n. These are 32-bit signed integers, although most actual font formats produced
from GF files will need to curtail this vast range because of practical limitations. (METAFONT output will
never allow |m| or |n| to get extremely large, but the GF format tries to be more general.)

How do GF’s row and column numbers correspond to the conventions of TEX and METAFONT? Well, the
“reference point” of a character, in TEX’s view, is considered to be at the lower left corner of the pixel in
row 0 and column 0. This point is the intersection of the baseline with the left edge of the type; it corresponds
to location (0, 0) in METAFONT programs. Thus the pixel in GF row 0 and column 0 is METAFONT’s unit
square, comprising the region of the plane whose coordinates both lie between 0 and 1. The pixel in GF

row n and column m consists of the points whose METAFONT coordinates (x, y) satisfy m ≤ x ≤ m + 1
and n ≤ y ≤ n+ 1. Negative values of m and x correspond to columns of pixels left of the reference point;
negative values of n and y correspond to rows of pixels below the baseline.

Besides m and n, there’s also a third aspect of the current state, namely the paint switch , which is
always either black or white . Each paint command advances m by a specified amount d, and blackens
the intervening pixels if paint switch = black ; then the paint switch changes to the opposite state. GF’s
commands are designed so that m will never decrease within a row, and n will never increase within a
character; hence there is no way to whiten a pixel that has been blackened.

§29 GF to DVI GENERIC FONT FILE FORMAT 315

29. Here is a list of all the commands that may appear in a GF file. Each command is specified by its
symbolic name (e.g., boc), its opcode byte (e.g., 67), and its parameters (if any). The parameters are followed
by a bracketed number telling how many bytes they occupy; for example, ‘d[2]’ means that parameter d is
two bytes long.

paint 0 0. This is a paint command with d = 0; it does nothing but change the paint switch from black
to white or vice versa.

paint 1 through paint 63 (opcodes 1 to 63). These are paint commands with d = 1 to 63, defined
as follows: If paint switch = black , blacken d pixels of the current row n, in columns m through
m+ d− 1 inclusive. Then, in any case, complement the paint switch and advance m by d.

paint1 64 d[1]. This is a paint command with a specified value of d; METAFONT uses it to paint when
64 ≤ d < 256.

paint2 65 d[2]. Same as paint1 , but d can be as high as 65535.

paint3 66 d[3]. Same as paint1 , but d can be as high as 224 − 1. METAFONT never needs this command,
and it is hard to imagine anybody making practical use of it; surely a more compact encoding will be
desirable when characters can be this large. But the command is there, anyway, just in case.

boc 67 c[4] p[4] min m [4] max m [4] min n [4] max n [4]. Beginning of a character: Here c is the character
code, and p points to the previous character beginning (if any) for characters having this code number
modulo 256. (The pointer p is −1 if there was no prior character with an equivalent code.) The
values of registers m and n defined by the instructions that follow for this character must satisfy
min m ≤ m ≤ max m and min n ≤ n ≤ max n . (The values of max m and min n need not be
the tightest bounds possible.) When a GF-reading program sees a boc , it can use min m , max m ,
min n , and max n to initialize the bounds of an array. Then it sets m ← min m , n ← max n , and
paint switch ← white .

boc1 68 c[1] del m [1] max m [1] del n [1] max n [1]. Same as boc , but p is assumed to be −1; also
del m = max m − min m and del n = max n − min n are given instead of min m and min n .
The one-byte parameters must be between 0 and 255, inclusive. (This abbreviated boc saves 19 bytes
per character, in common cases.)

eoc 69. End of character: All pixels blackened so far constitute the pattern for this character. In particular,
a completely blank character might have eoc immediately following boc .

skip0 70. Decrease n by 1 and set m← min m , paint switch ← white . (This finishes one row and begins
another, ready to whiten the leftmost pixel in the new row.)

skip1 71 d[1]. Decrease n by d + 1, set m ← min m , and set paint switch ← white . This is a way to
produce d all-white rows.

skip2 72 d[2]. Same as skip1 , but d can be as large as 65535.

skip3 73 d[3]. Same as skip1 , but d can be as large as 224 − 1. METAFONT obviously never needs this
command.

new row 0 74. Decrease n by 1 and set m ← min m , paint switch ← black . (This finishes one row and
begins another, ready to blacken the leftmost pixel in the new row.)

new row 1 through new row 164 (opcodes 75 to 238). Same as new row 0 , but with m ← min m + 1
through min m + 164, respectively.

xxx1 239 k[1] x[k]. This command is undefined in general; it functions as a (k + 2)-byte no op unless
special GF-reading programs are being used. METAFONT generates xxx commands when encountering
a special string; this occurs in the GF file only between characters, after the preamble, and before the
postamble. However, xxx commands might appear within characters, in GF files generated by other
processors. It is recommended that x be a string having the form of a keyword followed by possible
parameters relevant to that keyword.

xxx2 240 k[2] x[k]. Like xxx1 , but 0 ≤ k < 65536.

xxx3 241 k[3] x[k]. Like xxx1 , but 0 ≤ k < 224. METAFONT uses this when sending a special string
whose length exceeds 255.

316 GENERIC FONT FILE FORMAT GF to DVI §29

xxx4 242 k[4] x[k]. Like xxx1 , but k can be ridiculously large; k mustn’t be negative.

yyy 243 y[4]. This command is undefined in general; it functions as a 5-byte no op unless special GF-reading
programs are being used. METAFONT puts scaled numbers into yyy ’s, as a result of numspecial
commands; the intent is to provide numeric parameters to xxx commands that immediately precede.

no op 244. No operation, do nothing. Any number of no op ’s may occur between GF commands, but a
no op cannot be inserted between a command and its parameters or between two parameters.

char loc 245 c[1] dx [4] dy [4] w[4] p[4]. This command will appear only in the postamble, which will be
explained shortly.

char loc0 246 c[1] dm [1] w[4] p[4]. Same as char loc , except that dy is assumed to be zero, and the value
of dx is taken to be 65536 ∗ dm , where 0 ≤ dm < 256.

pre 247 i[1] k[1] x[k]. Beginning of the preamble; this must come at the very beginning of the file.
Parameter i is an identifying number for GF format, currently 131. The other information is merely
commentary; it is not given special interpretation like xxx commands are. (Note that xxx commands
may immediately follow the preamble, before the first boc .)

post 248. Beginning of the postamble, see below.

post post 249. Ending of the postamble, see below.

Commands 250–255 are undefined at the present time.

define gf id byte = 131 { identifies the kind of GF files described here }

30. Here are the opcodes that GFtoDVI actually refers to.

define paint 0 = 0 { beginning of the paint commands }
define paint1 = 64 {move right a given number of columns, then black↔ white }
define paint2 = 65 { ditto, with potentially larger number of columns }
define paint3 = 66 { ditto, with potentially excessive number of columns }
define boc = 67 {beginning of a character }
define boc1 = 68 { abbreviated boc }
define eoc = 69 { end of a character }
define skip0 = 70 { skip no blank rows }
define skip1 = 71 { skip over blank rows }
define skip2 = 72 { skip over lots of blank rows }
define skip3 = 73 { skip over a huge number of blank rows }
define new row 0 = 74 {move down one row and then right }
define xxx1 = 239 { for special strings }
define xxx2 = 240 { for somewhat long special strings }
define xxx3 = 241 { for extremely long special strings }
define xxx4 = 242 { for incredibly long special strings }
define yyy = 243 { for numspecial numbers }
define no op = 244 {no operation }

§31 GF to DVI GENERIC FONT FILE FORMAT 317

31. The last character in a GF file is followed by ‘post ’; this command introduces the postamble, which
summarizes important facts that METAFONT has accumulated. The postamble has the form

post p[4] ds [4] cs [4] hppp [4] vppp [4] min m [4] max m [4] min n [4] max n [4]
〈 character locators 〉
post post q[4] i[1] 223’s[≥4]

Here p is a pointer to the byte following the final eoc in the file (or to the byte following the preamble, if there
are no characters); it can be used to locate the beginning of xxx commands that might have preceded the
postamble. The ds and cs parameters give the design size and check sum, respectively, of the font (see the
description of TFM format below). Parameters hppp and vppp are the ratios of pixels per point, horizontally
and vertically, expressed as scaled integers (i.e., multiplied by 216); they can be used to correlate the font with
specific device resolutions, magnifications, and “at sizes.” Then come min m , max m , min n , and max n ,
which bound the values that registers m and n assume in all characters in this GF file. (These bounds need
not be the best possible; max m and min n may, on the other hand, be tighter than the similar bounds
in boc commands. For example, some character may have min n = −100 in its boc , but it might turn out
that n never gets lower than −50 in any character; then min n can have any value ≤ −50. If there are no
characters in the file, it’s possible to have min m > max m and/or min n > max n .)

32. Character locators are introduced by char loc commands, which specify a character residue c, character
escapements (dx , dy), a character width w, and a pointer p to the beginning of that character. (If two or
more characters have the same code c modulo 256, only the last will be indicated; the others can be located
by following backpointers. Characters whose codes differ by a multiple of 256 are assumed to share the
same font metric information, hence the TFM file contains only residues of character codes modulo 256. This
convention is intended for oriental languages, when there are many character shapes but few distinct widths.)

The character escapements (dx , dy) are the values of METAFONT’s chardx and chardy parameters; they
are in units of scaled pixels; i.e., dx is in horizontal pixel units times 216, and dy is in vertical pixel units
times 216. This is the intended amount of displacement after typesetting the character; for DVI files, dy
should be zero, but other document file formats allow nonzero vertical escapement.

The character width w duplicates the information in the TFM file; it is 220 times the ratio of the true width
to the font’s design size.

The backpointer p points to the character’s boc , or to the first of a sequence of consecutive xxx or yyy
or no op commands that immediately precede the boc , if such commands exist; such “special” commands
essentially belong to the characters, while the special commands after the final character belong to the
postamble (i.e., to the font as a whole). This convention about p applies also to the backpointers in boc
commands, even though it wasn’t explained in the description of boc .

Pointer p might be −1 if the character exists in the TFM file but not in the GF file. This unusual situation
can arise in METAFONT output if the user had proofing < 0 when the character was being shipped out, but
then made proofing ≥ 0 in order to get a GF file.

318 GENERIC FONT FILE FORMAT GF to DVI §33

33. The last part of the postamble, following the post post byte that signifies the end of the character
locators, contains q, a pointer to the post command that started the postamble. An identification byte, i,
comes next; this currently equals 131, as in the preamble.

The i byte is followed by four or more bytes that are all equal to the decimal number 223 (i.e., 3́37 in
octal). METAFONT puts out four to seven of these trailing bytes, until the total length of the file is a multiple
of four bytes, since this works out best on machines that pack four bytes per word; but any number of 223’s
is allowed, as long as there are at least four of them. In effect, 223 is a sort of signature that is added at the
very end.

This curious way to finish off a GF file makes it feasible for GF-reading programs to find the postamble first,
on most computers, even though METAFONT wants to write the postamble last. Most operating systems
permit random access to individual words or bytes of a file, so the GF reader can start at the end and skip
backwards over the 223’s until finding the identification byte. Then it can back up four bytes, read q, and
move to byte q of the file. This byte should, of course, contain the value 248 (post); now the postamble can
be read, so the GF reader can discover all the information needed for individual characters.

Unfortunately, however, standard Pascal does not include the ability to access a random position in a file,
or even to determine the length of a file. Almost all systems nowadays provide the necessary capabilities, so
GF format has been designed to work most efficiently with modern operating systems. But if GF files have to
be processed under the restrictions of standard Pascal, one can simply read them from front to back. This
will be adequate for most applications. However, the postamble-first approach would facilitate a program
that merges two GF files, replacing data from one that is overridden by corresponding data in the other.

§34 GF to DVI EXTENSIONS TO THE GENERIC FORMAT 319

34. Extensions to the generic format. The xxx and yyy instructions understood by GFtoDVI will be
listed now, so that we have a convenient reference to all of the special assumptions made later.

Each special instruction begins with an xxx command, which consists of either a keyword by itself, or
a keyword followed by a space followed by arguments. This xxx command may then be followed by yyy
commands that are understood to be arguments.

The keywords of special instructions that are intended to be used at many different sites should be
published as widely as possible in order to minimize conflicts. The first person to establish a keyword
presumably has a right to define it; GFtoDVI, as the first program to use extended GF commands, has the
opportunity of choosing any keywords it likes, and the responsibility of choosing reasonable ones. Since
labels are expected to account for the bulk of extended commands in typical uses of METAFONT, the “null”
keyword has been set aside to denote a labeling command.

35. Here then are the special commands of GFtoDVI.

 n〈 string 〉 x y. Here n denotes the type of label; the characters 1, 2, 3, 4 respectively denote labels
forced to be at the top, left, right, or bottom of their dot, and the characters 5, 6, 7, 8 stand for the
same possibilities but with no dot printed. The character 0 instructs GFtoDVI to choose one of the
first four possibilities, if there’s no overlap with other labels or dots, otherwise an “overflow” entry is
placed at the right of the figure. The character / is the same as 0 except that overflow entries are
not produced. The label itself is the 〈 string 〉 that follows. METAFONT coordinates of the point that
is to receive this label are given by arguments x and y, in units of scaled pixels. (These arguments
appear in yyy commands.) (Precise definitions of the size and positioning of labels, and of the notion
of “conflicting” labels, will be given later.)

rule x1 y1 x2 y2. This command draws a line from (x1, y1) to (x2, y2) in METAFONT coordinates. The
present implementation does this only if the line is either horizontal or vertical, or if its slope matches
the slope of the slant font.

title 〈 string 〉. This command (which is output by METAFONT when it sees a “title statement”) specifies
a string that will appear at the top of the next proofsheet to be output by GFtoDVI. If more than
one title is given, they will appear in sequence; titles should be short enough to fit on a single line.

titlefont 〈 string 〉. This command, and the other font-naming commands below, must precede the first
boc in the GF file. It overrides the current font used to typeset the titles at the top of proofsheets.
GFtoDVI has default fonts that will be used if none other are specified; the “current” title font is
initially the default title font.

titlefontarea 〈 string 〉. This command overrides the current file area (or directory name) from which
GFtoDVI will try to find metric information for the title font.

titlefontat s. This command overrides the current “at size” that will be used for the title font. (See
the discussion of font metric files below, for the meaning of “at size” versus “design size.”) The value
of s is given in units of scaled points.

labelfont 〈 string 〉. This command overrides the current font used to typeset the labels that are
superimposed on proof figures. (The label font is fairly arbitrary, but it should be dark enough
to stand out when superimposed on gray pixels, and it should contain at least the decimal digits and
the characters ‘(’, ‘)’, ‘=’, ‘+’, ‘−’, ‘,’, and ‘.’.)

labelfontarea 〈 string 〉. This command overrides the current file area (or directory name) from which
GFtoDVI will try to find metric information for the label font.

labelfontat s. This command overrides the current “at size” that will be used for the label font.

grayfont 〈 string 〉. This command overrides the current font used to typeset the black pixels and the
dots for labels. (Gray fonts will be explained in detail later.)

grayfontarea 〈 string 〉. This command overrides the current file area (or directory name) from which
GFtoDVI will try to find metric information for the gray font.

grayfontat s. This command overrides the current “at size” that will be used for the gray font.

320 EXTENSIONS TO THE GENERIC FORMAT GF to DVI §35

slantfont 〈 string 〉. This command overrides the current font used to typeset rules that are neither
horizontal nor vertical. (Slant fonts will be explained in detail later.)

slantfontarea 〈 string 〉. This command overrides the current file area (or directory name) from which
GFtoDVI will try to find metric information for the slant font.

slantfontat s. This command overrides the current “at size” that will be used for the slant font.

rulethickness t. This command overrides the current value used for the thickness of rules. If the current
value is negative, no rule will be drawn; if the current value is zero, the rule thickness will be specified
by a parameter of the gray font. Each rule command uses the rule thickness that is current at the
time the command appears; hence it is possible to get different thicknesses of rules on the same figure.
The value of t is given in units of scaled points (TEX’s ‘sp’). At the beginning of each character the
current rule thickness is zero.

offset x y. This command overrides the current offset values that are added to all coordinates of a
character being output; x and y are given as scaled METAFONT coordinates. This simply has the
effect of repositioning the figures on the pages; the title line always appears in the same place, but the
figure can be moved up, down, left, or right. At the beginning of each character the current offsets
are zero.

xoffset x. This command is output by METAFONT just before shipping out a character whose x offset is
nonzero. GFtoDVI adds the specified amount to the x coordinates of all dots, labels, and rules in the
following character.

yoffset y. This command is output by METAFONT just before shipping out a character whose y offset is
nonzero. GFtoDVI adds the specified amount to the y coordinates of all dots, labels, and rules in the
following character.

§36 GF to DVI FONT METRIC DATA 321

36. Font metric data. Before we can get into the meaty details of GFtoDVI, we need to deal with yet
another esoteric binary file format, since GFtoDVI also does elementary typesetting operations. Therefore
it has to read important information about the fonts it will be using. The following material (again copied
almost verbatim from TEX) describes the contents of so-called TEX font metric (TFM) files.

The idea behind TFM files is that typesetting routines need a compact way to store the relevant information
about fonts, and computer centers need a compact way to store the relevant information about several
hundred fonts. TFM files are compact, and most of the information they contain is highly relevant, so they
provide a solution to the problem. GFtoDVI uses only four fonts, but interesting changes in its output will
occur when those fonts are varied.

The information in a TFM file appears in a sequence of 8-bit bytes. Since the number of bytes is always a
multiple of 4, we could also regard the file as a sequence of 32-bit words; but TEX uses the byte interpretation,
and so does GFtoDVI. The individual bytes are considered to be unsigned numbers.

37. The first 24 bytes (6 words) of a TFM file contain twelve 16-bit integers that give the lengths of the
various subsequent portions of the file. These twelve integers are, in order:

lf = length of the entire file, in words;
lh = length of the header data, in words;
bc = smallest character code in the font;
ec = largest character code in the font;

nw = number of words in the width table;
nh = number of words in the height table;
nd = number of words in the depth table;
ni = number of words in the italic correction table;
nl = number of words in the lig/kern table;
nk = number of words in the kern table;
ne = number of words in the extensible character table;
np = number of font parameter words.

They are all nonnegative and less than 215. We must have bc − 1 ≤ ec ≤ 255, and

lf = 6 + lh + (ec − bc + 1) + nw + nh + nd + ni + nl + nk + ne + np .

Note that a font may contain as many as 256 characters (if bc = 0 and ec = 255), and as few as 0 characters
(if bc = ec + 1). When two or more 8-bit bytes are combined to form an integer of 16 or more bits, the bytes
appear in BigEndian order.

〈Globals in the outer block 12 〉 +≡
lf , lh , bc , ec ,nw ,nh ,nd ,ni ,nl ,nk ,ne ,np : 0 . . 7́7777 ; { subfile sizes }

322 FONT METRIC DATA GF to DVI §38

38. The rest of the TFM file may be regarded as a sequence of ten data arrays having the informal
specification

header : array [0 . . lh − 1] of stuff
char info : array [bc . . ec] of char info word

width : array [0 . . nw − 1] of fix word
height : array [0 . . nh − 1] of fix word
depth : array [0 . . nd − 1] of fix word
italic : array [0 . . ni − 1] of fix word

lig kern : array [0 . . nl − 1] of lig kern command
kern : array [0 . . nk − 1] of fix word

exten : array [0 . . ne − 1] of extensible recipe
param : array [1 . . np] of fix word

The most important data type used here is a fix word , which is a 32-bit representation of a binary fraction.
A fix word is a signed quantity, with the two’s complement of the entire word used to represent negation.
Of the 32 bits in a fix word , exactly 12 are to the left of the binary point; thus, the largest fix word value is
2048− 2−20, and the smallest is −2048. We will see below, however, that all but two of the fix word values
must lie between −16 and +16.

39. The first data array is a block of header information, which contains general facts about the font.
The header must contain at least two words, and for TFM files to be used with Xerox printing software it
must contain at least 18 words, allocated as described below. When different kinds of devices need to be
interfaced, it may be necessary to add further words to the header block.

header [0] is a 32-bit check sum that GFtoDVI will copy into the DVI output file whenever it uses the font.
Later on when the DVI file is printed, possibly on another computer, the actual font that gets used
is supposed to have a check sum that agrees with the one in the TFM file used by GFtoDVI. In this
way, users will be warned about potential incompatibilities. (However, if the check sum is zero in
either the font file or the TFM file, no check is made.) The actual relation between this check sum and
the rest of the TFM file is not important; the check sum is simply an identification number with the
property that incompatible fonts almost always have distinct check sums.

header [1] is a fix word containing the design size of the font, in units of TEX points (7227 TEX points =
254 cm). This number must be at least 1.0; it is fairly arbitrary, but usually the design size is 10.0
for a “10 point” font, i.e., a font that was designed to look best at a 10-point size, whatever that
really means. When a TEX user asks for a font ‘at δ pt’, the effect is to override the design size
and replace it by δ, and to multiply the x and y coordinates of the points in the font image by a
factor of δ divided by the design size. Similarly, specific sizes can be substituted for the design size
by GFtoDVI commands like ‘titlefontat’. All other dimensions in the TFM file are fix word numbers
in design-size units. Thus, for example, the value of param [6], one em or \quad, is often the fix word
value 220 = 1.0, since many fonts have a design size equal to one em. The other dimensions must be
less than 16 design-size units in absolute value; thus, header [1] and param [1] are the only fix word
entries in the whole TFM file whose first byte might be something besides 0 or 255.

header [2 . . 11], if present, contains 40 bytes that identify the character coding scheme. The first
byte, which must be between 0 and 39, is the number of subsequent ASCII bytes actually relevant
in this string, which is intended to specify what character-code-to-symbol convention is present
in the font. Examples are ASCII for standard ASCII, TeX text for fonts like cmr10 and cmti9,
TeX math extension for cmex10, XEROX text for Xerox fonts, GRAPHIC for special-purpose non-
alphabetic fonts, GFGRAY for GFtoDVI’s gray fonts, GFSLANT for GFtoDVI’s slant fonts, UNSPECIFIED
for the default case when there is no information. Parentheses should not appear in this name. (Such
a string is said to be in BCPL format.)

header [12 . . whatever] might also be present.

§40 GF to DVI FONT METRIC DATA 323

40. Next comes the char info array, which contains one char info word per character. Each char info word
contains six fields packed into four bytes as follows.

first byte: width index (8 bits)
second byte: height index (4 bits) times 16, plus depth index (4 bits)
third byte: italic index (6 bits) times 4, plus tag (2 bits)
fourth byte: remainder (8 bits)

The actual width of a character is width [width index], in design-size units; this is a device for compressing
information, since many characters have the same width. Since it is quite common for many characters to
have the same height, depth, or italic correction, the TFM format imposes a limit of 16 different heights, 16
different depths, and 64 different italic corrections.

Incidentally, the relation width [0] = height [0] = depth [0] = italic [0] = 0 should always hold, so that an
index of zero implies a value of zero. The width index should never be zero unless the character does not exist
in the font, since a character is valid if and only if it lies between bc and ec and has a nonzero width index .

41. The tag field in a char info word has four values that explain how to interpret the remainder field.

tag = 0 (no tag) means that remainder is unused.
tag = 1 (lig tag) means that this character has a ligature/kerning program starting at lig kern [remainder].
tag = 2 (list tag) means that this character is part of a chain of characters of ascending sizes, and not the

largest in the chain. The remainder field gives the character code of the next larger character.
tag = 3 (ext tag) means that this character code represents an extensible character, i.e., a character that

is built up of smaller pieces so that it can be made arbitrarily large. The pieces are specified in
exten [remainder].

define no tag = 0 { vanilla character }
define lig tag = 1 { character has a ligature/kerning program }
define list tag = 2 { character has a successor in a charlist }
define ext tag = 3 { character is extensible }

324 FONT METRIC DATA GF to DVI §42

42. The lig kern array contains instructions in a simple programming language that explains what to do
for special letter pairs. Each word in this array is a lig kern command of four bytes.

first byte: skip byte , indicates that this is the final program step if the byte is 128 or more, otherwise the
next step is obtained by skipping this number of intervening steps.

second byte: next char , “if next char follows the current character, then perform the operation and stop,
otherwise continue.”

third byte: op byte , indicates a ligature step if less than 128, a kern step otherwise.
fourth byte: remainder .

In a kern step, an additional space equal to kern [256 ∗ (op byte − 128) + remainder] is inserted between the
current character and next char . This amount is often negative, so that the characters are brought closer
together by kerning; but it might be positive.

There are eight kinds of ligature steps, having op byte codes 4a+2b+c where 0 ≤ a ≤ b+c and 0 ≤ b, c ≤ 1.
The character whose code is remainder is inserted between the current character and next char ; then the
current character is deleted if b = 0, and next char is deleted if c = 0; then we pass over a characters to
reach the next current character (which may have a ligature/kerning program of its own).

If the very first instruction of the lig kern array has skip byte = 255, the next char byte is the so-called
right boundary character of this font; the value of next char need not lie between bc and ec . If the very
last instruction of the lig kern array has skip byte = 255, there is a special ligature/kerning program for a
left boundary character, beginning at location 256 ∗ op byte + remainder . The interpretation is that TEX
puts implicit boundary characters before and after each consecutive string of characters from the same font.
These implicit characters do not appear in the output, but they can affect ligatures and kerning.

If the very first instruction of a character’s lig kern program has skip byte > 128, the program actually
begins in location 256 ∗op byte + remainder . This feature allows access to large lig kern arrays, because the
first instruction must otherwise appear in a location ≤ 255.

Any instruction with skip byte > 128 in the lig kern array must have 256 ∗ op byte + remainder < nl . If
such an instruction is encountered during normal program execution, it denotes an unconditional halt; no
ligature or kerning command is performed.

define stop flag = 128 { value indicating ‘STOP’ in a lig/kern program }
define kern flag = 128 { op code for a kern step }

43. Extensible characters are specified by an extensible recipe , which consists of four bytes called top , mid ,
bot , and rep (in this order). These bytes are the character codes of individual pieces used to build up a large
symbol. If top , mid , or bot are zero, they are not present in the built-up result. For example, an extensible
vertical line is like an extensible bracket, except that the top and bottom pieces are missing.

44. The final portion of a TFM file is the param array, which is another sequence of fix word values.

param [1] = slant is the amount of italic slant. For example, slant = .25 means that when you go up one
unit, you also go .25 units to the right. The slant is a pure number; it’s the only fix word other than
the design size itself that is not scaled by the design size.

param [2] = space is the normal spacing between words in text. Note that character " " in the font need
not have anything to do with blank spaces.

param [3] = space stretch is the amount of glue stretching between words.
param [4] = space shrink is the amount of glue shrinking between words.
param [5] = x height is the height of letters for which accents don’t have to be raised or lowered.
param [6] = quad is the size of one em in the font.
param [7] = extra space is the amount added to param [2] at the ends of sentences.
When the character coding scheme is GFGRAY or GFSLANT, the font is supposed to contain an additional

parameter called default rule thickness . Other special parameters go with other coding schemes.

§45 GF to DVI INPUT FROM BINARY FILES 325

45. Input from binary files. We have seen that GF and DVI and TFM files are sequences of 8-bit bytes.
The bytes appear physically in what is called a ‘packed file of 0 . . 255’ in Pascal lingo.

Packing is system dependent, and many Pascal systems fail to implement such files in a sensible way
(at least, from the viewpoint of producing good production software). For example, some systems treat all
byte-oriented files as text, looking for end-of-line marks and such things. Therefore some system-dependent
code is often needed to deal with binary files, even though most of the program in this section of GFtoDVI
is written in standard Pascal.

One common way to solve the problem is to consider files of integer numbers, and to convert an integer
in the range −231 ≤ x < 231 to a sequence of four bytes (a, b, c, d) using the following code, which avoids the
controversial integer division of negative numbers:

if x ≥ 0 then a← x div 1́00000000
else begin x← (x+ 1́0000000000) + 1́0000000000 ; a← x div 1́00000000 + 128;

end ;
x← xmod 1́00000000 ;
b← x div 2́00000 ; x← xmod 2́00000 ;
c← x div 4́00 ; d← xmod 4́00 ;

The four bytes are then kept in a buffer and output one by one. (On 36-bit computers, an additional
division by 16 is necessary at the beginning. Another way to separate an integer into four bytes is to
use/abuse Pascal’s variant records, storing an integer and retrieving bytes that are packed in the same place;
caveat implementor!) It is also desirable in some cases to read a hundred or so integers at a time, maintaining
a larger buffer.

We shall stick to simple Pascal in this program, for reasons of clarity, even if such simplicity is sometimes
unrealistic.

〈Types in the outer block 9 〉 +≡
eight bits = 0 . . 255; { unsigned one-byte quantity }
byte file = packed file of eight bits ; { files that contain binary data }

46. The program deals with three binary file variables: gf file is the main input file that we are converting
into a document; dvi file is the main output file that will specify that document; and tfm file is the current
font metric file from which character-width information is being read.

〈Globals in the outer block 12 〉 +≡
gf file : byte file ; { the character data we are reading }
dvi file : byte file ; { the typesetting instructions we are writing }
tfm file : byte file ; { a font metric file }

47. To prepare these files for input or output, we reset or rewrite them. An extension of Pascal is needed,
since we want to associate it with external files whose names are specified dynamically (i.e., not known at
compile time). The following code assumes that ‘reset (f, s)’ and ‘rewrite (f, s)’ do this, when f is a file
variable and s is a string variable that specifies the file name.

procedure open gf file ; { prepares to read packed bytes in gf file }
begin reset (gf file ,name of file); cur loc ← 0;
end;

procedure open tfm file ; { prepares to read packed bytes in tfm file }
begin reset (tfm file ,name of file);
end;

procedure open dvi file ; { prepares to write packed bytes in dvi file }
begin rewrite (dvi file ,name of file);
end;

326 INPUT FROM BINARY FILES GF to DVI §48

48. If you looked carefully at the preceding code, you probably asked, “What are cur loc and name of file?”
Good question. They are global variables: The integer cur loc tells which byte of the input file will be read
next, and the string name of file will be set to the current file name before the file-opening procedures are
called.

〈Globals in the outer block 12 〉 +≡
cur loc : integer ; { current byte number in gf file }
name of file : packed array [1 . . file name size] of char ; { external file name }

49. It turns out to be convenient to read four bytes at a time, when we are inputting from TFM files. The
input goes into global variables b0 , b1 , b2 , and b3 , with b0 getting the first byte and b3 the fourth.

〈Globals in the outer block 12 〉 +≡
b0 , b1 , b2 , b3 : eight bits ; { four bytes input at once }

50. The read tfm word procedure sets b0 through b3 to the next four bytes in the current TFM file.

procedure read tfm word ;
begin read (tfm file , b0); read (tfm file , b1); read (tfm file , b2); read (tfm file , b3);
end;

51. We shall use another set of simple functions to read the next byte or bytes from gf file . There are four
possibilities, each of which is treated as a separate function in order to minimize the overhead for subroutine
calls.

function get byte : integer ; { returns the next byte, unsigned }
var b: eight bits ;
begin if eof (gf file) then get byte ← 0
else begin read (gf file , b); incr (cur loc); get byte ← b;

end;
end;

function get two bytes : integer ; { returns the next two bytes, unsigned }
var a, b: eight bits ;
begin read (gf file , a); read (gf file , b); cur loc ← cur loc + 2; get two bytes ← a ∗ 256 + b;
end;

function get three bytes : integer ; { returns the next three bytes, unsigned }
var a, b, c: eight bits ;
begin read (gf file , a); read (gf file , b); read (gf file , c); cur loc ← cur loc + 3;
get three bytes ← (a ∗ 256 + b) ∗ 256 + c;
end;

function signed quad : integer ; { returns the next four bytes, signed }
var a, b, c, d: eight bits ;
begin read (gf file , a); read (gf file , b); read (gf file , c); read (gf file , d); cur loc ← cur loc + 4;
if a < 128 then signed quad ← ((a ∗ 256 + b) ∗ 256 + c) ∗ 256 + d
else signed quad ← (((a− 256) ∗ 256 + b) ∗ 256 + c) ∗ 256 + d;
end;

§52 GF to DVI READING THE FONT INFORMATION 327

52. Reading the font information. Now let’s get down to brass tacks and consider the more sub-
stantial routines that actually convert TFM data into a form suitable for computation. The routines in this
part of the program have been borrowed from TEX, with slight changes, since GFtoDVI has to do some of
the things that TEX does.

The TFM data is stored in a large array called font info . Each item of font info is a memory word ; the
fix word data gets converted into scaled entries, while everything else goes into words of type four quarters .
(These data structures are special cases of the more general memory words of TEX. On some machines it is
necessary to define min quarterword = −128 and max quarterword = 127 in order to pack four quarterwords
into a single word.)

define min quarterword = 0 { change this to allow efficient packing, if necessary }
define max quarterword = 255 {ditto }
define qi (#) ≡ # + min quarterword { to put an eight bits item into a quarterword }
define qo(#) ≡ #−min quarterword { to take an eight bits item out of a quarterword }
define title font = 1
define label font = 2
define gray font = 3
define slant font = 4
define logo font = 5
define non char ≡ qi (256)
define non address ≡ font mem size

〈Types in the outer block 9 〉 +≡
font index = 0 . . font mem size ; quarterword = min quarterword . . max quarterword ; { 1/4 of a word }
four quarters = packed record b0 : quarterword ;

b1 : quarterword ;
b2 : quarterword ;
b3 : quarterword ;
end;

memory word = record
case boolean of
true : (sc : scaled);
false : (qqqq : four quarters);
end;

internal font number = title font . . logo font ;

328 READING THE FONT INFORMATION GF to DVI §53

53. Besides font info , there are also a number of index arrays that point into it, so that we can locate
width and height information, etc. For example, the char info data for character c in font f will be in
font info [char base [f] + c].qqqq ; and if w is the width index part of this word (the b0 field), the width of
the character is font info [width base [f] + w].sc . (These formulas assume that min quarterword has already
been added to w, but not to c.)

〈Globals in the outer block 12 〉 +≡
font info : array [font index] of memory word ; { the font metric data }
fmem ptr : font index ; {first unused word of font info }
font check : array [internal font number] of four quarters ; { check sum }
font size : array [internal font number] of scaled ; { “at” size }
font dsize : array [internal font number] of scaled ; { “design” size }
font bc : array [internal font number] of eight bits ; { beginning (smallest) character code }
font ec : array [internal font number] of eight bits ; { ending (largest) character code }
char base : array [internal font number] of integer ; { base addresses for char info }
width base : array [internal font number] of integer ; { base addresses for widths }
height base : array [internal font number] of integer ; { base addresses for heights }
depth base : array [internal font number] of integer ; { base addresses for depths }
italic base : array [internal font number] of integer ; { base addresses for italic corrections }
lig kern base : array [internal font number] of integer ; { base addresses for ligature/kerning programs }
kern base : array [internal font number] of integer ; { base addresses for kerns }
exten base : array [internal font number] of integer ; { base addresses for extensible recipes }
param base : array [internal font number] of integer ; { base addresses for font parameters }
bchar label : array [internal font number] of font index ;

{ start of lig kern program for left boundary character, non address if there is none }
font bchar : array [internal font number] of min quarterword . . non char ;

{ right boundary character, non char if there is none }

54. 〈 Set initial values 13 〉 +≡
fmem ptr ← 0;

§55 GF to DVI READING THE FONT INFORMATION 329

55. Of course we want to define macros that suppress the detail of how font information is actually packed,
so that we don’t have to write things like

font info [width base [f] + font info [char base [f] + c].qqqq .b0].sc

too often. The WEB definitions here make char info(f)(c) the four quarters word of font information
corresponding to character c of font f . If q is such a word, char width (f)(q) will be the character’s width;
hence the long formula above is at least abbreviated to

char width (f)(char info(f)(c)).

In practice we will try to fetch q first and look at several of its fields at the same time.
The italic correction of a character will be denoted by char italic(f)(q), so it is analogous to char width .

But we will get at the height and depth in a slightly different way, since we usually want to compute both
height and depth if we want either one. The value of height depth (q) will be the 8-bit quantity

b = height index × 16 + depth index ,

and if b is such a byte we will write char height (f)(b) and char depth (f)(b) for the height and depth of the
character c for which q = char info(f)(c). Got that?

The tag field will be called char tag (q); and the remainder byte will be called rem byte (q).

define char info end (#) ≡ #] .qqqq
define char info(#) ≡ font info [char base [#] + char info end
define char width end (#) ≡ #.b0] .sc
define char width (#) ≡ font info [width base [#] + char width end
define char exists (#) ≡ (#.b0 > min quarterword)
define char italic end (#) ≡ (qo(#.b2)) div 4] .sc
define char italic(#) ≡ font info [italic base [#] + char italic end
define height depth (#) ≡ qo(#.b1)
define char height end (#) ≡ (#) div 16] .sc
define char height (#) ≡ font info [height base [#] + char height end
define char depth end (#) ≡ # mod 16] .sc
define char depth (#) ≡ font info [depth base [#] + char depth end
define char tag (#) ≡ ((qo(#.b2)) mod 4)
define skip byte (#) ≡ qo(#.b0)
define next char (#) ≡ #.b1
define op byte (#) ≡ qo(#.b2)
define rem byte (#) ≡ #.b3

56. Here are some macros that help process ligatures and kerns. We write char kern (f)(j) to find the
amount of kerning specified by kerning command j in font f .

define lig kern start (#) ≡ lig kern base [#] + rem byte { beginning of lig/kern program }
define lig kern restart end (#) ≡ 256 ∗ (op byte (#)) + rem byte (#)
define lig kern restart (#) ≡ lig kern base [#] + lig kern restart end
define char kern end (#) ≡ 256 ∗ (op byte (#)− 128) + rem byte (#)] .sc
define char kern (#) ≡ font info [kern base [#] + char kern end

330 READING THE FONT INFORMATION GF to DVI §57

57. Font parameters are referred to as slant (f), space (f), etc.

define param end (#) ≡ param base [#]] .sc
define param (#) ≡ font info [# + param end
define slant ≡ param (1) { slant to the right, per unit distance upward }
define space ≡ param (2) { normal space between words }
define x height ≡ param (5) { one ex }
define default rule thickness ≡ param (8) { thickness of rules }

58. Here is the subroutine that inputs the information on tfm file , assuming that the file has just been
reset. Parameter f tells which metric file is being read (either title font or label font or gray font or slant font
or logo font); parameter s is the “at” size, which will be substituted for the design size if it is positive.

This routine does only limited checking of the validity of the file, because another program (TFtoPL) is
available to diagnose errors in the rare case that something is amiss.

define bad tfm = 11 { label for read font info }
define abend ≡ goto bad tfm {do this when the TFM data is wrong }

procedure read font info(f : integer ; s : scaled); { input a TFM file }
label done , bad tfm ;
var k: font index ; { index into font info }

lf , lh , bc , ec ,nw ,nh ,nd ,ni ,nl ,nk ,ne ,np : 0 . . 65535; { sizes of subfiles }
bch label : integer ; { left boundary label for ligatures }
bchar : 0 . . 256; { right boundary character for ligatures }
qw : four quarters ; sw : scaled ; { accumulators }
z: scaled ; { the design size or the “at” size }
alpha : integer ; beta : 1 . . 16; { auxiliary quantities used in fixed-point multiplication }

begin 〈Read and check the font data; abend if the TFM file is malformed; otherwise goto done 59 〉;
bad tfm : print nl (´Bad TFM file for´);

case f of
title font : abort (´titles!´);
label font : abort (´labels!´);
gray font : abort (´pixels!´);
slant font : abort (´slants!´);
logo font : abort (´METAFONT logo!´);
end; { there are no other cases }

done : { it might be good to close tfm file now }
end;

59. 〈Read and check the font data; abend if the TFM file is malformed; otherwise goto done 59 〉 ≡
〈Read the TFM size fields 60 〉;
〈Use size fields to allocate font information 61 〉;
〈Read the TFM header 62 〉;
〈Read character data 63 〉;
〈Read box dimensions 64 〉;
〈Read ligature/kern program 66 〉;
〈Read extensible character recipes 67 〉;
〈Read font parameters 68 〉;
〈Make final adjustments and goto done 69 〉

This code is used in section 58.

§60 GF to DVI READING THE FONT INFORMATION 331

60. define read two halves end (#) ≡ #← b2 ∗ 256 + b3
define read two halves (#) ≡ read tfm word ; #← b0 ∗ 256 + b1 ; read two halves end

〈Read the TFM size fields 60 〉 ≡
begin read two halves (lf)(lh); read two halves (bc)(ec);
if (bc > ec + 1) ∨ (ec > 255) then abend ;
if bc > 255 then { bc = 256 and ec = 255 }

begin bc ← 1; ec ← 0;
end;

read two halves (nw)(nh); read two halves (nd)(ni); read two halves (nl)(nk); read two halves (ne)(np);
if lf 6= 6 + lh + (ec − bc + 1) + nw + nh + nd + ni + nl + nk + ne + np then abend ;
end

This code is used in section 59.

61. The preliminary settings of the index variables width base , lig kern base , kern base , and exten base
will be corrected later by subtracting min quarterword from them; and we will subtract 1 from param base
too. It’s best to forget about such anomalies until later.

〈Use size fields to allocate font information 61 〉 ≡
lf ← lf − 6− lh ; { lf words should be loaded into font info }
if np < 8 then lf ← lf + 8− np ; { at least eight parameters will appear }
if fmem ptr + lf > font mem size then abort (´No room for TFM file!´);
char base [f]← fmem ptr − bc ; width base [f]← char base [f] + ec + 1;
height base [f]← width base [f] + nw ; depth base [f]← height base [f] + nh ;
italic base [f]← depth base [f] + nd ; lig kern base [f]← italic base [f] + ni ;
kern base [f]← lig kern base [f] + nl ; exten base [f]← kern base [f] + nk ;
param base [f]← exten base [f] + ne

This code is used in section 59.

62. Only the first two words of the header are needed by GFtoDVI.

define store four quarters (#) ≡
begin read tfm word ; qw .b0 ← qi (b0); qw .b1 ← qi (b1); qw .b2 ← qi (b2); qw .b3 ← qi (b3);
#← qw ;
end

〈Read the TFM header 62 〉 ≡
begin if lh < 2 then abend ;
store four quarters (font check [f]); read tfm word ;
if b0 > 127 then abend ; { design size must be positive }
z ← ((b0 ∗ 256 + b1) ∗ 256 + b2) ∗ 16 + (b3 div 16);
if z < unity then abend ;
while lh > 2 do

begin read tfm word ; decr (lh); { ignore the rest of the header }
end;

font dsize [f]← z;
if s > 0 then z ← s;
font size [f]← z;
end

This code is used in section 59.

332 READING THE FONT INFORMATION GF to DVI §63

63. 〈Read character data 63 〉 ≡
for k ← fmem ptr to width base [f]− 1 do

begin store four quarters (font info [k].qqqq);
if (b0 ≥ nw) ∨ (b1 div 2́0 ≥ nh) ∨ (b1 mod 2́0 ≥ nd) ∨ (b2 div 4 ≥ ni) then abend ;
case b2 mod 4 of
lig tag : if b3 ≥ nl then abend ;
ext tag : if b3 ≥ ne then abend ;
no tag , list tag : do nothing ;
end; { there are no other cases }
end

This code is used in section 59.

64. A fix word whose four bytes are (b0, b1, b2, b3) from left to right represents the number

x =

{
b1 · 2−4 + b2 · 2−12 + b3 · 2−20, if b0 = 0;
−16 + b1 · 2−4 + b2 · 2−12 + b3 · 2−20, if b0 = 255.

(No other choices of b0 are allowed, since the magnitude of a number in design-size units must be less than
16.) We want to multiply this quantity by the integer z, which is known to be less than 227. Let α = 16z.
If z < 223, the individual multiplications b · z, c · z, d · z cannot overflow; otherwise we will divide z by 2, 4,
8, or 16, to obtain a multiplier less than 223, and we can compensate for this later. If z has thereby been
replaced by z′ = z/2e, let β = 24−e; we shall compute

b(b1 + b2 · 2−8 + b3 · 2−16) z′/βc

if a = 0, or the same quantity minus α if a = 255.

define store scaled (#) ≡
begin read tfm word ; sw ← (((((b3 ∗ z) div 4́00) + (b2 ∗ z)) div 4́00) + (b1 ∗ z)) div beta ;
if b0 = 0 then #← sw else if b0 = 255 then #← sw − alpha else abend ;
end

〈Read box dimensions 64 〉 ≡
begin 〈Replace z by z′ and compute α, β 65 〉;
for k ← width base [f] to lig kern base [f]− 1 do store scaled (font info [k].sc);
if font info [width base [f]].sc 6= 0 then abend ; {width [0] must be zero }
if font info [height base [f]].sc 6= 0 then abend ; { height [0] must be zero }
if font info [depth base [f]].sc 6= 0 then abend ; { depth [0] must be zero }
if font info [italic base [f]].sc 6= 0 then abend ; { italic [0] must be zero }
end

This code is used in section 59.

65. 〈Replace z by z′ and compute α, β 65 〉 ≡
begin alpha ← 16 ∗ z; beta ← 16;
while z ≥ 4́0000000 do

begin z ← z div 2; beta ← beta div 2;
end;

end

This code is used in section 64.

§66 GF to DVI READING THE FONT INFORMATION 333

66. define check byte range (#) ≡
begin if (# < bc) ∨ (# > ec) then abend
end

〈Read ligature/kern program 66 〉 ≡
begin bch label ← 7́7777 ; bchar ← 256;
if nl > 0 then

begin for k ← lig kern base [f] to kern base [f]− 1 do
begin store four quarters (font info [k].qqqq);
if b0 > stop flag then

begin if 256 ∗ b2 + b3 ≥ nl then abend ;
if b0 = 255 then

if k = lig kern base [f] then bchar ← b1 ;
end

else begin if b1 6= bchar then check byte range (b1);
if b2 < kern flag then check byte range (b3)
else if 256 ∗ (b2 − 128) + b3 ≥ nk then abend ;
end;

end;
if b0 = 255 then bch label ← 256 ∗ b2 + b3 ;
end;

for k ← kern base [f] to exten base [f]− 1 do store scaled (font info [k].sc);
end

This code is used in section 59.

67. 〈Read extensible character recipes 67 〉 ≡
for k ← exten base [f] to param base [f]− 1 do

begin store four quarters (font info [k].qqqq);
if b0 6= 0 then check byte range (b0);
if b1 6= 0 then check byte range (b1);
if b2 6= 0 then check byte range (b2);
check byte range (b3);
end

This code is used in section 59.

68. 〈Read font parameters 68 〉 ≡
begin for k ← 1 to np do

if k = 1 then { the slant parameter is a pure number }
begin read tfm word ;
if b0 > 127 then sw ← b0 − 256 else sw ← b0 ;
sw ← sw ∗ 4́00 + b1 ; sw ← sw ∗ 4́00 + b2 ; font info [param base [f]].sc ← (sw ∗ 2́0) + (b3 div 2́0);
end

else store scaled (font info [param base [f] + k − 1].sc);
for k ← np + 1 to 8 do font info [param base [f] + k − 1].sc ← 0;
end

This code is used in section 59.

334 READING THE FONT INFORMATION GF to DVI §69

69. Now to wrap it up, we have checked all the necessary things about the TFM file, and all we need to do
is put the finishing touches on the data for the new font.

define adjust (#) ≡ #[f]← qo(#[f]) { correct for the excess min quarterword that was added }
〈Make final adjustments and goto done 69 〉 ≡

font bc [f]← bc ; font ec [f]← ec ;
if bch label < nl then bchar label [f]← bch label + lig kern base [f]
else bchar label [f]← non address ;
font bchar [f]← qi (bchar); adjust (width base); adjust (lig kern base); adjust (kern base);
adjust (exten base); decr (param base [f]); fmem ptr ← fmem ptr + lf ; goto done

This code is used in section 59.

§70 GF to DVI THE STRING POOL 335

70. The string pool. GFtoDVI remembers strings by putting them into an array called str pool . The
str start array tells where each string starts in the pool.

〈Types in the outer block 9 〉 +≡
pool pointer = 0 . . pool size ; { for variables that point into str pool }
str number = 0 . . max strings ; { for variables that point into str start }

71. As new strings enter, we keep track of the storage currently used, by means of two global variables
called pool ptr and str ptr . These are periodically reset to their initial values when we move from one
character to another, because most strings are of only temporary interest.

〈Globals in the outer block 12 〉 +≡
str pool : packed array [pool pointer] of ASCII code ; { the characters }
str start : array [str number] of pool pointer ; { the starting pointers }
pool ptr : pool pointer ; {first unused position in str pool }
str ptr : str number ; { start of the current string being created }
init str ptr : str number ; { str ptr setting when a new character starts }

72. Several of the elementary string operations are performed using WEB macros instead of using Pascal
procedures, because many of the operations are done quite frequently and we want to avoid the overhead of
procedure calls. For example, here is a simple macro that computes the length of a string.

define length (#) ≡ (str start [# + 1]− str start [#]) { the number of characters in string number # }

73. Strings are created by appending character codes to str pool . The macro called append char , defined
here, does not check to see if the value of pool ptr has gotten too high; that test is supposed to be made
before append char is used.

To test if there is room to append l more characters to str pool , we shall write str room (l), which aborts
GFtoDVI and gives an apologetic error message if there isn’t enough room.

define append char (#) ≡ { put ASCII code # at the end of str pool }
begin str pool [pool ptr]← #; incr (pool ptr);
end

define str room (#) ≡ {make sure that the pool hasn’t overflowed }
begin if pool ptr + # > pool size then abort (´Too many strings!´);
end

74. Once a sequence of characters has been appended to str pool , it officially becomes a string when the
function make string is called. This function returns the identification number of the new string as its value.

function make string : str number ; { current string enters the pool }
begin if str ptr = max strings then abort (´Too many labels!´);
incr (str ptr); str start [str ptr]← pool ptr ; make string ← str ptr − 1;
end;

336 THE STRING POOL GF to DVI §75

75. The first strings in the string pool are the keywords that GFtoDVI recognizes in the xxx commands of
a GF file. They are entered into str pool by means of a tedious bunch of assignment statements, together
with calls on the first string subroutine.

define init str0 (#) ≡ first string (#)
define init str1 (#) ≡ buffer [1]← #; init str0
define init str2 (#) ≡ buffer [2]← #; init str1
define init str3 (#) ≡ buffer [3]← #; init str2
define init str4 (#) ≡ buffer [4]← #; init str3
define init str5 (#) ≡ buffer [5]← #; init str4
define init str6 (#) ≡ buffer [6]← #; init str5
define init str7 (#) ≡ buffer [7]← #; init str6
define init str8 (#) ≡ buffer [8]← #; init str7
define init str9 (#) ≡ buffer [9]← #; init str8
define init str10 (#) ≡ buffer [10]← #; init str9
define init str11 (#) ≡ buffer [11]← #; init str10
define init str12 (#) ≡ buffer [12]← #; init str11
define init str13 (#) ≡ buffer [13]← #; init str12
define longest keyword = 13

procedure first string (c : integer);
begin if str ptr 6= c then abort (´?´); { internal consistency check }
while l > 0 do

begin append char (buffer [l]); decr (l);
end;

incr (str ptr); str start [str ptr]← pool ptr ;
end;

76. 〈Globals in the outer block 12 〉 +≡
l: integer ; { length of string being made by first string }

§77 GF to DVI THE STRING POOL 337

77. Here are the tedious assignments just promised. String number 0 is the empty string.

define null string = 0 { the empty keyword }
define area code = 4 { add to font code for the ‘area’ keywords }
define at code = 8 { add to font code for the ‘at’ keywords }
define rule code = 13 { code for the keyword ‘rule’ }
define title code = 14 { code for the keyword ‘title’ }
define rule thickness code = 15 { code for the keyword ‘rulethickness’ }
define offset code = 16 { code for the keyword ‘offset’ }
define x offset code = 17 { code for the keyword ‘xoffset’ }
define y offset code = 18 { code for the keyword ‘yoffset’ }
define max keyword = 18 { largest keyword code number }

〈 Initialize the strings 77 〉 ≡
str ptr ← 0; pool ptr ← 0; str start [0]← 0;
l← 0; init str0 (null string);
l← 9; init str9 ("t")("i")("t")("l")("e")("f")("o")("n")("t")(title font);
l← 9; init str9 ("l")("a")("b")("e")("l")("f")("o")("n")("t")(label font);
l← 8; init str8 ("g")("r")("a")("y")("f")("o")("n")("t")(gray font);
l← 9; init str9 ("s")("l")("a")("n")("t")("f")("o")("n")("t")(slant font);
l← 13;
init str13 ("t")("i")("t")("l")("e")("f")("o")("n")("t")("a")("r")("e")("a")(title font + area code);
l← 13;
init str13 ("l")("a")("b")("e")("l")("f")("o")("n")("t")("a")("r")("e")("a")(label font + area code);
l← 12;
init str12 ("g")("r")("a")("y")("f")("o")("n")("t")("a")("r")("e")("a")(gray font + area code);
l← 13;
init str13 ("s")("l")("a")("n")("t")("f")("o")("n")("t")("a")("r")("e")("a")(slant font + area code);
l← 11; init str11 ("t")("i")("t")("l")("e")("f")("o")("n")("t")("a")("t")(title font + at code);
l← 11; init str11 ("l")("a")("b")("e")("l")("f")("o")("n")("t")("a")("t")(label font + at code);
l← 10; init str10 ("g")("r")("a")("y")("f")("o")("n")("t")("a")("t")(gray font + at code);
l← 11; init str11 ("s")("l")("a")("n")("t")("f")("o")("n")("t")("a")("t")(slant font + at code);
l← 4; init str4 ("r")("u")("l")("e")(rule code);
l← 5; init str5 ("t")("i")("t")("l")("e")(title code);
l← 13;
init str13 ("r")("u")("l")("e")("t")("h")("i")("c")("k")("n")("e")("s")("s")(rule thickness code);
l← 6; init str6 ("o")("f")("f")("s")("e")("t")(offset code);
l← 7; init str7 ("x")("o")("f")("f")("s")("e")("t")(x offset code);
l← 7; init str7 ("y")("o")("f")("f")("s")("e")("t")(y offset code);

See also sections 78 and 88.

This code is used in section 219.

338 THE STRING POOL GF to DVI §78

78. We will also find it useful to have the following strings. (The names of default fonts will presumably
be different at different sites.)

define gf ext = max keyword + 1 { string number for ‘.gf’ }
define dvi ext = max keyword + 2 { string number for ‘.dvi’ }
define tfm ext = max keyword + 3 { string number for ‘.tfm’ }
define page header = max keyword + 4 { string number for ‘ Page ’ }
define char header = max keyword + 5 { string number for ‘ Character ’ }
define ext header = max keyword + 6 { string number for ‘ Ext ’ }
define left quotes = max keyword + 7 { string number for ‘ ‘‘’ }
define right quotes = max keyword + 8 { string number for ‘’’’ }
define equals sign = max keyword + 9 { string number for ‘ = ’ }
define plus sign = max keyword + 10 { string number for ‘ + (’ }
define default title font = max keyword + 11 { string number for the default title font }
define default label font = max keyword + 12 { string number for the default label font }
define default gray font = max keyword + 13 { string number for the default gray font }
define logo font name = max keyword + 14 { string number for the font with METAFONT logo }
define small logo = max keyword + 15 { string number for ‘METAFONT’ }
define home font area = max keyword + 16 { string number for system-dependent font area }

〈 Initialize the strings 77 〉 +≡
l← 3; init str3 (".")("g")("f")(gf ext);
l← 4; init str4 (".")("d")("v")("i")(dvi ext);
l← 4; init str4 (".")("t")("f")("m")(tfm ext);
l← 7; init str7 (" ")(" ")("P")("a")("g")("e")(" ")(page header);
l← 12; init str12 (" ")(" ")("C")("h")("a")("r")("a")("c")("t")("e")("r")(" ")(char header);
l← 6; init str6 (" ")(" ")("E")("x")("t")(" ")(ext header);
l← 4; init str4 (" ")(" ")("`")("`")(left quotes);
l← 2; init str2 ("´")("´")(right quotes);
l← 3; init str3 (" ")("=")(" ")(equals sign);
l← 4; init str4 (" ")("+")(" ")("(")(plus sign);
l← 4; init str4 ("c")("m")("r")("8")(default title font);
l← 6; init str6 ("c")("m")("t")("t")("1")("0")(default label font);
l← 4; init str4 ("g")("r")("a")("y")(default gray font);
l← 5; init str5 ("l")("o")("g")("o")("8")(logo font name);
l← 8; init str8 ("M")("E")("T")("A")("F")("O")("N")("T")(small logo);

§79 GF to DVI THE STRING POOL 339

79. If an xxx command has just been encountered in the GF file, the following procedure interprets its
keyword. More precisely, we assume that cur gf contains an op-code byte just read from the GF file, where
xxx1 ≤ cur gf ≤ no op . The interpret xxx procedure will read the rest of the command, in the following
way:

1) If cur gf is no op or yyy , or if it’s an xxx command with an unknown keyword, the bytes are simply
read and ignored, and the value no operation is returned.

2) If cur gf is an xxx command (either xxx1 or · · · or xxx4), and if the associated string matches a keyword
exactly, the string number of that keyword is returned (e.g., rule thickness code).

3) If cur gf is an xxx command whose string begins with keyword and space, the string number of that
keyword is returned, and the remainder of the string is put into the string pool (where it will be string
number cur string . Exception: If the keyword is null string , the character immediately following the
blank space is put into the global variable label type , and the remaining characters go into the string
pool.

In all cases, cur gf will then be reset to the op-code byte that immediately follows the original command.

define no operation = max keyword + 1

〈Types in the outer block 9 〉 +≡
keyword code = null string . . no operation ;

80. 〈Globals in the outer block 12 〉 +≡
cur gf : eight bits ; { the byte most recently read from gf file }
cur string : str number ; { the string following a keyword and space }
label type : eight bits ; { the character following a null keyword and space }

81. We will be using this procedure when reading the GF file just after the preamble and just after eoc
commands.

function interpret xxx : keyword code ;
label done , done1 ,not found ;
var k: integer ; { number of bytes in an xxx command }
j: integer ; { number of bytes read so far }
l: 0 . . longest keyword ; { length of keyword to check }
m: keyword code ; { runs through the list of known keywords }
n1 : 0 . . longest keyword ; { buffered character being checked }
n2 : pool pointer ; {pool character being checked }
c: keyword code ; { the result to return }

begin c← no operation ; cur string ← null string ;
case cur gf of
no op : goto done ;
yyy : begin k ← signed quad ; goto done ;

end;
xxx1 : k ← get byte ;
xxx2 : k ← get two bytes ;
xxx3 : k ← get three bytes ;
xxx4 : k ← signed quad ;
end; { there are no other cases }
〈Read the next k characters of the GF file; change c and goto done if a keyword is recognized 82 〉;

done : cur gf ← get byte ; interpret xxx ← c;
end;

340 THE STRING POOL GF to DVI §82

82. 〈Read the next k characters of the GF file; change c and goto done if a keyword is recognized 82 〉 ≡
j ← 0; if k < 2 then goto not found ;
loop begin l← j;

if j = k then goto done1 ;
if j = longest keyword then goto not found ;
incr (j); buffer [j]← get byte ;
if buffer [j] = " " then goto done1 ;
end;

done1 : 〈 If the keyword in buffer [1 . . l] is known, change c and goto done 83 〉;
not found : while j < k do

begin incr (j); cur gf ← get byte ;
end

This code is used in section 81.

83. 〈 If the keyword in buffer [1 . . l] is known, change c and goto done 83 〉 ≡
for m← null string to max keyword do

if length (m) = l then
begin n1 ← 0; n2 ← str start [m];
while (n1 < l) ∧ (buffer [n1 + 1] = str pool [n2]) do

begin incr (n1); incr (n2);
end;

if n1 = l then
begin c← m;
if m = null string then

begin incr (j); label type ← get byte ;
end;

str room (k − j);
while j < k do

begin incr (j); append char (get byte);
end;

cur string ← make string ; goto done ;
end;

end

This code is used in section 82.

84. When an xxx command takes a numeric argument, get yyy reads that argument and puts the following
byte into cur gf .

function get yyy : scaled ;
var v: scaled ; { value just read }
begin if cur gf 6= yyy then get yyy ← 0
else begin v ← signed quad ; cur gf ← get byte ; get yyy ← v;

end;
end;

§85 GF to DVI THE STRING POOL 341

85. A simpler method is used for special commands between boc and eoc , since GFtoDVI doesn’t even look
at them.

procedure skip nop ;
label done ;
var k: integer ; { number of bytes in an xxx command }
j: integer ; { number of bytes read so far }

begin case cur gf of
no op : goto done ;
yyy : begin k ← signed quad ; goto done ;

end;
xxx1 : k ← get byte ;
xxx2 : k ← get two bytes ;
xxx3 : k ← get three bytes ;
xxx4 : k ← signed quad ;
end; { there are no other cases }
for j ← 1 to k do cur gf ← get byte ;

done : cur gf ← get byte ;
end;

342 FILE NAMES GF to DVI §86

86. File names. It’s time now to fret about file names. GFtoDVI uses the conventions of TEX and META-
FONT to convert file names into strings that can be used to open files. Three routines called begin name ,
more name , and end name are involved, so that the system-dependent parts of file naming conventions
are isolated from the system-independent ways in which file names are used. (See the TEX or METAFONT

program listing for further explanation.)

〈Globals in the outer block 12 〉 +≡
cur name : str number ; {name of file just scanned }
cur area : str number ; {file area just scanned, or null string }
cur ext : str number ; {file extension just scanned, or null string }

87. The file names we shall deal with for illustrative purposes have the following structure: If the name
contains ‘>’ or ‘:’, the file area consists of all characters up to and including the final such character; otherwise
the file area is null. If the remaining file name contains ‘.’, the file extension consists of all such characters
from the first remaining ‘.’ to the end, otherwise the file extension is null.

We can scan such file names easily by using two global variables that keep track of the occurrences of area
and extension delimiters:

〈Globals in the outer block 12 〉 +≡
area delimiter : pool pointer ; { the most recent ‘>’ or ‘:’, if any }
ext delimiter : pool pointer ; { the relevant ‘.’, if any }

88. Font metric files whose areas are not given explicitly are assumed to appear in a standard system area
called home font area . This system area name will, of course, vary from place to place. The program here
sets it to ‘TeXfonts:’.

〈 Initialize the strings 77 〉 +≡
l← 9; init str9 ("T")("e")("X")("f")("o")("n")("t")("s")(":")(home font area);

89. Here now is the first of the system-dependent routines for file name scanning.

procedure begin name ;
begin area delimiter ← 0; ext delimiter ← 0;
end;

90. And here’s the second.

function more name (c : ASCII code): boolean ;
begin if c = " " then more name ← false
else begin if (c = ">") ∨ (c = ":") then

begin area delimiter ← pool ptr ; ext delimiter ← 0;
end

else if (c = ".") ∧ (ext delimiter = 0) then ext delimiter ← pool ptr ;
str room (1); append char (c); { contribute c to the current string }
more name ← true ;
end;

end;

§91 GF to DVI FILE NAMES 343

91. The third.

procedure end name ;
begin if str ptr + 3 > max strings then abort (´Too many strings!´);
if area delimiter = 0 then cur area ← null string
else begin cur area ← str ptr ; incr (str ptr); str start [str ptr]← area delimiter + 1;

end;
if ext delimiter = 0 then

begin cur ext ← null string ; cur name ← make string ;
end

else begin cur name ← str ptr ; incr (str ptr); str start [str ptr]← ext delimiter ;
cur ext ← make string ;
end;

end;

92. Another system-dependent routine is needed to convert three strings into the name of file value that
is used to open files. The present code allows both lowercase and uppercase letters in the file name.

define append to name (#) ≡
begin c← #; incr (k);
if k ≤ file name size then name of file [k]← xchr [c];
end

procedure pack file name (n, a, e : str number);
var k: integer ; { number of positions filled in name of file }
c: ASCII code ; { character being packed }
j: integer ; { index into str pool }
name length : 0 . . file name size ; { number of characters packed }

begin k ← 0;
for j ← str start [a] to str start [a+ 1]− 1 do append to name (str pool [j]);
for j ← str start [n] to str start [n+ 1]− 1 do append to name (str pool [j]);
for j ← str start [e] to str start [e+ 1]− 1 do append to name (str pool [j]);
if k ≤ file name size then name length ← k else name length ← file name size ;
for k ← name length + 1 to file name size do name of file [k]← ´ ´;
end;

93. Now let’s consider the routines by which GFtoDVI deals with file names in a system-independent
manner. The global variable job name contains the GF file name that is being input. This name is extended
by ‘dvi’ in order to make the name of the output file.

〈Globals in the outer block 12 〉 +≡
job name : str number ; {principal file name }

344 FILE NAMES GF to DVI §94

94. The start gf procedure prompts the user for the name of the generic font file to be input. It opens the
file, making sure that some input is present; then it opens the output file.

Although this routine is system-independent, it should probably be modified to take the file name from
the command line (without an initial prompt), on systems that permit such things.

procedure start gf ;
label found , done ;
begin loop begin print nl (´GF file name: ´); input ln ; buf ptr ← 0; buffer [line length]← "?";

while buffer [buf ptr] = " " do incr (buf ptr);
if buf ptr < line length then

begin 〈Scan the file name in the buffer 95 〉;
if cur ext = null string then cur ext ← gf ext ;
pack file name (cur name , cur area , cur ext); open gf file ;
if ¬eof (gf file) then goto found ;
print nl (´Oops... I can´´t find file ´); print (name of file);
end;

end;
found : job name ← cur name ; pack file name (job name ,null string , dvi ext); open dvi file ;

end;

95. 〈 Scan the file name in the buffer 95 〉 ≡
if buffer [line length − 1] = "/" then

begin interaction ← true ; decr (line length);
end;

begin name ;
loop begin if buf ptr = line length then goto done ;

if ¬more name (buffer [buf ptr]) then goto done ;
incr (buf ptr);
end;

done : end name

This code is used in section 94.

96. Special instructions found near the beginning of the GF file might change the names, areas, and “at”
sizes of the fonts that GFtoDVI will be using. But when we reach the first boc instruction, we input all of the
TFM files. The global variable interaction is set true if a "/" was removed at the end of the file name; this
means that the user will have a chance to issue special instructions online just before the fonts are loaded.

define check fonts ≡ if fonts not loaded then load fonts

〈Globals in the outer block 12 〉 +≡
interaction : boolean ; { is the user allowed to type specials online? }
fonts not loaded : boolean ; { have the TFM files still not been input? }
font name : array [internal font number] of str number ; { current font names }
font area : array [internal font number] of str number ; { current font areas }
font at : array [internal font number] of scaled ; { current font “at” sizes }

97. 〈 Set initial values 13 〉 +≡
interaction ← false ; fonts not loaded ← true ; font name [title font]← default title font ;
font name [label font]← default label font ; font name [gray font]← default gray font ;
font name [slant font]← null string ; font name [logo font]← logo font name ;
for k ← title font to logo font do

begin font area [k]← null string ; font at [k]← 0;
end;

§98 GF to DVI FILE NAMES 345

98. After the following procedure has been performed, there will be no turning back; the fonts will have
been firmly established in GFtoDVI’s memory.

〈Declare the procedure called load fonts 98 〉 ≡
procedure load fonts ;

label done , continue , found ,not found ;
var f : internal font number ; i: four quarters ; { font information word }
j, k, v: integer ; { registers for initializing font tables }
m: title font . . slant font + area code ; { keyword found }
n1 : 0 . . longest keyword ; { buffered character being checked }
n2 : pool pointer ; {pool character being checked }

begin if interaction then 〈Get online special input 99 〉;
fonts not loaded ← false ;
for f ← title font to logo font do

if (f 6= slant font) ∨ (length (font name [f]) > 0) then
begin if length (font area [f]) = 0 then font area [f]← home font area ;
pack file name (font name [f], font area [f], tfm ext); open tfm file ; read font info(f, font at [f]);
if font area [f] = home font area then font area [f]← null string ;
dvi font def (f); {put the font name in the DVI file }
end;

〈 Initialize global variables that depend on the font data 137 〉;
end;

This code is used in section 111.

99. 〈Get online special input 99 〉 ≡
loop begin not found : print nl (´Special font substitution: ´);
continue : input ln ;

if line length = 0 then goto done ;
〈 Search buffer for valid keyword; if successful, goto found 100 〉;
print (´Please say, e.g., "grayfont foo" or "slantfontarea baz".´); goto not found ;

found : 〈Update the font name or area 101 〉;
print (´OK; any more? ´); goto continue ;
end;

done :

This code is used in section 98.

100. 〈 Search buffer for valid keyword; if successful, goto found 100 〉 ≡
buf ptr ← 0; buffer [line length]← " ";
while buffer [buf ptr] 6= " " do incr (buf ptr);
for m← title font to slant font + area code do

if length (m) = buf ptr then
begin n1 ← 0; n2 ← str start [m];
while (n1 < buf ptr) ∧ (buffer [n1] = str pool [n2]) do

begin incr (n1); incr (n2);
end;

if n1 = buf ptr then goto found ;
end

This code is used in section 99.

346 FILE NAMES GF to DVI §101

101. 〈Update the font name or area 101 〉 ≡
incr (buf ptr); str room (line length − buf ptr);
while buf ptr < line length do

begin append char (buffer [buf ptr]); incr (buf ptr);
end;

if m > area code then font area [m− area code]← make string
else begin font name [m]← make string ; font area [m]← null string ; font at [m]← 0;

end;
init str ptr ← str ptr

This code is used in section 99.

§102 GF to DVI SHIPPING PAGES OUT 347

102. Shipping pages out. The following routines are used to write the DVI file. They have been copied
from TEX, but simplified; we don’t have to handle nearly as much generality as TEX does.

Statistics about the entire set of pages that will be shipped out must be reported in the DVI postamble.
The global variables total pages , max v , max h , and last bop are used to record this information.

〈Globals in the outer block 12 〉 +≡
total pages : integer ; { the number of pages that have been shipped out }
max v : scaled ; {maximum height-plus-depth of pages shipped so far }
max h : scaled ; {maximum width of pages shipped so far }
last bop : integer ; { location of previous bop in the DVI output }

103. 〈 Set initial values 13 〉 +≡
total pages ← 0; max v ← 0; max h ← 0; last bop ← −1;

104. The DVI bytes are output to a buffer instead of being written directly to the output file. This makes
it possible to reduce the overhead of subroutine calls.

The output buffer is divided into two parts of equal size; the bytes found in dvi buf [0 . . half buf − 1]
constitute the first half, and those in dvi buf [half buf . . dvi buf size − 1] constitute the second. The global
variable dvi ptr points to the position that will receive the next output byte. When dvi ptr reaches dvi limit ,
which is always equal to one of the two values half buf or dvi buf size , the half buffer that is about to be
invaded next is sent to the output and dvi limit is changed to its other value. Thus, there is always at least
a half buffer’s worth of information present, except at the very beginning of the job.

Bytes of the DVI file are numbered sequentially starting with 0; the next byte to be generated will be
number dvi offset + dvi ptr .

〈Types in the outer block 9 〉 +≡
dvi index = 0 . . dvi buf size ; { an index into the output buffer }

105. Some systems may find it more efficient to make dvi buf a packed array, since output of four bytes
at once may be facilitated.

〈Globals in the outer block 12 〉 +≡
dvi buf : array [dvi index] of eight bits ; { buffer for DVI output }
half buf : dvi index ; {half of dvi buf size }
dvi limit : dvi index ; { end of the current half buffer }
dvi ptr : dvi index ; { the next available buffer address }
dvi offset : integer ; { dvi buf size times the number of times the output buffer has been fully emptied }

106. Initially the buffer is all in one piece; we will output half of it only after it first fills up.

〈 Set initial values 13 〉 +≡
half buf ← dvi buf size div 2; dvi limit ← dvi buf size ; dvi ptr ← 0; dvi offset ← 0;

107. The actual output of dvi buf [a . . b] to dvi file is performed by calling write dvi (a, b). It is safe to
assume that a and b+ 1 will both be multiples of 4 when write dvi (a, b) is called; therefore it is possible on
many machines to use efficient methods to pack four bytes per word and to output an array of words with
one system call.

procedure write dvi (a, b : dvi index);
var k: dvi index ;
begin for k ← a to b do write (dvi file , dvi buf [k]);
end;

348 SHIPPING PAGES OUT GF to DVI §108

108. To put a byte in the buffer without paying the cost of invoking a procedure each time, we use the
macro dvi out .

define dvi out (#) ≡ begin dvi buf [dvi ptr]← #; incr (dvi ptr);
if dvi ptr = dvi limit then dvi swap ;
end

procedure dvi swap ; { outputs half of the buffer }
begin if dvi limit = dvi buf size then

begin write dvi (0, half buf − 1); dvi limit ← half buf ; dvi offset ← dvi offset + dvi buf size ;
dvi ptr ← 0;
end

else begin write dvi (half buf , dvi buf size − 1); dvi limit ← dvi buf size ;
end;

end;

109. Here is how we clean out the buffer when TEX is all through; dvi ptr will be a multiple of 4.

〈Empty the last bytes out of dvi buf 109 〉 ≡
if dvi limit = half buf then write dvi (half buf , dvi buf size − 1);
if dvi ptr > 0 then write dvi (0, dvi ptr − 1)

This code is used in section 115.

110. The dvi four procedure outputs four bytes in two’s complement notation, without risking arithmetic
overflow.

procedure dvi four (x : integer);
begin if x ≥ 0 then dvi out (x div 1́00000000)
else begin x← x+ 1́0000000000 ; x← x+ 1́0000000000 ; dvi out ((x div 1́00000000) + 128);

end;
x← xmod 1́00000000 ; dvi out (x div 2́00000); x← xmod 2́00000 ; dvi out (x div 4́00);
dvi out (xmod 4́00);
end;

111. Here’s a procedure that outputs a font definition.

define select font (#) ≡ dvi out (fnt num 0 + #) { set current font to # }
procedure dvi font def (f : internal font number);

var k: integer ; { index into str pool }
begin dvi out (fnt def1); dvi out (f);
dvi out (qo(font check [f].b0)); dvi out (qo(font check [f].b1)); dvi out (qo(font check [f].b2));
dvi out (qo(font check [f].b3));
dvi four (font size [f]); dvi four (font dsize [f]);
dvi out (length (font area [f])); dvi out (length (font name [f]));
〈Output the font name whose internal number is f 112 〉;
end;

〈Declare the procedure called load fonts 98 〉

112. 〈Output the font name whose internal number is f 112 〉 ≡
for k ← str start [font area [f]] to str start [font area [f] + 1]− 1 do dvi out (str pool [k]);
for k ← str start [font name [f]] to str start [font name [f] + 1]− 1 do dvi out (str pool [k])

This code is used in section 111.

§113 GF to DVI SHIPPING PAGES OUT 349

113. The typeset subroutine typesets any eight-bit character.

procedure typeset (c : eight bits);
begin if c ≥ 128 then dvi out (set1);
dvi out (c);
end;

114. The dvi scaled subroutine takes a real value x and outputs a decimal approximation to x/unity ,
correct to one decimal place.

procedure dvi scaled (x : real);
var n: integer ; { an integer approximation to 10 ∗ x/unity }
m: integer ; { the integer part of the answer }
k: integer ; { the number of digits in m }

begin n← round (x/6553.6);
if n < 0 then

begin dvi out ("−"); n← −n;
end;

m← n div 10; k ← 0;
repeat incr (k); buffer [k]← (mmod 10) + "0"; m← m div 10;
until m = 0;
repeat dvi out (buffer [k]); decr (k);
until k = 0;
if nmod 10 6= 0 then

begin dvi out ("."); dvi out ((nmod 10) + "0");
end;

end;

115. At the end of the program, we must finish things off by writing the postamble. An integer variable k
will be declared for use by this routine.

〈Finish the DVI file and goto final end 115 〉 ≡
begin dvi out (post); {beginning of the postamble }
dvi four (last bop); last bop ← dvi offset + dvi ptr − 5; { post location }
dvi four (25400000); dvi four (473628672); { conversion ratio for sp }
dvi four (1000); {magnification factor }
dvi four (max v); dvi four (max h);
dvi out (0); dvi out (3); { ‘max push ’ is said to be 3 }
dvi out (total pages div 256); dvi out (total pages mod 256);
if ¬fonts not loaded then

for k ← title font to logo font do
if length (font name [k]) > 0 then dvi font def (k);

dvi out (post post); dvi four (last bop); dvi out (dvi id byte);
k ← 4 + ((dvi buf size − dvi ptr) mod 4); { the number of 223’s }
while k > 0 do

begin dvi out (223); decr (k);
end;
〈Empty the last bytes out of dvi buf 109 〉;
goto final end ;
end

This code is used in section 219.

350 RUDIMENTARY TYPESETTING GF to DVI §116

116. Rudimentary typesetting. One of GFtoDVI’s little duties is to be a mini-TEX: It must be able
to typeset the equivalent of ‘\hbox{〈string〉}’ for a given string of ASCII characters, using either the title
font or the label font.

The hbox procedure does this. The width, height, and depth of the box defined by string s in font f are
computed in global variables box width , box height , and box depth .

The task would be trivial if it weren’t for ligatures and kerns, which are implemented here in full generality.
(Infinite looping is possible if the TFM file is malformed; TFtoPL will diagnose such problems.)

We assume that " " is a space character; character code 4́0 will not be typeset unless it is accessed via
a ligature.

If parameter send it is false , we merely want to know the box dimensions. Otherwise typesetting
commands are also sent to the DVI file; we assume in this case that font f has already been selected in
the DVI file as the current font.

define set cur r ≡
if k < end k then cur r ← qi (str pool [k])
else cur r ← bchar

procedure hbox (s : str number ; f : internal font number ; send it : boolean);
label continue , done ;
var k, end k ,max k : pool pointer ; { indices into str pool }
i, j: four quarters ; { font information words }
cur l : 0 . . 256; { character to the left of the “cursor” }
cur r : min quarterword . . non char ; { character to the right of the “cursor” }
bchar : min quarterword . . non char ; { right boundary character }
stack ptr : 0 . . lig lookahead ; { number of entries on lig stack }
l: font index ; { pointer to lig/kern instruction }
kern amount : scaled ; { extra space to be typeset }
hd : eight bits ; { height and depth indices for a character }
x: scaled ; { temporary register }
save c : ASCII code ; { character temporarily blanked out }

begin box width ← 0; box height ← 0; box depth ← 0;
k ← str start [s]; max k ← str start [s+ 1]; save c ← str pool [max k]; str pool [max k]← " ";
while k < max k do

begin if str pool [k] = " " then 〈Typeset a space in font f and advance k 119 〉
else begin end k ← k;

repeat incr (end k);
until str pool [end k] = " ";
kern amount ← 0; cur l ← 256; stack ptr ← 0; bchar ← font bchar [f]; set cur r ;
suppress lig ← false ;

continue : 〈 If there’s a ligature or kern at the cursor position, update the cursor data structures,
possibly advancing k; continue until the cursor wants to move right 120 〉;

〈Typeset character cur l , if it exists in the font; also append an optional kern 121 〉;
〈Move the cursor to the right and goto continue , if there’s more work to do in the current word 123 〉;
end; { now k = end k }

end;
str pool [max k]← save c ;
end;

§117 GF to DVI RUDIMENTARY TYPESETTING 351

117. 〈Globals in the outer block 12 〉 +≡
box width : scaled ; {width of box constructed by hbox }
box height : scaled ; {height of box constructed by hbox }
box depth : scaled ; { depth of box constructed by hbox }
lig stack : array [1 . . lig lookahead] of quarterword ; { inserted ligature chars }
dummy info : four quarters ; { fake char info for nonexistent character }
suppress lig : boolean ; { should we bypass checking for ligatures next time? }

118. 〈 Set initial values 13 〉 +≡
dummy info .b0 ← qi (0); dummy info .b1 ← qi (0); dummy info .b2 ← qi (0); dummy info .b3 ← qi (0);

119. 〈Typeset a space in font f and advance k 119 〉 ≡
begin box width ← box width + space (f);
if send it then

begin dvi out (right4); dvi four (space (f));
end;

incr (k);
end

This code is used in section 116.

120. 〈 If there’s a ligature or kern at the cursor position, update the cursor data structures, possibly
advancing k; continue until the cursor wants to move right 120 〉 ≡

if (cur l < font bc [f]) ∨ (cur l > font ec [f]) then
begin i← dummy info ;
if cur l = 256 then l← bchar label [f] else l← non address ;
end

else begin i← char info(f)(cur l);
if char tag (i) 6= lig tag then l← non address
else begin l← lig kern start (f)(i); j ← font info [l].qqqq ;

if skip byte (j) > stop flag then l← lig kern restart (f)(j);
end;

end;
if suppress lig then suppress lig ← false
else while l < qi (kern base [f]) do

begin j ← font info [l].qqqq ;
if next char (j) = cur r then

if skip byte (j) ≤ stop flag then
if op byte (j) ≥ kern flag then

begin kern amount ← char kern (f)(j); goto done ;
end

else 〈Carry out a ligature operation, updating the cursor structure and possibly advancing k;
goto continue if the cursor doesn’t advance, otherwise goto done 122 〉;

if skip byte (j) ≥ stop flag then goto done ;
l← l + skip byte (j) + 1;
end;

done :

This code is used in section 116.

352 RUDIMENTARY TYPESETTING GF to DVI §121

121. At this point i contains char info for cur l .

〈Typeset character cur l , if it exists in the font; also append an optional kern 121 〉 ≡
if char exists (i) then

begin box width ← box width + char width (f)(i) + kern amount ;
hd ← height depth (i); x← char height (f)(hd);
if x > box height then box height ← x;
x← char depth (f)(hd);
if x > box depth then box depth ← x;
if send it then

begin typeset (cur l);
if kern amount 6= 0 then

begin dvi out (right4); dvi four (kern amount);
end;

end;
kern amount ← 0;
end

This code is used in section 116.

122. define pop stack ≡
begin decr (stack ptr);
if stack ptr > 0 then cur r ← lig stack [stack ptr]
else set cur r ;
end

〈Carry out a ligature operation, updating the cursor structure and possibly advancing k; goto continue if
the cursor doesn’t advance, otherwise goto done 122 〉 ≡

begin case op byte (j) of
1, 5: cur l ← qo(rem byte (j));
2, 6: begin cur r ← rem byte (j);

if stack ptr = 0 then
begin stack ptr ← 1;
if k < end k then incr (k) { a non-space character is consumed }
else bchar ← non char ; { the right boundary character is consumed }
end;

lig stack [stack ptr]← cur r ;
end;

3, 7, 11: begin cur r ← rem byte (j); incr (stack ptr); lig stack [stack ptr]← cur r ;
if op byte (j) = 11 then suppress lig ← true ;
end;

othercases begin cur l ← qo(rem byte (j));
if stack ptr > 0 then pop stack
else if k = end k then goto done

else begin incr (k); set cur r ;
end;

end
endcases;
if op byte (j) > 3 then goto done ;
goto continue ;
end

This code is used in section 120.

§123 GF to DVI RUDIMENTARY TYPESETTING 353

123. 〈Move the cursor to the right and goto continue , if there’s more work to do in the current
word 123 〉 ≡

cur l ← qo(cur r);
if stack ptr > 0 then

begin pop stack ; goto continue ;
end;

if k < end k then
begin incr (k); set cur r ; goto continue ;
end

This code is used in section 116.

354 GRAY FONTS GF to DVI §124

124. Gray fonts. A proof diagram constructed by GFtoDVI can be regarded as an array of rectangles,
where each rectangle is either blank or filled with a special symbol that we shall call x. A blank rectangle
represents a white pixel, while x represents a black pixel. Additional labels and reference lines are often
superimposed on this array of rectangles; hence it is usually best to choose a symbol x that has a somewhat
gray appearance, although any symbol can actually be used.

In order to construct such proofs, GFtoDVI needs to work with a special type of font known as a “gray
font”; it’s possible to obtain a wide variety of different sorts of proofs by using different sorts of gray fonts.
The next few paragraphs explain exactly what gray fonts are supposed to contain, in case you want to design
your own.

125. The simplest gray font contains only two characters, namely x and another symbol that is used for
dots that identify key points. If proofs with relatively large pixels are desired, a two-character gray font is
all that’s needed. However, if the pixel size is to be relatively small, practical considerations make a two-
character font too inefficient, since it requires the typesetting of tens of thousands of tiny little characters;
printing device drivers rarely work very well when they are presented with data that is so different from
ordinary text. Therefore a gray font with small pixels usually has a number of characters that replicate x in
such a way that comparatively few characters actually need to be typeset.

Since many printing devices are not able to cope with arbitrarily large or complex characters, it is not
possible for a single gray font to work well on all machines. In fact, x must have a width that is an integer
multiple of the printing device’s unit of horizontal position, since rounding the positions of grey characters
would otherwise produce unsightly streaks on proof output. Thus, there is no way to make the gray font
as device-independent as the rest of the system, in the sense that we would expect approximately identical
output on machines with different resolution. Fortunately, proof sheets are rarely considered to be final
documents; hence GFtoDVI is set up to provide results that adapt suitably to local conditions.

§126 GF to DVI GRAY FONTS 355

126. With such constraints understood, we can now take a look at what GFtoDVI expects to see in a gray
font. The character x always appears in position 1. It must have positive height h and positive width w; its
depth and italic correction are ignored.

Positions 2–120 of a gray font are reserved for special combinations of x’s and blanks, stacked on top of
each other. None of these character codes need be present in the font; but if they are, the slots should be
occupied by characters of width w that have certain configurations of x’s and blanks, prescribed for each
character position. For example, position 3 of the font should either contain no character at all, or it should
contain a character consisting of two x’s, one above the other; one of these x’s should appear immediately
above the baseline, and the other should appear immediately below.

It will be convenient to use a horizontal notation like ‘XOXXO’ to stand for a vertical stack of x’s and blanks.
The convention will be that the stack is built from bottom to top, and the topmost rectangle should sit on
the baseline. Thus, ‘XOXXO’ stands actually for a character of depth 4h that looks like this:

blank
x

←− baseline

x
blank
x

(We use a horizontal notation instead of a vertical one in this explanation, because column vectors take too
much space, and because the horizontal notation corresponds to binary numbers in a convenient way.)

Positions 1–63 of a gray font are reserved for the patterns X, XO, XX, XOO, XOX, . . . , XXXXXX, just as in the
normal binary notation of the numbers 1–63. Positions 64–70 are reserved for the special patterns XOOOOOO,
XXOOOOO, . . . , XXXXXXO, XXXXXXX of length seven; positions 71–78 are, similarly, reserved for the length-eight
patterns XOOOOOOO through XXXXXXXX. The length-nine patterns XOOOOOOOO through XXXXXXXXX are assigned
to positions 79–87, the length-ten patterns to positions 88–97, the length-eleven patterns to positions 98–108,
and the length-twelve patterns to positions 109–120.

The following program sets a global array c[1 . . 120] to the bit patterns just described. Another array
d[1 . . 120] is set to contain only the next higher bit; this determines the depth of the corresponding character.

〈 Set initial values 13 〉 +≡
c[1]← 1; d[1]← 2; two to the [0]← 1; m← 1;
for k ← 1 to 13 do two to the [k]← 2 ∗ two to the [k − 1];
for k ← 2 to 6 do 〈Add a full set of k-bit characters 128 〉;
for k ← 7 to 12 do 〈Add special k-bit characters of the form X..XO..O 129 〉;

127. 〈Globals in the outer block 12 〉 +≡
c: array [1 . . 120] of 1 . . 4095; {bit patterns for a gray font }
d: array [1 . . 120] of 2 . . 4096; { the superleading bits }
two to the : array [0 . . 13] of 1 . . 8192; {powers of 2 }

128. 〈Add a full set of k-bit characters 128 〉 ≡
begin n← two to the [k − 1];
for j ← 0 to n− 1 do

begin incr (m); c[m]← m; d[m]← n+ n;
end;

end

This code is used in section 126.

356 GRAY FONTS GF to DVI §129

129. 〈Add special k-bit characters of the form X..XO..O 129 〉 ≡
begin n← two to the [k − 1];
for j ← k downto 1 do

begin incr (m); d[m]← n+ n;
if j = k then c[m]← n
else c[m]← c[m− 1] + two to the [j − 1];
end;

end

This code is used in section 126.

130. Position 0 of a gray font is reserved for the “dot” character, which should have positive height h′

and positive width w′. When GFtoDVI wants to put a dot at some place (x, y) on the figure, it positions
the dot character so that its reference point is at (x, y). The dot will be considered to occupy a rectangle
(x + δ, y + ε) for −w′ ≤ δ ≤ w′ and −h′ ≤ ε ≤ h′; the rectangular box for a label will butt up against the
rectangle enclosing the dot.

131. All other character positions of a gray font (namely, positions 121–255) are unreserved, in the sense
that they have no predefined meaning. But GFtoDVI may access them via the “character list” feature of TFM
files, starting with any of the characters in positions 1–120. In such a case each succeeding character in a
list should be equivalent to two of its predecessors, horizontally adjacent to each other. For example, in a
character list like

53, 121, 122, 123

character 121 will stand for two 53’s, character 122 for two 121’s (i.e., four 53’s), and character 123 for two
122’s (i.e., eight 53’s). Since position 53 contains the pattern XXOXOX, character 123 in this example would
have height h, depth 5h, and width 8w, and it would stand for the pattern

xxxxxxxx

xxxxxxxx

xxxxxxxx
xxxxxxxx

Such a pattern is, of course, rather unlikely to occur in a GF file, but GFtoDVI would be able to use if it were
present. Designers of gray fonts should provide characters only for patterns that they think will occur often
enough to make the doubling worthwhile. For example, the character in position 120 (XXXXXXXXXXXX), or
whatever is the tallest stack of x’s present in the font, is a natural candidate for repeated doubling.

Here’s how GFtoDVI decides what characters of the gray font will be used, given a configuration of black
and white pixels: If there are no black pixels, stop. Otherwise look at the top row that contains at least one
black pixel, and the eleven rows that follow. For each such column, find the largest k such that 1 ≤ k ≤ 120
and the gray font contains character k and the pattern assigned to position k appears in the given column.
Typeset character k (unless no such character exists) and erase the corresponding black pixels; use doubled
characters, if they are present in the gray font, if two or more consecutive equal characters need to be typeset.
Repeat the same process on the remaining configuration, until all the black pixels have been erased.

If all characters in positions 1–120 are present, this process is guaranteed to take care of at least six rows
each time; and it usually takes care of twelve, since all patterns that contain at most one “run” of x’s are
present.

§132 GF to DVI GRAY FONTS 357

132. Fonts have optional parameters, as described in Appendix F of The TEXbook, and some of these are
important in gray fonts. The slant parameter s, if nonzero, will cause GFtoDVI to skew its output; in this
case the character x will presumably be a parallelogram with a corresponding slant, rather than the usual
rectangle. METAFONT’s coordinate (x, y) will appear in physical position (xw+ yhs, yh) on the proofsheets.

Parameter number 8 of a gray font specifies the thickness of rules that go on the proofs. If this parameter
is zero, TEX’s default rule thickness (0.4 pt) will be used.

The other parameters of a gray font are ignored by GFtoDVI, but it is conventional to set the font space
parameter to w and the xheight parameter to h.

133. For best results the designer of a gray font should choose h and w so that the user’s DVI-to-hardcopy
software will not make any rounding errors. Furthermore, the dot should be an even number 2m of pixels
in diameter, and the rule thickness should work out to an even number 2n of pixels; then the dots and
rules will be centered on the correct positions, in case of integer coordinates. Gray fonts are almost always
intended for particular output devices, even though ‘DVI’ stands for ‘device independent’; we use DVI files
for METAFONT proofs chiefly because software to print DVI files is already in place.

358 SLANT FONTS GF to DVI §134

134. Slant fonts. GFtoDVI also makes use of another special type of font, if it is necessary to typeset
slanted rules. The format of such so-called “slant fonts” is quite a bit simpler than the format of gray fonts.

A slant font should contain exactly n characters, in positions 1 to n, where the character in position k
represents a slanted line k units tall, starting at the baseline. These lines all have a fixed slant ratio s.

The following simple algorithm is used to typeset a rule that is m units high: Compute q = dm/ne; then
typeset q characters of approximately equal size, namely (m mod q) copies of character number dm/qe and
q − (m mod q) copies of character number bm/qc. For example, if n = 15 and m = 100, we have q = 7; a
100-unit-high rule will be composed of 7 pieces, using characters 14, 14, 14, 14, 14, 15, 15.

〈Globals in the outer block 12 〉 +≡
rule slant : real ; { the slant ratio s in the slant font, or zero if there is no slant font }
slant n : integer ; { the number of characters in the slant font }
slant unit : real ; { the number of scaled points in the slant font unit }
slant reported : real ; { invalid slant ratio reported to the user }

135. GFtoDVI looks only at the height of character n, so the TFM file need not be accurate about the heights
of the other characters. (This is fortunate, since TFM format allows at most 16 different heights per font.)

The width of character k should be k/n times s times the height of character n.
The slant parameter of a slant file should be s. It is customary to set the default rule thickness parameter

(number 8) to the thickness of the slanted rules, but GFtoDVI doesn’t look at it.

136. For best results on a particular output device, it is usually wise to choose the ‘unit’ in the above
discussion to be an integer number of pixels, and to make it no larger than the default rule thickness in the
gray font being used.

137. 〈 Initialize global variables that depend on the font data 137 〉 ≡
if length (font name [slant font]) = 0 then rule slant ← 0.0
else begin rule slant ← slant (slant font)/unity ; slant n ← font ec [slant font];
i← char info(slant font)(slant n); slant unit ← char height (slant font)(height depth (i))/slant n ;
end;

slant reported ← 0.0;

See also sections 169, 175, 184, 205, and 206.

This code is used in section 98.

138. The following error message is given when an absent slant has been requested.

procedure slant complaint (r : real);
begin if abs (r − slant reported) > 0.001 then

begin print nl (´Sorry, I can´´t make diagonal rules of slant ´, r : 10 : 5, ´!´);
slant reported ← r;
end;

end;

§139 GF to DVI REPRESENTATION OF RECTANGLES 359

139. Representation of rectangles. OK—the preliminary spadework has now been done. We’re ready
at last to concentrate on GFtoDVI’s raison d’être.

One of the most interesting tasks remaining is to make a “map” of the labels that have been allocated.
There usually aren’t a great many labels, so we don’t need fancy data structures; but we do make use
of linked nodes containing nine fields. The nodes generally represent rectangular boxes according to the
following conventions:

xl , xr , yt , and yb are the left, right, top, and bottom locations of a rectangle, expressed in DVI coordinates.
(This program uses scaled points as DVI coordinates. Since DVI coordinates increase as one moves
down the page, yb will be greater than yt .)

xx and yy are the coordinates of the reference point of a box to be typeset from this node, again in DVI

coordinates.

prev and next point to the predecessor and successor of this node. Sometimes the nodes are singly linked
and only next is relevant; otherwise the nodes are doubly linked in order of their yy coordinates, so
that we can move down by going to next , or up by going to prev .

info is the number of a string associated with this node.

The nine fields of a node appear in nine global arrays. Null pointers are denoted by null , which happens
to be zero.

define null = 0

〈Types in the outer block 9 〉 +≡
node pointer = null . . max labels ;

140. 〈Globals in the outer block 12 〉 +≡
xl , xr , yt , yb : array [1 . . max labels] of scaled ; { boundary coordinates }
xx , yy : array [0 . . max labels] of scaled ; { reference coordinates }
prev ,next : array [0 . . max labels] of node pointer ; { links }
info : array [1 . . max labels] of str number ; { associated strings }
max node : node pointer ; { the largest node in use }
max height : scaled ; { greatest difference between yy and yt }
max depth : scaled ; { greatest difference between yb and yy }

141. It’s easy to allocate a new node (unless no more room is left):

function get avail : node pointer ;
begin incr (max node);
if max node = max labels then abort (´Too many labels and/or rules!´);
get avail ← max node ;
end;

142. The doubly linked nodes are sorted by yy coordinates so that we don’t have to work too hard to find
nearest neighbors or to determine if rectangles overlap. The first node in the doubly linked rectangle list is
always in location 0, and the last node is always in location max labels ; the yy coordinates of these nodes
are very small and very large, respectively.

define end of list ≡ max labels

〈 Set initial values 13 〉 +≡
yy [0]← − 1́0000000000 ; yy [end of list]← 1́0000000000 ;

360 REPRESENTATION OF RECTANGLES GF to DVI §143

143. The node ins procedure inserts a new rectangle, represented by node p, into the doubly linked list.
There’s a second parameter, q; node q should already be in the doubly linked list, preferably with yy [q] near
yy [p].

procedure node ins (p, q : node pointer);
var r: node pointer ; { for tree traversal }
begin if yy [p] ≥ yy [q] then

begin repeat r ← q; q ← next [q]; until yy [p] ≤ yy [q];
next [r]← p; prev [p]← r; next [p]← q; prev [q]← p;
end

else begin repeat r ← q; q ← prev [q]; until yy [p] ≥ yy [q];
prev [r]← p; next [p]← r; prev [p]← q; next [q]← p;
end;

if yy [p]− yt [p] > max height then max height ← yy [p]− yt [p];
if yb [p]− yy [p] > max depth then max depth ← yb [p]− yy [p];
end;

144. The data structures need to be initialized for each character in the GF file.

〈 Initialize variables for the next character 144 〉 ≡
max node ← 0; next [0]← end of list ; prev [end of list]← 0; max height ← 0; max depth ← 0;

See also sections 156 and 161.

This code is used in section 219.

145. The overlap subroutine determines whether or not the rectangle specified in node p has a nonempty
intersection with some rectangle in the doubly linked list. Again q is a parameter that gives us a starting
point in the list. We assume that q 6= end of list , so that next [q] is meaningful.

function overlap(p, q : node pointer): boolean ;
label exit ;
var y thresh : scaled ; { cutoff value to speed the search }

x left , x right , y top , y bot : scaled ; {boundaries to test for overlap }
r: node pointer ; { runs through the neighbors of q }

begin x left ← xl [p]; x right ← xr [p]; y top ← yt [p]; y bot ← yb [p];
〈Look for overlaps in the successors of node q 146 〉;
〈Look for overlaps in node q and its predecessors 147 〉;
overlap ← false ;

exit : end;

146. 〈Look for overlaps in the successors of node q 146 〉 ≡
y thresh ← y bot + max height ; r ← next [q];
while yy [r] < y thresh do

begin if y bot > yt [r] then
if x left < xr [r] then

if x right > xl [r] then
if y top < yb [r] then

begin overlap ← true ; return;
end;

r ← next [r];
end

This code is used in section 145.

§147 GF to DVI REPRESENTATION OF RECTANGLES 361

147. 〈Look for overlaps in node q and its predecessors 147 〉 ≡
y thresh ← y top −max depth ; r ← q;
while yy [r] > y thresh do

begin if y bot > yt [r] then
if x left < xr [r] then

if x right > xl [r] then
if y top < yb [r] then

begin overlap ← true ; return;
end;

r ← prev [r];
end

This code is used in section 145.

148. Nodes that represent dots instead of labels satisfy the following constraints:

info [p] < 0; p ≥ first dot ;
xl [p] = xx [p]− dot width , xr [p] = xx [p] + dot width ;
yt [p] = yy [p]− dot height , yb [p] = yy [p] + dot height .

The nearest dot subroutine finds a node whose reference point is as close as possible to a given position,
ignoring nodes that are too close. More precisely, the “nearest” node minimizes

d(q, p) = max
(
|xx [q]− xx [p]|, |yy [q]− yy [p]|

)
over all nodes q with d(q, p) ≥ d0 . We call the subroutine nearest dot because it is used only when the
doubly linked list contains nothing but dots.

The routine also sets the global variable twin to true , if there is a node q 6= p with d(q, p) < d0 .

149. 〈Globals in the outer block 12 〉 +≡
first dot : node pointer ; { the node address where dots begin }
twin : boolean ; { is there a nearer dot than the “nearest” dot? }

150. If there is no nearest dot, the value null is returned; otherwise a pointer to the nearest dot is returned.

function nearest dot (p : node pointer ; d0 : scaled): node pointer ;
var best q : node pointer ; { value to return }

d min , d: scaled ; { distances }
begin twin ← false ; best q ← 0; d min ← 2́000000000 ;
〈 Search for the nearest dot in nodes following p 151 〉;
〈 Search for the nearest dot in nodes preceding p 152 〉;
nearest dot ← best q ;
end;

362 REPRESENTATION OF RECTANGLES GF to DVI §151

151. 〈 Search for the nearest dot in nodes following p 151 〉 ≡
q ← next [p];
while yy [q] < yy [p] + d min do

begin d← abs (xx [q]− xx [p]);
if d < yy [q]− yy [p] then d← yy [q]− yy [p];
if d < d0 then twin ← true
else if d < d min then

begin d min ← d; best q ← q;
end;

q ← next [q];
end

This code is used in section 150.

152. 〈 Search for the nearest dot in nodes preceding p 152 〉 ≡
q ← prev [p];
while yy [q] > yy [p]− d min do

begin d← abs (xx [q]− xx [p]);
if d < yy [p]− yy [q] then d← yy [p]− yy [q];
if d < d0 then twin ← true
else if d < d min then

begin d min ← d; best q ← q;
end;

q ← prev [q];
end

This code is used in section 150.

§153 GF to DVI DOING THE LABELS 363

153. Doing the labels. Each “character” in the GF file is preceded by a number of special commands
that define labels, titles, rules, etc. We store these away, to be considered later when the boc command
appears. The boc command establishes the size information by which labels and rules can be positioned, so
we spew out the label information as soon as we see the boc . The gray pixels will be typeset after all the
labels for a particular character have been finished.

154. Here is the part of GFtoDVI that stores information preceding a boc . It comes into play when cur gf
is between xxx1 and no op , inclusive.

define font change (#) ≡
if fonts not loaded then

begin #;
end

else print nl (´(Tardy font change will be ignored (byte ´, cur loc : 1, ´)!)´)

〈Process a no-op command 154 〉 ≡
begin k ← interpret xxx ;
case k of
no operation : do nothing ;
title font , label font , gray font , slant font : font change (font name [k]← cur string ;

font area [k]← null string ; font at [k]← 0; init str ptr ← str ptr);
title font + area code , label font + area code , gray font + area code , slant font + area code :

font change (font area [k − area code]← cur string ; init str ptr ← str ptr);
title font + at code , label font + at code , gray font + at code , slant font + at code :

font change (font at [k − at code]← get yyy ; init str ptr ← str ptr);
rule thickness code : rule thickness ← get yyy ;
rule code : 〈 Store a rule 159 〉;
offset code : 〈Override the offsets 157 〉;
x offset code : x offset ← get yyy ;
y offset code : y offset ← get yyy ;
title code : 〈Store a title 162 〉;
null string : 〈 Store a label 163 〉;
end; { there are no other cases }
end

This code is used in section 219.

155. The following quantities are cleared just before reading the GF commands pertaining to a character.

〈Globals in the outer block 12 〉 +≡
rule thickness : scaled ; { the current rule thickness (zero means use the default) }
offset x , offset y : scaled ; { the current offsets for images }
x offset , y offset : scaled ; { the current offsets for labels }
pre min x , pre max x , pre min y , pre max y : scaled ;

{ extreme values of coordinates preceding a character, in METAFONT pixels }

156. 〈 Initialize variables for the next character 144 〉 +≡
rule thickness ← 0; offset x ← 0; offset y ← 0; x offset ← 0; y offset ← 0; pre min x ← 2́000000000 ;
pre max x ← − 2́000000000 ; pre min y ← 2́000000000 ; pre max y ← − 2́000000000 ;

157. 〈Override the offsets 157 〉 ≡
begin offset x ← get yyy ; offset y ← get yyy ;
end

This code is used in section 154.

364 DOING THE LABELS GF to DVI §158

158. Rules that will need to be drawn are kept in a linked list accessible via rule ptr , in last-in-first-out
order. The nodes of this list will never get into the doubly linked list, and indeed these nodes use different
field conventions entirely (because rules may be slanted).

define x0 ≡ xl { starting x coordinate of a stored rule }
define y0 ≡ yt { starting y coordinate (in scaled METAFONT pixels) }
define x1 ≡ xr { ending x coordinate of a stored rule }
define y1 ≡ yb { ending y coordinate of a stored rule }
define rule size ≡ xx { thickness of a stored rule, in scaled points }

〈Globals in the outer block 12 〉 +≡
rule ptr : node pointer ; { top of the stack of remembered rules }

159. 〈 Store a rule 159 〉 ≡
begin p← get avail ; next [p]← rule ptr ; rule ptr ← p;
x0 [p]← get yyy ; y0 [p]← get yyy ; x1 [p]← get yyy ; y1 [p]← get yyy ;
if x0 [p] < pre min x then pre min x ← x0 [p];
if x0 [p] > pre max x then pre max x ← x0 [p];
if y0 [p] < pre min y then pre min y ← y0 [p];
if y0 [p] > pre max y then pre max y ← y0 [p];
if x1 [p] < pre min x then pre min x ← x1 [p];
if x1 [p] > pre max x then pre max x ← x1 [p];
if y1 [p] < pre min y then pre min y ← y1 [p];
if y1 [p] > pre max y then pre max y ← y1 [p];
rule size [p]← rule thickness ;
end

This code is used in section 154.

160. Titles and labels are, likewise, stored temporarily in singly linked lists. In this case the lists are
first-in-first-out. Variables title tail and label tail point to the most recently inserted title or label; variables
title head and label head point to the beginning of the list. (A standard coding trick is used for label head ,
which is kept in next [end of list]; we have label tail = end of list when the list is empty.)

The prev field in nodes of the temporary label list specifies the type of label, so we call it lab typ .

define lab typ ≡ prev { the type of a stored label ("/" . . ."8") }
define label head ≡ next [end of list]

〈Globals in the outer block 12 〉 +≡
label tail : node pointer ; { tail of the queue of remembered labels }
title head , title tail : node pointer ; {head and tail of the queue for titles }

161. We must start the lists out empty.

〈 Initialize variables for the next character 144 〉 +≡
rule ptr ← null ; title head ← null ; title tail ← null ; label head ← null ; label tail ← end of list ;
first dot ← max labels ;

162. 〈 Store a title 162 〉 ≡
begin p← get avail ; info [p]← cur string ;
if title head = null then title head ← p
else next [title tail]← p;
title tail ← p;
end

This code is used in section 154.

§163 GF to DVI DOING THE LABELS 365

163. We store the coordinates of each label in units of METAFONT pixels; they will be converted to DVI

coordinates later.

〈 Store a label 163 〉 ≡
if (label type < "/") ∨ (label type > "8") then

print nl (´Bad label type precedes byte ´, cur loc : 1, ´!´)
else begin p← get avail ; next [label tail]← p; label tail ← p;

lab typ [p]← label type ; info [p]← cur string ;
xx [p]← get yyy ; yy [p]← get yyy ;
if xx [p] < pre min x then pre min x ← xx [p];
if xx [p] > pre max x then pre max x ← xx [p];
if yy [p] < pre min y then pre min y ← yy [p];
if yy [p] > pre max y then pre max y ← yy [p];
end

This code is used in section 154.

164. The process of ferreting everything away comes to an abrupt halt when a boc command is sensed.
The following steps are performed at such times:

〈Process a character 164 〉 ≡
begin check fonts ; 〈Finish reading the parameters of the boc 165 〉;
〈Get ready to convert METAFONT coordinates to DVI coordinates 170 〉;
〈Output the bop and the title line 172 〉;
print (´[´, total pages : 1); update terminal ; { print a progress report }
〈Output all rules for the current character 173 〉;
〈Output all labels for the current character 181 〉;
do pixels ; dvi out (eop); { finish the page }
〈Adjust the maximum page width 203 〉;
print (´]´); update terminal ;
end

This code is used in section 219.

165. 〈Finish reading the parameters of the boc 165 〉 ≡
if cur gf = boc then

begin ext ← signed quad ; { read the character code }
char code ← ext mod 256;
if char code < 0 then char code ← char code + 256;
ext ← (ext − char code) div 256; k ← signed quad ; { read and ignore the prev pointer }
min x ← signed quad ; { read the minimum x coordinate }
max x ← signed quad ; { read the maximum x coordinate }
min y ← signed quad ; { read the minimum y coordinate }
max y ← signed quad ; { read the maximum y coordinate }
end

else begin ext ← 0; char code ← get byte ; { cur gf = boc1 }
min x ← get byte ; max x ← get byte ; min x ← max x −min x ;
min y ← get byte ; max y ← get byte ; min y ← max y −min y ;
end;

if max x −min x > widest row then abort (´Character too wide!´)

This code is used in section 164.

366 DOING THE LABELS GF to DVI §166

166. 〈Globals in the outer block 12 〉 +≡
char code , ext : integer ; { the current character code and extension }
min x ,max x ,min y ,max y : integer ; { character boundaries, in pixels }
x, y: integer ; { current painting position, in pixels }
z: integer ; { initial painting position in row, relative to min x }

167. METAFONT coordinates (x, y) are converted to DVI coordinates by the following routine. Real values
x ratio , y ratio , and slant ratio will have been calculated based on the gray font; scaled values delta x and
delta y will have been computed so that, in the absence of slanting and offsets, the METAFONT coordinates
(min x ,max y + 1) will correspond to the DVI coordinates (0, 50 pt).

procedure convert (x, y : scaled);
begin x← x+ x offset ; y ← y + y offset ; dvi y ← −round (y ratio ∗ y) + delta y ;
dvi x ← round (x ratio ∗ x+ slant ratio ∗ y) + delta x ;
end;

168. 〈Globals in the outer block 12 〉 +≡
x ratio , y ratio , slant ratio : real ; { conversion factors }
unsc x ratio , unsc y ratio , unsc slant ratio : real ; {ditto, times unity }
fudge factor : real ; { unconversion factor }
delta x , delta y : scaled ; {magic constants used by convert }
dvi x , dvi y : scaled ; { outputs of convert , in scaled points }
over col : scaled ; { overflow labels start here }
page height , page width : scaled ; { size of the current page }

169. 〈 Initialize global variables that depend on the font data 137 〉 +≡
i← char info(gray font)(1);
if ¬char exists (i) then abort (´Missing pixel char!´);
unsc x ratio ← char width (gray font)(i); x ratio ← unsc x ratio/unity ;
unsc y ratio ← char height (gray font)(height depth (i)); y ratio ← unsc y ratio/unity ;
unsc slant ratio ← slant (gray font) ∗ y ratio ; slant ratio ← unsc slant ratio/unity ;
if x ratio ∗ y ratio = 0 then abort (´Vanishing pixel size!´);
fudge factor ← (slant ratio/x ratio)/y ratio ;

170. 〈Get ready to convert METAFONT coordinates to DVI coordinates 170 〉 ≡
if pre min x < min x ∗ unity then offset x ← offset x + min x ∗ unity − pre min x ;
if pre max y > max y ∗ unity then offset y ← offset y + max y ∗ unity − pre max y ;
if pre max x > max x ∗ unity then pre max x ← pre max x div unity
else pre max x ← max x ;
if pre min y < min y ∗ unity then pre min y ← pre min y div unity
else pre min y ← min y ;
delta y ← round (unsc y ratio ∗ (max y + 1)− y ratio ∗ offset y) + 3276800;
delta x ← round (x ratio ∗ offset x − unsc x ratio ∗min x);
if slant ratio ≥ 0 then over col ← round (unsc x ratio ∗ pre max x + unsc slant ratio ∗max y)
else over col ← round (unsc x ratio ∗ pre max x + unsc slant ratio ∗min y);
over col ← over col + delta x + 10000000;
page height ← round (unsc y ratio ∗ (max y + 1− pre min y)) + 3276800− offset y ;
if page height > max v then max v ← page height ;
page width ← over col − 10000000

This code is used in section 164.

§171 GF to DVI DOING THE LABELS 367

171. The dvi goto subroutine outputs bytes to the DVI file that will initiate typesetting at given DVI

coordinates, assuming that the current position of the DVI reader is (0, 0). This subroutine begins by
outputting a push command; therefore, a pop command should be given later. That pop will restore the DVI

position to (0, 0).

procedure dvi goto(x, y : scaled);
begin dvi out (push);
if x 6= 0 then

begin dvi out (right4); dvi four (x);
end;

if y 6= 0 then
begin dvi out (down4); dvi four (y);
end;

end;

172. 〈Output the bop and the title line 172 〉 ≡
dvi out (bop); incr (total pages); dvi four (total pages); dvi four (char code); dvi four (ext);
for k ← 3 to 9 do dvi four (0);
dvi four (last bop); last bop ← dvi offset + dvi ptr − 45;
dvi goto(0, 655360); { the top baseline is 10 pt down }
if use logo then

begin select font (logo font); hbox (small logo , logo font , true);
end;

select font (title font); hbox (time stamp , title font , true);
hbox (page header , title font , true); dvi scaled (total pages ∗ 65536.0);
if (char code 6= 0) ∨ (ext 6= 0) then

begin hbox (char header , title font , true); dvi scaled (char code ∗ 65536.0);
if ext 6= 0 then

begin hbox (ext header , title font , true); dvi scaled (ext ∗ 65536.0);
end;

end;
if title head 6= null then

begin next [title tail]← null ;
repeat hbox (left quotes , title font , true); hbox (info [title head], title font , true);

hbox (right quotes , title font , true); title head ← next [title head];
until title head = null ;
end;

dvi out (pop)

This code is used in section 164.

368 DOING THE LABELS GF to DVI §173

173. define tol ≡ 6554 { one tenth of a point, in DVI coordinates }
〈Output all rules for the current character 173 〉 ≡

if rule slant 6= 0 then select font (slant font);
while rule ptr 6= null do

begin p← rule ptr ; rule ptr ← next [p];
if rule size [p] = 0 then rule size [p]← gray rule thickness ;
if rule size [p] > 0 then

begin convert (x0 [p], y0 [p]); temp x ← dvi x ; temp y ← dvi y ; convert (x1 [p], y1 [p]);
if abs (temp x − dvi x) < tol then 〈Output a vertical rule 176 〉
else if abs (temp y − dvi y) < tol then 〈Output a horizontal rule 177 〉

else 〈Try to output a diagonal rule 178 〉;
end;

end

This code is used in section 164.

174. 〈Globals in the outer block 12 〉 +≡
gray rule thickness : scaled ; { thickness of rules, according to the gray font }
temp x , temp y : scaled ; { temporary registers for intermediate calculations }

175. 〈 Initialize global variables that depend on the font data 137 〉 +≡
gray rule thickness ← default rule thickness (gray font);
if gray rule thickness = 0 then gray rule thickness ← 26214; { 0.4 pt }

176. 〈Output a vertical rule 176 〉 ≡
begin if temp y > dvi y then

begin k ← temp y ; temp y ← dvi y ; dvi y ← k;
end;

dvi goto(dvi x − (rule size [p] div 2), dvi y); dvi out (put rule); dvi four (dvi y − temp y);
dvi four (rule size [p]); dvi out (pop);
end

This code is used in section 173.

177. 〈Output a horizontal rule 177 〉 ≡
begin if temp x < dvi x then

begin k ← temp x ; temp x ← dvi x ; dvi x ← k;
end;

dvi goto(dvi x , dvi y + (rule size [p] div 2)); dvi out (put rule); dvi four (rule size [p]);
dvi four (temp x − dvi x); dvi out (pop);
end

This code is used in section 173.

§178 GF to DVI DOING THE LABELS 369

178. 〈Try to output a diagonal rule 178 〉 ≡
if (rule slant = 0) ∨ (abs (temp x + rule slant ∗ (temp y − dvi y)− dvi x) > rule size [p]) then

slant complaint ((dvi x − temp x)/(temp y − dvi y))
else begin if temp y > dvi y then

begin k ← temp y ; temp y ← dvi y ; dvi y ← k;
k ← temp x ; temp x ← dvi x ; dvi x ← k;
end;

m← round ((dvi y − temp y)/slant unit);
if m > 0 then

begin dvi goto(dvi x , dvi y); q ← ((m− 1) div slant n) + 1; k ← m div q; p← mmod q;
q ← q − p; 〈Vertically typeset q copies of character k 179 〉;
〈Vertically typeset p copies of character k + 1 180 〉;
dvi out (pop);
end;

end

This code is used in section 173.

179. 〈Vertically typeset q copies of character k 179 〉 ≡
typeset (k); dy ← round (k ∗ slant unit); dvi out (z4); dvi four (−dy);
while q > 1 do

begin typeset (k); dvi out (z0); decr (q);
end

This code is used in section 178.

180. 〈Vertically typeset p copies of character k + 1 180 〉 ≡
if p > 0 then

begin incr (k); typeset (k); dy ← round (k ∗ slant unit); dvi out (z4); dvi four (−dy);
while p > 1 do

begin typeset (k); dvi out (z0); decr (p);
end;

end

This code is used in section 178.

181. Now we come to a more interesting part of the computation, where we go through the stored labels
and try to fit them in the illustration for the current character, together with their associated dots.

It would simplify font-switching slightly if we were to typeset the labels first, but we find it desirable to
typeset the dots first and then turn to the labels. This procedure makes it possible for us to allow the dots
to overlap each other without allowing the labels to overlap. After the dots are in place, we typeset all
prescribed labels, that is, labels with a lab typ of "1" . . "8"; these, too, are allowed to overlap the dots and
each other.

〈Output all labels for the current character 181 〉 ≡
overflow line ← 1;
if label head 6= null then

begin next [label tail]← null ; select font (gray font); 〈Output all dots 187 〉;
〈Find nearest dots, to help in label positioning 191 〉;
select font (label font); 〈Output all prescribed labels 189 〉;
〈Output all attachable labels 193 〉;
〈Output all overflow labels 200 〉;
end

This code is used in section 164.

370 DOING THE LABELS GF to DVI §182

182. 〈Globals in the outer block 12 〉 +≡
overflow line : integer ; { the number of labels that didn’t fit, plus 1 }

183. A label that appears above its dot is considered to occupy a rectangle of height h+ ∆, depth d, and
width w+ 2∆, where (h,w, d) are the height, width, and depth of the label computed by hbox , and ∆ is an
additional amount of blank space that keeps labels from coming too close to each other. (GFtoDVI arbitrarily
defines ∆ to be one half the width of a space in the label font.) This label is centered over its dot, with its
baseline d+ h′ above the center of the dot; here h′ = dot height is the height of character 0 in the gray font.

Similarly, a label that appears below its dot is considered to occupy a rectangle of height h, depth d+ ∆,
and width w + 2∆; the baseline is h+ h′ below the center of the dot.

A label at the right of its dot is considered to occupy a rectangle of height h + ∆, depth d + ∆, and
width w + ∆. Its reference point can be found by starting at the center of the dot and moving right
w′ = dot width (i.e., the width of character 0 in the gray font), then moving down by half the x-height of
the label font. A label at the left of its dot is similar.

A dot is considered to occupy a rectangle of height 2h′ and width 2w′, centered on the dot.
When the label type is "1" or more, the labels are put into the doubly linked list unconditionally. Otherwise

they are put into the list only if we can find a way to fit them in without overlapping any previously inserted
rectangles.

〈Globals in the outer block 12 〉 +≡
delta : scaled ; { extra padding to keep labels from being too close }
half x height : scaled ; { amount to drop baseline of label below the dot center }
thrice x height : scaled ; {baseline separation for overflow labels }
dot width , dot height : scaled ; {w′ and h′ in the discussion above }

184. 〈 Initialize global variables that depend on the font data 137 〉 +≡
i← char info(gray font)(0);
if ¬char exists (i) then abort (´Missing dot char!´);
dot width ← char width (gray font)(i); dot height ← char height (gray font)(height depth (i));
delta ← space (label font) div 2; thrice x height ← 3 ∗ x height (label font);
half x height ← thrice x height div 6;

185. Here is a subroutine that computes the rectangle boundaries xl [p], xr [p], yt [p], yb [p], and the reference
point coordinates xx [p], yy [p], for a label that is to be placed above a dot. The coordinates of the dot’s
center are assumed given in dvi x and dvi y ; the hbox subroutine is assumed to have already computed the
height, width, and depth of the label box.

procedure top coords (p : node pointer);
begin xx [p]← dvi x − (box width div 2); xl [p]← xx [p]− delta ; xr [p]← xx [p] + box width + delta ;
yb [p]← dvi y − dot height ; yy [p]← yb [p]− box depth ; yt [p]← yy [p]− box height − delta ;
end;

§186 GF to DVI DOING THE LABELS 371

186. The other three label positions are handled by similar routines.

procedure bot coords (p : node pointer);
begin xx [p]← dvi x − (box width div 2); xl [p]← xx [p]− delta ; xr [p]← xx [p] + box width + delta ;
yt [p]← dvi y + dot height ; yy [p]← yt [p] + box height ; yb [p]← yy [p] + box depth + delta ;
end;

procedure right coords (p : node pointer);
begin xl [p]← dvi x + dot width ; xx [p]← xl [p]; xr [p]← xx [p] + box width + delta ;
yy [p]← dvi y + half x height ; yb [p]← yy [p] + box depth + delta ; yt [p]← yy [p]− box height − delta ;
end;

procedure left coords (p : node pointer);
begin xr [p]← dvi x − dot width ; xx [p]← xr [p]− box width ; xl [p]← xx [p]− delta ;
yy [p]← dvi y + half x height ; yb [p]← yy [p] + box depth + delta ; yt [p]← yy [p]− box height − delta ;
end;

187. 〈Output all dots 187 〉 ≡
p← label head ; first dot ← max node + 1;
while p 6= null do

begin convert (xx [p], yy [p]); xx [p]← dvi x ; yy [p]← dvi y ;
if lab typ [p] < "5" then 〈Enter a dot for label p in the rectangle list, and typeset the dot 188 〉;
p← next [p];
end

This code is used in section 181.

188. We plant links between dots and their labels by using (or abusing) the xl and info fields, which aren’t
needed for their normal purposes.

define dot for label ≡ xl
define label for dot ≡ info

〈Enter a dot for label p in the rectangle list, and typeset the dot 188 〉 ≡
begin q ← get avail ; dot for label [p]← q; label for dot [q]← p;
xx [q]← dvi x ; xl [q]← dvi x − dot width ; xr [q]← dvi x + dot width ;
yy [q]← dvi y ; yt [q]← dvi y − dot height ; yb [q]← dvi y + dot height ;
node ins (q, 0);
dvi goto(xx [q], yy [q]); dvi out (0); dvi out (pop);
end

This code is used in section 187.

189. Prescribed labels are now taken out of the singly linked list and inserted into the doubly linked list.

〈Output all prescribed labels 189 〉 ≡
q ← end of list ; { label head = next [q] }
while next [q] 6= null do

begin p← next [q];
if lab typ [p] > "0" then

begin next [q]← next [p];
〈Enter a prescribed label for node p into the rectangle list, and typeset it 190 〉;
end

else q ← next [q];
end

This code is used in section 181.

372 DOING THE LABELS GF to DVI §190

190. 〈Enter a prescribed label for node p into the rectangle list, and typeset it 190 〉 ≡
begin hbox (info [p], label font , false); {Compute the size of this label }
dvi x ← xx [p]; dvi y ← yy [p];
if lab typ [p] < "5" then r ← dot for label [p] else r ← 0;
case lab typ [p] of
"1", "5": top coords (p);
"2", "6": left coords (p);
"3", "7": right coords (p);
"4", "8": bot coords (p);
end; { no other cases are possible }
node ins (p, r);
dvi goto(xx [p], yy [p]); hbox (info [p], label font , true); dvi out (pop);
end

This code is used in section 189.

191. GFtoDVI’s algorithm for positioning the “floating” labels was devised by Arthur L. Samuel. It tries
to place labels in a priority order, based on the position of the nearest dot to a given dot. If that dot, for
example, lies in the first octant (i.e., east to northeast of the given dot), the given label will be put into the
west slot unless that slot is already blocked; then the south slot will be tried, etc.

First we need to compute the octants. We also note if two or more dots are nearly coincident, since
Samuel’s algorithm modifies the priority order on that case. The information is temporarily recorded in the
xr array.

define octant ≡ xr { octant code for nearest dot, plus 8 for coincident dots }
〈Find nearest dots, to help in label positioning 191 〉 ≡
p← label head ;
while p 6= null do

begin if lab typ [p] ≤ "0" then 〈Compute the octant code for floating label p 192 〉;
p← next [p];
end;

This code is used in section 181.

§192 GF to DVI DOING THE LABELS 373

192. There’s a sneaky way to identify octant numbers, represented by the code shown here. (Remember
that y coordinates increase downward in the DVI convention.)

define first octant = 0
define second octant = 1
define third octant = 2
define fourth octant = 3
define fifth octant = 7
define sixth octant = 6
define seventh octant = 5
define eighth octant = 4

〈Compute the octant code for floating label p 192 〉 ≡
begin r ← dot for label [p]; q ← nearest dot (r, 10);
if twin then octant [p]← 8 else octant [p]← 0;
if q 6= null then

begin dx ← xx [q]− xx [r]; dy ← yy [q]− yy [r];
if dy > 0 then octant [p]← octant [p] + 4;
if dx < 0 then incr (octant [p]);
if dy > dx then incr (octant [p]);
if −dy > dx then incr (octant [p]);
end;

end

This code is used in section 191.

193. A procedure called place label will try to place the remaining labels in turn. If it fails, we “disconnect”
the dot from this label so that an unlabeled dot will not appear as a reference in the overflow column.

〈Output all attachable labels 193 〉 ≡
q ← end of list ; { now next [q] = label head }
while next [q] 6= null do

begin p← next [q]; r ← next [p]; s← dot for label [p];
if place label (p) then next [q]← r
else begin label for dot [s]← null ; { disconnect the dot }

if lab typ [p] = "/" then next [q]← r { remove label from list }
else q ← p; { retain label in list for the overflow column }
end;

end

This code is used in section 181.

194. Here is the place label routine, which uses the previously computed octant information as a heuristic.
If the label can be placed, it is inserted into the rectangle list and typeset.

function place label (p : node pointer): boolean ;
label exit , found ;
var oct : 0 . . 15; { octant code }

dfl : node pointer ; { saved value of dot for label [p] }
begin hbox (info [p], label font , false); {Compute the size of this label }
dvi x ← xx [p]; dvi y ← yy [p]; 〈Find non-overlapping coordinates, if possible, and goto found; otherwise

set place label ← false and return 195 〉;
found : node ins (p, dfl);

dvi goto(xx [p], yy [p]); hbox (info [p], label font , true); dvi out (pop); place label ← true ;
exit : end;

374 DOING THE LABELS GF to DVI §195

195. 〈Find non-overlapping coordinates, if possible, and goto found; otherwise set place label ← false
and return 195 〉 ≡

dfl ← dot for label [p]; oct ← octant [p]; 〈Try the first choice for label direction 196 〉;
〈Try the second choice for label direction 197 〉;
〈Try the third choice for label direction 198 〉;
〈Try the fourth choice for label direction 199 〉;
xx [p]← dvi x ; yy [p]← dvi y ; dot for label [p]← dfl ; { no luck; restore the coordinates }
place label ← false ; return

This code is used in section 194.

196. 〈Try the first choice for label direction 196 〉 ≡
case oct of
first octant , eighth octant , second octant + 8, seventh octant + 8: left coords (p);
second octant , third octant ,first octant + 8, fourth octant + 8: bot coords (p);
fourth octant ,fifth octant , third octant + 8, sixth octant + 8: right coords (p);
sixth octant , seventh octant ,fifth octant + 8, eighth octant + 8: top coords (p);
end;
if ¬overlap(p, dfl) then goto found

This code is used in section 195.

197. 〈Try the second choice for label direction 197 〉 ≡
case oct of
first octant , fourth octant ,fifth octant + 8, eighth octant + 8: bot coords (p);
second octant , seventh octant , third octant + 8, sixth octant + 8: left coords (p);
third octant , sixth octant , second octant + 8, seventh octant + 8: right coords (p);
fifth octant , eighth octant ,first octant + 8, fourth octant + 8: top coords (p);
end;
if ¬overlap(p, dfl) then goto found

This code is used in section 195.

198. 〈Try the third choice for label direction 198 〉 ≡
case oct of
first octant , fourth octant , sixth octant + 8, seventh octant + 8: top coords (p);
second octant , seventh octant , fourth octant + 8,fifth octant + 8: right coords (p);
third octant , sixth octant ,first octant + 8, eighth octant + 8: left coords (p);
fifth octant , eighth octant , second octant + 8, third octant + 8: bot coords (p);
end;
if ¬overlap(p, dfl) then goto found

This code is used in section 195.

199. 〈Try the fourth choice for label direction 199 〉 ≡
case oct of
first octant , eighth octant ,first octant + 8, eighth octant + 8: right coords (p);
second octant , third octant , second octant + 8, third octant + 8: top coords (p);
fourth octant ,fifth octant , fourth octant + 8,fifth octant + 8: left coords (p);
sixth octant , seventh octant , sixth octant + 8, seventh octant + 8: bot coords (p);
end;
if ¬overlap(p, dfl) then goto found

This code is used in section 195.

§200 GF to DVI DOING THE LABELS 375

200. 〈Output all overflow labels 200 〉 ≡
〈Remove all rectangles from list, except for dots that have labels 201 〉;
p← label head ;
while p 6= null do

begin 〈Typeset an overflow label for p 202 〉;
p← next [p];
end

This code is used in section 181.

201. When we remove a dot that couldn’t be labeled, we set its next field to the preceding node that
survives, so that we can use the nearest dot routine later. (This is a bit of a kludge.)

〈Remove all rectangles from list, except for dots that have labels 201 〉 ≡
p← next [0];
while p 6= end of list do

begin q ← next [p];
if (p < first dot) ∨ (label for dot [p] = null) then

begin r ← prev [p]; next [r]← q; prev [q]← r; next [p]← r;
end;

p← q;
end

This code is used in section 200.

202. Now we have to insert p into the list temporarily, because of the way nearest dot works.

〈Typeset an overflow label for p 202 〉 ≡
begin r ← next [dot for label [p]]; s← next [r]; t← next [p]; next [p]← s; prev [s]← p; next [r]← p;
prev [p]← r;
q ← nearest dot (p, 0);
next [r]← s; prev [s]← r; next [p]← t; { remove p again }
incr (overflow line); dvi goto(over col , overflow line ∗ thrice x height + 655360);
hbox (info [p], label font , true);
if q 6= null then

begin hbox (equals sign , label font , true); hbox (info [label for dot [q]], label font , true);
hbox (plus sign , label font , true); dvi scaled ((xx [p]− xx [q])/x ratio + (yy [p]− yy [q]) ∗ fudge factor);
dvi out (","); dvi scaled ((yy [q]− yy [p])/y ratio); dvi out (")");
end;

dvi out (pop);
end

This code is used in section 200.

203. 〈Adjust the maximum page width 203 〉 ≡
if overflow line > 1 then page width ← over col + 10000000;

{ overflow labels are estimated to occupy 107 sp }
if page width > max h then max h ← page width

This code is used in section 164.

376 DOING THE PIXELS GF to DVI §204

204. Doing the pixels. The most interesting part of GFtoDVI is the way it makes use of a gray font to
typeset the pixels of a character. In fact, the author must admit having great fun devising the algorithms
below. Perhaps the reader will also enjoy reading them.

The basic idea will be to use an array of 12-bit integers to represent the next twelve rows that need to be
typeset. The binary expansions of these integers, reading from least significant bit to most significant bit,
will represent pixels from top to bottom.

205. We have already used such a binary representation in the tables c[1 . . 120] and d[1 . . 120] of bit
patterns and lengths that are potentially present in a gray font; we shall now use those tables to compute
an auxiliary array b[0 . . 4095]. Given a 12-bit number v, the gray-font character appropriate to v’s binary
pattern will be b[v]. If no character should be typeset for this pattern in the current row, b[v] will be 0.

The array b can have many different configurations, depending on how many characters are actually present
in the gray font. But it’s not difficult to compute b by going through the existing characters in increasing
order and marking all patterns x to which they apply.

〈 Initialize global variables that depend on the font data 137 〉 +≡
for k ← 0 to 4095 do b[k]← 0;
for k ← font bc [gray font] to font ec [gray font] do

if k ≥ 1 then
if k ≤ 120 then

if char exists (char info(gray font)(k)) then
begin v ← c[k];
repeat b[v]← k; v ← v + d[k];
until v > 4095;
end;

206. We also compute an auxiliary array rho [0 . . 4095] such that rho [v] = 2j when v is an odd multiple
of 2j ; we also set rho [0] = 212.

〈 Initialize global variables that depend on the font data 137 〉 +≡
for j ← 0 to 11 do

begin k ← two to the [j]; v ← k;
repeat rho [v]← k; v ← v + k + k;
until v > 4095;
end;

rho [0]← 4096;

207. 〈Globals in the outer block 12 〉 +≡
b: array [0 . . 4095] of 0 . . 120; { largest existing character for a given pattern }
rho : array [0 . . 4095] of 1 . . 4096; { the “ruler function” }

§208 GF to DVI DOING THE PIXELS 377

208. But how will we use these tables? Let’s imagine that the DVI file already contains instructions that
have selected the gray font and moved to the proper horizontal coordinate for the row that we wish to
process next. Let’s suppose that 12-bit patterns have been set up in array a, and that the global variables
starting col and finishing col are known such that a[j] is zero unless starting col ≤ j ≤ finishing col . Here’s
what we can do, assuming that appropriate local variables and labels have been declared:

〈Typeset the pixels of the current row 208 〉 ≡
j ← starting col ;
loop begin while (j ≤ finishing col) ∧ (b[a[j]] = 0) do incr (j);

if j > finishing col then goto done ;
dvi out (push); 〈Move to column j in the DVI output 209 〉;
repeat v ← b[a[j]]; a[j]← a[j]− c[v]; k ← j; incr (j);

while b[a[j]] = v do
begin a[j]← a[j]− c[v]; incr (j);
end;

k ← j − k; 〈Output the equivalent of k copies of character v 210 〉;
until b[a[j]] = 0;
dvi out (pop);
end;

done :

This code is used in section 218.

209. 〈Move to column j in the DVI output 209 〉 ≡
dvi out (right4); dvi four (round (unsc x ratio ∗ j + unsc slant ratio ∗ y) + delta x)

This code is used in section 208.

210. The doubling-up property of gray font character lists is utilized here.

〈Output the equivalent of k copies of character v 210 〉 ≡
reswitch : if k = 1 then typeset (v)

else begin i← char info(gray font)(v);
if char tag (i) = list tag then { v has a successor }

begin if odd (k) then typeset (v);
k ← k div 2; v ← qo(rem byte (i)); goto reswitch ;
end

else repeat typeset (v); decr (k);
until k = 0;

end

This code is used in section 208.

211. 〈Globals in the outer block 12 〉 +≡
a: array [0 . . widest row] of 0 . . 4095; {bit patterns for twelve rows }

212. In order to use the approach above, we need to be able to initialize array a, and we need to be able
to keep it up to date as new rows scroll by. A moment’s thought about the problem reveals that we will
either have to read an entire character from the GF file into memory, or we’ll need to adopt a coroutine-like
approach: A single skip command in the GF file might need to be processed in pieces, since it might generate
more rows of zeroes than we are ready to absorb all at once into a.

The coroutine method actually turns out to be quite simple, so we shall introduce a global variable
blank rows , which tells how many rows of blanks should be generated before we read the GF instructions for
another row.

〈Globals in the outer block 12 〉 +≡
blank rows : integer ; { rows of blanks carried over from a previous GF command }

378 DOING THE PIXELS GF to DVI §213

213. Initialization and updating of a can now be handled as follows, if we introduce another variable l
that is set initially to 1:

〈Add more rows to a, until 12-bit entries are obtained 213 〉 ≡
repeat 〈Put the bits for the next row, times l, into a 214 〉;
l← l + l; decr (y);

until l = 4096;

This code is used in section 218.

214. As before, cur gf will contain the first GF command that has not yet been interpreted.

〈Put the bits for the next row, times l, into a 214 〉 ≡
if blank rows > 0 then decr (blank rows)
else if cur gf 6= eoc then

begin x← z;
if starting col > x then starting col ← x;
〈Read and process GF commands until coming to the end of this row 215 〉;
end;

This code is used in section 213.

215. define do skip ≡ z ← 0; paint black ← false
define end with (#) ≡

begin #; cur gf ← get byte ; goto done1 ; end
define five cases (#) ≡ #, # + 1, # + 2, # + 3, # + 4
define eight cases (#) ≡ #, # + 1, # + 2, # + 3, # + 4, # + 5, # + 6, # + 7
define thirty two cases (#) ≡ eight cases (#), eight cases (# + 8), eight cases (# + 16), eight cases (# + 24)
define sixty four cases (#) ≡ thirty two cases (#), thirty two cases (# + 32)

〈Read and process GF commands until coming to the end of this row 215 〉 ≡
loop begin continue : case cur gf of

sixty four cases (0): k ← cur gf ;
paint1 : k ← get byte ;
paint2 : k ← get two bytes ;
paint3 : k ← get three bytes ;
eoc : goto done1 ;
skip0 : end with (blank rows ← 0; do skip);
skip1 : end with (blank rows ← get byte ; do skip);
skip2 : end with (blank rows ← get two bytes ; do skip);
skip3 : end with (blank rows ← get three bytes ; do skip);
sixty four cases (new row 0), sixty four cases (new row 0 + 64), thirty two cases (new row 0 + 128),

five cases (new row 0 + 160): end with (z ← cur gf − new row 0 ; paint black ← true);
xxx1 , xxx2 , xxx3 , xxx4 , yyy ,no op : begin skip nop ; goto continue ;

end;
othercases bad gf (´Improper opcode´)
endcases;
〈Paint k bits and read another command 216 〉;
end;

done1 :

This code is used in section 214.

§216 GF to DVI DOING THE PIXELS 379

216. 〈Paint k bits and read another command 216 〉 ≡
if x+ k > finishing col then finishing col ← x+ k;
if paint black then

for j ← x to x+ k − 1 do a[j]← a[j] + l;
paint black ← ¬paint black ; x← x+ k; cur gf ← get byte

This code is used in section 215.

217. When the current row has been typeset, all entries of a will be even; we want to divide them by 2
and incorporate a new row with l = 211. However, if they are all multiples of 4, we actually want to divide
by 4 and incorporate two new rows, with l = 210 and l = 211. In general, we want to divide by the maximum
possible power of 2 and add the corresponding number of new rows; that’s where the rho array comes in
handy:

〈Advance to the next row that needs to be typeset; or return, if we’re all done 217 〉 ≡
l← rho [a[starting col]];
for j ← starting col + 1 to finishing col do

if l > rho [a[j]] then l← rho [a[j]];
if l = 4096 then

if cur gf = eoc then return
else begin y ← y − blank rows ; blank rows ← 0; l← 1; starting col ← z; finishing col ← z;

end
else begin while a[starting col] = 0 do incr (starting col);

while a[finishing col] = 0 do decr (finishing col);
for j ← starting col to finishing col do a[j]← a[j] div l;
l← 4096 div l;
end

This code is used in section 218.

218. We now have constructed the major components of the necessary routine; it simply remains to glue
them all together in the proper framework.

procedure do pixels ;
label done , done1 , reswitch , continue , exit ;
var paint black : boolean ; { the paint switch }

starting col ,finishing col : 0 . . widest row ; { currently nonzero area }
j: 0 . . widest row ; { for traversing that area }
l: integer ; {power of two used to manipulate bit patterns }
i: four quarters ; { character information word }
v: eight bits ; { character corresponding to a pixel pattern }

begin select font (gray font); delta x ← delta x + round (unsc x ratio ∗min x);
for j ← 0 to max x −min x do a[j]← 0;
l← 1; z ← 0; starting col ← 0; finishing col ← 0; y ← max y + 12; paint black ← false ;
blank rows ← 0; cur gf ← get byte ;
loop begin 〈Add more rows to a, until 12-bit entries are obtained 213 〉;

dvi goto(0, delta y − round (unsc y ratio ∗ y)); 〈Typeset the pixels of the current row 208 〉;
dvi out (pop); 〈Advance to the next row that needs to be typeset; or return, if we’re all done 217 〉;
end;

exit : end;

380 THE MAIN PROGRAM GF to DVI §219

219. The main program. Now we are ready to put it all together. This is where GFtoDVI starts, and
where it ends.

begin initialize ; { get all variables initialized }
〈 Initialize the strings 77 〉;
start gf ; { open the input and output files }
〈Process the preamble 221 〉;
cur gf ← get byte ; init str ptr ← str ptr ;
loop begin 〈 Initialize variables for the next character 144 〉;

while (cur gf ≥ xxx1) ∧ (cur gf ≤ no op) do 〈Process a no-op command 154 〉;
if cur gf = post then 〈Finish the DVI file and goto final end 115 〉;
if cur gf 6= boc then

if cur gf 6= boc1 then abort (´Missing boc!´);
〈Process a character 164 〉;
cur gf ← get byte ; str ptr ← init str ptr ; pool ptr ← str start [str ptr];
end;

final end : end.

220. The main program needs a few global variables in order to do its work.

〈Globals in the outer block 12 〉 +≡
k,m, p, q, r, s, t, dx , dy : integer ; { general purpose registers }
time stamp : str number ; { the date and time when the input file was made }
use logo : boolean ; { should METAFONT’s logo be put on the title line? }

221. METAFONT sets the opening string to 32 bytes that give date and time as follows:

´ METAFONT output yyyy.mm.dd:tttt´

We copy this to the DVI file, but remove the ‘METAFONT’ part so that it can be replaced by its proper logo.

〈Process the preamble 221 〉 ≡
if get byte 6= pre then bad gf (´No preamble´);
if get byte 6= gf id byte then bad gf (´Wrong ID´);
k ← get byte ; { k is the length of the initial string to be copied }
for m← 1 to k do append char (get byte);
dvi out (pre); dvi out (dvi id byte); { output the preamble }
dvi four (25400000); dvi four (473628672); { conversion ratio for sp }
dvi four (1000); {magnification factor }
dvi out (k); use logo ← false ; s← str start [str ptr];
for m← 1 to k do dvi out (str pool [s+m− 1]);
if str pool [s] = " " then

if str pool [s+ 1] = "M" then
if str pool [s+ 2] = "E" then

if str pool [s+ 3] = "T" then
if str pool [s+ 4] = "A" then

if str pool [s+ 5] = "F" then
if str pool [s+ 6] = "O" then

if str pool [s+ 7] = "N" then
if str pool [s+ 8] = "T" then

begin incr (str ptr); str start [str ptr]← s+ 9; use logo ← true ;
end; {we will substitute ‘METAFONT’ for METAFONT }

time stamp ← make string

This code is used in section 219.

§222 GF to DVI SYSTEM-DEPENDENT CHANGES 381

222. System-dependent changes. This section should be replaced, if necessary, by changes to the
program that are necessary to make GFtoDVI work at a particular installation. It is usually best to design
your change file so that all changes to previous sections preserve the section numbering; then everybody’s
version will be consistent with the printed program. More extensive changes, which introduce new sections,
can be inserted here; then only the index itself will get a new section number.

382 INDEX GF to DVI §223

223. Index. Here is a list of the section numbers where each identifier is used. Cross references to error
messages and a few other tidbits of information also appear.

a: 51, 92, 107, 211.
abend : 58, 60, 62, 63, 64, 66.
abort : 8, 58, 61, 73, 74, 75, 91, 141, 165, 169,

184, 219.
abs : 138, 151, 152, 173, 178.
adjust : 69.
alpha : 58, 64, 65.
append char : 73, 75, 83, 90, 101, 221.
append to name : 92.
area code : 77, 98, 100, 101, 154.
area delimiter : 87, 89, 90, 91.
ASCII code : 10, 12, 71, 73, 90, 92, 116.
at size: 39.
at code : 77, 154.
b: 51, 107, 207.
backpointers: 32.
Bad GF file : 8.
Bad label type... : 163.
Bad TFM file... : 58.
bad gf : 8, 215, 221.
bad tfm : 58.
banner : 1, 3.
bc : 37, 38, 40, 42, 58, 60, 61, 66, 69.
bch label : 58, 66, 69.
bchar : 58, 66, 69, 116, 122.
bchar label : 53, 69, 120.
begin name : 86, 89, 95.
best q : 150, 151, 152.
beta : 58, 64, 65.
BigEndian order: 19, 37.
black : 28, 29.
blank rows : 212, 214, 215, 217, 218.
boc : 27, 29, 30, 31, 32, 35, 85, 96, 153, 154,

164, 165, 219.
boc1 : 29, 30, 165, 219.
boolean : 52, 90, 96, 116, 117, 145, 149, 194,

218, 220.
bop : 19, 21, 22, 24, 25, 102, 172.
bot : 43.
bot coords : 186, 190, 196, 197, 198, 199.
box depth : 116, 117, 121, 185, 186.
box height : 116, 117, 121, 185, 186.
box width : 116, 117, 119, 121, 185, 186.
break : 16.
buf ptr : 18, 94, 95, 100, 101.
buffer : 16, 17, 18, 75, 82, 83, 94, 95, 100, 101, 114.
byte file : 45, 46.
b0 : 49, 50, 52, 53, 55, 60, 62, 63, 64, 66, 67,

68, 111, 118.

b1 : 49, 50, 52, 55, 60, 62, 63, 64, 66, 67, 68,
111, 118.

b2 : 49, 50, 52, 55, 60, 62, 63, 64, 66, 67, 68,
111, 118.

b3 : 49, 50, 52, 55, 60, 62, 63, 64, 66, 67, 68,
111, 118.

c: 51, 75, 81, 90, 92, 113, 127.
char : 11, 48.
char base : 53, 55, 61.
char code : 165, 166, 172.
char depth : 55, 121.
char depth end : 55.
char exists : 55, 121, 169, 184, 205.
char header : 78, 172.
char height : 55, 121, 137, 169, 184.
char height end : 55.
char info : 40, 53, 55, 117, 120, 121, 137, 169,

184, 205, 210.
char info end : 55.
char info word : 38, 40, 41.
char italic : 55.
char italic end : 55.
char kern : 56, 120.
char kern end : 56.
char loc : 29, 32.
char loc0 : 29.
char tag : 55, 120, 210.
char width : 55, 121, 169, 184.
char width end : 55.
Character too wide : 165.
check sum: 24, 31, 39.
check byte range : 66, 67.
check fonts : 96, 164.
Chinese characters: 32.
chr : 11, 12, 14, 15.
coding scheme: 39.
continue : 6, 98, 99, 116, 122, 123, 215, 218.
convert : 167, 168, 173, 187.
cs : 31.
cur area : 86, 91, 94.
cur ext : 86, 91, 94.
cur gf : 79, 80, 81, 82, 84, 85, 154, 165, 214,

215, 216, 217, 218, 219.
cur l : 116, 120, 121, 122, 123.
cur loc : 8, 47, 48, 51, 154, 163.
cur name : 86, 91, 94.
cur r : 116, 120, 122, 123.
cur string : 79, 80, 81, 83, 154, 162, 163.
d: 51, 127, 150.
d min : 150, 151, 152.

§223 GF to DVI INDEX 383

decr : 7, 62, 69, 75, 95, 114, 115, 122, 179, 180,
210, 213, 214, 217.

default fonts: 78.
default gray font : 78, 97.
default label font : 78, 97.
default rule thickness : 44, 57, 135, 175.
default title font : 78, 97.
del m : 29.
del n : 29.
delta : 183, 184, 185, 186.
delta x : 167, 168, 170, 209, 218.
delta y : 167, 168, 170, 218.
den : 21, 23, 25.
depth base : 53, 55, 61, 64.
depth index : 40, 55.
design size: 31, 39.
dfl : 194, 195, 196, 197, 198, 199.
dm : 29.
do nothing : 7, 63, 154.
do pixels : 164, 218.
do skip : 215.
done : 6, 58, 69, 81, 83, 85, 94, 95, 98, 99, 116,

120, 122, 208, 218.
done1 : 6, 81, 82, 215, 218.
dot for label : 188, 190, 192, 193, 194, 195, 202.
dot height : 148, 183, 184, 185, 186, 188.
dot width : 148, 183, 184, 186, 188.
down1 : 21.
down2 : 21.
down3 : 21.
down4 : 21, 22, 171.
ds : 31.
dummy info : 117, 118, 120.
DVI files : 19.
dvi buf : 104, 105, 107, 108.
dvi buf size : 5, 104, 105, 106, 108, 109, 115.
dvi ext : 78, 94.
dvi file : 46, 47, 107.
dvi font def : 98, 111, 115.
dvi four : 110, 111, 115, 119, 121, 171, 172, 176,

177, 179, 180, 209, 221.
dvi goto : 171, 172, 176, 177, 178, 188, 190,

194, 202, 218.
dvi id byte : 23, 115, 221.
dvi index : 104, 105, 107.
dvi limit : 104, 105, 106, 108, 109.
dvi offset : 104, 105, 106, 108, 115, 172.
dvi out : 108, 110, 111, 112, 113, 114, 115, 119,

121, 164, 171, 172, 176, 177, 178, 179, 180, 188,
190, 194, 202, 208, 209, 218, 221.

dvi ptr : 104, 105, 106, 108, 109, 115, 172.
dvi scaled : 114, 172, 202.

dvi swap : 108.
dvi x : 167, 168, 173, 176, 177, 178, 185, 186,

187, 188, 190, 194, 195.
dvi y : 167, 168, 173, 176, 177, 178, 185, 186,

187, 188, 190, 194, 195.
dx : 29, 32, 192, 220.
dy : 29, 32, 179, 180, 192, 220.
d0 : 148, 150, 151, 152.
e: 92.
ec : 37, 38, 40, 42, 58, 60, 61, 66, 69.
eight bits : 45, 49, 51, 52, 53, 80, 105, 113, 116, 218.
eight cases : 215.
eighth octant : 192, 196, 197, 198, 199.
else: 2.
end: 2.
end k : 116, 122, 123.
end name : 86, 91, 95.
end of list : 142, 144, 145, 160, 161, 189, 193, 201.
end with : 215.
endcases: 2.
eoc : 27, 29, 30, 31, 81, 85, 214, 215, 217.
eof : 51, 94.
eoln : 17.
eop : 19, 21, 22, 24, 164.
equals sign : 78, 202.
exit : 6, 7, 145, 194, 218.
ext : 165, 166, 172.
ext delimiter : 87, 89, 90, 91.
ext header : 78, 172.
ext tag : 41, 63.
exten : 41.
exten base : 53, 61, 66, 67, 69.
extensible recipe : 38, 43.
extra space : 44.
f : 58, 98, 111, 116.
false : 52, 90, 97, 98, 116, 120, 145, 150, 190,

194, 195, 215, 218, 221.
fifth octant : 192, 196, 197, 198, 199.
file name size : 5, 48, 92.
final end : 4, 8, 115, 219.
finishing col : 208, 216, 217, 218.
first dot : 148, 149, 161, 187, 201.
first octant : 192, 196, 197, 198, 199.
first string : 75, 76.
first text char : 11, 15.
five cases : 215.
fix word : 38, 39, 44, 52, 64.
fmem ptr : 53, 54, 61, 63, 69.
fnt def1 : 21, 22, 111.
fnt def2 : 21.
fnt def3 : 21.
fnt def4 : 21.

384 INDEX GF to DVI §223

fnt num 0 : 21, 22, 111.
fnt num 1 : 21.
fnt num 63 : 21.
fnt1 : 21.
fnt2 : 21.
fnt3 : 21.
fnt4 : 21.
font area : 96, 97, 98, 101, 111, 112, 154.
font at : 96, 97, 98, 101, 154.
font bc : 53, 69, 120, 205.
font bchar : 53, 69, 116.
font change : 154.
font check : 53, 62, 111.
font dsize : 53, 62, 111.
font ec : 53, 69, 120, 137, 205.
font index : 52, 53, 58, 116.
font info : 52, 53, 55, 56, 57, 58, 61, 63, 64,

66, 67, 68, 120.
font mem size : 5, 52, 61.
font name : 96, 97, 98, 101, 111, 112, 115, 137, 154.
font size : 53, 62, 111.
fonts not loaded : 96, 97, 98, 115, 154.
found : 6, 94, 98, 99, 100, 194, 196, 197, 198, 199.
four quarters : 52, 53, 55, 58, 98, 116, 117, 218.
fourth octant : 192, 196, 197, 198, 199.
Fuchs, David Raymond: 19, 26, 33.
fudge factor : 168, 169, 202.
get : 17.
get avail : 141, 159, 162, 163, 188.
get byte : 51, 81, 82, 83, 84, 85, 165, 215, 216,

218, 219, 221.
get three bytes : 51, 81, 85, 215.
get two bytes : 51, 81, 85, 215.
get yyy : 84, 154, 157, 159, 163.
GF file name : 94.
gf ext : 78, 94.
gf file : 46, 47, 48, 51, 80, 94.
gf id byte : 29, 221.
GF to DVI : 3.
gray fonts: 35, 39, 124.
gray font : 52, 58, 77, 78, 97, 154, 169, 175, 181,

184, 205, 210, 218.
gray rule thickness : 173, 174, 175.
half buf : 104, 105, 106, 108, 109.
half x height : 183, 184, 186.
hbox : 116, 117, 172, 183, 185, 190, 194, 202.
hd : 116, 121.
header : 39.
height base : 53, 55, 61, 64.
height depth : 55, 121, 137, 169, 184.
height index : 40, 55.
home font area : 78, 88, 98.

hppp : 31.
i: 3, 23, 98, 116, 218.
I can’t find... : 94.
incr : 7, 17, 51, 73, 74, 75, 82, 83, 91, 92, 94, 95,

100, 101, 108, 114, 116, 119, 122, 123, 128, 129,
141, 172, 180, 192, 202, 208, 217, 221.

info : 139, 140, 148, 162, 163, 172, 188, 190,
194, 202.

init str ptr : 71, 101, 154, 219.
init str0 : 75, 77.
init str1 : 75.
init str10 : 75, 77.
init str11 : 75, 77.
init str12 : 75, 77, 78.
init str13 : 75, 77.
init str2 : 75, 78.
init str3 : 75, 78.
init str4 : 75, 77, 78.
init str5 : 75, 77, 78.
init str6 : 75, 77, 78.
init str7 : 75, 77, 78.
init str8 : 75, 77, 78.
init str9 : 75, 77, 88.
initialize : 3, 219.
input ln : 16, 17, 18, 94, 99.
integer : 3, 9, 45, 48, 51, 53, 58, 75, 76, 81, 85,

92, 98, 102, 105, 110, 111, 114, 134, 166,
182, 212, 218, 220.

interaction : 95, 96, 97, 98.
internal font number : 52, 53, 96, 98, 111, 116.
interpret xxx : 79, 81, 154.
italic base : 53, 55, 61, 64.
italic index : 40.
j: 3, 81, 85, 92, 98, 116, 218.
Japanese characters: 32.
job name : 93, 94.
jump out : 8.
k: 23, 58, 81, 85, 92, 98, 107, 111, 114, 116, 220.
kern : 42.
kern amount : 116, 120, 121.
kern base : 53, 56, 61, 66, 69, 120.
kern flag : 42, 66, 120.
keyword code : 79, 81.
l: 76, 81, 116, 218.
lab typ : 160, 163, 181, 187, 189, 190, 191, 193.
label font : 52, 58, 77, 78, 97, 154, 181, 184,

190, 194, 202.
label for dot : 188, 193, 201, 202.
label head : 160, 161, 181, 187, 189, 191, 193, 200.
label tail : 160, 161, 163, 181.
label type : 79, 80, 83, 163.
last bop : 102, 103, 115, 172.

§223 GF to DVI INDEX 385

last text char : 11, 15.
left coords : 186, 190, 196, 197, 198, 199.
left quotes : 78, 172.
length : 72, 83, 98, 100, 111, 115, 137.
lf : 37, 58, 60, 61, 69.
lh : 37, 38, 58, 60, 61, 62.
lig kern : 41, 42, 53.
lig kern base : 53, 56, 61, 64, 66, 69.
lig kern command : 38, 42.
lig kern restart : 56, 120.
lig kern restart end : 56.
lig kern start : 56, 120.
lig lookahead : 5, 116, 117.
lig stack : 116, 117, 122.
lig tag : 41, 63, 120.
line length : 17, 18, 94, 95, 99, 100, 101.
list tag : 41, 63, 210.
load fonts : 96, 98.
logo font : 52, 58, 97, 98, 115, 172.
logo font name : 78, 97.
longest keyword : 75, 81, 82, 98.
loop: 6, 7.
m: 3, 81, 98, 114, 220.
mag : 21, 23, 24, 25.
make string : 74, 83, 91, 101, 221.
max depth : 140, 143, 144, 147.
max h : 102, 103, 115, 203.
max height : 140, 143, 144, 146.
max k : 116.
max keyword : 77, 78, 79, 83.
max labels : 5, 139, 140, 141, 142, 161.
max m : 29, 31.
max n : 29, 31.
max node : 140, 141, 144, 187.
max quarterword : 52.
max strings : 5, 70, 74, 91.
max v : 102, 103, 115, 170.
max x : 165, 166, 170, 218.
max y : 165, 166, 167, 170, 218.
memory word : 52, 53.
mid : 43.
min m : 29, 31.
min n : 29, 31.
min quarterword : 52, 53, 55, 61, 69, 116.
min x : 165, 166, 167, 170, 218.
min y : 165, 166, 170.
Missing boc : 219.
Missing dot char : 184.
Missing pixel char : 169.
more name : 86, 90, 95.
n: 3, 92, 114.
name length : 92.

name of file : 47, 48, 92, 94.
nd : 37, 38, 58, 60, 61, 63.
ne : 37, 38, 58, 60, 61, 63.
nearest dot : 148, 150, 192, 201, 202.
new row 0 : 29, 30, 215.
new row 1 : 29.
new row 164 : 29.
next : 139, 140, 143, 144, 145, 146, 151, 159,

160, 162, 163, 172, 173, 181, 187, 189, 191,
193, 200, 201, 202.

next char : 42, 55, 120.
nh : 37, 38, 58, 60, 61, 63.
ni : 37, 38, 58, 60, 61, 63.
nil: 7.
nk : 37, 38, 58, 60, 61, 66.
nl : 37, 38, 42, 58, 60, 61, 63, 66, 69.
No preamble : 221.
No room for TFM file : 61.
no op : 29, 30, 32, 79, 81, 85, 154, 215, 219.
no operation : 79, 81, 154.
no tag : 41, 63.
node ins : 143, 188, 190, 194.
node pointer : 139, 140, 141, 143, 145, 149, 150,

158, 160, 185, 186, 194.
non address : 52, 53, 69, 120.
non char : 52, 53, 116, 122.
nop : 19, 21, 24, 25.
not found : 6, 81, 82, 98, 99.
np : 37, 38, 58, 60, 61, 68.
null : 139, 150, 161, 162, 172, 173, 181, 187, 189,

191, 192, 193, 200, 201, 202.
null string : 77, 79, 81, 83, 86, 91, 94, 97, 98,

101, 154.
num : 21, 23, 25.
nw : 37, 38, 58, 60, 61, 63.
n1 : 81, 83, 98, 100.
n2 : 81, 83, 98, 100.
oct : 194, 195, 196, 197, 198, 199.
octant : 191, 192, 194, 195.
odd : 210.
offset code : 77, 154.
offset x : 155, 156, 157, 170.
offset y : 155, 156, 157, 170.
Oops... : 94.
op byte : 42, 55, 56, 120, 122.
open dvi file : 47, 94.
open gf file : 47, 94.
open tfm file : 47, 98.
ord : 12.
oriental characters: 32.
othercases: 2.
others : 2.

386 INDEX GF to DVI §223

output : 3, 16.
over col : 168, 170, 202, 203.
overflow line : 181, 182, 202, 203.
overlap : 145, 146, 147, 196, 197, 198, 199.
p: 143, 145, 150, 185, 186, 194, 220.
pack file name : 92, 94, 98.
page header : 78, 172.
page height : 168, 170.
page width : 168, 170, 203.
paint black : 215, 216, 218.
paint switch : 28, 29.
paint 0 : 29, 30.
paint1 : 29, 30, 215.
paint2 : 29, 30, 215.
paint3 : 29, 30, 215.
param : 39, 44, 57.
param base : 53, 57, 61, 67, 68, 69.
param end : 57.
place label : 193, 194, 195.
plus sign : 78, 202.
pool pointer : 70, 71, 81, 87, 98, 116.
pool ptr : 71, 73, 74, 75, 77, 90, 219.
pool size : 5, 70, 73.
pop : 20, 21, 22, 25, 171, 172, 176, 177, 178, 188,

190, 194, 202, 208, 218.
pop stack : 122, 123.
post : 19, 21, 22, 25, 26, 27, 29, 31, 33, 115, 219.
post post : 21, 22, 25, 26, 29, 31, 33, 115.
pre : 19, 21, 22, 27, 29, 221.
pre max x : 155, 156, 159, 163, 170.
pre max y : 155, 156, 159, 163, 170.
pre min x : 155, 156, 159, 163, 170.
pre min y : 155, 156, 159, 163, 170.
prev : 139, 140, 143, 144, 147, 152, 160, 201, 202.
print : 3, 8, 94, 99, 164.
print ln : 3.
print nl : 3, 58, 94, 99, 138, 154, 163.
proofing : 32.
push : 20, 21, 22, 25, 171, 208.
put rule : 21, 22, 176, 177.
put1 : 21.
put2 : 21.
put3 : 21.
put4 : 21.
q: 143, 145, 220.
qi : 52, 62, 69, 116, 118, 120.
qo : 52, 55, 69, 111, 122, 123, 210.
qqqq : 52, 53, 55, 63, 66, 67, 120.
quad : 44.
quarterword : 52, 117.
qw : 58, 62.
r: 138, 143, 145, 220.

read : 50, 51.
read font info : 58, 98.
read ln : 17.
read tfm word : 50, 60, 62, 64, 68.
read two halves : 60.
read two halves end : 60.
real : 114, 134, 138, 168.
rem byte : 55, 56, 122, 210.
remainder : 40, 41, 42.
rep : 43.
reset : 17, 47.
reswitch : 6, 210, 218.
return: 6, 7.
rewrite : 47.
rho : 206, 207, 217.
right coords : 186, 190, 196, 197, 198, 199.
right quotes : 78, 172.
right1 : 21.
right2 : 21.
right3 : 21.
right4 : 21, 22, 119, 121, 171, 209.
round : 114, 167, 170, 178, 179, 180, 209, 218.
rule code : 77, 154.
rule ptr : 158, 159, 161, 173.
rule size : 158, 159, 173, 176, 177, 178.
rule slant : 134, 137, 173, 178.
rule thickness : 154, 155, 156, 159.
rule thickness code : 77, 79, 154.
s: 58, 116, 220.
Samuel, Arthur Lee: 191.
save c : 116.
sc : 52, 53, 55, 56, 57, 64, 66, 68.
scaled : 9, 29, 31, 32, 52, 53, 58, 84, 96, 102, 116,

117, 140, 145, 150, 155, 167, 168, 171, 174, 183.
second octant : 192, 196, 197, 198, 199.
select font : 111, 172, 173, 181, 218.
send it : 116, 119, 121.
set char 0 : 21.
set char 1 : 21.
set char 127 : 21.
set cur r : 116, 122, 123.
set rule : 19, 21.
set1 : 21, 22, 113.
set2 : 21.
set3 : 21.
set4 : 21.
seventh octant : 192, 196, 197, 198, 199.
signed quad : 51, 81, 84, 85, 165.
sixth octant : 192, 196, 197, 198, 199.
sixty four cases : 215.
skip byte : 42, 55, 120.
skip nop : 85, 215.

§223 GF to DVI INDEX 387

skip0 : 29, 30, 215.
skip1 : 29, 30, 215.
skip2 : 29, 30, 215.
skip3 : 29, 30, 215.
slant : 44, 57, 68, 137, 169.
slant fonts: 35, 39.
slant complaint : 138, 178.
slant font : 52, 58, 77, 97, 98, 100, 137, 154, 173.
slant n : 134, 137, 178.
slant ratio : 167, 168, 169, 170.
slant reported : 134, 137, 138.
slant unit : 134, 137, 178, 179, 180.
small logo : 78, 172.
Sorry, I can’t... : 138.
sp: 23.
space : 44, 57, 119, 184.
space shrink : 44.
space stretch : 44.
Special font subst... : 99.
stack ptr : 116, 122, 123.
start gf : 94, 219.
starting col : 208, 214, 217, 218.
stop flag : 42, 66, 120.
store four quarters : 62, 63, 66, 67.
store scaled : 64, 66, 68.
str number : 70, 71, 74, 80, 86, 92, 93, 96,

116, 140, 220.
str pool : 70, 71, 73, 74, 75, 83, 92, 100, 111,

112, 116, 221.
str ptr : 71, 74, 75, 77, 91, 101, 154, 219, 221.
str room : 73, 83, 90, 101.
str start : 70, 71, 72, 74, 75, 77, 83, 91, 92, 100,

112, 116, 219, 221.
suppress lig : 116, 117, 120, 122.
sw : 58, 64, 68.
system dependencies: 2, 3, 8, 11, 14, 16, 17, 26,

33, 45, 47, 50, 51, 52, 78, 86, 87, 88, 89, 90,
91, 92, 105, 107, 222.

t: 220.
tag : 40, 41.
Tardy font change... : 154.
temp x : 173, 174, 177, 178.
temp y : 173, 174, 176, 178.
term in : 16, 17.
terminal line length : 5, 16, 17, 18.
TeXfonts : 88.
text char : 11, 12.
text file : 11, 16.
tfm ext : 78, 98.
tfm file : 46, 47, 50, 58.
third octant : 192, 196, 197, 198, 199.
thirty two cases : 215.

thrice x height : 183, 184, 202.
time stamp : 172, 220, 221.
title code : 77, 154.
title font : 52, 58, 77, 78, 97, 98, 100, 115, 154, 172.
title head : 160, 161, 162, 172.
title tail : 160, 161, 162, 172.
tol : 173.
Too many labels : 74, 141.
Too many strings : 73, 91.
top : 43.
top coords : 185, 190, 196, 197, 198, 199.
total pages : 102, 103, 115, 164, 172.
true : 7, 52, 90, 95, 96, 97, 122, 146, 147, 148, 151,

152, 172, 190, 194, 202, 215, 221.
twin : 148, 149, 150, 151, 152, 192.
two to the : 126, 127, 128, 129, 206.
typeset : 113, 121, 179, 180, 210.
unity : 9, 62, 114, 137, 168, 169, 170.
unsc slant ratio : 168, 169, 170, 209.
unsc x ratio : 168, 169, 170, 209, 218.
unsc y ratio : 168, 169, 170, 218.
update terminal : 16, 17, 164.
use logo : 172, 220, 221.
v: 84, 98, 218.
Vanishing pixel size : 169.
vppp : 31.
WEB : 72.
white : 29.
widest row : 5, 165, 211, 218.
width base : 53, 55, 61, 63, 64, 69.
width index : 40, 53.
write : 3, 107.
write dvi : 107, 108, 109.
write ln : 3.
Wrong ID : 221.
w0 : 21.
w1 : 21.
w2 : 21.
w3 : 21.
w4 : 21.
x: 23, 110, 114, 116, 166, 167, 171.
x height : 44, 57, 184.
x left : 145, 146, 147.
x offset : 154, 155, 156, 167.
x offset code : 77, 154.
x ratio : 167, 168, 169, 170, 202.
x right : 145, 146, 147.
xchr : 12, 13, 14, 15, 92.
xclause: 7.
xl : 139, 140, 145, 146, 147, 148, 158, 185, 186, 188.
xord : 12, 15, 17.

388 INDEX GF to DVI §223

xr : 139, 140, 145, 146, 147, 148, 158, 185,
186, 188, 191.

xx : 139, 140, 148, 151, 152, 158, 163, 185, 186,
187, 188, 190, 192, 194, 195, 202.

xxx1 : 21, 29, 30, 79, 81, 85, 154, 215, 219.
xxx2 : 21, 29, 30, 81, 85, 215.
xxx3 : 21, 29, 30, 81, 85, 215.
xxx4 : 21, 29, 30, 79, 81, 85, 215.
x0 : 21, 158, 159, 173.
x1 : 21, 158, 159, 173.
x2 : 21.
x3 : 21.
x4 : 21.
y: 166, 167, 171.
y bot : 145, 146, 147.
y offset : 154, 155, 156, 167.
y offset code : 77, 154.
y ratio : 167, 168, 169, 170, 202.
y thresh : 145, 146, 147.
y top : 145, 146, 147.
yb : 139, 140, 143, 145, 146, 147, 148, 158,

185, 186, 188.
yt : 139, 140, 143, 145, 146, 147, 148, 158,

185, 186, 188.
yy : 139, 140, 142, 143, 146, 147, 148, 151, 152,

163, 185, 186, 187, 188, 190, 192, 194, 195, 202.
yyy : 29, 30, 32, 79, 81, 84, 85, 215.
y0 : 21, 158, 159, 173.
y1 : 21, 158, 159, 173.
y2 : 21.
y3 : 21.
y4 : 21.
z: 58, 166.
z0 : 21, 22, 179, 180.
z1 : 21.
z2 : 21.
z3 : 21.
z4 : 21, 22, 179, 180.

GF to DVI NAMES OF THE SECTIONS 389

〈Add a full set of k-bit characters 128 〉 Used in section 126.

〈Add more rows to a, until 12-bit entries are obtained 213 〉 Used in section 218.

〈Add special k-bit characters of the form X..XO..O 129 〉 Used in section 126.

〈Adjust the maximum page width 203 〉 Used in section 164.

〈Advance to the next row that needs to be typeset; or return, if we’re all done 217 〉 Used in section 218.

〈Carry out a ligature operation, updating the cursor structure and possibly advancing k; goto continue if
the cursor doesn’t advance, otherwise goto done 122 〉 Used in section 120.

〈Compute the octant code for floating label p 192 〉 Used in section 191.

〈Constants in the outer block 5 〉 Used in section 3.

〈Declare the procedure called load fonts 98 〉 Used in section 111.

〈Empty the last bytes out of dvi buf 109 〉 Used in section 115.

〈Enter a dot for label p in the rectangle list, and typeset the dot 188 〉 Used in section 187.

〈Enter a prescribed label for node p into the rectangle list, and typeset it 190 〉 Used in section 189.

〈Find nearest dots, to help in label positioning 191 〉 Used in section 181.

〈Find non-overlapping coordinates, if possible, and goto found; otherwise set place label ← false and
return 195 〉 Used in section 194.

〈Finish reading the parameters of the boc 165 〉 Used in section 164.

〈Finish the DVI file and goto final end 115 〉 Used in section 219.

〈Get online special input 99 〉 Used in section 98.

〈Get ready to convert METAFONT coordinates to DVI coordinates 170 〉 Used in section 164.

〈Globals in the outer block 12, 16, 18, 37, 46, 48, 49, 53, 71, 76, 80, 86, 87, 93, 96, 102, 105, 117, 127, 134, 140, 149, 155,

158, 160, 166, 168, 174, 182, 183, 207, 211, 212, 220 〉 Used in section 3.

〈 If the keyword in buffer [1 . . l] is known, change c and goto done 83 〉 Used in section 82.

〈 If there’s a ligature or kern at the cursor position, update the cursor data structures, possibly advancing k;
continue until the cursor wants to move right 120 〉 Used in section 116.

〈 Initialize global variables that depend on the font data 137, 169, 175, 184, 205, 206 〉 Used in section 98.

〈 Initialize the strings 77, 78, 88 〉 Used in section 219.

〈 Initialize variables for the next character 144, 156, 161 〉 Used in section 219.

〈Labels in the outer block 4 〉 Used in section 3.

〈Look for overlaps in node q and its predecessors 147 〉 Used in section 145.

〈Look for overlaps in the successors of node q 146 〉 Used in section 145.

〈Make final adjustments and goto done 69 〉 Used in section 59.

〈Move the cursor to the right and goto continue , if there’s more work to do in the current word 123 〉
Used in section 116.

〈Move to column j in the DVI output 209 〉 Used in section 208.

〈Output a horizontal rule 177 〉 Used in section 173.

〈Output a vertical rule 176 〉 Used in section 173.

〈Output all attachable labels 193 〉 Used in section 181.

〈Output all dots 187 〉 Used in section 181.

〈Output all labels for the current character 181 〉 Used in section 164.

〈Output all overflow labels 200 〉 Used in section 181.

〈Output all prescribed labels 189 〉 Used in section 181.

〈Output all rules for the current character 173 〉 Used in section 164.

〈Output the equivalent of k copies of character v 210 〉 Used in section 208.

〈Output the font name whose internal number is f 112 〉 Used in section 111.

〈Output the bop and the title line 172 〉 Used in section 164.

〈Override the offsets 157 〉 Used in section 154.

〈Paint k bits and read another command 216 〉 Used in section 215.

〈Process a character 164 〉 Used in section 219.

〈Process a no-op command 154 〉 Used in section 219.

〈Process the preamble 221 〉 Used in section 219.

〈Put the bits for the next row, times l, into a 214 〉 Used in section 213.

390 NAMES OF THE SECTIONS GF to DVI

〈Read and check the font data; abend if the TFM file is malformed; otherwise goto done 59 〉 Used in

section 58.

〈Read and process GF commands until coming to the end of this row 215 〉 Used in section 214.

〈Read box dimensions 64 〉 Used in section 59.

〈Read character data 63 〉 Used in section 59.

〈Read extensible character recipes 67 〉 Used in section 59.

〈Read font parameters 68 〉 Used in section 59.

〈Read ligature/kern program 66 〉 Used in section 59.

〈Read the next k characters of the GF file; change c and goto done if a keyword is recognized 82 〉 Used in

section 81.

〈Read the TFM header 62 〉 Used in section 59.

〈Read the TFM size fields 60 〉 Used in section 59.

〈Remove all rectangles from list, except for dots that have labels 201 〉 Used in section 200.

〈Replace z by z′ and compute α, β 65 〉 Used in section 64.

〈 Scan the file name in the buffer 95 〉 Used in section 94.

〈 Search buffer for valid keyword; if successful, goto found 100 〉 Used in section 99.

〈 Search for the nearest dot in nodes following p 151 〉 Used in section 150.

〈 Search for the nearest dot in nodes preceding p 152 〉 Used in section 150.

〈 Set initial values 13, 14, 15, 54, 97, 103, 106, 118, 126, 142 〉 Used in section 3.

〈 Store a label 163 〉 Used in section 154.

〈 Store a rule 159 〉 Used in section 154.

〈 Store a title 162 〉 Used in section 154.

〈Try the first choice for label direction 196 〉 Used in section 195.

〈Try the fourth choice for label direction 199 〉 Used in section 195.

〈Try the second choice for label direction 197 〉 Used in section 195.

〈Try the third choice for label direction 198 〉 Used in section 195.

〈Try to output a diagonal rule 178 〉 Used in section 173.

〈Types in the outer block 9, 10, 11, 45, 52, 70, 79, 104, 139 〉 Used in section 3.

〈Typeset a space in font f and advance k 119 〉 Used in section 116.

〈Typeset an overflow label for p 202 〉 Used in section 200.

〈Typeset character cur l , if it exists in the font; also append an optional kern 121 〉 Used in section 116.

〈Typeset the pixels of the current row 208 〉 Used in section 218.

〈Update the font name or area 101 〉 Used in section 99.

〈Use size fields to allocate font information 61 〉 Used in section 59.

〈Vertically typeset p copies of character k + 1 180 〉 Used in section 178.

〈Vertically typeset q copies of character k 179 〉 Used in section 178.

	 Introduction
	 The character set
	 Device-independent file format
	 Generic font file format
	 Extensions to the generic format
	 Font metric data
	 Input from binary files
	 Reading the font information
	 The string pool
	 File names
	 Shipping pages out
	 Rudimentary typesetting
	 Gray fonts
	 Slant fonts
	 Representation of rectangles
	 Doing the labels
	 Doing the pixels
	 The main program
	 System-dependent changes
	 Index
	Names of the sections
	Add a full set of k-bit characters
	Add more rows to a, until 12-bit entries are obtained
	Add special k-bit characters of the form X..XO..O
	Adjust the maximum page width
	Advance to the next row that needs to be typeset; or return, if we're all done
	Carry out a ligature operation, updating the cursor structure and possibly advancing k; goto continue if the cursor doesn't advance, otherwise goto done
	Compute the octant code for floating label p
	Constants in the outer block
	Declare the procedure called load_fonts
	Empty the last bytes out of dvi_buf
	Enter a dot for label p in the rectangle list, and typeset the dot
	Enter a prescribed label for node p into the rectangle list, and typeset it
	Find nearest dots, to help in label positioning
	Find non-overlapping coordinates, if possible, and goto found; otherwise set place_label:=false and return
	Finish reading the parameters of the boc
	Finish the DVI file and goto final_end
	Get online special input
	Get ready to convert Metafont coordinates to DVI coordinates
	Globals in the outer block
	If the keyword in buffer[1..l] is known, change c and goto done
	If there's a ligature or kern at the cursor position, update the cursor data structures, possibly advancing k; continue until the cursor wants to move right
	Initialize global variables that depend on the font data
	Initialize the strings
	Initialize variables for the next character
	Labels in the outer block
	Look for overlaps in node q and its predecessors
	Look for overlaps in the successors of node q
	Make final adjustments and goto done
	Move the cursor to the right and goto continue, if there's more work to do in the current word
	Move to column j in the DVI output
	Output a horizontal rule
	Output a vertical rule
	Output all attachable labels
	Output all dots
	Output all labels for the current character
	Output all overflow labels
	Output all prescribed labels
	Output all rules for the current character
	Output the equivalent of k copies of character v
	Output the font name whose internal number is f
	Output the bop and the title line
	Override the offsets
	Paint k bits and read another command
	Process a character
	Process a no-op command
	Process the preamble
	Put the bits for the next row, times l, into a
	Read and check the font data; abend if the TFM file is malformed; otherwise goto done
	Read and process GF commands until coming to the end of this row
	Read box dimensions
	Read character data
	Read extensible character recipes
	Read font parameters
	Read ligature/kern program
	Read the next k characters of the GF file; change c and goto done if a keyword is recognized
	Read the TFM header
	Read the TFM size fields
	Remove all rectangles from list, except for dots that have labels
	Replace z by z^' and compute alpha,beta
	Scan the file name in the buffer
	Search buffer for valid keyword; if successful, goto found
	Search for the nearest dot in nodes following p
	Search for the nearest dot in nodes preceding p
	Set initial values
	Store a label
	Store a rule
	Store a title
	Try the first choice for label direction
	Try the fourth choice for label direction
	Try the second choice for label direction
	Try the third choice for label direction
	Try to output a diagonal rule
	Types in the outer block
	Typeset a space in font f and advance k
	Typeset an overflow label for p
	Typeset character cur_l, if it exists in the font; also append an optional kern
	Typeset the pixels of the current row
	Update the font name or area
	Use size fields to allocate font information
	Vertically typeset p copies of character k+1
	Vertically typeset q copies of character k

