
Common code for CTANGLE and CWEAVE

(Version 4.12.1)

Section Page
Introduction . 1 1
The character set . 21 7
Input routines . 22 8
File handling . 25 9
Storage of names and strings . 43 16
Reporting errors to the user . 65 24
Command line arguments . 73 26
Output . 83 30
Index . 85 31

Copyright c© 1987, 1990, 1993, 2000 Silvio Levy and Donald E. Knuth

Permission is granted to make and distribute verbatim copies of this document provided that the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this document under the conditions for
verbatim copying, provided that the entire resulting derived work is given a different name and distributed
under the terms of a permission notice identical to this one.

§1 Common code for CTANGLE and CWEAVE (Version 4.12.1) INTRODUCTION 1

March 12, 2025 at 15:40

1. Introduction. This file contains code common to both CTANGLE and CWEAVE, which roughly concerns
the following problems: character uniformity, input routines, error handling and parsing of command line.
We have tried to concentrate in this file all the system dependencies, so as to maximize portability.

In the texts below we will sometimes use CWEB to refer to either of the two component programs, if no
confusion can arise.

The file begins with a few basic definitions.

〈 Include files 4 〉
〈Preprocessor definitions 〉
〈Common code for CWEAVE and CTANGLE 2 〉
〈Global variables 18 〉
〈Predeclaration of procedures 3 〉

2. The details will be filled in due course. The interface "common.h" of this COMMON module is included
first. It is also used by the main programs.

First comes general stuff:

#define ctangle false
#define cweave true

〈Common code for CWEAVE and CTANGLE 2 〉 ≡
typedef bool boolean;
typedef uint8 t eight bits;
typedef uint16 t sixteen bits;
extern boolean program ; . CWEAVE or CTANGLE? /
extern int phase ; . which phase are we in? /

See also sections 5, 6, 7, 9, 10, 12, 14, and 15.

This code is used in section 1.

3. The procedure that gets everything rolling:

〈Predeclaration of procedures 3 〉 ≡
extern void common init (void);

See also sections 8, 11, 13, 24, 28, 33, 55, 64, and 76.

This code is used in section 1.

4. Interface to the standard C library:

〈 Include files 4 〉 ≡
#include <ctype.h> . definition of isalpha , isdigit and so on /
#include <stdbool.h> . definition of bool, true and false /
#include <stddef.h> . definition of ptrdiff t /
#include <stdint.h> . definition of uint8 t and uint16 t /
#include <stdio.h> . definition of printf and friends /
#include <stdlib.h> . definition of getenv and exit /
#include <string.h> . definition of strlen , strcmp and so on /

This code is used in section 1.

2 INTRODUCTION Common code for CTANGLE and CWEAVE (Version 4.12.1) §5

5. Code related to the character set:

#define and and ◦4 . ‘&&’ ; corresponds to MIT’s ∧ /
#define lt lt ◦20 . ‘<<’ ; corresponds to MIT’s ⊂ /
#define gt gt ◦21 . ‘>>’ ; corresponds to MIT’s ⊃ /
#define plus plus ◦13 . ‘++’ ; corresponds to MIT’s ↑ /
#define minus minus ◦1 . ‘−−’ ; corresponds to MIT’s ↓ /
#define minus gt ◦31 . ‘−>’ ; corresponds to MIT’s → /
#define non eq ◦32 . ‘!=’ ; corresponds to MIT’s ≠ /
#define lt eq ◦34 . ‘<=’ ; corresponds to MIT’s ≤ /
#define gt eq ◦35 . ‘>=’ ; corresponds to MIT’s ≥ /
#define eq eq ◦36 . ‘==’ ; corresponds to MIT’s ≡ /
#define or or ◦37 . ‘||’ ; corresponds to MIT’s ∨ /
#define dot dot dot ◦16 . ‘...’ ; corresponds to MIT’s ∞ /
#define colon colon ◦6 . ‘::’ ; corresponds to MIT’s ∈ /
#define period ast ◦26 . ‘.*’ ; corresponds to MIT’s ⊗ /
#define minus gt ast ◦27 . ‘−>*’ ; corresponds to MIT’s ↔ /

#define compress (c) if (loc ++ ≤ limit) return c

〈Common code for CWEAVE and CTANGLE 2 〉 +≡
extern char section text []; . text being sought for /
extern char ∗section text end ; . end of section text /
extern char ∗id first ; . where the current identifier begins in the buffer /
extern char ∗id loc ; . just after the current identifier in the buffer /

6. Code related to input routines:

#define xisalpha (c) (isalpha ((int)(c)) ∧ ((eight bits)(c) < ◦200))
#define xisdigit (c) (isdigit ((int)(c)) ∧ ((eight bits)(c) < ◦200))
#define xisspace (c) (isspace ((int)(c)) ∧ ((eight bits)(c) < ◦200))
#define xislower (c) (islower ((int)(c)) ∧ ((eight bits)(c) < ◦200))
#define xisupper (c) (isupper ((int)(c)) ∧ ((eight bits)(c) < ◦200))
#define xisxdigit (c) (isxdigit ((int)(c)) ∧ ((eight bits)(c) < ◦200))
#define isxalpha (c) ((c) ≡ ’_’ ∨ (c) ≡ ’$’) . non-alpha characters allowed in identifier /
#define ishigh (c) ((eight bits)(c) > ◦177)

〈Common code for CWEAVE and CTANGLE 2 〉 +≡
extern char buffer []; . where each line of input goes /
extern char ∗buffer end ; . end of buffer /
extern char ∗loc ; . points to the next character to be read from the buffer /
extern char ∗limit ; . points to the last character in the buffer /

§7 Common code for CTANGLE and CWEAVE (Version 4.12.1) INTRODUCTION 3

7. Code related to file handling:

format line x . make line an unreserved word /
#define max include depth 10

. maximum number of source files open simultaneously, not counting the change file /
#define max file name length 60
#define cur file file [include depth] . current file /
#define cur file name file name [include depth] . current file name /
#define cur line line [include depth] . number of current line in current file /
#define web file file [0] . main source file /
#define web file name file name [0] . main source file name /

〈Common code for CWEAVE and CTANGLE 2 〉 +≡
extern int include depth ; . current level of nesting /
extern FILE ∗file []; . stack of non-change files /
extern FILE ∗change file ; . change file /
extern char file name [][max file name length]; . stack of non-change file names /
extern char change file name []; . name of change file /
extern int line []; . number of current line in the stacked files /
extern int change line ; . number of current line in change file /
extern int change depth ; . where @y originated during a change /
extern boolean input has ended ; . if there is no more input /
extern boolean changing ; . if the current line is from change file /
extern boolean web file open ; . if the web file is being read /

8. 〈Predeclaration of procedures 3 〉 +≡
extern boolean get line (void); . inputs the next line /
extern void check complete (void); . checks that all changes were picked up /
extern void reset input (void); . initialize to read the web file and change file /

9. Code related to section numbers:

〈Common code for CWEAVE and CTANGLE 2 〉 +≡
extern sixteen bits section count ; . the current section number /
extern boolean changed section []; . is the section changed? /
extern boolean change pending ; . is a decision about change still unclear? /
extern boolean print where ; . tells CTANGLE to print line and file info /

4 INTRODUCTION Common code for CTANGLE and CWEAVE (Version 4.12.1) §10

10. Code related to identifier and section name storage:

#define length (c) (size t)((c + 1)~byte start − (c)~byte start) . the length of a name /
#define print id (c) term write ((c)~byte start , length (c)) . print identifier /
#define llink link . left link in binary search tree for section names /
#define rlink dummy .Rlink . right link in binary search tree for section names /
#define root name dir~rlink . the root of the binary search tree for section names /
#define ilk dummy .Ilk . used by CWEAVE only /

〈Common code for CWEAVE and CTANGLE 2 〉 +≡
typedef struct name info {

char ∗byte start ; . beginning of the name in byte mem /
struct name info ∗link ;
union {

struct name info ∗Rlink ; . right link in binary search tree for section names /
eight bits Ilk ; . used by identifiers in CWEAVE only /

} dummy ;
void ∗equiv or xref ; . info corresponding to names /
} name info; . contains information about an identifier or section name /
typedef name info ∗name pointer; . pointer into array of name infos /
typedef name pointer ∗hash pointer;
extern char byte mem []; . characters of names /
extern char ∗byte mem end ; . end of byte mem /
extern char ∗byte ptr ; . first unused position in byte mem /
extern name info name dir []; . information about names /
extern name pointer name dir end ; . end of name dir /
extern name pointer name ptr ; . first unused position in name dir /
extern name pointer hash []; . heads of hash lists /
extern hash pointer hash end ; . end of hash /
extern hash pointer hash ptr ; . index into hash-head array /

11. 〈Predeclaration of procedures 3 〉 +≡
extern name pointer id lookup(const char ∗, const char ∗, eight bits);
. looks up a string in the identifier table /

extern name pointer section lookup(char ∗, char ∗,boolean); . finds section name /
extern void print prefix name (name pointer);
extern void print section name (name pointer);
extern void sprint section name (char ∗,name pointer);

extern boolean names match (name pointer, const char ∗, size t, eight bits);
. two routines defined in ctangle.w and cweave.w /

extern void init node (name pointer);

12. Code related to error handling:

#define spotless 0 . history value for normal jobs /
#define harmless message 1 . history value when non-serious info was printed /
#define error message 2 . history value when an error was noted /
#define fatal message 3 . history value when we had to stop prematurely /
#define mark harmless () if (history ≡ spotless) history ← harmless message
#define mark error () history ← error message
#define confusion (s) fatal ("! This can’t happen: ", s)

〈Common code for CWEAVE and CTANGLE 2 〉 +≡
extern int history ; . indicates how bad this run was /

§13 Common code for CTANGLE and CWEAVE (Version 4.12.1) INTRODUCTION 5

13. 〈Predeclaration of procedures 3 〉 +≡
extern int wrap up(void); . indicate history and exit /
extern void err print (const char ∗); . print error message and context /
extern void fatal (const char ∗, const char ∗); . issue error message and die /
extern void overflow (const char ∗); . succumb because a table has overflowed /

extern void print stats (void); . defined in ctangle.w and cweave.w /

14. Code related to command line arguments:

#define show banner flags [’b’] . should the banner line be printed? /
#define show progress flags [’p’] . should progress reports be printed? /
#define show happiness flags [’h’] . should lack of errors be announced? /
#define show stats flags [’s’] . should statistics be printed at end of run? /
#define make xrefs flags [’x’] . should cross references be output? /

〈Common code for CWEAVE and CTANGLE 2 〉 +≡
extern int argc ; . copy of ac parameter to main /
extern char ∗∗argv ; . copy of av parameter to main /
extern char C file name []; . name of C file /
extern char tex file name []; . name of tex file /
extern char idx file name []; . name of idx file /
extern char scn file name []; . name of scn file /
extern boolean flags []; . an option for each 7-bit code /

15. Code related to output:

#define update terminal () fflush (stdout) . empty the terminal output buffer /
#define new line () putchar (’\n’)
#define term write (a, b) fflush (stdout), fwrite (a, sizeof (char), b, stdout)

〈Common code for CWEAVE and CTANGLE 2 〉 +≡
extern FILE ∗C file ; . where output of CTANGLE goes /
extern FILE ∗tex file ; . where output of CWEAVE goes /
extern FILE ∗idx file ; . where index from CWEAVE goes /
extern FILE ∗scn file ; . where list of sections from CWEAVE goes /
extern FILE ∗active file ; . currently active file for CWEAVE output /

16. The following parameters are sufficient to handle TEX (converted to CWEB), so they should be sufficient
for most applications of CWEB.

#define buf size 200 . maximum length of input line, plus one /
#define longest name 10000 . file names, section names, and section texts shouldn’t be longer than this /
#define long buf size (buf size + longest name) . for CWEAVE /
#define max bytes 100000

. the number of bytes in identifiers, index entries, and section names; must be less than 224 /
#define max names 5000 . number of identifiers, strings, section names; must be less than 10240 /
#define max sections 2000 . greater than the total number of sections /

17. End of COMMON interface.

6 INTRODUCTION Common code for CTANGLE and CWEAVE (Version 4.12.1) §18

18. In certain cases CTANGLE and CWEAVE should do almost, but not quite, the same thing. In these
cases we’ve written common code for both, differentiating between the two by means of the global variable
program .

〈Global variables 18 〉 ≡
boolean program ; . CWEAVE or CTANGLE? /

See also sections 19, 21, 22, 25, 26, 42, 43, 44, 46, 65, 73, and 83.

This code is used in section 1.

19. CWEAVE operates in three phases: First it inputs the source file and stores cross-reference data, then it
inputs the source once again and produces the TEX output file, and finally it sorts and outputs the index.
Similarly, CTANGLE operates in two phases. The global variable phase tells which phase we are in.

〈Global variables 18 〉 +≡
int phase ; . which phase are we in? /

20. There’s an initialization procedure that gets both CTANGLE and CWEAVE off to a good start. We will
fill in the details of this procedure later.

void common init (void)
{
〈 Initialize pointers 45 〉
〈 Set the default options common to CTANGLE and CWEAVE 74 〉
〈 Scan arguments and open output files 84 〉
}

§21 Common code for CTANGLE and CWEAVE (Version 4.12.1) THE CHARACTER SET 7

21. The character set. CWEB uses the conventions of C programs found in the standard ctype.h header
file.

A few character pairs are encoded internally as single characters, using the definitions in the interface
sections above. These definitions are consistent with an extension of ASCII code originally developed at
MIT and explained in Appendix C of The TEXbook; thus, users who have such a character set can type
things like ≠ and ∧ instead of != and &&. (However, their files will not be too portable until more people
adopt the extended code.)

If the character set is not ASCII, the definitions given may conflict with existing characters; in such cases,
other arbitrary codes should be substituted. The indexes to CTANGLE and CWEAVE mention every case where
similar codes may have to be changed in order to avoid character conflicts. Look for the entry “ASCII code
dependencies” in those indexes.

〈Global variables 18 〉 +≡
char section text [longest name + 1]; . text being sought for /
char ∗section text end ← section text + longest name ; . end of section text /
char ∗id first ; . where the current identifier begins in the buffer /
char ∗id loc ; . just after the current identifier in the buffer /

8 INPUT ROUTINES Common code for CTANGLE and CWEAVE (Version 4.12.1) §22

22. Input routines. The lowest level of input to the CWEB programs is performed by input ln , which
must be told which file to read from. The return value of input ln is true if the read is successful and false
if not (generally this means the file has ended). The conventions of TEX are followed; i.e., the characters
of the next line of the file are copied into the buffer array, and the global variable limit is set to the first
unoccupied position. Trailing blanks are ignored. The value of limit must be strictly less than buf size , so
that buffer [buf size − 1] is never filled.

Since buf size is strictly less than long buf size , some of CWEB’s routines use the fact that it is safe to refer
to ∗(limit + 2) without overstepping the bounds of the array.

〈Global variables 18 〉 +≡
char buffer [long buf size]; . where each line of input goes /
char ∗buffer end ← buffer + buf size − 2; . end of buffer /
char ∗loc ← buffer ; . points to the next character to be read from the buffer /
char ∗limit ← buffer ; . points to the last character in the buffer /

23. In the unlikely event that your standard I/O library does not support feof and getc you may have to
change things here.

static boolean input ln (. copies a line into buffer or returns false /
FILE ∗fp) . what file to read from /

{
int c← EOF; . character read; initialized so some compilers won’t complain /
char ∗k; . where next character goes /

if (feof (fp)) return false ; . we have hit end-of-file /
limit ← k ← buffer ; . beginning of buffer /
while (k ≤ buffer end ∧ (c← getc(fp)) 6= EOF ∧ c 6= ’\n’)

if ((∗(k++)← c) 6= ’ ’) limit ← k;
if (k > buffer end) {

while ((c← getc(fp)) 6= EOF ∧ c 6= ’\n’) ; . discard rest of line /
loc ← buffer ; err print ("! Input line too long");

}
if (c ≡ EOF ∧ limit ≡ buffer) return false ; . there was nothing after the last newline /
return true ;
}

24. 〈Predeclaration of procedures 3 〉 +≡ static boolean input ln (FILE ∗);

§25 Common code for CTANGLE and CWEAVE (Version 4.12.1) FILE HANDLING 9

25. File handling. Now comes the problem of deciding which file to read from next. Recall that the
actual text that CWEB should process comes from two streams: a web file , which can contain possibly nested
include commands @i, and a change file , which might also contain includes. The web file together with the
currently open include files form a stack file , whose names are stored in a parallel stack file name . The
boolean changing tells whether or not we’re reading from the change file .

The line number of each open file is also kept for error reporting and for the benefit of CTANGLE.

〈Global variables 18 〉 +≡
int include depth ; . current level of nesting /
FILE ∗file [max include depth]; . stack of non-change files /
FILE ∗change file ; . change file /
char file name [max include depth][max file name length]; . stack of non-change file names /
char change file name [max file name length]; . name of change file /
static char alt web file name [max file name length]; . alternate name to try /
int line [max include depth]; . number of current line in the stacked files /
int change line ; . number of current line in change file /
int change depth ; . where @y originated during a change /
boolean input has ended ; . if there is no more input /
boolean changing ; . if the current line is from change file /
boolean web file open ← false ; . if the web file is being read /

26. When changing ≡ false , the next line of change file is kept in change buffer , for purposes of comparison
with the next line of cur file . After the change file has been completely input, we set change limit ←
change buffer , so that no further matches will be made.

Here’s a shorthand expression for inequality between the two lines:

#define lines dont match (change limit − change buffer 6= limit − buffer
∨ strncmp(buffer , change buffer , (size t)(limit − buffer)) 6= 0)

〈Global variables 18 〉 +≡
static char change buffer [buf size]; . next line of change file /
static char ∗change limit ; . points to the last character in change buffer /

27. Procedure prime the change buffer sets change buffer in preparation for the next matching operation.
Since blank lines in the change file are not used for matching, we have (change limit ≡ change buffer ∧
¬changing) if and only if the change file is exhausted. This procedure is called only when changing is true ;
hence error messages will be reported correctly.

static void prime the change buffer (void)
{

change limit ← change buffer ; . this value is used if the change file ends /
〈 Skip over comment lines in the change file; return if end of file 29 〉
〈 Skip to the next nonblank line; return if end of file 30 〉
〈Move buffer and limit to change buffer and change limit 31 〉
}

28. 〈Predeclaration of procedures 3 〉 +≡ static void prime the change buffer (void);

10 FILE HANDLING Common code for CTANGLE and CWEAVE (Version 4.12.1) §29

29. While looking for a line that begins with @x in the change file, we allow lines that begin with @, as
long as they don’t begin with @y, @z, or @i (which would probably mean that the change file is fouled up).

〈 Skip over comment lines in the change file; return if end of file 29 〉 ≡
while (true) {

change line ++;
if (¬input ln (change file)) return;
if (limit < buffer + 2) continue;
if (buffer [0] 6= ’@’) continue;
if (xisupper (buffer [1])) buffer [1]← tolower ((int) buffer [1]);
if (buffer [1] ≡ ’x’) break;
if (buffer [1] ≡ ’y’ ∨ buffer [1] ≡ ’z’ ∨ buffer [1] ≡ ’i’) {

loc ← buffer + 2; err print ("! Missing @x in change file");
}
}

This code is used in section 27.

30. Here we are looking at lines following the @x.

〈 Skip to the next nonblank line; return if end of file 30 〉 ≡
do {

change line ++;
if (¬input ln (change file)) {

err print ("! Change file ended after @x"); return;
}
} while (limit ≡ buffer);

This code is used in section 27.

31. 〈Move buffer and limit to change buffer and change limit 31 〉 ≡
change limit ← change buffer + (ptrdiff t)(limit − buffer);
strncpy (change buffer , buffer , (size t)(limit − buffer + 1));

This code is used in sections 27 and 32.

§32 Common code for CTANGLE and CWEAVE (Version 4.12.1) FILE HANDLING 11

32. The following procedure is used to see if the next change entry should go into effect; it is called only
when changing is false . The idea is to test whether or not the current contents of buffer matches the current
contents of change buffer . If not, there’s nothing more to do; but if so, a change is called for: All of the
text down to the @y is supposed to match. An error message is issued if any discrepancy is found. Then the
procedure prepares to read the next line from change file .

When a match is found, the current section is marked as changed unless the first line after the @x and
after the @y both start with either ‘@*’ or ‘@ ’ (possibly preceded by whitespace).

This procedure is called only when buffer < limit , i.e., when the current line is nonempty.

#define if section start make pending (b)
∗limit ← ’!’; for (loc ← buffer ; xisspace (∗loc); loc ++) ; ∗limit ← ’ ’;
if (∗loc ≡ ’@’ ∧ (xisspace (∗(loc + 1)) ∨ ∗(loc + 1) ≡ ’*’)) change pending ← b

static void check change (void) . switches to change file if the buffers match /
{

int n← 0; . the number of discrepancies found /

if (lines dont match) return;
change pending ← false ;
if (¬changed section [section count]) {

if section start make pending (true);
if (¬change pending) changed section [section count]← true ;

}
while (true) {

changing ← print where ← true ; change line ++;
if (¬input ln (change file)) {

err print ("! Change file ended before @y"); change limit ← change buffer ;
changing ← false ; return;

}
if (limit > buffer + 1 ∧ buffer [0] ≡ ’@’) {

if (xisupper (buffer [1])) buffer [1]← tolower ((int) buffer [1]);
〈 If the current line starts with @y, report any discrepancies and return 34 〉

}
〈Move buffer and limit to change buffer and change limit 31 〉
changing ← false ; cur line ++;
while (¬input ln (cur file)) { . pop the stack or quit /

if (include depth ≡ 0) {
err print ("! CWEB file ended during a change"); input has ended ← true ; return;
}
include depth −−; cur line ++;

}
if (lines dont match) n++;

}
}

33. 〈Predeclaration of procedures 3 〉 +≡ static void check change (void);

12 FILE HANDLING Common code for CTANGLE and CWEAVE (Version 4.12.1) §34

34. 〈 If the current line starts with @y, report any discrepancies and return 34 〉 ≡
if (buffer [1] ≡ ’x’ ∨ buffer [1] ≡ ’z’) {

loc ← buffer + 2; err print ("! Where is the matching @y?");
}
else if (buffer [1] ≡ ’y’) {

if (n > 0) {
loc ← buffer + 2; printf ("\n! Hmm... %d ", n);
err print ("of the preceding lines failed to match");

}
change depth ← include depth ; return;
}

This code is used in section 32.

35. The get line procedure is called when loc > limit ; it puts the next line of merged input into the
buffer and updates the other variables appropriately. A space is placed at the right end of the line. This
procedure returns ¬input has ended because we often want to check the value of that variable after calling
the procedure.

If we’ve just changed from the cur file to the change file , or if the cur file has changed, we tell CTANGLE
to print this information in the C file by means of the print where flag.

boolean get line (void) . inputs the next line /
{
restart :

if (changing ∧ include depth ≡ change depth) 〈Read from change file and maybe turn off changing 38 〉
if (¬changing ∨ include depth > change depth) {
〈Read from cur file and maybe turn on changing 37 〉
if (changing ∧ include depth ≡ change depth) goto restart ;

}
if (input has ended) return false ;
loc ← buffer ; ∗limit ← ’ ’;
if (buffer [0] ≡ ’@’ ∧ (buffer [1] ≡ ’i’ ∨ buffer [1] ≡ ’I’)) {

loc ← buffer + 2; ∗limit ← ’"’;
while (∗loc ≡ ’ ’ ∨ ∗loc ≡ ’\t’) loc ++;
if (loc ≥ limit) {

err print ("! Include file name not given"); goto restart ;
}
if (include depth ≥ max include depth − 1) {

err print ("! Too many nested includes"); goto restart ;
}
include depth ++; . push input stack /
〈Try to open include file, abort push if unsuccessful, go to restart 36 〉

}
return true ;
}

§36 Common code for CTANGLE and CWEAVE (Version 4.12.1) FILE HANDLING 13

36. When an @i line is found in the cur file , we must temporarily stop reading it and start reading from
the named include file. The @i line should give a complete file name with or without double quotes. If the
environment variable CWEBINPUTS is set, or if the compiler flag of the same name was defined at compile time,
CWEB will look for include files in the directory thus named, if it cannot find them in the current directory.
(Colon-separated paths are not supported.) The remainder of the @i line after the file name is ignored.

#define too long ()
{

include depth −−; err print ("! Include file name too long"); goto restart ;
}

〈Try to open include file, abort push if unsuccessful, go to restart 36 〉 ≡
{

char temp file name [max file name length];
char ∗cur file name end ← cur file name + max file name length − 1;
char ∗kk , ∗k ← cur file name ;
size t l; . length of file name /

if (∗loc ≡ ’"’) {
loc ++;
while (∗loc 6= ’"’ ∧ k ≤ cur file name end) ∗k++ ← ∗loc ++;
if (loc ≡ limit) k ← cur file name end + 1; . unmatched quote is ‘too long’ /

}
else

while (∗loc 6= ’ ’ ∧ ∗loc 6= ’\t’ ∧ ∗loc 6= ’"’ ∧ k ≤ cur file name end) ∗k++ ← ∗loc ++;
if (k > cur file name end) too long ();
∗k ← ’\0’;
if ((cur file ← fopen (cur file name , "r")) 6= Λ) {

cur line ← 0; print where ← true ; goto restart ; . success /
}
if ((kk ← getenv ("CWEBINPUTS")) 6= Λ) {

if ((l← strlen (kk)) > max file name length − 2) too long ();
strcpy (temp file name , kk);

}
else {

#ifdef CWEBINPUTS

if ((l← strlen (CWEBINPUTS)) > max file name length − 2) too long ();
strcpy (temp file name , CWEBINPUTS);

#else
l← 0;

#endif . CWEBINPUTS /
}
if (l > 0) {

if (k + l + 2 ≥ cur file name end) too long ();
for (; k ≥ cur file name ; k−−) ∗(k + l + 1)← ∗k;
strcpy (cur file name , temp file name); cur file name [l]← ’/’; . UNIX pathname separator /
if ((cur file ← fopen (cur file name , "r")) 6= Λ) {

cur line ← 0; print where ← true ; goto restart ; . success /
}

}
include depth −−; err print ("! Cannot open include file"); goto restart ;
}

This code is used in section 35.

14 FILE HANDLING Common code for CTANGLE and CWEAVE (Version 4.12.1) §37

37. 〈Read from cur file and maybe turn on changing 37 〉 ≡
{

cur line ++;
while (¬input ln (cur file)) { . pop the stack or quit /

print where ← true ;
if (include depth ≡ 0) {

input has ended ← true ; break;
}
else {

fclose (cur file); include depth −−;
if (changing ∧ include depth ≡ change depth) break;
cur line ++;

}
}
if (¬changing ∧ ¬input has ended)

if (limit − buffer ≡ change limit − change buffer)
if (buffer [0] ≡ change buffer [0])

if (change limit > change buffer) check change ();
}

This code is used in section 35.

38. 〈Read from change file and maybe turn off changing 38 〉 ≡
{

change line ++;
if (¬input ln (change file)) {

err print ("! Change file ended without @z"); buffer [0]← ’@’; buffer [1]← ’z’;
limit ← buffer + 2;

}
if (limit > buffer) { . check if the change has ended /

if (change pending) {
if section start make pending (false);
if (change pending) {

changed section [section count]← true ; change pending ← false ;
}

}
∗limit ← ’ ’;
if (buffer [0] ≡ ’@’) {

if (xisupper (buffer [1])) buffer [1]← tolower ((int) buffer [1]);
if (buffer [1] ≡ ’x’ ∨ buffer [1] ≡ ’y’) {

loc ← buffer + 2; err print ("! Where is the matching @z?");
}
else if (buffer [1] ≡ ’z’) {

prime the change buffer (); changing ← ¬changing ; print where ← true ;
}

}
}
}

This code is used in section 35.

§39 Common code for CTANGLE and CWEAVE (Version 4.12.1) FILE HANDLING 15

39. At the end of the program, we will tell the user if the change file had a line that didn’t match any
relevant line in web file .

void check complete (void)
{

if (change limit 6= change buffer) { . changing is false /
strncpy (buffer , change buffer , (size t)(change limit − change buffer + 1));
limit ← buffer + (ptrdiff t)(change limit − change buffer); changing ← true ;
change depth ← include depth ; loc ← buffer ; err print ("! Change file entry did not match");

}
}

40. The reset input procedure, which gets CWEB ready to read the user’s CWEB input, is used at the beginning
of phase one of CTANGLE, phases one and two of CWEAVE.

void reset input (void)
{

limit ← buffer ; loc ← buffer + 1; buffer [0]← ’ ’; 〈Open input files 41 〉
include depth ← cur line ← change line ← 0; change depth ← include depth ; changing ← true ;
prime the change buffer (); changing ← ¬changing ; limit ← buffer ; loc ← buffer + 1;
buffer [0]← ’ ’; input has ended ← false ;
}

41. The following code opens the input files.

〈Open input files 41 〉 ≡
if ((web file ← fopen (web file name , "r")) ≡ Λ) {

strcpy (web file name , alt web file name);
if ((web file ← fopen (web file name , "r")) ≡ Λ)

fatal ("! Cannot open input file ",web file name);
}
web file open ← true ;
if ((change file ← fopen (change file name , "r")) ≡ Λ)

fatal ("! Cannot open change file ", change file name);

This code is used in section 40.

42. 〈Global variables 18 〉 +≡
sixteen bits section count ; . the current section number /
boolean changed section [max sections]; . is the section changed? /
boolean change pending ; . if the current change is not yet recorded in changed section [section count] /
boolean print where ← false ; . should CTANGLE print line and file info? /

16 STORAGE OF NAMES AND STRINGS Common code for CTANGLE and CWEAVE (Version 4.12.1) §43

43. Storage of names and strings. Both CWEAVE and CTANGLE store identifiers, section names and
other strings in a large array of chars, called byte mem . Information about the names is kept in the array
name dir , whose elements are structures of type name info, containing a pointer into the byte mem array
(the address where the name begins) and other data. A name pointer variable is a pointer into name dir .
You find the complete layout of name info in the interface sections above.

The actual sequence of characters in the name pointed to by a name pointer p appears in positions
p~byte start to (p + 1)~byte start − 1, inclusive.

The names of identifiers are found by computing a hash address h and then looking at strings of bytes
signified by the name pointers hash [h], hash [h]~ link , hash [h]~ link~ link , . . . , until either finding the desired
name or encountering the null pointer.

The names of sections are stored in byte mem together with the identifier names, but a hash table is not
used for them because CTANGLE needs to be able to recognize a section name when given a prefix of that
name. A conventional binary search tree is used to retrieve section names, with fields called llink and rlink
(where llink takes the place of link). The root of this tree is stored in name dir~rlink ; this will be the only
information in name dir [0].

Since the space used by rlink has a different function for identifiers than for section names, we declare it
as a union.

The last component of name info is different for CTANGLE and CWEAVE. In CTANGLE, if p is a pointer to
a section name, p~equiv is a pointer to its replacement text, an element of the array text info . In CWEAVE,
on the other hand, if p points to an identifier, p~xref is a pointer to its list of cross-references, an element of
the array xmem . The make-up of text info and xmem is discussed in the CTANGLE and CWEAVE source files,
respectively; here we just declare a common field equiv or xref as a pointer to void.

〈Global variables 18 〉 +≡
char byte mem [max bytes]; . characters of names /
char ∗byte mem end ← byte mem + max bytes − 1; . end of byte mem /
name info name dir [max names]; . information about names /
name pointer name dir end ← name dir + max names − 1; . end of name dir /

44. The first unused position in byte mem and name dir is kept in byte ptr and name ptr , respec-
tively. Thus we usually have name ptr~byte start ≡ byte ptr , and certainly we want to keep name ptr ≤
name dir end and byte ptr ≤ byte mem end .

〈Global variables 18 〉 +≡
char ∗byte ptr ; . first unused position in byte mem /
name pointer name ptr ; . first unused position in name dir /

45. 〈 Initialize pointers 45 〉 ≡
name dir~byte start ← byte ptr ← byte mem ; . position zero in both arrays /
name ptr ← name dir + 1; . name dir [0] will be used only for error recovery /
name ptr~byte start ← byte mem ; . this makes name 0 of length zero /
root ← Λ; . the binary search tree starts out with nothing in it /

This code is used in section 20.

46. The hash table itself consists of hash size entries of type name pointer, and is updated by the
id lookup procedure, which finds a given identifier and returns the appropriate name pointer. The
matching is done by the function names match , which is slightly different in CWEAVE and CTANGLE. If
there is no match for the identifier, it is inserted into the table.

#define hash size 353 . should be prime /

〈Global variables 18 〉 +≡
name pointer hash [hash size]← {Λ}; . heads of hash lists /
hash pointer hash end ← hash + hash size − 1; . end of hash /
hash pointer hash ptr ; . index into hash-head array /

§47 Common code for CTANGLE and CWEAVE (Version 4.12.1) STORAGE OF NAMES AND STRINGS 17

47. Initially all the hash lists are empty.

48. Here is the main procedure for finding identifiers:

name pointer id lookup(. looks up a string in the identifier table /
const char ∗first , . first character of string /
const char ∗last , . last character of string plus one /
eight bits t) . the ilk ; used by CWEAVE only /

{
const char ∗i← first ; . position in buffer /
int h; . hash code /
size t l; . length of the given identifier /
name pointer p; . where the identifier is being sought /

if (last ≡ Λ)
for (last ← first ; ∗last 6= ’\0’; last ++) ;

l← (size t)(last − first); . compute the length /
〈Compute the hash code h 49 〉
〈Compute the name location p 50 〉
if (p ≡ name ptr) 〈Enter a new name into the table at position p 51 〉
return p;
}

49. A simple hash code is used: If the sequence of character codes is c1c2 . . . cn, its hash value will be

(2n−1c1 + 2n−2c2 + · · ·+ cn) mod hash size .

〈Compute the hash code h 49 〉 ≡
h← (int)((eight bits) ∗i);
while (++i < last) h← (h + h + (int)((eight bits) ∗i)) % hash size ;

This code is used in section 48.

50. If the identifier is new, it will be placed in position p← name ptr , otherwise p will point to its existing
location.

〈Compute the name location p 50 〉 ≡
p← hash [h];
while (p ∧ ¬names match (p,first , l, t)) p← p~ link ;
if (p ≡ Λ) {
p← name ptr ; . the current identifier is new /
p~ link ← hash [h]; hash [h]← p; . insert p at beginning of hash list /
}

This code is used in section 48.

51. The information associated with a new identifier must be initialized in a slightly different way in
CWEAVE than in CTANGLE.

〈Enter a new name into the table at position p 51 〉 ≡
{

if (byte ptr + l > byte mem end) overflow ("byte memory");
if (name ptr ≥ name dir end) overflow ("name");
strncpy (byte ptr ,first , l); (++name ptr)~byte start ← byte ptr += l;
if (program ≡ cweave) p~ ilk ← t, init node (p);
}

This code is used in section 48.

18 STORAGE OF NAMES AND STRINGS Common code for CTANGLE and CWEAVE (Version 4.12.1) §52

52. If p is a name pointer variable, as we have seen, p~byte start is the beginning of the area where the
name corresponding to p is stored. However, if p refers to a section name, the name may need to be stored
in chunks, because it may “grow”: a prefix of the section name may be encountered before the full name.
Furthermore we need to know the length of the shortest prefix of the name that was ever encountered.

We solve this problem by inserting two extra bytes at p~byte start , representing the length of the shortest
prefix, when p is a section name. Furthermore, the last byte of the name will be a blank space if p is a prefix.
In the latter case, the name pointer p+ 1 will allow us to access additional chunks of the name: The second
chunk will begin at the name pointer (p + 1)~ link , and if it too is a prefix (ending with blank) its link will
point to additional chunks in the same way. Null links are represented by name dir .

#define first chunk (p) ((p)~byte start + 2)
#define prefix length (p) (size t)((eight bits) ∗((p)~byte start) ∗ 256 + (eight bits) ∗((p)~byte start + 1))
#define set prefix length (p,m)

(∗((p)~byte start)← (char)((m)/256), ∗((p)~byte start + 1)← (char)((m) % 256))

void print section name (name pointer p)
{

char ∗ss , ∗s← first chunk (p);
name pointer q ← p + 1;

while (p 6= name dir) {
ss ← (p + 1)~byte start − 1;
if (∗ss ≡ ’ ’ ∧ ss ≥ s) p← q~ link , q ← p;
else ss ++, p← name dir , q ← Λ;
term write (s, (size t)(ss − s)); s← p~byte start ;

}
if (q) term write ("...", 3); . complete name not yet known /
}

53. void sprint section name (char ∗dest ,name pointer p)
{

char ∗ss , ∗s← first chunk (p);
name pointer q ← p + 1;

while (p 6= name dir) {
ss ← (p + 1)~byte start − 1;
if (∗ss ≡ ’ ’ ∧ ss ≥ s) p← q~ link , q ← p;
else ss ++, p← name dir ;
strncpy (dest , s, (size t)(ss − s)), dest += ss − s; s← p~byte start ;

}
∗dest ← ’\0’;
}

54. void print prefix name (name pointer p)
{

char ∗s← first chunk (p);
size t l← prefix length (p);

term write (s, l);
if (s + l < (p + 1)~byte start) term write ("...", 3);
}

§55 Common code for CTANGLE and CWEAVE (Version 4.12.1) STORAGE OF NAMES AND STRINGS 19

55. When we compare two section names, we’ll need a function analogous to strcmp . But we do not
assume the strings are null-terminated, and we keep an eye open for prefixes and extensions.

#define less 0 . the first name is lexicographically less than the second /
#define equal 1 . the first name is equal to the second /
#define greater 2 . the first name is lexicographically greater than the second /
#define prefix 3 . the first name is a proper prefix of the second /
#define extension 4 . the first name is a proper extension of the second /

〈Predeclaration of procedures 3 〉 +≡
static int web strcmp(char ∗, size t, char ∗, size t);
static name pointer add section name (name pointer, int, char ∗, char ∗,boolean);
static void extend section name (name pointer, char ∗, char ∗,boolean);

56. static int web strcmp(. fuller comparison than strcmp /
char ∗j, . beginning of first string /
size t j len , . length of first string /
char ∗k, . beginning of second string /
size t k len) . length of second string /

{
char ∗j1 ← j + j len , ∗k1 ← k + k len ;

while (k < k1 ∧ j < j1 ∧ ∗j ≡ ∗k) k++, j++;
if (k ≡ k1)

if (j ≡ j1) return equal ;
else return extension ;

else if (j ≡ j1) return prefix ;
else if (∗j < ∗k) return less ;
else return greater ;
}

20 STORAGE OF NAMES AND STRINGS Common code for CTANGLE and CWEAVE (Version 4.12.1) §57

57. Adding a section name to the tree is straightforward if we know its parent and whether it’s the rlink
or llink of the parent. As a special case, when the name is the first section being added, we set the “parent”
to Λ. When a section name is created, it has only one chunk, which however may be just a prefix; the full
name will hopefully be unveiled later. Obviously, prefix length starts out as the length of the first chunk,
though it may decrease later.

The information associated with a new node must be initialized differently in CWEAVE and CTANGLE; hence
the init node procedure, which is defined differently in cweave.w and ctangle.w.

static name pointer add section name (. install a new node in the tree /
name pointer par , . parent of new node /
int c, . right or left? /
char ∗first , . first character of section name /
char ∗last , . last character of section name, plus one /
boolean ispref) . are we adding a prefix or a full name? /

{
name pointer p← name ptr ; . new node /
char ∗s← first chunk (p);
size t name len ← (size t)(last − first + (int) ispref); . length of section name /

if (s + name len > byte mem end) overflow ("byte memory");
if (name ptr + 1 ≥ name dir end) overflow ("name");
(++name ptr)~byte start ← byte ptr ← s + name len ;
if (ispref) {
∗(byte ptr − 1)← ’ ’; name len −−; name ptr~ link ← name dir ;
(++name ptr)~byte start ← byte ptr ;

}
set prefix length (p,name len); strncpy (s,first ,name len); p~ llink ← p~rlink ← Λ; init node (p);
return par ≡ Λ ? (root ← p) : c ≡ less ? (par~ llink ← p) : (par~rlink ← p);
}

58. static void extend section name (name pointer p, . name to be extended /
char ∗first , . beginning of extension text /
char ∗last , . one beyond end of extension text /
boolean ispref) . are we adding a prefix or a full name? /

{
char ∗s;
name pointer q ← p + 1;
size t name len ← (size t)(last − first + (int) ispref);

if (name ptr ≥ name dir end) overflow ("name");
while (q~ link 6= name dir) q ← q~ link ;
q~ link ← name ptr ; s← name ptr~byte start ; name ptr~ link ← name dir ;
if (s + name len > byte mem end) overflow ("byte memory");
(++name ptr)~byte start ← byte ptr ← s + name len ; strncpy (s,first ,name len);
if (ispref) ∗(byte ptr − 1)← ’ ’;
}

§59 Common code for CTANGLE and CWEAVE (Version 4.12.1) STORAGE OF NAMES AND STRINGS 21

59. The section lookup procedure is supposed to find a section name that matches a new name, installing
the new name if it doesn’t match an existing one. The new name is the string between first and last ; a
“match” means that the new name exactly equals or is a prefix or extension of a name in the tree.

name pointer section lookup(. find or install section name in tree /
char ∗first , char ∗last , . first and last characters of new name /
boolean ispref) . is the new name a prefix or a full name? /

{
int c← less ; . comparison between two names; initialized so some compilers won’t complain /
name pointer p← root ; . current node of the search tree /
name pointer q ← Λ; . another place to look in the tree /
name pointer r ← Λ; . where a match has been found /
name pointer par ← Λ; . parent of p, if r is Λ; otherwise parent of r /
size t name len ← (size t)(last − first + 1);

〈Look for matches for new name among shortest prefixes, complaining if more than one is found 60 〉
〈 If no match found, add new name to tree 61 〉
〈 If one match found, check for compatibility and return match 62 〉
}

60. A legal new name matches an existing section name if and only if it matches the shortest prefix of that
section name. Therefore we can limit our search for matches to shortest prefixes, which eliminates the need
for chunk-chasing at this stage.

〈Look for matches for new name among shortest prefixes, complaining if more than one is found 60 〉 ≡
while (p) { . compare shortest prefix of p with new name /
c← web strcmp(first ,name len ,first chunk (p), prefix length (p));
if (c ≡ less ∨ c ≡ greater) { . new name does not match p /

if (r ≡ Λ) . no previous matches have been found /
par ← p;

p← (c ≡ less ? p~ llink : p~rlink);
}
else { . new name matches p /

if (r 6= Λ) { . and also r: illegal /
printf ("%s", "\n! Ambiguous prefix: matches <"); print prefix name (p);
printf ("%s", ">\n and <"); print prefix name (r); err print (">"); return name dir ;
. the unsection /

}
r ← p; . remember match /
p← p~ llink ; . try another /
q ← r~rlink ; . we’ll get back here if the new p doesn’t match /

}
if (p ≡ Λ) p← q, q ← Λ; . q held the other branch of r /
}

This code is used in section 59.

61. 〈 If no match found, add new name to tree 61 〉 ≡
if (r ≡ Λ) . no matches were found /

return add section name (par , c,first , last + 1, ispref);

This code is used in section 59.

22 STORAGE OF NAMES AND STRINGS Common code for CTANGLE and CWEAVE (Version 4.12.1) §62

62. Although error messages are given in anomalous cases, we do return the unique best match when a
discrepancy is found, because users often change a title in one place while forgetting to change it elsewhere.

〈 If one match found, check for compatibility and return match 62 〉 ≡
switch (section name cmp(&first ,name len , r)) { . compare all of r with new name /
case prefix :

if (¬ispref) {
printf ("%s", "\n! New name is a prefix of <"); print section name (r); err print (">");

}
else if (name len < prefix length (r)) set prefix length (r,name len);
/* fall through */

case equal : break;
case extension :

if (¬ispref ∨ first ≤ last) extend section name (r,first , last + 1, ispref);
break;

case bad extension : printf ("%s", "\n! New name extends <"); print section name (r); err print (">");
break;

default: . no match: illegal /
printf ("%s", "\n! Section name incompatible with <"); print prefix name (r);
printf ("%s", ">,\n which abbreviates <"); print section name (r); err print (">");
}
return r;

This code is used in section 59.

§63 Common code for CTANGLE and CWEAVE (Version 4.12.1) STORAGE OF NAMES AND STRINGS 23

63. The return codes of section name cmp , which compares a string with the full name of a section, are
those of web strcmp plus bad extension , used when the string is an extension of a supposedly already complete
section name. This function has a side effect when the comparison string is an extension: It advances the
address of the first character of the string by an amount equal to the length of the known part of the section
name.

The name @<foo...@> should be an acceptable “abbreviation” for @<foo@>. If such an abbreviation comes
after the complete name, there’s no trouble recognizing it. If it comes before the complete name, we simply
append a null chunk. This logic requires us to regard @<foo...@> as an “extension” of itself.

#define bad extension 5

static int section name cmp(char ∗∗pfirst , . pointer to beginning of comparison string /
size t len , . length of string /
name pointer r) . section name being compared /

{
char ∗first ← ∗pfirst ; . beginning of comparison string /
name pointer q ← r + 1; . access to subsequent chunks /
char ∗ss , ∗s← first chunk (r);
int c← less ; . comparison /
boolean ispref ; . is chunk r a prefix? /

while (true) {
ss ← (r + 1)~byte start − 1;
if (∗ss ≡ ’ ’ ∧ ss ≥ r~byte start) ispref ← true , q ← q~ link ;
else ispref ← false , ss ++, q ← name dir ;
switch (c← web strcmp(first , len , s, (size t)(ss − s))) {
case equal :

if (q ≡ name dir)
if (ispref) {
∗pfirst ← first + (ptrdiff t)(ss − s); return extension ; . null extension /

}
else return equal ;

else return length (q) ≡ 0 ? equal : prefix ;
case extension :

if (¬ispref) return bad extension ;
first += ss − s;
if (q 6= name dir) {

len −= (int)(ss − s); s← q~byte start ; r ← q; continue;
}
∗pfirst ← first ; return extension ;

default: return c;
}

}
}

64. 〈Predeclaration of procedures 3 〉 +≡
static int section name cmp(char ∗∗, size t,name pointer);

24 REPORTING ERRORS TO THE USER Common code for CTANGLE and CWEAVE (Version 4.12.1) §65

65. Reporting errors to the user. A global variable called history will contain one of four values at
the end of every run: spotless means that no unusual messages were printed; harmless message means that
a message of possible interest was printed but no serious errors were detected; error message means that
at least one error was found; fatal message means that the program terminated abnormally. The value of
history does not influence the behavior of the program; it is simply computed for the convenience of systems
that might want to use such information.

〈Global variables 18 〉 +≡
int history ← spotless ; . indicates how bad this run was /

66. The command ‘err print ("! Error message")’ will report a syntax error to the user, by printing the
error message at the beginning of a new line and then giving an indication of where the error was spotted
in the source file. Note that no period follows the error message, since the error routine will automatically
supply a period. A newline is automatically supplied if the string begins with "!".

void err print (. prints ‘.’ and location of error message /
const char ∗s)

{
printf (∗s ≡ ’!’ ? "\n%s" : "%s", s);
if (web file open) 〈Print error location based on input buffer 67 〉
update terminal (); mark error ();
}

67. The error locations can be indicated by using the global variables loc , cur line , cur file name and
changing , which tell respectively the first unlooked-at position in buffer , the current line number, the current
file, and whether the current line is from change file or cur file . This routine should be modified on systems
whose standard text editor has special line-numbering conventions.

〈Print error location based on input buffer 67 〉 ≡
{

char ∗k, ∗l; . pointers into buffer /

if (changing ∧ include depth ≡ change depth ∧ change line > 0)
printf (". (l. %d of change file)\n", change line);

else if (cur line > 0) {
if (include depth ≡ 0) printf (". (l. %d)\n", cur line);
else printf (". (l. %d of include file %s)\n", cur line , cur file name);

}
l← (loc ≥ limit ? limit : loc);
if (l > buffer) {

for (k ← buffer ; k < l; k++)
if (∗k ≡ ’\t’) putchar (’ ’);
else putchar (∗k); . print the characters already read /

new line ();
for (k ← buffer ; k < l; k++) putchar (’ ’); . space out the next line /

}
for (k ← l; k < limit ; k++) putchar (∗k); . print the part not yet read /
if (∗limit ≡ ’|’) putchar (’|’); . end of C text in section names /
putchar (’ ’); . to separate the message from future asterisks /
}

This code is used in section 66.

§68 Common code for CTANGLE and CWEAVE (Version 4.12.1) REPORTING ERRORS TO THE USER 25

68. When no recovery from some error has been provided, we have to wrap up and quit as graciously as
possible. This is done by calling the function wrap up at the end of the code.
CTANGLE and CWEAVE have their own notions about how to print the job statistics. See the function(s)

print stats in the interface above and in the index.
Some implementations may wish to pass the history value to the operating system so that it can be used

to govern whether or not other programs are started. Here, for instance, we pass the operating system a
status of EXIT_SUCCESS if and only if only harmless messages were printed.

int wrap up(void)
{

if (show progress ∨ show happiness ∨ history 6= spotless) new line ();
if (show stats) print stats (); . print statistics about memory usage /
〈Print the job history 69 〉
if (history > harmless message) return EXIT_FAILURE;
else return EXIT_SUCCESS;
}

69. 〈Print the job history 69 〉 ≡
switch (history) {
case spotless :

if (show happiness) puts ("(No errors were found.)");
break;

case harmless message : puts ("(Did you see the warning message above?)"); break;
case error message : puts ("(Pardon me, but I think I spotted something wrong.)"); break;
case fatal message : default: puts ("(That was a fatal error, my friend.)");
}

This code is used in section 68.

70. When there is no way to recover from an error, the fatal subroutine is invoked. This happens most
often when overflow occurs.

The two parameters to fatal are strings that are essentially concatenated to print the final error message.

void fatal (const char ∗s, const char ∗t)
{

if (∗s) printf ("%s", s);
err print (t); history ← fatal message ; exit (wrap up());
}

71. An overflow stop occurs if CWEB’s tables aren’t large enough.

void overflow (const char ∗t)
{

printf ("\n! Sorry, %s capacity exceeded", t); fatal ("", "");
}

72. Sometimes the program’s behavior is far different from what it should be, and CWEB prints an error
message that is really for the CWEB maintenance person, not the user. In such cases the program says
confusion ("indication of where we are").

26 COMMAND LINE ARGUMENTS Common code for CTANGLE and CWEAVE (Version 4.12.1) §73

73. Command line arguments. The user calls CWEAVE and CTANGLE with arguments on the command
line. These are either file names or flags to be turned off (beginning with "−") or flags to be turned on
(beginning with "+"). The following globals are for communicating the user’s desires to the rest of the
program. The various file name variables contain strings with the names of those files. Most of the 128 flags
are undefined but available for future extensions.

〈Global variables 18 〉 +≡
int argc ; . copy of ac parameter to main /
char ∗∗argv ; . copy of av parameter to main /
char C file name [max file name length]; . name of C file /
char tex file name [max file name length]; . name of tex file /
char idx file name [max file name length]; . name of idx file /
char scn file name [max file name length]; . name of scn file /
boolean flags [128]; . an option for each 7-bit code /

74. The flags will be initially false . Some of them are set to true before scanning the arguments; if
additional flags are true by default they should be set before calling common init .

〈 Set the default options common to CTANGLE and CWEAVE 74 〉 ≡
show banner ← show happiness ← show progress ← make xrefs ← true ;

This code is used in section 20.

§75 Common code for CTANGLE and CWEAVE (Version 4.12.1) COMMAND LINE ARGUMENTS 27

75. We now must look at the command line arguments and set the file names accordingly. At least one file
name must be present: the CWEB file. It may have an extension, or it may omit the extension to get ".w" or
".web" added. The TEX output file name is formed by replacing the CWEB file name extension by ".tex",
and the C file name by replacing the extension by ".c", after removing the directory name (if any).

If there is a second file name present among the arguments, it is the change file, again either with an
extension or without one to get ".ch". An omitted change file argument means that "/dev/null" should
be used, when no changes are desired.

If there’s a third file name, it will be the output file.

static void scan args (void)
{

char ∗dot pos ; . position of ’.’ in the argument /
char ∗name pos ; . file name beginning, sans directory /
char ∗s; . pointer for scanning strings /
boolean found web ← false , found change ← false , found out ← false ;

. have these names been seen? /

strcpy (change file name , "/dev/null");
while (−−argc > 0) {

if ((∗∗(++argv) ≡ ’−’ ∨ ∗∗argv ≡ ’+’) ∧ ∗(∗argv + 1)) 〈Handle flag argument 80 〉
else {
s← name pos ← ∗argv ; dot pos ← Λ;
while (∗s)

if (∗s ≡ ’.’) dot pos ← s++;
else if (∗s ≡ ’/’) dot pos ← Λ,name pos ← ++s;
else s++;

if (¬found web) 〈Make web file name , tex file name , and C file name 77 〉
else if (¬found change) 〈Make change file name 78 〉
else if (¬found out) 〈Override tex file name and C file name 79 〉
else 〈Print usage error message and quit 81 〉

}
}
if (¬found web) 〈Print usage error message and quit 81 〉
}

76. 〈Predeclaration of procedures 3 〉 +≡ static void scan args (void);

28 COMMAND LINE ARGUMENTS Common code for CTANGLE and CWEAVE (Version 4.12.1) §77

77. We use all of ∗argv for the web file name if there is a ’.’ in it, otherwise we add ".w". If this file
can’t be opened, we prepare an alt web file name by adding "web" after the dot. The other file names come
from adding other things after the dot. We must check that there is enough room in web file name and the
other arrays for the argument.

〈Make web file name , tex file name , and C file name 77 〉 ≡
{

if (s− ∗argv > max file name length − 5) 〈Complain about argument length 82 〉
if (dot pos ≡ Λ) sprintf (web file name , "%s.w", ∗argv);
else {

strcpy (web file name , ∗argv); ∗dot pos ← ’\0’; . string now ends where the dot was /
}
sprintf (alt web file name , "%s.web", ∗argv); sprintf (tex file name , "%s.tex",name pos);

. strip off directory name /
if (make xrefs) { . indexes will be generated /

sprintf (idx file name , "%s.idx",name pos); sprintf (scn file name , "%s.scn",name pos);
}
sprintf (C file name , "%s.c",name pos); found web ← true ;
}

This code is used in section 75.

78. 〈Make change file name 78 〉 ≡
{

if (strcmp(∗argv , "−") 6= 0) {
if (s− ∗argv > max file name length − 4) 〈Complain about argument length 82 〉
if (dot pos ≡ Λ) sprintf (change file name , "%s.ch", ∗argv);
else strcpy (change file name , ∗argv);

}
found change ← true ;
}

This code is used in section 75.

79. 〈Override tex file name and C file name 79 〉 ≡
{

if (s− ∗argv > max file name length − 5) 〈Complain about argument length 82 〉
if (dot pos ≡ Λ) {

sprintf (tex file name , "%s.tex", ∗argv); sprintf (C file name , "%s.c", ∗argv);
}
else {

strcpy (tex file name , ∗argv); strcpy (C file name , ∗argv); ∗dot pos ← ’\0’;
. string now ends where the dot was /

}
if (make xrefs) { . indexes will be generated /

sprintf (idx file name , "%s.idx", ∗argv); sprintf (scn file name , "%s.scn", ∗argv);
}
found out ← true ;
}

This code is used in section 75.

§80 Common code for CTANGLE and CWEAVE (Version 4.12.1) COMMAND LINE ARGUMENTS 29

80. #define flag change (∗∗argv 6= ’−’)

〈Handle flag argument 80 〉 ≡
for (dot pos ← ∗argv + 1; ∗dot pos > ’\0’; dot pos ++) flags [(eight bits) ∗dot pos]← flag change ;

This code is used in section 75.

81. 〈Print usage error message and quit 81 〉 ≡
{

if (program ≡ ctangle)
fatal ("! Usage: ctangle [options] webfile[.w] [{changefile[.ch]|−} [outfile[.c]]]\n",

"");
else

fatal ("! Usage: cweave [options] webfile[.w] [{changefile[.ch]|−} [outfile[.tex]]]\n",
"");

}
This code is used in section 75.

82. 〈Complain about argument length 82 〉 ≡
fatal ("! Filename too long\n", ∗argv);

This code is used in sections 77, 78, and 79.

30 OUTPUT Common code for CTANGLE and CWEAVE (Version 4.12.1) §83

83. Output. Here is the code that opens the output file:

〈Global variables 18 〉 +≡
FILE ∗C file ; . where output of CTANGLE goes /
FILE ∗tex file ; . where output of CWEAVE goes /
FILE ∗idx file ; . where index from CWEAVE goes /
FILE ∗scn file ; . where list of sections from CWEAVE goes /
FILE ∗active file ; . currently active file for CWEAVE output /

84. 〈 Scan arguments and open output files 84 〉 ≡
scan args ();
if (program ≡ ctangle) {

if ((C file ← fopen (C file name , "wb")) ≡ Λ) fatal ("! Cannot open output file ",C file name);
}
else {

if ((tex file ← fopen (tex file name , "wb")) ≡ Λ)
fatal ("! Cannot open output file ", tex file name);

}
This code is used in section 20.

§85 Common code for CTANGLE and CWEAVE (Version 4.12.1) INDEX 31

85. Index.

ac : 14, 73.
active file : 15, 83.
add section name : 55, 57, 61.
alt web file name : 25, 41, 77.
Ambiguous prefix ... : 60.
and and : 5.
argc : 14, 73, 75.
argv : 14, 73, 75, 77, 78, 79, 80, 82.
ASCII code dependencies: 5, 21.
av : 14, 73.
bad extension : 62, 63.
bool: 4.
boolean: 2, 7, 8, 9, 11, 14, 18, 23, 24, 25, 35,

42, 55, 57, 58, 59, 63, 73, 75.
buf size : 16, 22, 26.
buffer : 6, 22, 23, 26, 29, 30, 31, 32, 34, 35, 37,

38, 39, 40, 48, 67.
buffer end : 6, 22, 23.
byte mem : 10, 43, 44, 45.
byte mem end : 10, 43, 44, 51, 57, 58.
byte ptr : 10, 44, 45, 51, 57, 58.
byte start : 10, 43, 44, 45, 51, 52, 53, 54, 57, 58, 63.
c: 23, 57, 59, 63.
C file : 14, 15, 73, 83, 84.
C file name : 14, 73, 77, 79, 84.
Cannot open change file: 41.
Cannot open input file: 41.
Cannot open output file: 84.
Change file ended...: 30, 32, 38.
Change file entry did not match: 39.
change buffer : 26, 27, 31, 32, 37, 39.
change depth : 7, 25, 34, 35, 37, 39, 40, 67.
change file : 7, 25, 26, 29, 30, 32, 35, 38, 41, 67.
change file name : 7, 25, 41, 75, 78.
change limit : 26, 27, 31, 32, 37, 39.
change line : 7, 25, 29, 30, 32, 38, 40, 67.
change pending : 9, 32, 38, 42.
changed section : 9, 32, 38, 42.
changing : 7, 25, 26, 27, 32, 35, 37, 38, 39, 40, 67.
check change : 32, 33, 37.
check complete : 8, 39.
colon colon : 5.
common init : 3, 20, 74.
compress : 5.
confusion : 12, 72.
ctangle : 2, 81, 84.
cur file : 7, 26, 32, 35, 36, 37, 67.
cur file name : 7, 36, 67.
cur file name end : 36.
cur line : 7, 32, 36, 37, 40, 67.
cweave : 2, 51.

CWEB file ended...: 32.
CWEBINPUTS: 36.
dest : 53.
dot dot dot : 5.
dot pos : 75, 77, 78, 79, 80.
dummy : 10.
eight bits: 2, 6, 10, 11, 48, 49, 52, 80.
EOF: 23.
eq eq : 5.
equal : 55, 56, 62, 63.
equiv : 43.
equiv or xref : 10, 43.
err print : 13, 23, 29, 30, 32, 34, 35, 36, 38,

39, 60, 62, 66, 70.
error message : 12, 65, 69.
exit : 4, 70.
EXIT_FAILURE: 68.
EXIT_SUCCESS: 68.
extend section name : 55, 58, 62.
extension : 55, 56, 62, 63.
false : 2, 4, 22, 23, 25, 26, 32, 35, 38, 39, 40,

42, 63, 74, 75.
fatal : 12, 13, 41, 70, 71, 81, 82, 84.
fatal message : 12, 65, 69, 70.
fclose : 37.
feof : 23.
fflush : 15.
file : 7, 25.
file name : 7, 25.
Filename too long: 82.
first : 48, 50, 51, 57, 58, 59, 60, 61, 62, 63.
first chunk : 52, 53, 54, 57, 60, 63.
flag change : 80.
flags : 14, 73, 74, 80.
fopen : 36, 41, 84.
found change : 75, 78.
found out : 75, 79.
found web : 75, 77.
fp : 23.
fwrite : 15.
get line : 8, 35.
getc : 23.
getenv : 4, 36.
greater : 55, 56, 60.
gt eq : 5.
gt gt : 5.
h: 48.
harmless message : 12, 65, 68, 69.
hash : 10, 43, 46, 50.
hash end : 10, 46.
hash pointer: 10, 46.

32 INDEX Common code for CTANGLE and CWEAVE (Version 4.12.1) §85

hash ptr : 10, 46.
hash size : 46, 49.
high-bit character handling: 6, 49.
history : 12, 13, 65, 68, 69, 70.
Hmm... n of the preceding...: 34.
i: 48.
id first : 5, 21.
id loc : 5, 21.
id lookup : 11, 46, 48.
idx file : 14, 15, 73, 83.
idx file name : 14, 73, 77, 79.
if section start make pending : 32, 38.
Ilk : 10.
ilk : 10, 48, 51.
Include file name ...: 35, 36.
include depth : 7, 25, 32, 34, 35, 36, 37, 39, 40, 67.
init node : 11, 51, 57.
Input line too long: 23.
input has ended : 7, 25, 32, 35, 37, 40.
input ln : 22, 23, 24, 29, 30, 32, 37, 38.
isalpha : 4, 6.
isdigit : 4, 6.
ishigh : 6.
islower : 6.
ispref : 57, 58, 59, 61, 62, 63.
isspace : 6.
isupper : 6.
isxalpha : 6.
isxdigit : 6.
j: 56.
j len : 56.
j1 : 56.
k: 23, 36, 56, 67.
k len : 56.
kk : 36.
k1 : 56.
l: 36, 48, 54, 67.
last : 48, 49, 57, 58, 59, 61, 62.
len : 63.
length : 10, 63.
less : 55, 56, 57, 59, 60, 63.
limit : 5, 6, 22, 23, 26, 29, 30, 31, 32, 35, 36,

37, 38, 39, 40, 67.
line : 7, 25.
lines dont match : 26, 32.
link : 10, 43, 50, 52, 53, 57, 58, 63.
llink : 10, 43, 57, 60.
loc : 5, 6, 22, 23, 29, 32, 34, 35, 36, 38, 39, 40, 67.
long buf size : 16, 22.
longest name : 16, 21.
lt eq : 5.
lt lt : 5.

main : 14, 73.
make xrefs : 14, 74, 77, 79.
mark error : 12, 66.
mark harmless : 12.
max bytes : 16, 43.
max file name length : 7, 25, 36, 73, 77, 78, 79.
max include depth : 7, 25, 35.
max names : 16, 43.
max sections : 16, 42.
minus gt : 5.
minus gt ast : 5.
minus minus : 5.
Missing @x...: 29.
n: 32.
name dir : 10, 43, 44, 45, 52, 53, 57, 58, 60, 63.
name dir end : 10, 43, 44, 51, 57, 58.
name info: 10, 43.
name len : 57, 58, 59, 60, 62.
name pointer: 10, 11, 43, 44, 46, 48, 52, 53,

54, 55, 57, 58, 59, 63, 64.
name pos : 75, 77.
name ptr : 10, 44, 45, 48, 50, 51, 57, 58.
names match : 11, 46, 50.
New name extends...: 62.
New name is a prefix...: 62.
new line : 15, 67, 68.
non eq : 5.
or or : 5.
overflow : 13, 51, 57, 58, 70, 71.
p: 43, 48, 52, 53, 54, 57, 58, 59.
par : 57, 59, 60, 61.
period ast : 5.
pfirst : 63.
phase : 2, 19.
plus plus : 5.
prefix : 55, 56, 62, 63.
prefix length : 52, 54, 57, 60, 62.
prime the change buffer : 27, 28, 38, 40.
print id : 10.
print prefix name : 11, 54, 60, 62.
print section name : 11, 52, 62.
print stats : 13, 68.
print where : 9, 32, 35, 36, 37, 38, 42.
printf : 4, 34, 60, 62, 66, 67, 70, 71.
program : 2, 18, 51, 81, 84.
ptrdiff t: 4.
putchar : 15, 67.
puts : 69.
q: 52, 53, 58, 59, 63.
r: 59, 63.
reset input : 8, 40.
restart : 35, 36.

§85 Common code for CTANGLE and CWEAVE (Version 4.12.1) INDEX 33

Rlink : 10.
rlink : 10, 43, 57, 60.
root : 10, 45, 57, 59.
s: 52, 53, 54, 57, 58, 63, 66, 70, 75.
scan args : 75, 76, 84.
scn file : 14, 15, 73, 83.
scn file name : 14, 73, 77, 79.
Section name incompatible...: 62.
section count : 9, 32, 38, 42.
section lookup : 11, 59.
section name cmp : 62, 63, 64.
section text : 5, 21.
section text end : 5, 21.
set prefix length : 52, 57, 62.
show banner : 14, 74.
show happiness : 14, 68, 69, 74.
show progress : 14, 68, 74.
show stats : 14, 68.
sixteen bits: 2, 9, 42.
Sorry, capacity exceeded: 71.
spotless : 12, 65, 68, 69.
sprint section name : 11, 53.
sprintf : 77, 78, 79.
ss : 52, 53, 63.
stdout : 15.
strcmp : 4, 55, 56, 78.
strcpy : 36, 41, 75, 77, 78, 79.
strlen : 4, 36.
strncmp : 26.
strncpy : 31, 39, 51, 53, 57, 58.
system dependencies: 2, 21, 23, 36, 41, 67,

68, 75, 83.
t: 48, 70, 71.
temp file name : 36.
term write : 10, 15, 52, 54.
tex file : 14, 15, 73, 83, 84.
tex file name : 14, 73, 77, 79, 84.
text info : 43.
This can’t happen: 12.
tolower : 29, 32, 38.
Too many nested includes: 35.
too long : 36.
true : 2, 4, 22, 23, 27, 29, 32, 35, 36, 37, 38, 39,

40, 41, 63, 74, 77, 78, 79.
uint16 t: 2, 4.
uint8 t: 2, 4.
update terminal : 15, 66.
Usage:: 81.
web file : 7, 25, 39, 41.
web file name : 7, 41, 77.
web file open : 7, 25, 41, 66.
web strcmp : 55, 56, 60, 63.

Where is the match...: 34, 38.
wrap up : 13, 68, 70.
xisalpha : 6.
xisdigit : 6.
xislower : 6.
xisspace : 6, 32.
xisupper : 6, 29, 32, 38.
xisxdigit : 6.
xmem : 43.
xref : 43.

34 NAMES OF THE SECTIONS Common code for CTANGLE and CWEAVE (Version 4.12.1)

〈Common code for CWEAVE and CTANGLE 2, 5, 6, 7, 9, 10, 12, 14, 15 〉 Used in section 1.

〈Complain about argument length 82 〉 Used in sections 77, 78, and 79.

〈Compute the hash code h 49 〉 Used in section 48.

〈Compute the name location p 50 〉 Used in section 48.

〈Enter a new name into the table at position p 51 〉 Used in section 48.

〈Global variables 18, 19, 21, 22, 25, 26, 42, 43, 44, 46, 65, 73, 83 〉 Used in section 1.

〈Handle flag argument 80 〉 Used in section 75.

〈 If no match found, add new name to tree 61 〉 Used in section 59.

〈 If one match found, check for compatibility and return match 62 〉 Used in section 59.

〈 If the current line starts with @y, report any discrepancies and return 34 〉 Used in section 32.

〈 Include files 4 〉 Used in section 1.

〈 Initialize pointers 45 〉 Used in section 20.

〈Look for matches for new name among shortest prefixes, complaining if more than one is found 60 〉 Used

in section 59.

〈Make change file name 78 〉 Used in section 75.

〈Make web file name , tex file name , and C file name 77 〉 Used in section 75.

〈Move buffer and limit to change buffer and change limit 31 〉 Used in sections 27 and 32.

〈Open input files 41 〉 Used in section 40.

〈Override tex file name and C file name 79 〉 Used in section 75.

〈Predeclaration of procedures 3, 8, 11, 13, 24, 28, 33, 55, 64, 76 〉 Used in section 1.

〈Print error location based on input buffer 67 〉 Used in section 66.

〈Print the job history 69 〉 Used in section 68.

〈Print usage error message and quit 81 〉 Used in section 75.

〈Read from change file and maybe turn off changing 38 〉 Used in section 35.

〈Read from cur file and maybe turn on changing 37 〉 Used in section 35.

〈 Scan arguments and open output files 84 〉 Used in section 20.

〈 Set the default options common to CTANGLE and CWEAVE 74 〉 Used in section 20.

〈 Skip over comment lines in the change file; return if end of file 29 〉 Used in section 27.

〈 Skip to the next nonblank line; return if end of file 30 〉 Used in section 27.

〈Try to open include file, abort push if unsuccessful, go to restart 36 〉 Used in section 35.

	Introduction
	The character set
	Input routines
	File handling
	Storage of names and strings
	Reporting errors to the user
	Command line arguments
	Output
	Index
	Names of the sections
	Common code for CWEAVE and CTANGLE
	Complain about argument length
	Compute the hash code h
	Compute the name location p
	Enter a new name into the table at position p
	Global variables
	Handle flag argument
	If no match found, add new name to tree
	If one match found, check for compatibility and return match
	If the current line starts with @y, report any discrepancies and return
	Include files
	Initialize pointers
	Look for matches for new name among shortest prefixes, complaining if more than one is found
	Make change_file_name
	Make web_file_name, tex_file_name, and C_file_name
	Move buffer and limit to change_buffer and change_limit
	Open input files
	Override tex_file_name and C_file_name
	Predeclaration of procedures
	Print error location based on input buffer
	Print the job history
	Print usage error message and quit
	Read from change_file and maybe turn off changing
	Read from cur_file and maybe turn on changing
	Scan arguments and open output files
	Set the default options common to CTANGLE and CWEAVE
	Skip over comment lines in the change file; return if end of file
	Skip to the next nonblank line; return if end of file
	Try to open include file, abort push if unsuccessful, go to restart

