Table of Notation

Symbol	Explanation	Page
$\overline{\operatorname{Atom}(U)}$	set of atoms of the ideal U	84
$\operatorname{Aut} L$	automorphism group of L	12
B_n	boolean lattice with n atoms	4
C_n	<i>n</i> -element chain	4
$\operatorname{con}(a,b)$	smallest congruence under which $a \equiv b$	15
$\operatorname{con}(c)$	principal congruence for a color c	39
$\operatorname{con}(H)$	smallest congruence collapsing H	16
$\operatorname{con}(\mathfrak{p})$	principal congruence for the prime interval ${\mathfrak p}$	37
$\operatorname{Con} L$	congruence lattice of L	15, 48
$\operatorname{Con}_{\mathrm{J}} L$	order of join-irreducible congruences of L	37
$\operatorname{Con}_{\mathrm{M}} L$	order of meet-irreducible congruences of L	71
$\operatorname{Cube} K$	cubic extension of K	71
D	class (variety) of distributive lattices	24
Diag	diagonal embedding of K into $\operatorname{Cube} K$	71
$\operatorname{Down} P$	order of down-sets of the (hemi)order P	4, 9, 232
ext: $\operatorname{Con} K \to \operatorname{Con} L$	for $K \leq L$, extension map: $\Theta \mapsto \operatorname{con}_L(\Theta)$	41
$\operatorname{fil}(a)$	filter generated by the element a	14
$\operatorname{fil}(H)$	filter generated by the set H	14
$F_{\mathbf{D}}(3)$	free distributive lattice on three generators	26
$F_{\mathbf{K}}(H)$	free lattice generated by H in a variety ${\bf K}$	26
$F_{\mathbf{M}}(3)$	free modular lattice on three generators	28
$\operatorname{Frucht} C$	Frucht lattice of a graph C	178
$\hom_{\{\vee,0\}}(X,Y)$	$\{\vee, 0\}$ -homomorphism of X into Y	253

xiv Table of Notation

Symbol	Explanation	Page
$\operatorname{id}(a)$	ideal generated by the element a	14
$\operatorname{id}(H)$	ideal generated by the set H	14
Id L	ideal lattice of L	14, 48
(Id)	condition to define ideals	14, 48
Isoform	class of isoform lattices	141
J(D)	order of join-irreducible elements of D	19
$J(\varphi)$	$J(\varphi): J(E) \to J(D)$, the "inverse" of $\varphi: D \to E$	32
J(a)	set of join-irreducible elements below a	19
$\ker(\varphi)$	congruence kernel of φ	16
L	class (variety) of all lattices	25
\mathbf{M}	class (variety) of modular lattices	25
Max	maximal elements of an order	49
$\mathbf{mcr}(n)$	minimal congruence representation function	87
mcr(n, V)	mcr for a class V	87
M(D)	order of meet-irreducible elements of D	32
M_3	five-element modular nondistributive lattice	xvii, 11, 30
$M_3[L]$	order of boolean triples of L	58
$M_3[L,a]$	interval of $M_3[L]$	63
$M_3[L, a, b]$	interval of $M_3[L]$	65
$M_3[a,b]$	order of boolean triples of the interval $[a, b]$	58
$M_3[\Theta]$	reflection of Θ^3 to $M_3[L]$	60
$M_3[\Theta, a]$	reflection of Θ^3 to $M_3[L, a]$	64
$M_3[\Theta, a, b]$	reflection of Θ^3 to $M_3[L, a, b]$	xvii, 67
N_5	five-element nonmodular lattice	xvii, 11, 30
$N_{5,5}$	seven-element nonmodular lattice	94
$N_6 = N(p,q)$	six-element nonmodular lattice	xvii, 80
$N_6[L]$	2/3-boolean triple construction	198
N(A, B)	lattice construction	132
O(f)	Landau O notation	xxvi
$\operatorname{Part} A$	partition lattice of A	7, 9
$\operatorname{Pow} X$	power set lattice of X	4
$\operatorname{Pow}^+ X$	order of nonempty subsets of X	219
$\operatorname{Prime}(L)$	set of prime intervals of L	37
re: $\operatorname{Con} L \to \operatorname{Con} K$	reflection (restriction) map: $\Theta \mapsto \Theta \rceil K$	39
SecComp	class of sectionally complemented lattices	87
$\mathbf{SemiMod}$	class of semimodular lattices	87
$\operatorname{Simp} K$	simple extension of K	71
(SP_{\vee})	join-substitution property	14, 48
$({ m SP}_\wedge)$	meet-substitution property	xvii, 14, 48
$\operatorname{sub}(H)$	sublattice generated by H	13
S_8	eight-element semimodular lattice	106
Т	class (variety) of trivial lattices	25
Uniform	class of uniform lattices	141

Symbol	Explanation	Page
--------	-------------	------

Relations and

Congruences

-		
$\overline{A^2}$	set of ordered pairs of A	3
$\varrho, \tau, \pi, \ldots$	binary relations	
Θ, Ψ, \ldots	congruences	
ω	zero of $\operatorname{Part} A$	7
ι	unit of $\operatorname{Part} A$	7
$a \equiv b \ (\pi)$	a and b in the same block of π	7
$a \varrho b$	a and b in relation ρ	3
$a \equiv b \ (\Theta)$	a and b in relation Θ	3
a/π	block containing a	6, 14
\dot{H}/π	blocks represented by H	7
$\alpha \circ \beta$	product of α and β	21
$\alpha \overset{\mathrm{r}}{\circ} \beta$	reflexive product of α and β	30
Θ_K	restriction of Θ to the sublattice K	14
L/Θ	quotient lattice	16
Φ/Θ	quotient congruence	16
π_i	projection map: $L_1 \times \cdots \times L_n \to L_i$	21
$\Theta\times\Phi$	direct product of congruences	21

Orders

<u> </u>	ordering	3
\geq , >	ordering, inverse notation	3
$K \leq L$	K a sublattice of L	13
\leq_Q	ordering of P restricted to a subset Q	4
$a \parallel b$	a incomparable with b	3
$a \prec b$	a is covered by b	5
$b \succ a$	b covers a	5
0	zero, least element of an order	4
1	unit, largest element of an order	4
$a \lor b$	join operation	9
$\bigvee H$	least upper bound of H	3
$a \wedge b$	meet operation	9
$\bigwedge H$	greatest lower bound of H	4
P^d	dual of the order (lattice) P	4, 10
[a,b]	interval	13
$\downarrow H$	down-set generated by H	4
$\downarrow a$	down-set generated by $\{a\}$	4
$P \cong Q$	order (lattice) P isomorphic to Q	4, 12

7

Table of Notation xvi

Symbol	Explanation	Page
Construction	s	
$\overline{P \times Q}$	direct product of P and Q	5, 20
$P + \dot{Q}$	sum of P and Q	6
$P \dotplus Q$	glued sum of P and Q	16
A[B]	tensor extension of A by B	248
$A \otimes B$	tensor product of A and B	245
$U \circledast V$	modular lattice construction	120
Perpectivitie	5	
$[a,b] \sim [c,d]$	[a, b] perspective to $[c, d]$	32
$[a,b] \stackrel{\mathrm{u}}{\sim} [c,d]$	[a, b] up-perspective to $[c, d]$	33
$[a,b] \stackrel{\mathrm{d}}{\sim} [c,d]$	[a, b] down-perspective to $[c, d]$	33
$[a,b] \approx [c,d]$	[a, b] projective to $[c, d]$	33
$[a,b] \nearrow [c,d]$	[a, b] up congruence-perspective onto $[c, d]$	35
$[a,b] \searrow [c,d]$	[a, b] down congruence-perspective onto $[c, d]$	35
$[a,b] \hookrightarrow [c,d]$	[a, b] congruence-perspective onto $[c, d]$	35
$[a,b] \Rightarrow [c,d]$	[a, b] congruence-projective onto $[c, d]$	36
$[a,b] \Leftrightarrow [c,d]$	$[a,b] \Rightarrow [c,d] \text{ and } [c,d] \Rightarrow [a,b]$	36

Prime intervals

p, q,		
$\operatorname{con}(\mathfrak{p})$	principal congruence generated by \mathfrak{p}	37
$\mathfrak{p} \Rightarrow \mathfrak{q}$	${\mathfrak p}$ is congruence-projective onto ${\mathfrak q}$	36
$\mathfrak{p} \Leftrightarrow \mathfrak{q}$	$\mathfrak{p} \Rightarrow \mathfrak{q} \text{ and } \mathfrak{q} \Rightarrow \mathfrak{p}$	36
$\operatorname{Prime}(L)$	set of prime intervals of L	37

Miscellaneous

\overline{x}	closure of x	10
Ø	empty set	4

Picture Gallery

xvii