
Index Preparation and Processing∗

Pehong Chen†

Michael A. Harrison

Computer Science Division

University of California

Berkeley, CA 94720

Abstract

Index preparation is a tedious and time-consuming task. This paper indicates how
the indexing process can be automated in a way that is largely independent of a specific
typesetting system and independent of the format being used. Fundamental issues related
to this process are identified and analyzed. Specifically, we develop a framework for
placing index commands in the document. In addition, the design of a general purpose
index processor that transforms a raw index into an alphabetized version is described.
The resulting system has proved very useful and effective in producing indexes for several
books, technical reports, and manuals. A comparison of our system with indexing facilities
available from a variety of other document preparation environments is given.

Keywords: index placement, index processing, source-language model, direct manipu-
lation.

1 Introduction

Although there has been a great deal of activity in electronic publishing [1], there are still

aspects of document composition that have not been fully automated. One of the most time-

consuming concerns is the preparation of an index. In ordinary books, an index allows a reader

∗Sponsored in part by the National Science Foundation under Grant MCS-8311787, and by the Defense
Advanced Research Projects Agency (DoD), ARPA Order No. 4871, monitored by Space and Naval Warfare
Systems Command, under Contract No. N00039-84-C-0089.

†Additional support has been provided by an IBM Graduate Fellowship.

1

2

to access essential information easily. A poor index with many omissions or poorly chosen

concepts detracts from other aspects of the book. For highly complex technical material that

may include computer programs, different kinds of indices may reference even the identifiers

of a programming language. A good example of an elaborate indexing scheme can be found in

Knuth’s TEX: The Program [2] and his WEB system [3] in general. For computer programs

like these, completeness is essential and the accuracy of traditional hand methods will not

suffice for software engineering applications.

Standard authors’ guides, such as Reference [4], recommend that index terms be marked

on page proofs or on a separate set of galley proofs. The traditional method is to use 3 × 5

cards, appropriately called index cards. A page number is added to a card when a reference is

encountered. Sorting is done by hand and the process is tedious and error-prone. Computers

offer an opportunity to significantly reduce the amount of labor invested in this process while

noticeably improving the quality of the resulting index.

This paper indicates how the indexing process can be automated in a way that is largely

independent of a specific typesetting system and independent of the format being used. Specif-

ically, we develop a framework for placing index commands in the document. In addition, the

design of a general purpose index processor that transforms a raw index into an alphabetized

version is described. These concepts have been implemented as part of an extensive authoring

environment [5]. This environment includes a suite of Lisp programs for the index placing

facility and a C program for the index processor. The resulting system has been success-

fully used in producing indexes for some books [6,7] and a number of technical reports and

manuals.

Indexing issues under both source-language and direct-manipulation [8,9] paradigms are

considered. In a source-language based system, the user specifies the document with inter-

spersed commands, which is then passed to a formatter, and the output is obtained. The

source-language usually provides some abstraction and control mechanisms such as proce-

dures, macros, conditionals, variables, etc. in much the same way as a high-level programming

language does. In a direct-manipulation environment, the user manipulates the document out-

3

put appearance directly by invoking built-in operators available through menus and buttons.

These systems are highly interactive; the result of invoking an operation is observed instanta-

neously, thereby creating an illusion that the user is “directly” manipulating the underlying

object.

The document attributes in direct-manipulation systems are usually specified by a declar-

ative language encapsulated as form-based property sheets. These property sheets correspond

to textual markup tags that can be imported to or exported from the direct-manipulation

system for document interchange purposes. While a source representation is maintained

explicitly in the source-language model, the notion of a document semantics specification

language is somewhat implicit in direct-manipulation systems.

Some people have called direct-manipulation systems WYSIWYG (what-you-see-is-what-

you-get). The two concepts are not equivalent, however. WYSIWYG refers to the corre-

spondence between what is presented on a video display and what can be generated on some

other device. In the context of electronic publishing, WYSIWYG means that there is a very

close relationship in terms of document appearance between a screen representation and the

final hardcopy. Direct manipulation is a more general concept that models user interfaces.

A direct-manipulation document preparation system may not have a WYSIWYG relation-

ship between its display representation and the final hardcopy. Conversely, a batch-oriented,

source-language based formatter may be coupled with a previewer that is WYSIWYG.

This paper presents some general indexing problems and our solutions in a top-down

fashion. First we discuss the desirable features of an index processor and then some design

and implementation considerations for such a processor. Our goal is to arrive at general

purpose solutions. Next, a framework is introduced under which an author enters index

commands or tags with much reduced overhead. The examples shown are in LaTEX [10], a

high-level document preparation language based on TEX [11]. The model, however, is not

restricted to any particular formatting language, nor to the source-language paradigm. We

also examine some unique indexing issues in electronic document development environments

that do not seem to find appropriate counterparts in traditional printed material. Finally our

4

indexing facilities are evaluated against those available in other formatting systems such as

Scribe [12], troff [13], and some direct-manipulation environments.

2 Basic Tasks

Index preparation is a process involving the following steps:

I. Placing index commands in the document source, which presumably comprises multiple

files. An index command takes a single argument: the key to be indexed.

II. Creating a raw index file whose entries each consists of two arguments: the index key

and the page on which the index command appears.

III. Processing the raw index file. Here, all index keys are sorted alphabetically. Page

numbers under the same key are merged and successive numbers may be collected into

intervals (e.g., 1, 2, 3, 4, 5 is replaced by 1-5). Subitems within an entry, if any,

are properly handled.

IV. Formatting the processed index. The result is the actual index.

The idea is illustrated in Figure 1, where roman capitals I–IV marking the edges correspond

to the four steps here. This procedure is a highly sequential, for the input to one step depends

upon the result from the previous one.

Figure 2 exemplifies a stepwise development of the process. In LaTEX and TEX, all com-

mands begin with a backslash (\). Figure 2.a shows some occurrences of index commands

(\index) in the document source, with corresponding pages listed on the left. The page

number is not part of the source file since at file-preparation time, it is unclear on which

page a given textual material will eventually appear. Figure 2.a includes these numbers just

to indicate that ultimately these entries would appear on those pages. Figure 2.b shows a

raw index file generated by LaTEX. After running through the index processor, it becomes an

alphabetized index with commands specifying a particular output appearance (Figure 2.c).

The result after formatting is shown in Figure 2.d.

5

&%
'$
Interactive

Editor

�
�

�
���

�
�

�	

I

Document

Source

@
@

@
@@R@

@
@

@@I
II

&%
'$
Formatter -IV

�
�

�
�	

II

Final
Index

Input
Output
Style

A
A
A
AAU

III

Raw
Index
File

�
�

�
���

III

&%
'$

Index
Processor

-
III

Alphabetized
Index

6

IV

Figure 1: Circles in the picture represent processors, squares are documents or auxiliary files.
In Step I, the author uses an editor to place index commands in the document. In Step II, a
raw index is generated as a by-product of formatting. In Step III, this raw index together with
some optional style information are taken as input to the index processor and an alphabetized
version is created. Finally in Step IV, the index is formatted to yield the ultimate result.

6

Page iv : \index{alpha}
Page 1: \index{alpha}
Page 2: \index{alpha}
Page 3: \index{alpha}
Page 11: \index{alphabeta|see{beta}}
Page 14: \index{alpha@{\it alpha\/}}

\index{beta|bold}
Page 22: \index{alpha!beta!gamma}
Page 38: \index{alpha!delta}

\indexentry{alpha}{iv}
\indexentry{alpha}{1}
\indexentry{alpha}{2}
\indexentry{alpha}{3}
\indexentry{alphabeta|see{beta}}{11}
\indexentry{alpha@{\it alpha\/}}{14}
\indexentry{beta|bold}{14}
\indexentry{alpha!beta!gamma}{22}
\indexentry{alpha!delta}{38}

\begin{theindex}

\item alpha, iv, 1-3
\subitem beta
\subsubitem gamma, 22

\subitem delta, 38
\item {\it alpha\/}, 14
\item alphabeta, \see{beta}{11}

\indexspace

\item beta, \bold{14}

\end{theindex}

alpha, iv, 1–3
beta

gamma, 22
delta, 38

alpha, 14
alphabeta, see beta

beta, 14

Figure 2: The stepwise development of index processing . This example is specified in LaTEX.
(a) Top Left: Occurrences of index commands in the document source. Note that page
numbers are unknown at the time of input when a source-based formatter like LaTEX is used.
Page numbers are included here simply to illustrate where each instance will occur. (b) Top
Right: raw index file generated by LaTEX. (c) Bottom Left: alphabetized index file. (d)
Bottom Right: formatted final index.

7

Based on the example given in Figure 2, these four steps are explained below, where

Steps I and III are further expanded in subsequent sections. Issues involved in Steps II and

IV are less complex and are covered only in this section.

2.1 Placing Index Commands

Step I deals with placing index commands in the document. In a source-language based

environment, the commands can simply be inserted in the document source with a text

editor. They will be utilized by the formatter in generating raw index entries (Step II),

but will contribute nothing to the output appearance as far as the corresponding pages are

concerned.

In a direct-manipulation system, index commands cannot be entered directly in the docu-

ment under manipulation. A possible solution is to put them in “shadow pages” instead of the

document output representation. A shadow document is the original document plus special

tags that, among other things, mark logical objects like comments, bibliographical citations,

cross references, indexes, etc. These tags are essential to document composition but do not

correspond to physical appearance in their original forms. Upon request, the corresponding

markers of these tags can be displayed along with the original document for editing purposes.

For the user’s visual cue, each type of tags can be represented by a different marker symbol.

Normally for each tag entered in the document, an embedded annotation can be specified.

An additional window can be created to show the associated annotation if necessary. This

shadow document approach is widely adopted by direct-manipulation document development

or desktop publishing systems such as Xerox Star [14], FrameMaker [15], MicroSoft Word [16],

and Ventura Publisher [17].

The primary issue in step I for both paradigms is whether or not a systematic mechanism

can be derived for the entering of index commands or tags. Details of a general model that

accomplishes this task are given below.

8

2.2 Generating the Raw Index

Step II concerns attaching the current page number to each index command placed in the

document. The command used in the generated raw index file may be renamed (in our

example, it is changed from \index to \indexentry). The entries are in the exact order

in which they appear in the document source. Thus, as long as the current page number is

accessible, be it source-language or direct-manipulation based, generating raw index entries

is relatively straightforward.

There are minor differences between the two paradigms in this step, however. The gener-

ation of raw index entries in a source-language based system, like formatting itself, is by and

large a “batch job”. In a direct-manipulation editor, it is easier to maintain the list of raw

index entries incrementally because the document being manipulated is always formatted so

the page number is always current.

2.3 Index Processing

Processing raw index entries raises several issues. Some high-level issues are described below

with references to the example given in Figure 2; how these tasks can be realized is detailed

in the next section.

Permutation. Index entries are sorted alphabetically (Figure 2.c). The index processor

must differentiate among different types of keys such as strings, numbers, and special symbols.

Upper and lower case letters should be distinguished. Furthermore, it may be necessary to

handle roman, arabic, and alphabetic page numbers.

Merging . Different page numbers corresponding to the same index key are merged into

one list. Also, three or more successive page numbers are abbreviated as a range (as in the

case of alpha, iv, 1-3, Figure 2.c). If citations on successive pages are logically distinct,

good indexing practice suggests that they should not be represented by a range. Our system

allows user control of this practice.

Subindexing . Multi-level indexing is supported. Here, entries sharing a common prefix

are grouped together under the same prefix key. The special symbol ‘!’ serves as the level

9

operator in the example (Figure 2.a and 2.b). Primary indexes are converted to first level

items (the \item entries in Figure 2.c) while subindexes are converted to lower level items

(e.g., \subitem or \subsubitem entries in Figure 2.c).

Actual Field . The distinction between a sort key and its actual field is made explicit. Sort

keys are used in comparison while their actual counterparts are what end up being placed

in the printed index. In the example, the ‘@’ sign is used as the actual field operator, which

means its preceding string is the sort key and its succeeding string is the actual key (e.g.,

the \index{alpha@{\it alpha\/}} in Figure 2.a). The same sort key with and without an

actual field are treated as two separate entries (cf. alpha and alpha in the example). If a key

contains no actual operator, it is used as both the sort field and the actual field.

The separation of a sort key from its actual field makes entry sorting much easier. If there

were only one field, the comparison routine would have to ignore syntactic sugar related to

output appearance and compare only the “real” keywords. For instance, in {\it alpha\/},

the program has to ignore the font setting command \it, the italic correction command \/,

and the scope delimiters {}. In general, it is impossible to know all the patterns that the

index processor should ignore, but with the separation of the fields, the sort key is used as a

verbatim string in comparison; any special effect can be achieved via the actual field.

Page Encapsulation. Page numbers can be encapsulated using the ‘|’ operator. In the

example, page 14 on which \index{beta} occurs is set in boldface, as represented by the

command \bold. The ability to set page numbers in different fonts allows the index to

convey more information about whatever is being indexed. For instance, the place where a

definition occurs can be set in one font, its primary example in a second, and others in a

third.

Cross Referencing . Some index entries make references to others. In our example the

alphabeta entry is a reference to beta, as indicated by the see phrase. The page number,

however, disappears after formatting (Step IV), hence it is immaterial where index commands

dealing with cross references like see occur in the document. This is a special case of page

encapsulation (see{beta} appears after the ‘|’ operator). Variations like see also, which

10

gives page numbers as well as references to other entries, work similarly.

Input/Output Style. In order to be formatter- and format-independent, the index processor

must be able to handle a variety of formats. There are two reasons for considering this

independence issue in the input side: Raw index files generated by systems other than LaTEX

may not comply to the default format, and the basic framework established for processing

indexes can also be used to process other objects of similar nature (e.g., glossaries). But

these other objects will certainly have a different keyword (e.g., \glossaryentry as opposed

to \indexentry) in the very least. Similarly in the output side the index style may vary

for different systems. Even within the same formatting system, the index may have to look

differently under different publishing requirements. In other words, there must be a way to

inform the processor of the input format and the output style.

2.4 Index Formatting

Two key issues in this last step are support for multiple styles and formatting independence.

First, the formatting style macros used in Step III output must be defined. In our exam-

ple, the global environment (\begin{theindex}...\end{theindex}) tells LaTEX to use a

two-column page layout. Each \item is left justified against the column margin and each

\subitem is indented by 20 points, \subsubitem by 30, etc. There is a vertical space bound

to \indexspace inserted before the beginning of a new letter (e.g., before beta).

The formatting independence problem refers to whether or not the final index can be for-

matted independently of the entire document. Indexing is typically the last step of document

preparation, and is attempted only when the entire document is finalized. It is desirable

to be able to generate the index without reformatting the entire document. To be able to

format the index separately, the global context must be known, which is made possible by the

extensible style facility in our design. One can redefine preamble and postamble to invoke a

style consistent with the original document.

The other information needed to perform effective separate formatting is the starting page

number for the index. Some styles require that the index start on an even or odd page number.

11

specifier attribute default meaning

keyword string "\\indexentry" index command
arg_open char ’{’ argument opening delimiter
arg_close char ’}’ argument closing delimiter
range_open char ’(’ page range opening delimiter
range_close char ’)’ page range closing delimiter
level char ’!’ index level delimiter
actual char ’@’ actual key designator
encap char ’|’ page number encapsulator
quote char ’"’ quote symbol
escape char ’\\’ symbol that escapes quote
page_compositor string "-" composite page delimiter

Table 1: Input format parameters.

In either case, there must be provisions for including the correct starting page number in the

pre-formatted version of index.

3 Index Processing

The index processor performs the tasks indicated above — permutation, page number merg-

ing, subindexing, style handling, and other special effects. In order to achieve format and

formatter independence, the index processor must be able to accept raw index terms des-

ignated by different keywords and delimiters. Likewise, it must be able to generate output

in a specific style so that the result can be processed by the corresponding formatter. The

intended tasks can be performed in multiple passes: First the input format file and output

style file are scanned and analyzed. Entries in the input file are then processed. Next, all legal

entries are sorted. Finally, the output index is generated in the last pass. The remainder of

this section discusses the essential attributes for input formats and output styles and points

out relevant issues for sorting and generating the entries.

12

3.1 Input Format

Table 1 is a summary of the input format that consists of a list of <specifier , attribute> pairs.

These attributes are the essential tokens and delimiters needed in scanning the input index file.

Default string constants are enclosed in double quotes ("...") and character constants are in

single quotes (’x’). The user can override the default value by specifying a specifier and a new

attribute in the format file or property sheet. The attribute of keyword is self-explanatory;

arg_open and arg_close denote the argument opening and closing delimiters, respectively.

The meanings of special operators such as level, actual, and encap are described above.

The two range delimiters range_open and range_close are used with the encap operator.

When range_open immediately follows encap (i.e., \index{...|(...}), it tells the index

processor that an explicit range is starting. Conversely range_close signals the closing of

a range. In our design, three or more successive page numbers are abbreviated as a range

implicitly. This implicit range formation can be turned off if an indexed term represents

logically distinct concepts in different pages. When the implicit range is disabled, explicit

page ranges can be enforced by using the two range delimiters range_open and range_close.

Therefore, it is possible to index an entire section or a large piece of text related to a certain

concept without having to insert an index command in every single page.

The quote operator is used to escape symbols. Thus \index{foo"@goo} means a sort

key of foo@goo rather than a sort key of foo" and an actual key of goo. As an exception,

quote, when preceded by escape (i.e. \index{...\"...}), does not escape its succeeding

letter. This special case is included because \" is the umlaut command in TEX. Requiring

quote itself to be quoted in this case (i.e. \"") is feasible but somewhat awkward; quote and

escape must be distinct.

A page number can be a composite of one or more fields separated by the delimiter bound

to page_compositor (e.g., II-12 for page 12 of Chapter II). This attribute allows the lexical

analyzer to separate these fields, simplifying the sorting of page numbers.

13

specifier attribute default meaning

preamble string "\\begin{theindex}\n" index preamble
postamble string "\n\n\\end{theindex}\n" index postamble
setpage_prefix string "\n \\setcounter{page}{" page setting command prefix
setpage_suffix string "}\n" page setting command suffix
group_skip string "\n\n \\indexspace\n" intergroup vertical space
lethead_prefix string "" new letter heading prefix
lethead_suffix string "" new letter heading suffix
lethead_flag number 0 flag designating new letter
item_0 string "\n \\item " level 0 item separator
item_1 string "\n \\subitem " level 1 item separator
item_2 string "\n \\subsubitem " level 2 item separator
item_01 string "\n \\subitem " levels 0/1 separator
item_x1 string "\n \\subitem " levels x/1 separator
item_12 string "\n \\subsubitem " levels 1/2 separator
item_x2 string "\n \\subsubitem " levels x/2 separator
delim_0 string ", " level 0 key/page delimiter
delim_1 string ", " level 1 key/page delimiter
delim_2 string ", " level 2 key/page delimiter
delim_n string ", " inter page number delimiter
delim_r string "--" page range designator
encap_prefix string "\\" page encapsulator prefix
encap_infix string "{" page encapsulator infix
encap_suffix string "}". page encapsulator suffix
page_precedence string "rnaRA" page type precedence
line_max number 72 maximum line length
indent_space string "\t\t" indentation for wrapped lines
indent_length number 16 length of indentation

Table 2: Output style parameters.

3.2 Output Style

Table 2 summarizes the output style parameters. Again, it is a list of <specifier , attribute>

pairs. In the default column, ‘\n’ and ‘\t’ denote a new line and a tab, respectively. These

parameters can be further divided into the following groups:

Context . Together, preamble and postamble define the context in which the index is to

be formatted.

Starting Page. The starting page number can either be supplied by the user or retrieved

automatically from the document transcript. In either case, this number can be enclosed with

14

setpage_prefix and setpage_suffix to yield a page number initializing command.

New Group/Letter . The string bound to group_skip denotes the extra vertical space

needed when a group is started. For a group beginning with a different letter, the parameters

lethead_prefix and lethead_suffix (both with a default nil string) denote the group

heading. The flag lethead_flag has a default value of 0, which means other than group_skip

nothing else will be inserted before the group. On the other hand, if this flag is positive, the

strings bound to lethead_prefix and lethead_suffix will be inserted with an instance of

the new letter in uppercase in between. Similarly, a lowercase letter will be inserted if the

flag is negative.

Entry Separators. This group includes everything with the item_ prefix. First, item_i

denotes the command and indentation to be inserted when a key is started from a level greater

than or equal to i. Second, item_ij has a similar meaning, but with i = j−1. Finally, the two

item_xj’s are included to handle the situation where the parent level has no page numbers.

Some styles require cases like these to be different from those with page numbers.

Table 2 depicts a system that supports three levels of subindexing. In general, suppose

n is the number of index levels supported, there will be n item_i’s (0 ≤ i ≤ n − 1), (n − 1)

item_ij’s (1 ≤ j ≤ n − 1, i = j − 1), and (n − 1) item_xj’s (1 ≤ j ≤ n − 1).

Page Delimiters. Each level has a key/page delimiter that defines what is to be inserted

between a key and its first page number. The inter-page delimiter is specified by delim_n,

while the range designator is given by delim_r.

Page Encapsulator . The attributes of encap_prefix, encap_infix, and encap_suffix

form what is to be placed into the output when an encapsulator is specified for a certain entry.

Suppose foo is the specified encapsulator and N is the page number, the output sequence is

encap_prefix foo encap_infix N encap_suffix

Page Precedence. Five different types of numerals are supported by most systems for page

numbering. These are lowercase roman (r), numeric or arabic (n), lowercase alphabetic (a),

uppercase roman (R), and uppercase alphabetic (A). The string bound to page_precedence

(default "rnaRA") specifies their order.

15

Line Wrapping . In the output index file, the merged list of page numbers can be wrapped

in multiple lines, if it is longer than line_max. The newly wrapped line is indented by

indent_space whose length is indent_length. This artificial line wrapping does not make

any difference in formatting, but does provide increased readability for the pre-formatted

final index. This feature may seem somewhat trivial at first glance, but if no formatters are

involved whatsoever, the readability of the verbatim output index is important.

3.3 Sorting Entries

Entries in the raw index file are sorted primarily on their index keys and secondarily on their

page numbers. Index keys are sorted first; within the same index key, page numbers are sorted

numerically. Sort keys and numeric page numbers are used in the comparison, while actual

keys and literal page fields are entered into the resulting index. In our design, a complete

index key is an aggregate of one or more sort keys plus the same or a smaller number of actual

keys. The comparison is based on sort keys, but if two aggregates have identical sort fields

and page numbers, the actual keys can be used to distinguish their order.

Index keys can be categorized into the following groups: strings, numbers, and symbols. A

string is a pattern whose leading character is a letter in the alphabet. A number is a pattern

consisting of all digits. A symbol is a pattern beginning with a character not in the union

of the English alphabet and arabic digits or starting with a digit but mixed with non-digits.

Members of the same group should appear in sequence. Hence there are two issues concerning

ordering: one deals with entries within a group; the other is the global precedence among the

three groups in question. Details of sorting index keys can be found in Reference [18].

There are three basic types of numerals for page numbers: roman, alphabetic, and arabic.

The sorting of arbitrary combinations of these three types of numerals (e.g., 112, iv, II-12,

A.1.3, etc.) must be based on their numeric values and relative precedence. The attribute of

page_precedence in Table 2, for instance, specifies the precedence. Again, details of sorting

page numbers can be found in Reference [18].

16

3.4 Creating Output Index Entries

Once all input entries are sorted, the output index file can be created. First the attribute

bound to preamble is placed into the output file, followed by the string

setpage_prefix N setpage_suffix,

provided N is the starting page number and such a setting is requested. Next, each entry in

the sorted list is processed in order. Finally, the attribute bound to postamble is appended

at the end of the output file. The algorithm for generating each entry with appropriate

formatter-specific commands or delimiters (i.e. item_i’s, delim_i’s, etc.) is described in

Reference [18].

4 Placing Index Commands

This section discusses a simple framework for placing index commands in a document. It

assumes an interactive editor is available with string search, which positions the cursor to a

specified pattern, and query-insert , which displays a menu of options and, upon the user’s

selection, inserts a specified key, together with other constant strings (e.g., the index command

and its argument delimiters).

We implemented this framework on top of GNU Emacs [19] as part of an interactive

environment for composing TEX-based documents [5]. The underlying model applies not just

to conventional text editors, but to direct-manipulation systems as well.

4.1 Basic Framework

The basic framework is very simple. All the author needs is to specify a pattern and a key .

The editor then finds the pattern, issues a menu of options and inserts the index command

along with the key as its argument upon the user’s request. In our example, suppose both

pattern and key are alpha, then the inserted string after an instance of alpha in the document

is \index{alpha}. This insertion will be visible in a source-language based system and will

be invisible for a direct-manipulation system (or visible as hidden text for its shadow pages).

17

Before the actual insertion is made, it is desirable to make a confirmation request that

presents a menu of options, of which confirm and ignore are the most obvious ones. Thus for

each instance of the pattern found, the user can decide if it is to be indexed.

Representing patterns as regular expressions gives significantly more power to this query-

insert operation. The same key can represent a complicated string of a basic pattern, its

capitalized form, its acronym, and other abbreviations. For instance, the following patterns

may all be indexed by the key UCB,

University of California, Berkeley

Berkeley

berkeley

UCB

As a special case of this <key , pattern> setup, one can use words in the neighborhood of

current cursor position as the implicit value for both the key and the pattern. Some editors

allow the use of special characters to delimit word boundaries. These characters can be used in

searching to reduce on the number of “false drops”. For example, one can position the cursor

after the desired pattern and with one editor command (typically in two or three key strokes),

an index entry will be inserted with the preceding word (or words) as the implicit key. The

advantage of this facility is that there is no need to type the key-pattern pair. The same idea

also applies to a region of text, which is a piece of continuous text in the document. In Emacs,

a region is everything between a marker and the current cursor position. More generally, the

implicit operand can be the current selection, in which case the bounding positions of the

selected text are not necessarily the insertion point.

In our system, there is also a special facility to index every author name that appears in

the bibliography or references section of a document. This feature involves skipping citation

entries without an author field and for each author name found, issuing a query-insert prompt

similar to the normal case. Instead of entering a name directly as the index term, it is better

to display it in the form of last name followed by first and middle names for confirmation, as

in

18

Confirm: Knuth, Donald E.

This reordering yields last names as primary sort keys. Our name separation heuristic does

not always work for multi-word last names. The confirmation prompt allows the user to

correct it before insertion.

4.2 Key-Pattern List

A collection of these <key , pattern> pairs can be compiled in a list. A global function can

then be invoked to process each pair for the entire document or parts of it. This list can be

created off-line by the user, or automatically in an incremental fashion as the user confirms

new index insertions in an interactive session. The pattern matching mechanism must be able

to recognize and skip instances already indexed so that unnecessary repetitions are avoided.

In our system, this key-pattern list is a per document list. If a document includes multiple

files, the global function processes each of them according to the preorder traversal of the file

inclusion tree.

4.3 Indexing Menu

For each instance of the pattern found, a menu of options such as the following may be

presented.

• Confirm.

• Ignore.

• Key-Pattern List . Add the current <key , pattern> pair to the list associated with the

current document.

• Index Level . Prompt the user for an index prefix. The level operator (‘!’), if not given

at the end of the specified string, should be inserted automatically between the prefix

and the current key.

19

• Actual Field . Prompt the user for the actual field corresponding to the current (sort)

key. The actual operator (‘@’) should be automatically inserted in between.

• Page Encapsulator . Prompt the user for the page number encapsulator. The encap

operator (‘|’), if not given, should be attached in front of the specified string. Encap-

sulators corresponding to popular fonts such as bold, italic, and slanted, or to cross

references like see and see also can be implemented as a submenu.

4.4 Extended Framework

A typical scenario for placing index commands under the extended framework is as follows.

There are two query-insert modes: one based on a single key-pattern pair and the other on

multiple key-pattern pairs. In the former mode, the user specifies a pattern and a key, and

for every instance of the pattern found, decides whether to insert the index command with

the specified key, or a variant of it (i.e., a combination of level, actual, and encap). In the

latter mode, there is a collection of entries that may be represented as a long list for an entire

document, or as a short list for a section. Each key-pattern pair in the list is processed as in

the former case. Provisions are also available to help construct the list.

With such powerful mechanisms available, there is a tendency to “over index” because it

is so easy to be comprehensive. In some cases, “less may be more”. Therefore, one should

be extremely careful in confirming the insertion of key to avoid false drops picked up by the

search mechanism.

5 Direct Manipulation

Although our implementation of these facilities was for a source-based system, a number of

direct-manipulation systems do support a similar indexing facility. Four systems are described

briefly to indicate the applicability of the principles depicted in the previous sections. Also

examined is a more elaborate on-line indexing facility made possible using the electronic

media.

20

5.1 Indexing under Direct Manipulation

In Xerox PARC’s Cedar environment [20], the Tioga editor supports an application called

IndexTool [21] that automatically prepares multiple multi-level indexes (general index, author

index, etc.) with cross references (see and see also) and with substitution phrases (index the

phrase “data structures” under “data structure” to handle these automatically). IndexTool

takes a selection and creates an index entry attached to the document over the selection

range. Index entries can be edited in a separate tool to permit creating the cross references

and substitution text. Tioga also has a regular expression search capability via EditTool,

which also permits a wide range of search and replace operations.

In FrameMaker 1.0 [15], index tags can be placed and edited using a combination of

the Markers and the Search tools. Markers allows one to specify invisible tags such as sub-

jects, comments, and of course, index entries. For each marker, an associated annotation can

be specified. In the indexing case, the annotation is the key to appear in the final index.

Attributes of page encapsulation discussed previously can also be specified in the Markers

window. These attributes include explicit page range, fonts, and an option to disable page

numbers so that cross references like see can be realized. FrameMaker’s Search can be used

to locate the desired pattern in plain or regular expressions. An invisible character \m can

be specified in Search to identify each occurrence of index markers in the document. When-

ever a marker is found, the corresponding annotation is displayed in the Markers window.

The annotated text can incorporate special symbols to yield multi-level indexing and actual

field substitution similar to the ones described in above. A processor called fmBook can be

executed off-line to collect index markers, sort them, and finally generate a formatted index

whose style is customizable via system supplied property sheets.

In the Macintosh version of MicroSoft Word 3.0 [16], an index command is designated by

the “index code” .i. The text between .i. and an “end-of-entry code”, such as a semicolon,

is regarded as the index key. A colon (:) in the entry text acts as the index level operator.

The output appearance can be refined by using variants of the index code. For instance, .iB.

and .iI. set the page number in boldface and italic fonts, respectively, .i(. and .i). create

21

an explicit page range, etc. Index entries are “compiled” into the actual index that appears

at the end of the document. Before that takes place, the system must be notified that these

index codes are hidden text . An option in the preference sheet can be set to display hidden

text embedded in the document. Hidden text must be “hidden” when index entries are being

compiled; otherwise page number computation will be incorrect. There are no special tools

for entering index codes. The find and change commands in the Search Menu do not support

regular expressions. There are no query-insert modes in the search mechanism. Although

abbreviations can be registered as glossary entries, a great many keystrokes are still required

in placing a single index entry.

In Ventura Publisher 1.1 [17], a desktop publishing system for documents prepared on

any of several word processing programs on the IBM PC, index entries can be placed in the

document by invoking a dialogue box at the desired position. An alternative is to use a word

processor to enter a markup tag such as

<$I<I>alpha<L>[alpha];beta>

where <$I· · ·> marks · · · as an index term, <I>alpha<L> is the actual key in italic, [· · ·]

designates · · · as the corresponding sort key, and the semicolon is the index level operator. It

supports two levels of subindexing as well as see and see also. Index terms are hidden text;

the word Index will be displayed by its Current Selection Indicator when the cursor is placed

at a location where an index term is anchored. The output index style can be specified by

changing attributes in a property sheet called GENERATE INDEX. The collection of attributes

is a proper subset of Table 2. Index processing is executed as a batch job similar to fmBook

in FrameMaker. Searching is unavailable in Ventura Publisher, therefore an automated index

placing subsystem is not possible.

5.2 Dynamic Indexing and Hypertext

Our proposed implementation of an indexing facility under direct manipulation and the four

real systems discussed previously all operate in a multi-pass fashion, much the same as a

source-language based system. However, based on its interactive nature, a direct-manipulation

22

document editor can be constructed with an indexing subsystem that follows the same central

ideas, but with an user interface more closely related to the direct-manipulation paradigm.

The “directness” may be observed in the following scenario. The author specifies in-

put/output styles by selecting options available in system supplied property sheets. For each

key selected in the document, its corresponding entry in the index is immediately displayed,

along with entries already entered. Sorting is done as the entry is generated for the output.

Consequently, the internal structure for these entries can no longer be an array that is suitable

for fast sorting algorithms. Instead, a balanced tree may be the preferred structure. Insertion

and deletion reorganize the tree automatically and a traversal of the tree yields the correct

ordering. A link between a page number in the index entry and its corresponding actual page

is required so that the index needs not be regenerated when the document is reformatted. In

other words, when a page number changes due to reformatting, all instances of that page in

the index change automatically.

One possible extension to this model is the ability to point at an entry in the index

and have the corresponding page located automatically with a keyword highlighted. Thus

indexing becomes a dynamic activity from the reader’s point of view. This feature typifies

the power of “dynamics” that an electronic document environment is able to offer, which does

not exist in traditional static printed material. In addition to dynamic indexing, one can do

such hypertext operations as navigation, filtering, summarizing, etc. [22] effectively based on

markup tags, embedded annotations, and links among compound objects in the document.

6 Evaluation

6.1 Index Placing Subsystem

An important aspect of our system is the framework for placing index commands in the

document. This task has been performed traditionally in an ad hoc fashion. It is unclear

how placement is done in the UNIX troff environment. Reference [23] does not describe any

automated assistance for the author.

23

Entering index codes in MicroSoft Word is awkward because its search mechanism lacks

full regular expression support and query-insert mode is unavailable. To mark one piece of

text as an index entry, an ordinary session requires 8 mouse clicks and 4 keystrokes. Even

with accelerated keyboard abbreviations, it still takes 2 mouse clicks and 8 keystrokes to mark

a single index entry. The premise, however, is that the index pattern has been located and

that it is identical to the index key. Locating the pattern may involve extra mouse clicks and

keystrokes. Moreover, if the index key and the search pattern are distinct, more keystrokes

would be necessary to enter the text for the index key. This situation happens to the marking

of each and every instance of index entries. No global scheme is available in MicroSoft Word.

Ventura Publisher does not support any searching mechanism; it assumes searching is

performed in a front-end word processor. Therefore, systematic index placing in the stand-

alone Ventura Publisher is difficult.

The situation in FrameMaker is somewhat better because of its more powerful keyboard

macro registration capability and the support for regular expression search. In FrameMaker,

a specific combination of tools can be used to enter index tags at desired places. Operations

can be recorded as keyboard macros so that repetitions can be done by a single keystroke

(the invocation of the keyboard macro). The problem is that a new keyboard macro has

to be defined for each key-pattern pair. Furthermore, it lacks the systematic global scheme

available in our extended framework to make the whole process efficient.

In our system, it takes only 1 to 3 keystrokes to mark an index entry. Also available is a

global scheme for marking index entries in the entire document that may span over multiple

files. In the single key-pattern case, the same key can be inserted at a variety of places

described by a single regular expression. Patterns already indexed are skipped automatically.

A number of options are available upon each occurrence of the pattern. Thus, marking

each instance takes just one keystroke to confirm and it works uniformly and continuously

throughout the entire document. This can be expanded to a scheme of multiple key-pattern

pairs that works iteratively on a list of different index entries. In our system, a significant

amount of time is saved not just in typing per se, but in the user’s mental reaction time due

24

to the side effect of unautomated discrete repetitions as in FrameMaker, MicroSoft Word,

and Ventura Publisher.

In the production of an index for a book [6], our Emacs Lisp implementation of the index

placing subsystem has proved very useful and effective. The provision for multi-pair <key ,

pattern> query-insert has been the most time-saving operation in our experience. With minor

modifications, the same facility should work on placing index commands for other formatting

languages like troff and Scribe. Adapting it to direct-manipulation environments is more

involved, but given proper editor programming power, the basic principles discussed above

should apply.

6.2 Index Processor

The other major portion of our work is a complete index processor implementation. The

resulting processor is a single C program called MakeIndex. Actually, MakeIndex had several

predecessors all written as UNIX shell scripts with embedded sed [24] and awk [25] code. We

quickly became unsatisfied with them for various reasons. One of the concerns was efficiency.

Interpreted languages such as sed and awk are satisfactory for rapid prototyping, but they

are slow. In our experience, MakeIndex was able to process a book index of 3,300 entries in

less than 50 seconds of user time plus an extra 5% of system time on a client node of SUN

3/50 (MC68020 at 12.5 MHz). This is at least an order of magnitude faster than using its

most recent sed/awk predecessor, which has only half the features of MakeIndex.

The decision to do a C implementation was made because of C’s dynamic storage allocation

and data structures. Since we wanted as general a solution as possible, it would be difficult,

if not impossible, to implement all the desired features using sed/awk. For instance, in awk

a dynamically linked list of index entries is impossible, and the style handling mechanism

with a comprehensive error processing facility is difficult to realize. Originally developed in

UNIX C with portability in mind, MakeIndex also runs on VAX/VMS, TOPS-20, MS/DOS

systems with a few trivial changes. This portability would have been very difficult for an

implementation in UNIX shell scripts. Furthermore, MakeIndex has more features and is

25

more extensible than tools like IdxTEX [26], a LaTEX-specific index processor that runs only

on VAX/VMS systems.

Our approach is the direct opposite of that taken by make.index, a host of indexing

tools [23] built for troff . As part of the UNIX troff document preparation environment, these

tools are canonical examples of the pipelining model. They are a collection of small awk

programs working together in a very long pipeline. The claim is that by breaking the system

down into small pieces, it is easier for the user to adapt the package to various situations

not possible to envision in advance. Their approach, therefore, seems to follow the “do it

yourself” metaphor whereby you get a toolkit and assemble the final product yourself. The

basic package covers only those features used by its authors. A third party user has to modify

their awk code if something different is desired.

The design of MakeIndex is quite different. Our intention is to build a complete system

by analyzing the tasks involved in index processing. Parameters are derived to form a table-

driven style handling facility. Formatter and format independence is achieved by simple style

specification. All the underlying data structures and processing mechanisms are transparent.

Yet it is robust enough to handle different precedence schemes, ordering rules, etc. To use the

system, the user needs not deal with the processing details. If the default is inappropriate,

the only adaptation required is a table specification for the style facility.

For instance, by assigning the output index header index.head defined in make.index to

our preamble and other related commands to item_i’s, it is easy to produce an alphabetized

index in troff format from a raw index generated by troff . The same technique applies to

other formatting systems. Scribe, for example, has an indexing subsystem that supports a

subset of the functionality described above. By adapting its raw index file format as input

style and its output appearance commands as output style, its indexing capability can be

readily expanded using MakeIndex. In both cases, there is no need to modify the original

code used to generate the raw index (Step II), nor is it necessary to modify MakeIndex itself.

Likewise, MakeIndex can be integrated with direct-manipulation document development or

publishing systems by binding their descriptive markup tags to the attributes of MakeIndex’s

26

input format and output style.

To summarize the differences in approach between MakeIndex and make.index, let us

examine the points of comparison: speed, size of the programs, ease of use, portability, and

extensibility. MakeIndex is an order of magnitude faster. The awk programs of make.index

are less than 100 lines of code, while MakeIndex is large: 6,000 lines of C code and a binary

of 70K bytes. MakeIndex is a self-contained C program, adapted from our original UNIX

implementation, to run on a variety of machines from micros to mainframes. The make.index

system will run on any UNIX system which has awk so it too spans many systems, although

it is UNIX-specific while MakeIndex is not.

MakeIndex is easy to use. It is monolithic and covers almost every conceivable case likely

to occur. We actually examined many of the books in the Addison-Wesley Computer Science

Series and found that more than 95% of the cases could be handled by the program. The

make.index suite, on the other hand, handles the standard cases and all customizations must

be done by the user by modifying awk code. With MakeIndex, user changes will very rarely

occur. If they should occur, and we have never had them happen, then the user must change

the C source code. The question as to whether it is easier to modify awk code or C code is

left to the reader. Our answer is given in MakeIndex.

7 Acknowledgements

We would like to thank Leslie Lamport for his collaboration in the design of MakeIndex. He

provided the initial specification and did some serious testing. Charles Karney furnished the

patches for MakeIndex to run under VMS. Nelson Beebe ported MakeIndex to TOPS-20 and

MS/DOS. Some useful feedback came from Art Werschulz who tried out both MakeIndex

and the index placing facility with AMS-TEX. We are grateful to Richard Beach for his

description of Tioga’s index processing facility, to Ravi Sethi for the information on troff ’s

index processing tools, and to Ventura Software, Inc. for giving us documentation on their

indexing mechanism. Thanks also go to Ethan Munson and the anonymous referees for their

helpful comments on earlier drafts of this paper.

27

References

[1] The Seybold Report on Publishing Systems. Seybold Publications Inc., Media, Pennsylvania.
Published 22 times a year.

[2] Donald E. Knuth. TEX: The Program, volume B of Computers & Typesetting. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1986.

[3] Donald E. Knuth. Literate programming. The Computer Journal, 27(2):97–111, May 1984.

[4] The Chicago Manual of Style, 13th edition, 1982. University of Chicago Press, Chicago, Illinois.

[5] Pehong Chen and Michael A. Harrison. Integrating noninteractive document processors into an
interactive environment. Technical Report 87/349, Computer Science Division, University of
California, Berkeley, California, April 1987. Submitted for publication.

[6] David H. Brandin and Michael A. Harrison. The Technology War. John Wiley and Sons, Inc.,
New York, New York, 1987.

[7] J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski. Information-Based Complexity. Academic
Press, New York, New York, 1988.

[8] Edwin L. Hutchins, James D. Hollan, and Donald A. Norman. Direct manipulation interfaces. In
D. A. Norman and S. W. Draper, editors, User-Centered System Design, pages 87–124 (Chapter
5), Hillsdale, New Jersey, 1986. Lawrence Erlbaum Associates, Inc.

[9] Ben Shneiderman. Direct manipulation: A step beyond programming languages. IEEE Computer,
16(8):57–69, August 1983.

[10] Leslie Lamport. LaTEX: A Document Preparation System. User’s Guide and Reference Manual.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1986.

[11] Donald E. Knuth. The TEX Book. Addison-Wesley Publishing Company, Reading, Massachusetts,
1984. Reprinted as Vol. A of Computers & Typesetting , 1986.

[12] Brian K. Reid. Scribe: A document specification language and its compiler. PhD thesis, Com-
puter Science Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania, October 1980.
Available as technical report CMU-CS-81-100.

[13] Joseph F. Ossanna. Nroff/troff user’s manual. Computer Science Technical Report No. 54, AT&T
Bell Laboratories, Murray Hill, New Jersey, October 1976. Also available in UNIX User’s Manual.

[14] 8010 STAR Information System Reference Library, Release 4.2. Xerox Office Systems, El Se-
gundo, California. 1984.

[15] Frame Maker Reference Manual, Version 1.0. Frame Technology Corporation, San Jose, Califor-
nia. February 1987.

[16] Reference to Microsoft Word, Word Processing Program for the Apple Macintosh, Version 3.0.
Microsoft Corporation, Seattle, Washington. January 1987.

[17] Ventura Publisher — Professional Publishing Program, Reference Guide, version 1.1. Ventura
Software, Inc., Salinas, California. July 1987.

[18] Pehong Chen and Michael A. Harrison. Automating index preparation. Technical Report 87/347,
Computer Science Division, University of California, Berkeley, California, March 1987.

28

[19] Richard M. Stallman. GNU Emacs Manual, Fifth Edition, Version 18. Free Software Foundation,
Cambridge, Massachusetts, December 1986.

[20] Warren Teitelman. A tour through Cedar. IEEE Software, 1(2):44–73, April 1984.

[21] Richard J. Beach. Personal communication.

[22] Nicole Yankelovich, Morman Meyrowitz, and Andries van Dam. Reading and writing the elec-
tronic book. IEEE Computer, 18(10):15–30, October 1985.

[23] Jon J. Bentley and Brian W. Kernighan. Tools for printing indexes. Electronic Publishing,
1(1), June 1988. Also available as Computer Science Technical Report No. 128, AT&T Bell
Laboratories, Murray Hill, October 1986.

[24] Lee E. McMahon. Sed – a non-interactive text editor. Computer Science Technical Report No.
77, AT&T Bell Laboratories, Murray Hill, August 1978. Also available in UNIX User’s Manual.

[25] Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. The AWK Programming Language.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1988.

[26] Richard L Aurbach. Automated index generation for LaTEX. TUGBoat, 8(2):201–209, July 1987.

