
The tkz-orm package

Object-Role Model Drawing Library

Jakob Voß∗, Camil Staps†

Version 0.1.4
January 15, 2016

http://purl.org/net/tkz-orm

Abstract

This package provides styles for drawing Object-Role Model (ORM2) di-
agrams in TEX based on the pgf and TikZ picture environment.

Contents

1 Introduction 2

2 Object Types 3

3 Predicates and Roles 4

4 Constraints 6
4.1 Uniqueness Constraints . 7
4.2 Mandatory Role Constraints . 9
4.3 External constraints . 10
4.4 Ring Constraints . 11
4.5 Number and Value Constraints 12
4.6 Textual constraints . 13

5 Subtyping 13

6 Additional Features 15
6.1 Duplicated and implied parts of a model 15
6.2 Arrow heads . 17
6.3 Macros for text layout . 17

7 Settings and Utilities 18

References and Index 18

∗jakob.voss@gbv.de
†info@camilstaps.nl

1

http://purl.org/net/tkz-orm

1 Introduction

tkz-orm is intended to help you creating Object-Role Model (ORM) diagrams.
It is based on the pgf and TikZ1 picture macro package for TEX. and provides
additional styles and commands to typeset ORM2 diagrams. With tkz-orm you
can “program” ORM diagrams just as you “program” your document when you
use LATEX – including the inherental lack of wysiwyg. Unless multi-touch e-
paper interfaces become usable, tkz-orm can best be combined with a whiteboard
or paper and pencil — but you may also find ways to automatically create ORM
diagrams with tkz-orm.

Status of this package

This is the developer version of tkz-orm. Please send your comments to the
author so the package can be improved. All parts of the package are available
at least under the LATEX Project Public License[LPP08] and the GNU Public
license[GPL91]. For details have a look at the file LICENSE that is part of this
package. The permament URL of tkz-ormis http://purl.org/net/tkz-orm

which redirects you to its current location and a collection of examples.

ORM in a nutshell

Object-Role Modeling (ORM)2 is a fact-oriented modeling language that evolved
from the Natural-language Information Analysis Method (NIAM) by G.M. Ni-
jssen. The current version (ORM2) is mainly based on works of Terry Halpin.
Like ERM, UML, and other data modeling languages ORM helps to identify and
abstract information objects, relationships, and rules of a Universe of Discourse
to be formalized and implemented on another level. ORM includes a graphical
notation and a precise verbalization in natural language. Models can further
be validated by populating fact tables with sample data. An overview of the
ORM2 graphical notation is given in [Hal05] and more details in [HM08]. An
ORM model consists of object types (section 2) and predicates (section 3). Each
of the n roles of an n-ary predicate is connected to an object type that plays
the specific role in this predicate. Furthermore a model can contain constraints
(section 4), subtypes (section 5), and other features (section 6). tkz-ormalso
allows you to change the appearance of ORM diagrams (section 7).

A Value type Person
Activity
(Code)

Type name
(.reference) Zoomed

Figure 1: Examples of object types in ORM

1Available at http://sourceforge.net/projects/pgf/.
This document was created with TikZ version ..a

2See http://www.orm.net/.

2

http://purl.org/net/tkz-orm
http://sourceforge.net/projects/pgf/
http://www.orm.net/

2 Object Types

Object types are drawn as rectangles with rounded borders. The object’s type
name is written as node text inside. Entity types use solid border lines and
value types use dashed border lines. The minimal size of an object is set to
6mm×6mm. This package provides the following styles for entities and values:

/tikz/entity

This style is to be used with nodes that represent entity types.

Foo
Person

(.name)

\begin{tikzpicture}

\node[entity] at (0,0) {Foo};

\node[entity] (unnamed) at (1.2,0) {};

\node[entity] at (2.5,0) {Person\\(.name)};

\end{tikzpicture}

/tikz/value

This style is to be used with nodes that represent value types.

Name
\begin{tikzpicture}

\node[value] {Name};

\end{tikzpicture}

/tikz/power

This style is to be used with nodes that represent power types.

As

A

Bs

B C

\begin{tikzpicture}

\node[entity,power=below:As] {A};

\node[entity,power=Bs] at (1.1,0) {B};

\node[entity,power] at (2.2,0) {C};

\end{tikzpicture}

/tikz/sequence

This style is to be used with nodes that represent sequence types.

As

A

Bs

B C

\begin{tikzpicture}

\node[entity,sequence=below:As] {A};

\node[entity,sequence=Bs] at (1.1,0) {B};

\node[entity,sequence] at (2.2,0) {C};

\end{tikzpicture}

/tikz/every entity

/tikz/every value

Each of this styles is envoked by the styles entity or value. Change one
of this styles to change the appearance of entity or value types.

Person Name
\begin{tikzpicture}[

every entity/.style={draw=blue!50,fill=blue!20},

every value/.style={draw=green!50,fill=green!20}]

\node[entity] (P) at (0,0) {Person};

\node[value] (N) at (1.5,0) {Name};

\end{tikzpicture}

3

/tikz/every object

This style is envoked by the styles entity and value. Change this style to
change the common appearance of entity and value types.

Person Name
\begin{tikzpicture}[

every object/.style={shape=rectangle,draw=red}]

\node[entity] (P) at (0,0) {Person};

\node[value] (N) at (1.5,0) {Name};

\end{tikzpicture}

Since entity types and value types are very frequent node types in an ORM
diagram, there are two special abbreviations for creating object types:

\entity
Inside {tikzpicture} this is an abbreviation for \node[entity].

\value
Inside {tikzpicture} this is an abbreviation for \node[value].

3 Predicates and Roles

Relationship parts (roles) played by objects are shown as boxes of fixed size
(4mm×2.5mm). A predicate is a sequence of one or more concatenated role
boxes. Predicates can be created with the following styles:

/tikz/roles=〈number of roles〉
/tikz/role=1

Shapes the current node as predicate with a given number of role boxes.
Numbers from 1 to 20 are supported. The default value is 2 (binary).

A B

C

\begin{tikzpicture}[orm]

\entity (A) at (0,1) {A};

\entity (B) at (2.8,1) {B}

edge node[roles=3] (p) {} (A);

\entity (C) at (1.4,0) {C} edge (p.south);

\node[role] at (2.2,0){} edge (C);

\draw (A) |- node[roles,xshift=2mm]{} (C);

\end{tikzpicture}

/tikz/vroles=〈number of roles〉
/tikz/vrole=1

Shapes the current node as predicate rotated by 90 degree (vertical).

/tikz/relation

/tikz/relationship

/tikz/plays

This equivalent styles are to be used with connection lines between objects
and roles. By default it just includes the style every orm line which
results in a solid, black line of 0.25mm width.

4

A

\begin{tikzpicture}

\node[entity,power] (A) {A};

\node[roles] (r) at (1,0) {};

\draw[relation] (A-power) -- (r);

\node[vrole] at (0,-.8){} edge[relation] (A);

\end{tikzpicture}

The following table lists abbreviations that can be used for creating predicate
nodes and relationship lines inside {tikzpicture}:

command(s) abbreviation for

\unary or \role \node[role]

\binary or \roles \node[roles]

\ternary \node[roles=3]

\vunary or \vrole \node[vrole]

\vbinary or \vroles \node[vroles]

\vternary \node[vroles=3]

\plays \draw[relationship]

The general style of predicates and roles can be modified by the following keys:

/tikz/every predicate

Changing this style to modify the common appearance of predicates.

BA
\begin{tikzpicture}[

every predicate/.style={draw=blue,fill=green!20}]

\entity at (2,0) (B) {B};

\entity (A) {A} edge[relation] node[roles]{} (B);

\vunary at (0,-0.8) (r) {} edge[relation] (A);

\end{tikzpicture}

/tikz/every relationship

This style is envoked by the style relationship. To change the appearance
of explicit relationship lines you can change this style. Please keep in mind
that nodes placed on a line by node in one operation inherit properties from
the line they refer to, so you should create relationship lines with \plays .

A B
\begin{tikzpicture}[orm,

every relationship/.style={draw=blue,dotted}]

\entity (A) {A};

\plays (A) to node[roles]{} (2,0) node(B){B};

\vunary at (0,-0.8) (r) {} edge[relation] (A);

\end{tikzpicture}

Predicates are drawn either horizontally (roles) or vertically (vroles) as nodes
with one or more parts. Figure 2 shows some of the anchors. Vertical predicates
are rotated by 90 degree so north is at the left, west is at the bottom etc.
The verbalization of a predicate can be given as label next to a predicate. For
binary relationships forward and inverse readings can be seperated by a slash.
To show the inverse reading, add an arrow tip with the commands \ormleft or
\ormup . Labels for predicates with more then two roles must contain three dots
(\ldots) for each inner role. Role names and indices can be added by different
styles.

5

s.one north

s.one south

s.three north

s.three south

s.one split

s.one split north

s.one split south

s.two split

s.two split north

s.two split south

s.north

s.south

s.easts.west

s.center

s.north west s.north east

s.south west s.south east

\Large

\begin{tikzpicture}

\node[roles=3,shape example,inner ysep=0.75cm] (s) {};

\foreach \anchor/\placement in

{one north/below, one south/above,

three north/below, three south/above,

one split/below, one split north/above, one split south/below,

two split/below, two split north/above, two split south/below,

north/below, south/above, east/below, west/below, center/above,

north west/above, north east/above, south west/below, south east/below}

\draw[shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}

node[\placement] {\scriptsize\texttt{s.\anchor}};

\end{tikzpicture}

Figure 2: Node anchors of an ORM predicate

/tikz/role name

This style is to be used with role names. Role names can be displayed in
square brackets and blue color next to a role box.

A B
[role1] [role2]

\begin{tikzpicture}[orm]

\entity (A) at (0,0) {A};

\entity (B) at (2.8,0) {B};

\plays (A) edge node(r)[roles]{} (B);

\node[role name,

at=(r.north),anchor=south east] {[role1]};

\node[role name,

at=(r.north),anchor=south west] {[role2]};

\end{tikzpicture}

/tikz/index=〈n〉:〈index 〉
Adds a role index as small label at the nth role box (default: n).

1 X

A
.1

A
.2 \begin{tikzpicture}

\binary[index=1,index=2:X] {};

\vroles[index=A.1,index=2:A.2] at (.8,0) {};

\end{tikzpicture}

4 Constraints

ORM provides a rich set of constraints: Mandatory constraints (section 4.2)
and uniqueness constraints (section 4.1) limit the way objects can be combined

6

Person Car

License

Maker

valid

drives

is driven by

has of

created by/created

drives . . . by

\begin{tikzpicture}[orm]

\entity at (0,3) (P) {Person};

\entity at (3,3) (C) {Car};

\entity at (0,0) (L) {License};

\entity at (6.6,3) (M) {Maker};

\unary[label=valid] at (1.2,0) (V) {} edge (L);

\draw (P) to node[roles,

label=below:drives,label=\ormleft{is driven by}]{} (C);

\draw (P) to node[vroles,label=has,label=below:\ormup{of}]{} (L);

\draw (C) to node[roles,label=created by/created]{} (M);

\ternary[label=below:drives \ldots by] at (3,1) (t) {};

\plays (P) -- (t.west);

\plays (C) -- (t);

\plays (M) -- (t.east);

\end{tikzpicture}

in predicates. External constraints (section 4.3) and subtype constraints (sec-
tion 5) involve multiple roles or object types. All constraints are displayed in
magenta and either drawn directly at an object type or role, or linked to one
or more object types or role with dotted or dashed lines or arrows (see the
styles limits and limits to). ORM2 defines a set of symbols for external
(section 4.3), ring (section 4.4) and other types of constraints. The general
tkz-orm constraint key constraint only sets the font to violet. An optional
key value can be used to add a predefined constraint symbol at the current
position.

/tikz/constraintcolor=〈color〉
Changes the constraint color (default: magenta!100).

4.1 Uniqueness Constraints

By default every row in a fact table is unique. To express additional uniqueness
constraints on one or more roles of a fact table or to explicitly express the
uniqueness on the full predicate, a uniqueness bar is drawn above or below the
fact roles. If the bar spans two or more non-adjacent roles, it is drawn as dotted
line above or below the excluded roles. Bars can be stacked in multiple levels.
To draw uniqueness bars you can use the following styles at predicate nodes:

/tikz/unique=〈from〉-〈to〉:〈level〉
Draws a uniqueness constraint bar above one or more roles. All parts of the
key value are optional. As default a simple uniqueness bar above (〈level〉=1)

7

the first role (〈from〉=1) is drawn. To make a bar span multiple roles, use
the 〈from〉-〈to〉 syntax. Negative levels drawn the bar below the roles.

\begin{tikzpicture}

\binary[unique] at (0,0) {};

\binary[unique=2] at (1.2,0) {};

\ternary[unique=2-3:-1] at (0.2,-0.6) {};

\unary[unique=1,unique=1:2] at (1.4,-0.6) {};

\end{tikzpicture}

/tikz/skip unique=〈from〉-〈to〉:〈level〉
Draws a dotted uniqueness constraint bar. The syntax is the same as at
the unique key. The bar includes background color in the gaps between
dots, so it can be drawn on top of another bar.

\begin{tikzpicture}

\ternary[unique=1-3,skip unique=2] {};

\end{tikzpicture}

/tikz/uniqueness bar

/tikz/skipped uniqueness bar

This styles can be used to draw a line in the same style as a uniqueness
constraint bar or a dotted uniqueness constraint bar.

\tikz\draw[uniqueness bar] (0,0) -- (2,0);

\tikz\draw[skipped uniqueness bar] (0,0) -- (2,0);

Please note that elementary n-ary predicates should only have uniqueness con-
straints of at least n− 1 roles. Picture 3 shows how to split a ternary predicate
with unique constraint bar on one role.

A

B

C ⇒ A

B

C

\begin{tikzpicture}[orm] % needs positioning library

\ternary[unique] (t) at (0,0) {};

\entity[left=of t] {A} edge (t);

\entity[above=of t] {B} edge (t);

\entity[right=of t] {C} edge (t);

\node at (2.3,0) {\Rightarrow};

\entity (A) at (3,0) {A};

\binary[right=of A.north east,yshift=1mm,unique] (t1) {};

\binary[right=of A.south east,yshift=-1mm,unique] (t2) {};

\plays (A) -- (t1.west); \plays (A) -- (t2.west);

\entity[right=of t1] {B} edge (t1);

\entity[right=of t2] {C} edge (t2);

\end{tikzpicture}

Figure 3: A ternary predicate can be split into to binary predicates

8

4.2 Mandatory Role Constraints

To indicate explicitly that a role is mandatory, a mandatory role dot is added to
either end of the line that connects the role to its object. Usually it is placed at
the object type end. This package defines the style key constraint dot (alias
cdot) and the following keys which can be used to add mandatory role dots to
lines drawn with the to operation.

/tikz/constraint dot

/tikz/cdot

Draws the current node as mandatory role dot.

\tikz \node[cdot] {};

/tikz/mandatory

/tikz/required

This styles enables the relationship style and adds a mandatory role dot
at the start of a straight line.

A B
\begin{tikzpicture}

\entity (A) {A};

\entity at (2,0) {B} edge[mandatory]

node[roles] (p) {} (A);

\end{tikzpicture}

/tikz/required by

This styles enables the relationship style and adds a mandatory role dot
at the end of a straight line.

A B
\begin{tikzpicture}

\entity (A) {A};

\entity at (2,0) {B} edge[required by]

node[roles] (p) {} (A);

\end{tikzpicture}

/tikz/both required

/tikz/both mandatory

This styles enables the relationship style and adds mandatory role dots
at both ends of a straight line.

A B
\begin{tikzpicture}

\entity (A) {A};

\entity at (2,0) {B} edge[both required]

node[roles] (p) {} (A);

\end{tikzpicture}

To show that either of many roles is mandatory, you can add an inclusive-or
(disjunctive mandatory) role constraint with constraint=mandatory as shown
in section 4.3. By default it is assumed that each entity or value must play at
least some role. Independent object types whose roles are collectively optional
can be marked by an exclamation mark appended to its name. It is recom-
mended not to include implied mandatory constraints unless they they refer to
subtypes (section 5).

9

4.3 External constraints

External constraints span multiple roles that may come from different predi-
cates. They are depicted by several circle symbols next the roles they limit,
possibly linked to them with a dotted or dashed line (style limits and limits

to). tkz-orm implements external constraint symbols as node shapes.

/tikz/constraint=〈constraint type〉
This style sets the font to ORM style on constraint color (violet). If you pro-
vide a constraint type as key value, the current node is shaped as constraint
circle and the symbol of the specified constraint type is drawn. The most
common constraint types are exclusive (alias x) to indicate that popula-
tions of two or more role-sequences must be mutually exclusive, mandatory
(alias required, total, and or) to indicate that each at least on of two
more roles must be played by an object type, and xor (alias partition)
to indicates that exactely one of two or more roles must be played by an
object type. These constraints can also be used in subtyping (section 5).
The constraint type unique and preferred unique enforces combinations
of object types that play a given set of roles to always be the same. The
types equal, subset, and supset indicate that tuples of roles have to be
equal, subset or superset compared to each other (supset is not included
in standard ORM2). The constraint type is external only draws the circle
and can be used for custom constraints.

exclusive / x
mandatory / total
required / or

xor / partition

unique preferred unique external

equal subset supset

\begin{tikzpicture}[orm]

\matrix[column sep=2mm, row sep=2mm]{

\node[constraint=x]{}; & \node[right]{exclusive / x}; &

\node[constraint=or]{}; & \node[right,text width=2.8cm]

{mandatory / total required / or}; &

\node[constraint=xor]{}; & \node[right]{xor / partition}; \\

\node[constraint=unique] {}; & \node[right]{unique}; &

\node[constraint=preferred unique]{};&\node[right]{preferred unique};&

\node[constraint=external]{}; & \node[right]{external}; \\

\node[constraint=equal] {}; & \node[right]{equal}; &

\node[constraint=subset] {}; & \node[right]{subset}; &

\node[constraint=supset] {}; & \node[right]{supset}; \\

};

\end{tikzpicture}

/tikz/limits

This style is to be used with lines that connect constraint circles and roles.
It can also be used to link other kinds of constraints (for instance value
constraints) to the entity, value, or role they belong to.

10

\begin{tikzpicture}

\unary (r1) at (0,0) {};

\unary (r2) at (0,-1.4) {};

\draw[limits] (r1) to node[constraint=x] {} (r2);

\end{tikzpicture}

/tikz/limits to

This style is to be used with directed lines that connect constraint circles
and roles. The line is drawn in the same style as limits but dashed and
with an arrow tip of style orm arrow at the head.

2

1

Each object that
plays role 1 also
plays role 2

\begin{tikzpicture}[orm]

\unary[index=2] (a) at (0,0) {};

\unary[index=1] (b) at (0,-1.4) {};

\draw[limits to] (b) -- (a)

node[pos=.4,constraint=subset,name=s]{};

\node[right=2mm of s,text width=2.3cm]

{Each object that plays role 1 also plays role 2};

\end{tikzpicture}

\limits

\limitsto
Inside {tikzpicture} these commands can be used as abbreviations for
\draw[limits] and \draw[limits to].

\begin{tikzpicture}[orm]

\limits (0,.4) to (1,.4); \limitsto (0,0) to (1,0);

\end{tikzpicture}

\constraintdeclare {〈constraint type name〉}{〈path code〉}
This command declares a new constraint type. The {〈path code〉} is passed
to the append after command key to be drawn after the constraint circle.
Unless you want to extend ORM you do not need to declare new constraint
types. This command is for internal use only!

\constraintdeclarealias {〈alias name〉}{〈existing constraint type name〉}
This command can be used to create an alias (another name) for an existing
constraint type. This command is for internal use only!

/tikz/every constraint

This style is envoked at every constraint. You can change this style to
change for instance the constraint color.

4.4 Ring Constraints

A ring constraint can be applied to any two roles of a predicate that are played
by the same object type (or the same supertype). Such constraints can also be
viewed as properties of a binary relation or as properties of a directed graph.
There are 10 ring constraints that combined can be used in 26 forms. The
graphical syntax of ‘irreflexive’ and ‘antisymmetric’ provided by this package are

11

slightly changed compared to the official ORM2 syntax and some combinations
are omitted or changed.

irreflexive asymmetric strongly intransitive

antisymmetric acyclic acyclic intransitive

symmetric purely reflexive symmetric irreflexive

intransitive reflexive transitive

\centering

\begin{tikzpicture}[orm]

\foreach \n/\s in {0/irreflexive,1/asymmetric,2/strongly intransitive,

3/antisymmetric,4/acyclic,5/acyclic intransitive,

6/symmetric,7/purely reflexive,8/symmetric irreflexive,

9/intransitive,10/reflexive,11/transitive}{

\path ($mod(\n,3)*(3.4,0)-int(\n/3)*(0,0.8)$) node [constraint=\s] {}

+(4mm,0) node[anchor=west] {\s}; };

\end{tikzpicture}

Person

mother of

\begin{tikzpicture}[orm]

\entity (P) {Person};

\binary[below=of P,unique=2,label=below:mother of] (r) {};

\plays (P) to (r.one north) (P) to (r.two north);

\limits (r.north) to +(-1,0.4) node[constraint=acyclic]{};

\end{tikzpicture}

4.5 Number and Value Constraints

Value constraints, cardinality constraints, and occurrence frequencies can simply
be drawn beside the object type or role they refer to, optionally linked to with
a dotted or dashed limitation line.
Frequency Constraints specify the number of times an object can play a role.
Usually it is connected to the roles with a limtation line.

1

f

\begin{tikzpicture}

\binary[index=1:1] (b) {};

\limits (b.one south) -- +(0,-.4) node[constraint]{f};

\end{tikzpicture}

A Value constraint indicates which values are allowed in an object type or role.
It can be defined by declaring the set of possible values enclosed in curly brackets
next to an object or role type. The commands \ormbraces and \ormvalues are
handy abbreviations to create curly brackets.

A
{a, b, c} \begin{tikzpicture}

\entity (A) {A};

\node[constraint,anchor=north west,inner ysep=0]

at (A.north east) {\ormbraces{a, b, c}};

\end{tikzpicture}

Value comparision-constraints are depicted by one of four comparision oper-
ators <, ≤ (le), >, and ≥ (ge). The constraints are shown at a dashed arrow be-
tween two roles in the same way as constraint=subset and constraint=supset

12

(but the value-comparision is between instances not between sets). Equality can
be stated with constraint=equal which should not be confused with similar
looking constraint=purely reflexive.

< ≥ > ≤

\tikz \foreach \x/\s in {0/<,1/ge,2/>,3/le}{

\draw[limits to] (\x,0) to (\x,1.2);

\node[constraint=\s] at (\x,.5) {};

};

Cardinality constraints are rarely included in ORM diagrams since the are
often implied by other constraints. However you can explicitely say that each
population of an object type or a role includes exactely, at most, or at least a
given number of instances. This is done by adding a cardinality constraint next
to the object or role. The hash sign (“#”) stands for the cardinality.

A

#=n

A

1≤#≤6

#≤2
\begin{tikzpicture}[orm]

\entity[label={[constraint]\#=n}] {A};

\entity[label={[constraint]below:1\leq\#\leq6}]

at (1.1,0) {A};

\role[label={[constraint]\#\leq2}] at (2,0) {};

\end{tikzpicture}

4.6 Textual constraints

Constraints not expressed by predefined graphical notation may be specified as
textual rules. Textual rules can be displayed as footnotes with footnote numbers
or signs that mark the involved elements in the diagram.

/tikz/rule=〈mark〉
This key is to be used with nodes that contain textual rules. The optional
〈mark〉 is shown as footnotes index left to the rule.

Each Number identifies at most one Room.1

\begin{tikzpicture}

\node[rule=1] {{\ormbf Each} Number identifies {\ormbf at most one} Room.};

\end{tikzpicture}

\rules
This command is an abbreviation for \matrix[row sep=0mm,nodes={right}]

inside {tikzpicture}. Matrices are useful to draw multiple textual rules
below each other.

5 Subtyping

To draw type hierarchies you can use the tree syntax of TikZ. Euler diagrams
are a less used alternative for simple type hierarchies.

/tikz/subtype

Draws a subtype relationship arrow from the supertype to the subtype.

13

Employee1

(.nr)

has

uses2,3

Rank
(.code)

CompanyCar
(.regNr)

{‘Exec’,
‘NonExec’}

was born on

was hired on

Date
(mdy)

[birthdate]

[hiredate]

For each Employee, birthdate < hiredate.1

Each Employee who has Rank ‘NonExec’ uses at most one CompanyCar.2

Each Employee who has Rank ‘Exec’ uses some CompanyCar.3

\begin{tikzpicture}

\entity (E) {Employee\ormind{1}\\(.nr)};

\binary[left=of E.north west,unique=2,label=\ormleft{has}] (h) {};

\binary[left=of E.south west,unique=1-2,

label=below:\ormleft{uses\ormind{2,3}}] (u) {};

\entity[left=of h] (Rank) {Rank\\(.code)};

\entity[left=of u] (Car) {CompanyCar\\(.regNr)};

\node[constraint=text,align=left,anchor=east] at (Rank.west)

{\textbraceleft‘Exec’,\\‘NonExec’\textbraceright};

\plays[mandatory] (E) to (h.east);

\plays (h) to (Rank) (E) to (u.east) (u) to (Car);

\binary[right=of E.north east,unique,label=was born on] (b) {};

\binary[right=of E.south east,unique,label=below:was hired on] (i) {};

\entity[right=1.8 of E] (Date) {Date\\(mdy)};

\plays[mandatory] (E) to (b.west) (E) to (i.west);

\plays (b.east) to (Date) (i.east) to (Date);

\node[role name,anchor=south west] at (b.east) {[birthdate]};

\node[role name,anchor=north west] at (i.east) {[hiredate]};

\rules at (-.4,-2) {

\node[rule=1] {{\ormbf For each} Employee, birthdate $<$ hiredate.}; \\

\node[rule=2] {

{\ormbf Each} Employee {\ormbf who} has Rank ‘NonExec’ uses

{\ormbf at most one} CompanyCar.};\\

\node[rule=3] {

{\ormbf Each} Employee {\ormbf who} has Rank ‘Exec’ uses

{\ormbf some} CompanyCar.};\\

};

\end{tikzpicture}

/tikz/suptype

Works in the same way as subtype but with reverse direction.

Animal Sheep
\begin{tikzpicture}

\node[entity] (A) {Animal};

\node[entity] (S) [right=6mm of A] {Sheep};

\draw[suptype] (S) to (A);

\end{tikzpicture}

Multiple inheritance may require to select one path as primary. You can dis-
tinguish primary and secondary subtypes by drawing the latter with a dashed
arrow (subinterface or supinterface).

/tikz/subinterface

/tikz/supinterface

Draw secondary subtype/supertype relationship arrows.

14

Animal

Mammal Bird

Penguin Parrot

\begin{tikzpicture}[

edge from parent/.style=subtype]

\node[entity] {Animal}

child {node[entity] {Mammal}}

child {node[entity] {Bird}

child {node[entity] {Penguin}}

child {node[entity] {Parrot}}

};

\end{tikzpicture}

Animal Person
\begin{tikzpicture}

\node[entity] (A) {Animal};

\node[entity] (P) [right=8mm of A] {Person};

\draw[supinterface] (P) to (A);

\end{tikzpicture}

Subtype constraints can be shown linked to the subtype arrrows:

A

B C

exclusive

A

B C

total

A

B C

partition

\begin{tikzpicture}[orm]

\foreach \c/\x in {exclusive/0,total/2.5,partition/5}{

\entity (A) at (\x,0) {A} [edge from parent/.style=subtype]

child {node [entity] (B) {B}} child {node [entity] (C) {C}};

\limits ($(A)!.7!(B)$) to node[constraint=\c] {} ($(A)!.7!(C)$);

\node at (\x,-2) {\c};

};

\end{tikzpicture}

6 Additional Features

6.1 Duplicated and implied parts of a model

Sometimes an object type or predicate is referred to without describing all its
details because it is defined in an external model or because it is shown dupli-
cated at some other place in the same model. To indicate such an external or
duplicated object type or a predicate, a shadow is added to its shape. Alter-
natively ORM2 allows to add a circumflex “ˆ” to an object type’s name. A
different kind of redundancy are roles and constraints that deduce from other
parts of the model. ORM2 includes the possibility to shade redundant roles.
This is useful for instance to show conceptual pathes or join fact types that are
normally excluded. Moreover ORM allows a zooming on object types. This
means that only objects and roles connected to a given object type are shown.

15

/tikz/duplicated model

This style modifies the styles every object and every predicate so all
object types and predicates in the current scope get a shadow.

A Bˆ
\begin{tikzpicture}[orm]

\begin{scope}[duplicated model]

\entity (A) {A};

\node[role] (r1) [right=of A] {};

\node[role] (r2) [right=0 of r1] {};

\draw[relationship] (A) -- (r1);

\end{scope}

\entity (B) [right=of r2] {B\^{}};

\plays (r2) -- (B);

\end{tikzpicture}

/tikz/implied model

This style modifies the styles every orm line and every object in the
current scope to draw all lines thin and all objects filled gray. The style is
currently broken.

A B C

\begin{tikzpicture}

\matrix[column sep=4mm] {

\entity (A) {A}; & \binary (ab) {}; & \entity (B) {B}; &

\binary (bc) {}; & \entity (C) {C}; \\ };

\plays (A) -- (ab) -- (B) -- (bc) -- (C);

\begin{scope}[implied model]

\node[constraint=unique] (con) [above=of B] {};

\limits (ab.one north) -- (con) -- (bc.two north);

\ternary[unique=1-3,skip unique=2] (abc) [below=4mm of B] {};

\plays (A) -- (abc.west); \plays (B) -- (abc); \plays (C) -- (abc.east);

\end{scope}

\end{tikzpicture}

/tikz/duplicated

/tikz/implied

This styles work like duplicated model and implied model but only af-
fect the current element. The style are currently broken.

Person PersonName

\begin{tikzpicture}

\entity[duplicated] (P) {Person};

\value[implied,right=1.6 of P] (V) {PersonName};

\draw[implied,both required] (P) to

node[roles,unique=1,unique=2]{} (V);

\end{tikzpicture}

16

/tikz/zoomed

This styles visualizes an object type as zoomed by using a thicker line.

Normal Zoomed
\begin{tikzpicture}

\entity at (0,0) {Normal};

\entity[zoomed] at (2,0) {Zoomed};

\end{tikzpicture}

6.2 Arrow heads

Constraint dots are implemented as arrow heads. The normal constraint dot is
drawn with arrow head mdot for mandatory. Furthemore there is an implicit
mandatory constraint dot (idot), a deontic mandatory constraint dot (odot),
and a implied deontic mandatory constraint dot (iodot). You should not di-
rectly use this arrow heads but the mandatory role constraints cdot, required
etc. (4.2) which can be modified by other styles. This feature is not fully tested
yet.

mdotstrict

explicit

idot

implicit

odotdeontic iodot

\begin{tikzpicture}[orm]

\matrix [row sep=2mm,column sep=3mm,every entity/.style={minimum width=10mm}]{

\entity[label=left:strict,label=above:explicit,right] (m) {mdot}; &

\entity[label=above:implicit] (i) {idot}; \\

\entity[label=left:deontic,right] (o) {odot}; &

\entity (io) {iodot}; \\ };

\plays[mdot-idot] (m) to (i);

\plays[odot-iodot] (o) to (io);

\end{tikzpicture}

6.3 Macros for text layout

The following macros can be used both in TikZ pictures or normal text:

\ormtext
Sets the font to the same sans-serif variant which is used in ORM diagrams.

\ormbf
Sets the font to a bold variant of \ormtext .

\ormc
Sets the font to a \ormtext in constraint color.

\ormsup {〈text〉}
Puts some text in a superscript variant of \ormtext .

\ormsub {〈text〉}
Puts some text in a subscript variant of \ormtext .

17

\ormind {〈text〉}
Puts some text in a superscript variant of \ormbf .

\ormbraces {〈text〉}
Puts some text as \ormtext in braces.

\ormvalues {〈text〉}
Puts some text as \ormc in braces in constraint color.

1A Person is not {0,1}, Male or Female, up or left but queermultigender!

\ormind{1}A {\ormtext Person} is not \ormbraces{0,1},~

{\ormc Male} {\ormbf or} {\ormtext Female}, \ormup{up}~

{\ormbf or} \ormleft{left} but \ormsub{queer}multi\ormsup{gender}!

7 Settings and Utilities

/tikz/orm

This style sets the font and line width and the default node distance

/tikz/orm-spacious

If you prefer to have entities and labels typeset as circles, you can use
orm-spacious instead of orm.

Person Name

\begin{tikzpicture}[orm-spacious]

\node[entity] (P) at (0,0) {Person};

\node[value] (N) at (1.5,0) {Name};

\end{tikzpicture}

/tikz/every orm line

This style is envoked by all styles of this package that draw lines. By default
it sets the line width to 0.3mm.

Changes

0.1.4, January 15, 2016 Unstable developer version (at Github).

0.1.4, January 15, 2016 Power types, sequence types, orm-spacious added.

0.1, January 25, 2010 First release (at CTAN).

References

[GPL91] GNU Public License Version 2, 1991.

[Hal05] Terry Halpin. ORM 2 Graphical Notation, 2005.

[HM08] Terry Halpin and Tony Morgan. Information Modeling and Relational
Databases. Morgan Kaufmann, 2008.

[LPP08] LaTeX Project Public License (LPPL) Version 1.3c, 2008.

18

Index

< constraint, 13
> constraint, 13
custom constraint, 10
equal constraint, 10
ge constraint, 13
le constraint, 13
mandatory constraint, 10
or constraint, 10
partition constraint, 10
preferred unique constraint, 10
required constraint, 10
subset constraint, 10
supset constraint, 10
total constraint, 10
unique constraint, 10
xor constraint, 10
x constraint, 10

Arrow tips
mandatory, 11

\binary, 5
both mandatory key, 9
both required key, 9

cardinality constraints, 13
cdot key, 9, 9
constraint key, 7, 10
constraint dot key, 9, 9
constraintcolor key, 7
\constraintdeclare, 11
\constraintdeclarealias, 11
Constraints, 6
constraints

cardinality, 13
textual, 13
value-comparision, 13
values, 12

duplicated key, 16
duplicated model key, 16, 16

Entities, 3
\entity, 4
entity key, 3, 3, 4
every constraint key, 11
every entity key, 3
every object key, 4, 16

every orm line key, 4, 16, 18
every predicate key, 5, 16
every relationship key, 5
every value key, 3

implied key, 16
implied model key, 16, 16
Independent object types, 9
index key, 6

\limits, 11
limits key, 7, 10, 10, 11
limits to key, 7, 10, 11
\limitsto, 11

mandatory key, 9

Object types, 3
Independent, 9

orm key, 18
orm-spacious key, 18
\ormbf, 17, 18
\ormbraces, 12, 18
\ormc, 17, 18
\ormind, 18
\ormleft, 5
\ormsub, 17
\ormsup, 17
\ormtext, 17, 17, 18
\ormup, 5
\ormvalues, 12, 18

\plays, 5, 5
plays key, 4
power key, 3
predicates, 4

relation key, 4
relationship key, 4, 5, 9
required key, 9
required by key, 9
\role, 5
role key, 4
role name key, 6
roles, 4
\roles, 5
roles key, 4, 5
rule key, 13

19

\rules, 13

sequence key, 3
skip unique key, 8
skipped uniqueness bar key, 8
subinterface key, 14, 14
subtype key, 13, 14
supinterface key, 14, 14
suptype key, 14

\ternary, 5
textual constraints, 13

\unary, 5
unique key, 7, 8
uniqueness bar key, 8

\value, 4
value key, 3, 3, 4
value constraints, 12
value-comparision constraints, 13
Values, 3
\vbinary, 5
\vrole, 5
vrole key, 4
\vroles, 5
vroles key, 4, 5
\vternary, 5
\vunary, 5

zoomed key, 17

20

	Introduction
	Object Types
	Predicates and Roles
	Constraints
	Uniqueness Constraints
	Mandatory Role Constraints
	External constraints
	Ring Constraints
	Number and Value Constraints
	Textual constraints

	Subtyping
	Additional Features
	Duplicated and implied parts of a model
	Arrow heads
	Macros for text layout

	Settings and Utilities
	References and Index

